inode.c 144.6 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
18
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 20 21 22
 */

#include <linux/fs.h>
#include <linux/time.h>
23
#include <linux/jbd2.h>
24 25 26 27 28 29
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
30
#include <linux/pagevec.h>
31
#include <linux/mpage.h>
32
#include <linux/namei.h>
33 34
#include <linux/uio.h>
#include <linux/bio.h>
35
#include <linux/workqueue.h>
36
#include <linux/kernel.h>
37
#include <linux/printk.h>
38
#include <linux/slab.h>
39
#include <linux/ratelimit.h>
40

41
#include "ext4_jbd2.h"
42 43
#include "xattr.h"
#include "acl.h"
44
#include "truncate.h"
45

46 47
#include <trace/events/ext4.h>

48 49
#define MPAGE_DA_EXTENT_TAIL 0x01

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
			      struct ext4_inode_info *ei)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	__u16 csum_lo;
	__u16 csum_hi = 0;
	__u32 csum;

	csum_lo = raw->i_checksum_lo;
	raw->i_checksum_lo = 0;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
		csum_hi = raw->i_checksum_hi;
		raw->i_checksum_hi = 0;
	}

	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
			   EXT4_INODE_SIZE(inode->i_sb));

	raw->i_checksum_lo = csum_lo;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = csum_hi;

	return csum;
}

static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
				  struct ext4_inode_info *ei)
{
	__u32 provided, calculated;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return 1;

	provided = le16_to_cpu(raw->i_checksum_lo);
	calculated = ext4_inode_csum(inode, raw, ei);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
	else
		calculated &= 0xFFFF;

	return provided == calculated;
}

static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
				struct ext4_inode_info *ei)
{
	__u32 csum;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return;

	csum = ext4_inode_csum(inode, raw, ei);
	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
}

117 118 119
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
120
	trace_ext4_begin_ordered_truncate(inode, new_size);
121 122 123 124 125 126 127 128 129 130 131
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
132 133
}

134
static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 136
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
E
Eric Sandeen 已提交
137 138 139
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags);
140

141 142 143
/*
 * Test whether an inode is a fast symlink.
 */
144
static int ext4_inode_is_fast_symlink(struct inode *inode)
145
{
146
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
147 148 149 150 151 152 153 154 155 156
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
157
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158
				 int nblocks)
159
{
160 161 162
	int ret;

	/*
163
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164 165 166 167
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
168
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
169
	jbd_debug(2, "restarting handle %p\n", handle);
170
	up_write(&EXT4_I(inode)->i_data_sem);
171
	ret = ext4_journal_restart(handle, nblocks);
172
	down_write(&EXT4_I(inode)->i_data_sem);
173
	ext4_discard_preallocations(inode);
174 175

	return ret;
176 177 178 179 180
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
181
void ext4_evict_inode(struct inode *inode)
182 183
{
	handle_t *handle;
184
	int err;
185

186
	trace_ext4_evict_inode(inode);
187

A
Al Viro 已提交
188
	if (inode->i_nlink) {
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
		/*
		 * When journalling data dirty buffers are tracked only in the
		 * journal. So although mm thinks everything is clean and
		 * ready for reaping the inode might still have some pages to
		 * write in the running transaction or waiting to be
		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
		 * (via truncate_inode_pages()) to discard these buffers can
		 * cause data loss. Also even if we did not discard these
		 * buffers, we would have no way to find them after the inode
		 * is reaped and thus user could see stale data if he tries to
		 * read them before the transaction is checkpointed. So be
		 * careful and force everything to disk here... We use
		 * ei->i_datasync_tid to store the newest transaction
		 * containing inode's data.
		 *
		 * Note that directories do not have this problem because they
		 * don't use page cache.
		 */
		if (ext4_should_journal_data(inode) &&
208 209
		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
		    inode->i_ino != EXT4_JOURNAL_INO) {
210 211 212 213 214 215 216
			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;

			jbd2_log_start_commit(journal, commit_tid);
			jbd2_log_wait_commit(journal, commit_tid);
			filemap_write_and_wait(&inode->i_data);
		}
A
Al Viro 已提交
217
		truncate_inode_pages(&inode->i_data, 0);
218
		ext4_ioend_shutdown(inode);
A
Al Viro 已提交
219 220 221
		goto no_delete;
	}

222
	if (!is_bad_inode(inode))
223
		dquot_initialize(inode);
224

225 226
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
227
	truncate_inode_pages(&inode->i_data, 0);
228
	ext4_ioend_shutdown(inode);
229 230 231 232

	if (is_bad_inode(inode))
		goto no_delete;

233 234 235 236 237
	/*
	 * Protect us against freezing - iput() caller didn't have to have any
	 * protection against it
	 */
	sb_start_intwrite(inode->i_sb);
238 239
	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
				    ext4_blocks_for_truncate(inode)+3);
240
	if (IS_ERR(handle)) {
241
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
242 243 244 245 246
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
247
		ext4_orphan_del(NULL, inode);
248
		sb_end_intwrite(inode->i_sb);
249 250 251 252
		goto no_delete;
	}

	if (IS_SYNC(inode))
253
		ext4_handle_sync(handle);
254
	inode->i_size = 0;
255 256
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
257
		ext4_warning(inode->i_sb,
258 259 260
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
261
	if (inode->i_blocks)
262
		ext4_truncate(inode);
263 264 265 266 267 268 269

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
270
	if (!ext4_handle_has_enough_credits(handle, 3)) {
271 272 273 274
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
275
			ext4_warning(inode->i_sb,
276 277 278
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
279
			ext4_orphan_del(NULL, inode);
280
			sb_end_intwrite(inode->i_sb);
281 282 283 284
			goto no_delete;
		}
	}

285
	/*
286
	 * Kill off the orphan record which ext4_truncate created.
287
	 * AKPM: I think this can be inside the above `if'.
288
	 * Note that ext4_orphan_del() has to be able to cope with the
289
	 * deletion of a non-existent orphan - this is because we don't
290
	 * know if ext4_truncate() actually created an orphan record.
291 292
	 * (Well, we could do this if we need to, but heck - it works)
	 */
293 294
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
295 296 297 298 299 300 301 302

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
303
	if (ext4_mark_inode_dirty(handle, inode))
304
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
305
		ext4_clear_inode(inode);
306
	else
307 308
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
309
	sb_end_intwrite(inode->i_sb);
310 311
	return;
no_delete:
A
Al Viro 已提交
312
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
313 314
}

315 316
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
317
{
318
	return &EXT4_I(inode)->i_reserved_quota;
319
}
320
#endif
321

322 323
/*
 * Calculate the number of metadata blocks need to reserve
324
 * to allocate a block located at @lblock
325
 */
326
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
327
{
328
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
329
		return ext4_ext_calc_metadata_amount(inode, lblock);
330

331
	return ext4_ind_calc_metadata_amount(inode, lblock);
332 333
}

334 335 336 337
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
338 339
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
340 341
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
342 343 344
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
345
	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
346
	if (unlikely(used > ei->i_reserved_data_blocks)) {
347
		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
348
			 "with only %d reserved data blocks",
349 350 351 352 353
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
354

355
	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
356 357 358 359 360 361
		ext4_warning(inode->i_sb, "ino %lu, allocated %d "
			"with only %d reserved metadata blocks "
			"(releasing %d blocks with reserved %d data blocks)",
			inode->i_ino, ei->i_allocated_meta_blocks,
			     ei->i_reserved_meta_blocks, used,
			     ei->i_reserved_data_blocks);
362 363 364 365
		WARN_ON(1);
		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
	}

366 367 368
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
369
	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
370
			   used + ei->i_allocated_meta_blocks);
371
	ei->i_allocated_meta_blocks = 0;
372

373 374 375 376 377 378
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
379
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
380
				   ei->i_reserved_meta_blocks);
381
		ei->i_reserved_meta_blocks = 0;
382
		ei->i_da_metadata_calc_len = 0;
383
	}
384
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385

386 387
	/* Update quota subsystem for data blocks */
	if (quota_claim)
388
		dquot_claim_block(inode, EXT4_C2B(sbi, used));
389
	else {
390 391 392
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
393
		 * not re-claim the quota for fallocated blocks.
394
		 */
395
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396
	}
397 398 399 400 401 402

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
403 404
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
405
		ext4_discard_preallocations(inode);
406 407
}

408
static int __check_block_validity(struct inode *inode, const char *func,
409 410
				unsigned int line,
				struct ext4_map_blocks *map)
411
{
412 413
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
414 415 416 417
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
418 419 420 421 422
		return -EIO;
	}
	return 0;
}

423
#define check_block_validity(inode, map)	\
424
	__check_block_validity((inode), __func__, __LINE__, (map))
425

426
/*
427 428
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
462 463 464 465 466 467 468 469 470
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
471 472 473 474 475
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
476 477
			if (num >= max_pages) {
				done = 1;
478
				break;
479
			}
480 481 482 483 484 485
		}
		pagevec_release(&pvec);
	}
	return num;
}

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
#ifdef ES_AGGRESSIVE_TEST
static void ext4_map_blocks_es_recheck(handle_t *handle,
				       struct inode *inode,
				       struct ext4_map_blocks *es_map,
				       struct ext4_map_blocks *map,
				       int flags)
{
	int retval;

	map->m_flags = 0;
	/*
	 * There is a race window that the result is not the same.
	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
	 * is that we lookup a block mapping in extent status tree with
	 * out taking i_data_sem.  So at the time the unwritten extent
	 * could be converted.
	 */
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		down_read((&EXT4_I(inode)->i_data_sem));
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
		retval = ext4_ext_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
	} else {
		retval = ext4_ind_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
	}
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		up_read((&EXT4_I(inode)->i_data_sem));
	/*
	 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
	 * because it shouldn't be marked in es_map->m_flags.
	 */
	map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);

	/*
	 * We don't check m_len because extent will be collpased in status
	 * tree.  So the m_len might not equal.
	 */
	if (es_map->m_lblk != map->m_lblk ||
	    es_map->m_flags != map->m_flags ||
	    es_map->m_pblk != map->m_pblk) {
		printk("ES cache assertation failed for inode: %lu "
		       "es_cached ex [%d/%d/%llu/%x] != "
		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
		       inode->i_ino, es_map->m_lblk, es_map->m_len,
		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
		       map->m_len, map->m_pblk, map->m_flags,
		       retval, flags);
	}
}
#endif /* ES_AGGRESSIVE_TEST */

538
/*
539
 * The ext4_map_blocks() function tries to look up the requested blocks,
540
 * and returns if the blocks are already mapped.
541 542 543 544 545
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
546 547
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
548 549 550 551 552 553 554 555
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
556
 * that case, buffer head is unmapped
557 558 559
 *
 * It returns the error in case of allocation failure.
 */
560 561
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
562
{
563
	struct extent_status es;
564
	int retval;
565 566 567 568 569
#ifdef ES_AGGRESSIVE_TEST
	struct ext4_map_blocks orig_map;

	memcpy(&orig_map, map, sizeof(*map));
#endif
570

571 572 573 574
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591

	/* Lookup extent status tree firstly */
	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
			map->m_pblk = ext4_es_pblock(&es) +
					map->m_lblk - es.es_lblk;
			map->m_flags |= ext4_es_is_written(&es) ?
					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
			retval = es.es_len - (map->m_lblk - es.es_lblk);
			if (retval > map->m_len)
				retval = map->m_len;
			map->m_len = retval;
		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
			retval = 0;
		} else {
			BUG_ON(1);
		}
592 593 594 595
#ifdef ES_AGGRESSIVE_TEST
		ext4_map_blocks_es_recheck(handle, inode, map,
					   &orig_map, flags);
#endif
596 597 598
		goto found;
	}

599
	/*
600 601
	 * Try to see if we can get the block without requesting a new
	 * file system block.
602
	 */
603 604
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		down_read((&EXT4_I(inode)->i_data_sem));
605
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
606 607
		retval = ext4_ext_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
608
	} else {
609 610
		retval = ext4_ind_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
611
	}
612 613 614 615
	if (retval > 0) {
		int ret;
		unsigned long long status;

616 617 618 619 620 621 622 623 624
#ifdef ES_AGGRESSIVE_TEST
		if (retval != map->m_len) {
			printk("ES len assertation failed for inode: %lu "
			       "retval %d != map->m_len %d "
			       "in %s (lookup)\n", inode->i_ino, retval,
			       map->m_len, __func__);
		}
#endif

625 626 627 628 629 630 631 632 633 634 635
		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
		    ext4_find_delalloc_range(inode, map->m_lblk,
					     map->m_lblk + map->m_len - 1))
			status |= EXTENT_STATUS_DELAYED;
		ret = ext4_es_insert_extent(inode, map->m_lblk,
					    map->m_len, map->m_pblk, status);
		if (ret < 0)
			retval = ret;
	}
636 637
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		up_read((&EXT4_I(inode)->i_data_sem));
638

639
found:
640
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
641
		int ret = check_block_validity(inode, map);
642 643 644 645
		if (ret != 0)
			return ret;
	}

646
	/* If it is only a block(s) look up */
647
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
648 649 650 651 652 653
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
654
	 * ext4_ext_get_block() returns the create = 0
655 656
	 * with buffer head unmapped.
	 */
657
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
658 659
		return retval;

660
	/*
661 662
	 * Here we clear m_flags because after allocating an new extent,
	 * it will be set again.
663
	 */
664
	map->m_flags &= ~EXT4_MAP_FLAGS;
665

666
	/*
667 668 669 670
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
671 672
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
673 674 675 676 677 678 679

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
680
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
681
		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
682 683 684 685
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
686
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
687
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
688
	} else {
689
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
690

691
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
692 693 694 695 696
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
697
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
698
		}
699

700 701 702 703 704 705 706
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
707
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
708 709
			ext4_da_update_reserve_space(inode, retval, 1);
	}
710
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
711
		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
712

713 714 715 716
	if (retval > 0) {
		int ret;
		unsigned long long status;

717 718 719 720 721 722 723 724 725
#ifdef ES_AGGRESSIVE_TEST
		if (retval != map->m_len) {
			printk("ES len assertation failed for inode: %lu "
			       "retval %d != map->m_len %d "
			       "in %s (allocation)\n", inode->i_ino, retval,
			       map->m_len, __func__);
		}
#endif

726 727 728 729 730 731 732 733 734
		/*
		 * If the extent has been zeroed out, we don't need to update
		 * extent status tree.
		 */
		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
			if (ext4_es_is_written(&es))
				goto has_zeroout;
		}
735 736 737 738 739 740 741 742 743 744
		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
		    ext4_find_delalloc_range(inode, map->m_lblk,
					     map->m_lblk + map->m_len - 1))
			status |= EXTENT_STATUS_DELAYED;
		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
					    map->m_pblk, status);
		if (ret < 0)
			retval = ret;
745 746
	}

747
has_zeroout:
748
	up_write((&EXT4_I(inode)->i_data_sem));
749
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
750
		int ret = check_block_validity(inode, map);
751 752 753
		if (ret != 0)
			return ret;
	}
754 755 756
	return retval;
}

757 758 759
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

760 761
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
762
{
763
	handle_t *handle = ext4_journal_current_handle();
764
	struct ext4_map_blocks map;
J
Jan Kara 已提交
765
	int ret = 0, started = 0;
766
	int dio_credits;
767

T
Tao Ma 已提交
768 769 770
	if (ext4_has_inline_data(inode))
		return -ERANGE;

771 772 773
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

774
	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
J
Jan Kara 已提交
775
		/* Direct IO write... */
776 777 778
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
779 780
		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
					    dio_credits);
J
Jan Kara 已提交
781
		if (IS_ERR(handle)) {
782
			ret = PTR_ERR(handle);
783
			return ret;
784
		}
J
Jan Kara 已提交
785
		started = 1;
786 787
	}

788
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
789
	if (ret > 0) {
790 791 792
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
793
		ret = 0;
794
	}
J
Jan Kara 已提交
795 796
	if (started)
		ext4_journal_stop(handle);
797 798 799
	return ret;
}

800 801 802 803 804 805 806
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

807 808 809
/*
 * `handle' can be NULL if create is zero
 */
810
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
811
				ext4_lblk_t block, int create, int *errp)
812
{
813 814
	struct ext4_map_blocks map;
	struct buffer_head *bh;
815 816 817 818
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

819 820 821 822
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
823

824 825 826
	/* ensure we send some value back into *errp */
	*errp = 0;

827 828
	if (create && err == 0)
		err = -ENOSPC;	/* should never happen */
829 830 831 832 833 834
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
835
	if (unlikely(!bh)) {
836
		*errp = -ENOMEM;
837
		return NULL;
838
	}
839 840 841
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
842

843 844 845 846 847 848 849 850 851 852 853 854 855
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
856
		}
857 858 859 860 861 862 863
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
864
	}
865 866 867 868 869 870
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
871 872
}

873
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
874
			       ext4_lblk_t block, int create, int *err)
875
{
876
	struct buffer_head *bh;
877

878
	bh = ext4_getblk(handle, inode, block, create, err);
879 880 881 882
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
883
	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
884 885 886 887 888 889 890 891
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

892 893 894 895 896 897 898
int ext4_walk_page_buffers(handle_t *handle,
			   struct buffer_head *head,
			   unsigned from,
			   unsigned to,
			   int *partial,
			   int (*fn)(handle_t *handle,
				     struct buffer_head *bh))
899 900 901 902 903 904 905
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

906 907
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
908
	     block_start = block_end, bh = next) {
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
926
 * close off a transaction and start a new one between the ext4_get_block()
927
 * and the commit_write().  So doing the jbd2_journal_start at the start of
928 929
 * prepare_write() is the right place.
 *
930 931 932 933
 * Also, this function can nest inside ext4_writepage().  In that case, we
 * *know* that ext4_writepage() has generated enough buffer credits to do the
 * whole page.  So we won't block on the journal in that case, which is good,
 * because the caller may be PF_MEMALLOC.
934
 *
935
 * By accident, ext4 can be reentered when a transaction is open via
936 937 938 939 940 941
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
942
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
943 944 945 946
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
947 948
int do_journal_get_write_access(handle_t *handle,
				struct buffer_head *bh)
949
{
950 951 952
	int dirty = buffer_dirty(bh);
	int ret;

953 954
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
955
	/*
C
Christoph Hellwig 已提交
956
	 * __block_write_begin() could have dirtied some buffers. Clean
957 958
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
959
	 * by __block_write_begin() isn't a real problem here as we clear
960 961 962 963 964 965 966 967 968
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
969 970
}

971 972
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
973
static int ext4_write_begin(struct file *file, struct address_space *mapping,
974 975
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
976
{
977
	struct inode *inode = mapping->host;
978
	int ret, needed_blocks;
979 980
	handle_t *handle;
	int retries = 0;
981
	struct page *page;
982
	pgoff_t index;
983
	unsigned from, to;
N
Nick Piggin 已提交
984

985
	trace_ext4_write_begin(inode, pos, len, flags);
986 987 988 989 990
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
991
	index = pos >> PAGE_CACHE_SHIFT;
992 993
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
994

995 996 997 998
	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
						    flags, pagep);
		if (ret < 0)
999 1000 1001
			return ret;
		if (ret == 1)
			return 0;
1002 1003
	}

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
	/*
	 * grab_cache_page_write_begin() can take a long time if the
	 * system is thrashing due to memory pressure, or if the page
	 * is being written back.  So grab it first before we start
	 * the transaction handle.  This also allows us to allocate
	 * the page (if needed) without using GFP_NOFS.
	 */
retry_grab:
	page = grab_cache_page_write_begin(mapping, index, flags);
	if (!page)
		return -ENOMEM;
	unlock_page(page);

retry_journal:
1018
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1019
	if (IS_ERR(handle)) {
1020 1021
		page_cache_release(page);
		return PTR_ERR(handle);
1022
	}
1023

1024 1025 1026 1027 1028
	lock_page(page);
	if (page->mapping != mapping) {
		/* The page got truncated from under us */
		unlock_page(page);
		page_cache_release(page);
1029
		ext4_journal_stop(handle);
1030
		goto retry_grab;
1031
	}
1032
	wait_on_page_writeback(page);
1033

1034
	if (ext4_should_dioread_nolock(inode))
1035
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1036
	else
1037
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
1038 1039

	if (!ret && ext4_should_journal_data(inode)) {
1040 1041 1042
		ret = ext4_walk_page_buffers(handle, page_buffers(page),
					     from, to, NULL,
					     do_journal_get_write_access);
1043
	}
N
Nick Piggin 已提交
1044 1045

	if (ret) {
1046
		unlock_page(page);
1047
		/*
1048
		 * __block_write_begin may have instantiated a few blocks
1049 1050
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
1051 1052 1053
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
1054
		 */
1055
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1056 1057 1058 1059
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
1060
			ext4_truncate_failed_write(inode);
1061
			/*
1062
			 * If truncate failed early the inode might
1063 1064 1065 1066 1067 1068 1069
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
1070

1071 1072 1073 1074 1075 1076 1077
		if (ret == -ENOSPC &&
		    ext4_should_retry_alloc(inode->i_sb, &retries))
			goto retry_journal;
		page_cache_release(page);
		return ret;
	}
	*pagep = page;
1078 1079 1080
	return ret;
}

N
Nick Piggin 已提交
1081 1082
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1083 1084 1085 1086
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1087
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1088 1089
}

1090
static int ext4_generic_write_end(struct file *file,
1091 1092 1093
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1094 1095 1096 1097 1098
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

1099 1100 1101 1102 1103 1104
	if (ext4_has_inline_data(inode))
		copied = ext4_write_inline_data_end(inode, pos, len,
						    copied, page);
	else
		copied = block_write_end(file, mapping, pos,
					 len, copied, page, fsdata);
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1141 1142 1143 1144
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1145
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1146 1147
 * buffers are managed internally.
 */
1148 1149 1150 1151
static int ext4_write_end(struct file *file,
			  struct address_space *mapping,
			  loff_t pos, unsigned len, unsigned copied,
			  struct page *page, void *fsdata)
1152
{
1153
	handle_t *handle = ext4_journal_current_handle();
1154
	struct inode *inode = mapping->host;
1155 1156
	int ret = 0, ret2;

1157 1158 1159 1160 1161 1162 1163 1164
	trace_ext4_write_end(inode, pos, len, copied);
	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
		ret = ext4_jbd2_file_inode(handle, inode);
		if (ret) {
			unlock_page(page);
			page_cache_release(page);
			goto errout;
		}
1165 1166
	}

1167 1168 1169 1170
	copied = ext4_generic_write_end(file, mapping, pos, len, copied,
					page, fsdata);
	if (copied < 0)
		ret = copied;
1171
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1172 1173 1174 1175 1176
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);
1177
errout:
1178
	ret2 = ext4_journal_stop(handle);
1179 1180
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1181

1182
	if (pos + len > inode->i_size) {
1183
		ext4_truncate_failed_write(inode);
1184
		/*
1185
		 * If truncate failed early the inode might still be
1186 1187 1188 1189 1190 1191 1192
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1193
	return ret ? ret : copied;
1194 1195
}

N
Nick Piggin 已提交
1196
static int ext4_journalled_write_end(struct file *file,
1197 1198 1199
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1200
{
1201
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1202
	struct inode *inode = mapping->host;
1203 1204
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1205
	unsigned from, to;
1206
	loff_t new_i_size;
1207

1208
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1209 1210 1211
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

1212 1213
	BUG_ON(!ext4_handle_valid(handle));

1214 1215 1216 1217 1218 1219 1220 1221 1222
	if (ext4_has_inline_data(inode))
		copied = ext4_write_inline_data_end(inode, pos, len,
						    copied, page);
	else {
		if (copied < len) {
			if (!PageUptodate(page))
				copied = 0;
			page_zero_new_buffers(page, from+copied, to);
		}
1223

1224 1225 1226 1227 1228
		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
					     to, &partial, write_end_fn);
		if (!partial)
			SetPageUptodate(page);
	}
1229 1230
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1231
		i_size_write(inode, pos+copied);
1232
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1233
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1234 1235
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1236
		ret2 = ext4_mark_inode_dirty(handle, inode);
1237 1238 1239
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1240

1241
	unlock_page(page);
1242
	page_cache_release(page);
1243
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1244 1245 1246 1247 1248 1249
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1250
	ret2 = ext4_journal_stop(handle);
1251 1252
	if (!ret)
		ret = ret2;
1253
	if (pos + len > inode->i_size) {
1254
		ext4_truncate_failed_write(inode);
1255
		/*
1256
		 * If truncate failed early the inode might still be
1257 1258 1259 1260 1261 1262
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1263 1264

	return ret ? ret : copied;
1265
}
1266

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
/*
 * Reserve a metadata for a single block located at lblock
 */
static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
{
	int retries = 0;
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	struct ext4_inode_info *ei = EXT4_I(inode);
	unsigned int md_needed;
	ext4_lblk_t save_last_lblock;
	int save_len;

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
repeat:
	spin_lock(&ei->i_block_reservation_lock);
	/*
	 * ext4_calc_metadata_amount() has side effects, which we have
	 * to be prepared undo if we fail to claim space.
	 */
	save_len = ei->i_da_metadata_calc_len;
	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
	md_needed = EXT4_NUM_B2C(sbi,
				 ext4_calc_metadata_amount(inode, lblock));
	trace_ext4_da_reserve_space(inode, md_needed);

	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
	if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
		ei->i_da_metadata_calc_len = save_len;
		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
		spin_unlock(&ei->i_block_reservation_lock);
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			cond_resched();
			goto repeat;
		}
		return -ENOSPC;
	}
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);

	return 0;       /* success */
}

1316
/*
1317
 * Reserve a single cluster located at lblock
1318
 */
1319
static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1320
{
A
Aneesh Kumar K.V 已提交
1321
	int retries = 0;
1322
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1323
	struct ext4_inode_info *ei = EXT4_I(inode);
1324
	unsigned int md_needed;
1325
	int ret;
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
	ext4_lblk_t save_last_lblock;
	int save_len;

	/*
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
	 */
	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
	if (ret)
		return ret;
1337 1338 1339 1340 1341 1342

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1343
repeat:
1344
	spin_lock(&ei->i_block_reservation_lock);
1345 1346 1347 1348 1349 1350
	/*
	 * ext4_calc_metadata_amount() has side effects, which we have
	 * to be prepared undo if we fail to claim space.
	 */
	save_len = ei->i_da_metadata_calc_len;
	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1351 1352
	md_needed = EXT4_NUM_B2C(sbi,
				 ext4_calc_metadata_amount(inode, lblock));
1353
	trace_ext4_da_reserve_space(inode, md_needed);
1354

1355 1356 1357 1358
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1359
	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1360 1361 1362
		ei->i_da_metadata_calc_len = save_len;
		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
		spin_unlock(&ei->i_block_reservation_lock);
A
Aneesh Kumar K.V 已提交
1363
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
L
Lukas Czerner 已提交
1364
			cond_resched();
A
Aneesh Kumar K.V 已提交
1365 1366
			goto repeat;
		}
1367
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1368 1369
		return -ENOSPC;
	}
1370
	ei->i_reserved_data_blocks++;
1371 1372
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1373

1374 1375 1376
	return 0;       /* success */
}

1377
static void ext4_da_release_space(struct inode *inode, int to_free)
1378 1379
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1380
	struct ext4_inode_info *ei = EXT4_I(inode);
1381

1382 1383 1384
	if (!to_free)
		return;		/* Nothing to release, exit */

1385
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1386

L
Li Zefan 已提交
1387
	trace_ext4_da_release_space(inode, to_free);
1388
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1389
		/*
1390 1391 1392 1393
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1394
		 */
1395
		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1396
			 "ino %lu, to_free %d with only %d reserved "
1397
			 "data blocks", inode->i_ino, to_free,
1398 1399 1400
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1401
	}
1402
	ei->i_reserved_data_blocks -= to_free;
1403

1404 1405 1406 1407 1408
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
1409 1410
		 * Note that in case of bigalloc, i_reserved_meta_blocks,
		 * i_reserved_data_blocks, etc. refer to number of clusters.
1411
		 */
1412
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1413
				   ei->i_reserved_meta_blocks);
1414
		ei->i_reserved_meta_blocks = 0;
1415
		ei->i_da_metadata_calc_len = 0;
1416
	}
1417

1418
	/* update fs dirty data blocks counter */
1419
	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1420 1421

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1422

1423
	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1424 1425 1426
}

static void ext4_da_page_release_reservation(struct page *page,
1427
					     unsigned long offset)
1428 1429 1430 1431
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;
1432 1433 1434
	struct inode *inode = page->mapping->host;
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int num_clusters;
1435
	ext4_fsblk_t lblk;
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1448

1449 1450 1451 1452 1453
	if (to_release) {
		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
		ext4_es_remove_extent(inode, lblk, to_release);
	}

1454 1455 1456 1457 1458 1459 1460
	/* If we have released all the blocks belonging to a cluster, then we
	 * need to release the reserved space for that cluster. */
	num_clusters = EXT4_NUM_B2C(sbi, to_release);
	while (num_clusters > 0) {
		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
			((num_clusters - 1) << sbi->s_cluster_bits);
		if (sbi->s_cluster_ratio == 1 ||
1461
		    !ext4_find_delalloc_cluster(inode, lblk))
1462 1463 1464 1465
			ext4_da_release_space(inode, 1);

		num_clusters--;
	}
1466
}
1467

1468 1469 1470 1471 1472 1473
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1474
 * them with writepage() call back
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
1485 1486
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
1487
{
1488 1489 1490 1491 1492
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1493
	loff_t size = i_size_read(inode);
1494 1495
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
1496
	sector_t pblock = 0, cur_logical = 0;
1497
	struct ext4_io_submit io_submit;
1498 1499

	BUG_ON(mpd->next_page <= mpd->first_page);
1500
	memset(&io_submit, 0, sizeof(io_submit));
1501 1502 1503
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1504
	 * If we look at mpd->b_blocknr we would only be looking
1505 1506
	 * at the currently mapped buffer_heads.
	 */
1507 1508 1509
	index = mpd->first_page;
	end = mpd->next_page - 1;

1510
	pagevec_init(&pvec, 0);
1511
	while (index <= end) {
1512
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1513 1514 1515
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
1516
			int skip_page = 0;
1517 1518
			struct page *page = pvec.pages[i];

1519 1520 1521
			index = page->index;
			if (index > end)
				break;
1522 1523 1524 1525 1526

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
1527 1528 1529 1530 1531 1532
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
1533 1534 1535 1536 1537
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1538 1539
			bh = page_bufs = page_buffers(page);
			block_start = 0;
1540
			do {
1541 1542 1543
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
1544 1545 1546 1547
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
1548 1549 1550 1551 1552 1553 1554
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
1555

1556 1557 1558 1559 1560
				/*
				 * skip page if block allocation undone and
				 * block is dirty
				 */
				if (ext4_bh_delay_or_unwritten(NULL, bh))
1561
					skip_page = 1;
1562 1563
				bh = bh->b_this_page;
				block_start += bh->b_size;
1564 1565
				cur_logical++;
				pblock++;
1566 1567
			} while (bh != page_bufs);

1568 1569 1570 1571
			if (skip_page) {
				unlock_page(page);
				continue;
			}
1572

1573
			clear_page_dirty_for_io(page);
1574 1575
			err = ext4_bio_write_page(&io_submit, page, len,
						  mpd->wbc);
1576
			if (!err)
1577
				mpd->pages_written++;
1578 1579 1580 1581 1582 1583 1584 1585 1586
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
1587
	ext4_io_submit(&io_submit);
1588 1589 1590
	return ret;
}

1591
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1592 1593 1594 1595 1596 1597
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1598
	ext4_lblk_t start, last;
1599

1600 1601
	index = mpd->first_page;
	end   = mpd->next_page - 1;
1602 1603 1604 1605 1606

	start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	ext4_es_remove_extent(inode, start, last - start + 1);

1607
	pagevec_init(&pvec, 0);
1608 1609 1610 1611 1612 1613
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
1614
			if (page->index > end)
1615 1616 1617 1618 1619 1620 1621
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
1622 1623
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
1624 1625 1626 1627
	}
	return;
}

1628 1629 1630
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1631 1632 1633
	struct super_block *sb = inode->i_sb;

	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1634 1635
	       EXT4_C2B(EXT4_SB(inode->i_sb),
			ext4_count_free_clusters(inode->i_sb)));
1636 1637
	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1638 1639
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1640
	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1641 1642
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1643 1644 1645 1646
	ext4_msg(sb, KERN_CRIT, "Block reservation details");
	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
		 EXT4_I(inode)->i_reserved_data_blocks);
	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1647
	       EXT4_I(inode)->i_reserved_meta_blocks);
1648 1649 1650
	return;
}

1651
/*
1652 1653
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
1654
 *
1655
 * @mpd - bh describing space
1656 1657 1658 1659
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1660
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1661
{
1662
	int err, blks, get_blocks_flags;
1663
	struct ext4_map_blocks map, *mapp = NULL;
1664 1665 1666 1667
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
1668 1669

	/*
1670 1671
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
1672
	 */
1673 1674 1675 1676 1677
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
1678 1679 1680 1681

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

1682
	/*
1683
	 * Call ext4_map_blocks() to allocate any delayed allocation
1684 1685 1686 1687 1688 1689 1690 1691
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
1692
	 * want to change *many* call functions, so ext4_map_blocks()
1693
	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1694 1695 1696 1697 1698
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
1699
	 */
1700 1701
	map.m_lblk = next;
	map.m_len = max_blocks;
1702
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1703 1704
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1705
	if (mpd->b_state & (1 << BH_Delay))
1706 1707
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

1708
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1709
	if (blks < 0) {
1710 1711
		struct super_block *sb = mpd->inode->i_sb;

1712
		err = blks;
1713
		/*
1714
		 * If get block returns EAGAIN or ENOSPC and there
1715 1716
		 * appears to be free blocks we will just let
		 * mpage_da_submit_io() unlock all of the pages.
1717 1718
		 */
		if (err == -EAGAIN)
1719
			goto submit_io;
1720

1721
		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1722
			mpd->retval = err;
1723
			goto submit_io;
1724 1725
		}

1726
		/*
1727 1728 1729 1730 1731
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
1732
		 */
1733 1734 1735 1736 1737 1738 1739 1740
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
1741
				"This should not happen!! Data will be lost");
1742 1743
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
1744
		}
1745
		/* invalidate all the pages */
1746
		ext4_da_block_invalidatepages(mpd);
1747 1748 1749

		/* Mark this page range as having been completed */
		mpd->io_done = 1;
1750
		return;
1751
	}
1752 1753
	BUG_ON(blks == 0);

1754
	mapp = &map;
1755 1756 1757
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
1758

1759 1760
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
1761 1762 1763
	}

	/*
1764
	 * Update on-disk size along with block allocation.
1765 1766 1767 1768 1769 1770
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
1771 1772 1773 1774 1775
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
1776 1777
	}

1778
submit_io:
1779
	mpage_da_submit_io(mpd, mapp);
1780
	mpd->io_done = 1;
1781 1782
}

1783 1784
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
1785 1786 1787 1788 1789 1790

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
1791
 * @b_state - b_state of the buffer head added
1792 1793 1794
 *
 * the function is used to collect contig. blocks in same state
 */
1795
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1796
				   unsigned long b_state)
1797 1798
{
	sector_t next;
1799 1800
	int blkbits = mpd->inode->i_blkbits;
	int nrblocks = mpd->b_size >> blkbits;
1801

1802 1803 1804 1805
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
1806
	 * ext4_map_blocks() multiple times in a loop
1807
	 */
1808
	if (nrblocks >= (8*1024*1024 >> blkbits))
1809 1810
		goto flush_it;

1811 1812
	/* check if the reserved journal credits might overflow */
	if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		}
	}
1823 1824 1825
	/*
	 * First block in the extent
	 */
1826 1827
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
1828
		mpd->b_size = 1 << blkbits;
1829
		mpd->b_state = b_state & BH_FLAGS;
1830 1831 1832
		return;
	}

1833
	next = mpd->b_blocknr + nrblocks;
1834 1835 1836
	/*
	 * Can we merge the block to our big extent?
	 */
1837
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1838
		mpd->b_size += 1 << blkbits;
1839 1840 1841
		return;
	}

1842
flush_it:
1843 1844 1845 1846
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
1847
	mpage_da_map_and_submit(mpd);
1848
	return;
1849 1850
}

1851
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1852
{
1853
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1854 1855
}

1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
/*
 * This function is grabs code from the very beginning of
 * ext4_map_blocks, but assumes that the caller is from delayed write
 * time. This function looks up the requested blocks and sets the
 * buffer delay bit under the protection of i_data_sem.
 */
static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
			      struct ext4_map_blocks *map,
			      struct buffer_head *bh)
{
1866
	struct extent_status es;
1867 1868
	int retval;
	sector_t invalid_block = ~((sector_t) 0xffff);
1869 1870 1871 1872 1873
#ifdef ES_AGGRESSIVE_TEST
	struct ext4_map_blocks orig_map;

	memcpy(&orig_map, map, sizeof(*map));
#endif
1874 1875 1876 1877 1878 1879 1880 1881

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;

	map->m_flags = 0;
	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, map->m_len,
		  (unsigned long) map->m_lblk);
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914

	/* Lookup extent status tree firstly */
	if (ext4_es_lookup_extent(inode, iblock, &es)) {

		if (ext4_es_is_hole(&es)) {
			retval = 0;
			down_read((&EXT4_I(inode)->i_data_sem));
			goto add_delayed;
		}

		/*
		 * Delayed extent could be allocated by fallocate.
		 * So we need to check it.
		 */
		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
			map_bh(bh, inode->i_sb, invalid_block);
			set_buffer_new(bh);
			set_buffer_delay(bh);
			return 0;
		}

		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
		retval = es.es_len - (iblock - es.es_lblk);
		if (retval > map->m_len)
			retval = map->m_len;
		map->m_len = retval;
		if (ext4_es_is_written(&es))
			map->m_flags |= EXT4_MAP_MAPPED;
		else if (ext4_es_is_unwritten(&es))
			map->m_flags |= EXT4_MAP_UNWRITTEN;
		else
			BUG_ON(1);

1915 1916 1917
#ifdef ES_AGGRESSIVE_TEST
		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
#endif
1918 1919 1920
		return retval;
	}

1921 1922 1923 1924 1925
	/*
	 * Try to see if we can get the block without requesting a new
	 * file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
	if (ext4_has_inline_data(inode)) {
		/*
		 * We will soon create blocks for this page, and let
		 * us pretend as if the blocks aren't allocated yet.
		 * In case of clusters, we have to handle the work
		 * of mapping from cluster so that the reserved space
		 * is calculated properly.
		 */
		if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
		    ext4_find_delalloc_cluster(inode, map->m_lblk))
			map->m_flags |= EXT4_MAP_FROM_CLUSTER;
		retval = 0;
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1939 1940
		retval = ext4_ext_map_blocks(NULL, inode, map,
					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1941
	else
1942 1943
		retval = ext4_ind_map_blocks(NULL, inode, map,
					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1944

1945
add_delayed:
1946
	if (retval == 0) {
1947
		int ret;
1948 1949 1950 1951
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
1952 1953 1954 1955 1956
		/*
		 * If the block was allocated from previously allocated cluster,
		 * then we don't need to reserve it again. However we still need
		 * to reserve metadata for every block we're going to write.
		 */
1957
		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1958 1959
			ret = ext4_da_reserve_space(inode, iblock);
			if (ret) {
1960
				/* not enough space to reserve */
1961
				retval = ret;
1962
				goto out_unlock;
1963
			}
1964 1965 1966 1967 1968 1969 1970
		} else {
			ret = ext4_da_reserve_metadata(inode, iblock);
			if (ret) {
				/* not enough space to reserve */
				retval = ret;
				goto out_unlock;
			}
1971 1972
		}

1973 1974 1975 1976
		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
					    ~0, EXTENT_STATUS_DELAYED);
		if (ret) {
			retval = ret;
1977
			goto out_unlock;
1978
		}
1979

1980 1981 1982 1983 1984 1985 1986 1987
		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
		 * and it should not appear on the bh->b_state.
		 */
		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;

		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
1988 1989 1990 1991
	} else if (retval > 0) {
		int ret;
		unsigned long long status;

1992 1993 1994 1995 1996 1997 1998 1999 2000
#ifdef ES_AGGRESSIVE_TEST
		if (retval != map->m_len) {
			printk("ES len assertation failed for inode: %lu "
			       "retval %d != map->m_len %d "
			       "in %s (lookup)\n", inode->i_ino, retval,
			       map->m_len, __func__);
		}
#endif

2001 2002 2003 2004 2005 2006
		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
					    map->m_pblk, status);
		if (ret != 0)
			retval = ret;
2007 2008 2009 2010 2011 2012 2013 2014
	}

out_unlock:
	up_read((&EXT4_I(inode)->i_data_sem));

	return retval;
}

2015
/*
2016 2017 2018
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
2019 2020 2021 2022 2023 2024 2025
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
2026
 */
2027 2028
int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int create)
2029
{
2030
	struct ext4_map_blocks map;
2031 2032 2033
	int ret = 0;

	BUG_ON(create == 0);
2034 2035 2036 2037
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
2038 2039 2040 2041 2042 2043

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2044 2045
	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
	if (ret <= 0)
2046
		return ret;
2047

2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
2059
		set_buffer_mapped(bh);
2060 2061
	}
	return 0;
2062
}
2063

2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
2081
	struct buffer_head *page_bufs = NULL;
2082
	handle_t *handle = NULL;
2083 2084 2085
	int ret = 0, err = 0;
	int inline_data = ext4_has_inline_data(inode);
	struct buffer_head *inode_bh = NULL;
2086

2087
	ClearPageChecked(page);
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103

	if (inline_data) {
		BUG_ON(page->index != 0);
		BUG_ON(len > ext4_get_max_inline_size(inode));
		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
		if (inode_bh == NULL)
			goto out;
	} else {
		page_bufs = page_buffers(page);
		if (!page_bufs) {
			BUG();
			goto out;
		}
		ext4_walk_page_buffers(handle, page_bufs, 0, len,
				       NULL, bget_one);
	}
2104 2105 2106 2107
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

2108 2109
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
				    ext4_writepage_trans_blocks(inode));
2110 2111 2112 2113 2114
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

2115 2116
	BUG_ON(!ext4_handle_valid(handle));

2117 2118
	if (inline_data) {
		ret = ext4_journal_get_write_access(handle, inode_bh);
2119

2120 2121 2122 2123 2124 2125 2126 2127 2128
		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);

	} else {
		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
					     do_journal_get_write_access);

		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
					     write_end_fn);
	}
2129 2130
	if (ret == 0)
		ret = err;
2131
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2132 2133 2134 2135
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

2136 2137 2138
	if (!ext4_has_inline_data(inode))
		ext4_walk_page_buffers(handle, page_bufs, 0, len,
				       NULL, bput_one);
2139
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2140
out:
2141
	brelse(inode_bh);
2142 2143 2144
	return ret;
}

2145
/*
2146 2147 2148 2149
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
L
Lucas De Marchi 已提交
2150
 * we are writing back data modified via mmap(), no one guarantees in which
2151 2152 2153 2154
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
2155 2156 2157
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
2158
 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2159
 *   - grab_page_cache when doing write_begin (have journal handle)
2160 2161 2162 2163 2164 2165 2166 2167 2168
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
2169
 * but other buffer_heads would be unmapped but dirty (dirty done via the
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2185
 */
2186
static int ext4_writepage(struct page *page,
2187
			  struct writeback_control *wbc)
2188
{
2189
	int ret = 0;
2190
	loff_t size;
2191
	unsigned int len;
2192
	struct buffer_head *page_bufs = NULL;
2193
	struct inode *inode = page->mapping->host;
2194
	struct ext4_io_submit io_submit;
2195

L
Lukas Czerner 已提交
2196
	trace_ext4_writepage(page);
2197 2198 2199 2200 2201
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2202

T
Theodore Ts'o 已提交
2203 2204
	page_bufs = page_buffers(page);
	/*
2205 2206 2207 2208 2209
	 * We cannot do block allocation or other extent handling in this
	 * function. If there are buffers needing that, we have to redirty
	 * the page. But we may reach here when we do a journal commit via
	 * journal_submit_inode_data_buffers() and in that case we must write
	 * allocated buffers to achieve data=ordered mode guarantees.
T
Theodore Ts'o 已提交
2210
	 */
2211 2212
	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
				   ext4_bh_delay_or_unwritten)) {
2213
		redirty_page_for_writepage(wbc, page);
2214 2215 2216 2217 2218 2219 2220 2221
		if (current->flags & PF_MEMALLOC) {
			/*
			 * For memory cleaning there's no point in writing only
			 * some buffers. So just bail out. Warn if we came here
			 * from direct reclaim.
			 */
			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
							== PF_MEMALLOC);
2222 2223 2224
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
2225
	}
2226

2227
	if (PageChecked(page) && ext4_should_journal_data(inode))
2228 2229 2230 2231
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
2232
		return __ext4_journalled_writepage(page, len);
2233

2234 2235 2236
	memset(&io_submit, 0, sizeof(io_submit));
	ret = ext4_bio_write_page(&io_submit, page, len, wbc);
	ext4_io_submit(&io_submit);
2237 2238 2239
	return ret;
}

2240
/*
2241
 * This is called via ext4_da_writepages() to
L
Lucas De Marchi 已提交
2242
 * calculate the total number of credits to reserve to fit
2243 2244 2245
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2246
 */
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2258
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2259 2260 2261 2262 2263
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2264

2265 2266
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
2267
 * address space and accumulate pages that need writing, and call
2268 2269
 * mpage_da_map_and_submit to map a single contiguous memory region
 * and then write them.
2270
 */
2271 2272
static int write_cache_pages_da(handle_t *handle,
				struct address_space *mapping,
2273
				struct writeback_control *wbc,
2274 2275
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
2276
{
2277
	struct buffer_head	*bh, *head;
2278
	struct inode		*inode = mapping->host;
2279 2280 2281 2282 2283 2284
	struct pagevec		pvec;
	unsigned int		nr_pages;
	sector_t		logical;
	pgoff_t			index, end;
	long			nr_to_write = wbc->nr_to_write;
	int			i, tag, ret = 0;
2285

2286 2287 2288
	memset(mpd, 0, sizeof(struct mpage_da_data));
	mpd->wbc = wbc;
	mpd->inode = inode;
2289 2290 2291 2292
	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

2293
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2294 2295 2296 2297
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

2298
	*done_index = index;
2299
	while (index <= end) {
2300
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2301 2302
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
2303
			return 0;
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
2315 2316
			if (page->index > end)
				goto out;
2317

2318 2319
			*done_index = page->index + 1;

2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
			/*
			 * If we can't merge this page, and we have
			 * accumulated an contiguous region, write it
			 */
			if ((mpd->next_page != page->index) &&
			    (mpd->next_page != mpd->first_page)) {
				mpage_da_map_and_submit(mpd);
				goto ret_extent_tail;
			}

2330 2331 2332
			lock_page(page);

			/*
2333 2334 2335 2336 2337 2338
			 * If the page is no longer dirty, or its
			 * mapping no longer corresponds to inode we
			 * are writing (which means it has been
			 * truncated or invalidated), or the page is
			 * already under writeback and we are not
			 * doing a data integrity writeback, skip the page
2339
			 */
2340 2341 2342 2343
			if (!PageDirty(page) ||
			    (PageWriteback(page) &&
			     (wbc->sync_mode == WB_SYNC_NONE)) ||
			    unlikely(page->mapping != mapping)) {
2344 2345 2346 2347
				unlock_page(page);
				continue;
			}

2348
			wait_on_page_writeback(page);
2349 2350
			BUG_ON(PageWriteback(page));

2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
			/*
			 * If we have inline data and arrive here, it means that
			 * we will soon create the block for the 1st page, so
			 * we'd better clear the inline data here.
			 */
			if (ext4_has_inline_data(inode)) {
				BUG_ON(ext4_test_inode_state(inode,
						EXT4_STATE_MAY_INLINE_DATA));
				ext4_destroy_inline_data(handle, inode);
			}

2362
			if (mpd->next_page != page->index)
2363 2364 2365 2366 2367
				mpd->first_page = page->index;
			mpd->next_page = page->index + 1;
			logical = (sector_t) page->index <<
				(PAGE_CACHE_SHIFT - inode->i_blkbits);

2368 2369 2370 2371 2372
			/* Add all dirty buffers to mpd */
			head = page_buffers(page);
			bh = head;
			do {
				BUG_ON(buffer_locked(bh));
2373
				/*
2374 2375 2376
				 * We need to try to allocate unmapped blocks
				 * in the same page.  Otherwise we won't make
				 * progress with the page in ext4_writepage
2377
				 */
2378 2379 2380 2381 2382 2383 2384
				if (ext4_bh_delay_or_unwritten(NULL, bh)) {
					mpage_add_bh_to_extent(mpd, logical,
							       bh->b_state);
					if (mpd->io_done)
						goto ret_extent_tail;
				} else if (buffer_dirty(bh) &&
					   buffer_mapped(bh)) {
2385
					/*
2386 2387 2388 2389 2390 2391 2392
					 * mapped dirty buffer. We need to
					 * update the b_state because we look
					 * at b_state in mpage_da_map_blocks.
					 * We don't update b_size because if we
					 * find an unmapped buffer_head later
					 * we need to use the b_state flag of
					 * that buffer_head.
2393
					 */
2394 2395 2396 2397 2398 2399
					if (mpd->b_size == 0)
						mpd->b_state =
							bh->b_state & BH_FLAGS;
				}
				logical++;
			} while ((bh = bh->b_this_page) != head);
2400 2401 2402 2403

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
2404
				    wbc->sync_mode == WB_SYNC_NONE)
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
2415
					goto out;
2416 2417 2418 2419 2420
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2421 2422 2423
	return 0;
ret_extent_tail:
	ret = MPAGE_DA_EXTENT_TAIL;
2424 2425 2426
out:
	pagevec_release(&pvec);
	cond_resched();
2427 2428 2429 2430
	return ret;
}


2431
static int ext4_da_writepages(struct address_space *mapping,
2432
			      struct writeback_control *wbc)
2433
{
2434 2435
	pgoff_t	index;
	int range_whole = 0;
2436
	handle_t *handle = NULL;
2437
	struct mpage_da_data mpd;
2438
	struct inode *inode = mapping->host;
2439
	int pages_written = 0;
2440
	unsigned int max_pages;
2441
	int range_cyclic, cycled = 1, io_done = 0;
2442 2443
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2444
	loff_t range_start = wbc->range_start;
2445
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2446
	pgoff_t done_index = 0;
2447
	pgoff_t end;
S
Shaohua Li 已提交
2448
	struct blk_plug plug;
2449

2450
	trace_ext4_da_writepages(inode, wbc);
2451

2452 2453 2454 2455 2456
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2457
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2458
		return 0;
2459 2460 2461 2462 2463

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2464
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2465 2466 2467 2468 2469
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2470
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2471 2472
		return -EROFS;

2473 2474
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2475

2476 2477
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2478
		index = mapping->writeback_index;
2479 2480 2481 2482 2483
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2484 2485
		end = -1;
	} else {
2486
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2487 2488
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2489

2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2507 2508 2509 2510 2511 2512
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2523
retry:
2524
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2525 2526
		tag_pages_for_writeback(mapping, index, end);

S
Shaohua Li 已提交
2527
	blk_start_plug(&plug);
2528
	while (!ret && wbc->nr_to_write > 0) {
2529 2530 2531 2532 2533 2534 2535 2536

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2537
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2538

2539
		/* start a new transaction*/
2540 2541
		handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
					    needed_blocks);
2542 2543
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2544
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2545
			       "%ld pages, ino %lu; err %d", __func__,
2546
				wbc->nr_to_write, inode->i_ino, ret);
2547
			blk_finish_plug(&plug);
2548 2549
			goto out_writepages;
		}
2550 2551

		/*
2552
		 * Now call write_cache_pages_da() to find the next
2553
		 * contiguous region of logical blocks that need
2554
		 * blocks to be allocated by ext4 and submit them.
2555
		 */
2556 2557
		ret = write_cache_pages_da(handle, mapping,
					   wbc, &mpd, &done_index);
2558
		/*
2559
		 * If we have a contiguous extent of pages and we
2560 2561 2562 2563
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2564
			mpage_da_map_and_submit(&mpd);
2565 2566
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2567
		trace_ext4_da_write_pages(inode, &mpd);
2568
		wbc->nr_to_write -= mpd.pages_written;
2569

2570
		ext4_journal_stop(handle);
2571

2572
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2573 2574 2575 2576
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2577
			jbd2_journal_force_commit_nested(sbi->s_journal);
2578 2579
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2580
			/*
2581 2582 2583
			 * Got one extent now try with rest of the pages.
			 * If mpd.retval is set -EIO, journal is aborted.
			 * So we don't need to write any more.
2584
			 */
2585
			pages_written += mpd.pages_written;
2586
			ret = mpd.retval;
2587
			io_done = 1;
2588
		} else if (wbc->nr_to_write)
2589 2590 2591 2592 2593 2594
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2595
	}
S
Shaohua Li 已提交
2596
	blk_finish_plug(&plug);
2597 2598 2599 2600 2601 2602 2603
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2604 2605

	/* Update index */
2606
	wbc->range_cyclic = range_cyclic;
2607 2608 2609 2610 2611
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
2612
		mapping->writeback_index = done_index;
2613

2614
out_writepages:
2615
	wbc->nr_to_write -= nr_to_writebump;
2616
	wbc->range_start = range_start;
2617
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2618
	return ret;
2619 2620
}

2621 2622 2623 2624 2625 2626 2627 2628
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2629
	 * counters can get slightly wrong with percpu_counter_batch getting
2630 2631 2632 2633
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
2634 2635 2636
	free_blocks  = EXT4_C2B(sbi,
		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2637 2638 2639
	/*
	 * Start pushing delalloc when 1/2 of free blocks are dirty.
	 */
2640 2641
	if (dirty_blocks && (free_blocks < 2 * dirty_blocks))
		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2642

2643
	if (2 * free_blocks < 3 * dirty_blocks ||
2644
		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2645
		/*
2646 2647
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
2648 2649 2650 2651 2652 2653
		 */
		return 1;
	}
	return 0;
}

2654
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2655 2656
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
2657
{
2658
	int ret, retries = 0;
2659 2660 2661 2662 2663 2664
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
2665 2666 2667 2668 2669 2670 2671

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2672
	trace_ext4_da_write_begin(inode, pos, len, flags);
2673 2674 2675 2676 2677 2678

	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
		ret = ext4_da_write_inline_data_begin(mapping, inode,
						      pos, len, flags,
						      pagep, fsdata);
		if (ret < 0)
2679 2680 2681
			return ret;
		if (ret == 1)
			return 0;
2682 2683
	}

2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
	/*
	 * grab_cache_page_write_begin() can take a long time if the
	 * system is thrashing due to memory pressure, or if the page
	 * is being written back.  So grab it first before we start
	 * the transaction handle.  This also allows us to allocate
	 * the page (if needed) without using GFP_NOFS.
	 */
retry_grab:
	page = grab_cache_page_write_begin(mapping, index, flags);
	if (!page)
		return -ENOMEM;
	unlock_page(page);

2697 2698 2699 2700 2701 2702
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
2703
retry_journal:
2704
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2705
	if (IS_ERR(handle)) {
2706 2707
		page_cache_release(page);
		return PTR_ERR(handle);
2708 2709
	}

2710 2711 2712 2713 2714
	lock_page(page);
	if (page->mapping != mapping) {
		/* The page got truncated from under us */
		unlock_page(page);
		page_cache_release(page);
2715
		ext4_journal_stop(handle);
2716
		goto retry_grab;
2717
	}
2718 2719
	/* In case writeback began while the page was unlocked */
	wait_on_page_writeback(page);
2720

2721
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2722 2723 2724
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
2725 2726 2727 2728 2729 2730
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
2731
			ext4_truncate_failed_write(inode);
2732 2733 2734 2735 2736 2737 2738

		if (ret == -ENOSPC &&
		    ext4_should_retry_alloc(inode->i_sb, &retries))
			goto retry_journal;

		page_cache_release(page);
		return ret;
2739 2740
	}

2741
	*pagep = page;
2742 2743 2744
	return ret;
}

2745 2746 2747 2748 2749
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
2750
					    unsigned long offset)
2751 2752 2753 2754 2755 2756 2757 2758 2759
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2760
	for (i = 0; i < idx; i++)
2761 2762
		bh = bh->b_this_page;

2763
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2764 2765 2766 2767
		return 0;
	return 1;
}

2768
static int ext4_da_write_end(struct file *file,
2769 2770 2771
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
2772 2773 2774 2775 2776
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2777
	unsigned long start, end;
2778 2779
	int write_mode = (int)(unsigned long)fsdata;

2780 2781 2782
	if (write_mode == FALL_BACK_TO_NONDELALLOC)
		return ext4_write_end(file, mapping, pos,
				      len, copied, page, fsdata);
2783

2784
	trace_ext4_da_write_end(inode, pos, len, copied);
2785
	start = pos & (PAGE_CACHE_SIZE - 1);
2786
	end = start + copied - 1;
2787 2788 2789 2790 2791 2792 2793

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */
	new_i_size = pos + copied;
2794
	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2795 2796
		if (ext4_has_inline_data(inode) ||
		    ext4_da_should_update_i_disksize(page, end)) {
2797
			down_write(&EXT4_I(inode)->i_data_sem);
2798
			if (new_i_size > EXT4_I(inode)->i_disksize)
2799 2800
				EXT4_I(inode)->i_disksize = new_i_size;
			up_write(&EXT4_I(inode)->i_data_sem);
2801 2802 2803 2804 2805
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2806
		}
2807
	}
2808 2809 2810 2811 2812 2813 2814 2815

	if (write_mode != CONVERT_INLINE_DATA &&
	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
	    ext4_has_inline_data(inode))
		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
						     page);
	else
		ret2 = generic_write_end(file, mapping, pos, len, copied,
2816
							page, fsdata);
2817

2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2837
	ext4_da_page_release_reservation(page, offset);
2838 2839 2840 2841 2842 2843 2844

out:
	ext4_invalidatepage(page, offset);

	return;
}

2845 2846 2847 2848 2849
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
2850 2851
	trace_ext4_alloc_da_blocks(inode);

2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
2862
	 *
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
2875
	 * the pages by calling redirty_page_for_writepage() but that
2876 2877
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
L
Lucas De Marchi 已提交
2878
	 * simplifying them because we wouldn't actually intend to
2879 2880 2881
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
2882
	 *
2883 2884 2885 2886 2887 2888
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
2889

2890 2891 2892 2893 2894
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2895
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2896 2897 2898 2899 2900 2901 2902 2903
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2904
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2905 2906 2907 2908 2909
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

T
Tao Ma 已提交
2910 2911 2912 2913 2914 2915
	/*
	 * We can get here for an inline file via the FIBMAP ioctl
	 */
	if (ext4_has_inline_data(inode))
		return 0;

2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2926 2927
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2939
		 * NB. EXT4_STATE_JDATA is not set on files other than
2940 2941 2942 2943 2944 2945
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2946
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2947
		journal = EXT4_JOURNAL(inode);
2948 2949 2950
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2951 2952 2953 2954 2955

		if (err)
			return 0;
	}

2956
	return generic_block_bmap(mapping, block, ext4_get_block);
2957 2958
}

2959
static int ext4_readpage(struct file *file, struct page *page)
2960
{
T
Tao Ma 已提交
2961 2962 2963
	int ret = -EAGAIN;
	struct inode *inode = page->mapping->host;

2964
	trace_ext4_readpage(page);
T
Tao Ma 已提交
2965 2966 2967 2968 2969 2970 2971 2972

	if (ext4_has_inline_data(inode))
		ret = ext4_readpage_inline(inode, page);

	if (ret == -EAGAIN)
		return mpage_readpage(page, ext4_get_block);

	return ret;
2973 2974 2975
}

static int
2976
ext4_readpages(struct file *file, struct address_space *mapping,
2977 2978
		struct list_head *pages, unsigned nr_pages)
{
T
Tao Ma 已提交
2979 2980 2981 2982 2983 2984
	struct inode *inode = mapping->host;

	/* If the file has inline data, no need to do readpages. */
	if (ext4_has_inline_data(inode))
		return 0;

2985
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2986 2987
}

2988
static void ext4_invalidatepage(struct page *page, unsigned long offset)
2989
{
2990 2991
	trace_ext4_invalidatepage(page, offset);

2992 2993 2994 2995 2996 2997
	/* No journalling happens on data buffers when this function is used */
	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));

	block_invalidatepage(page, offset);
}

2998 2999
static int __ext4_journalled_invalidatepage(struct page *page,
					    unsigned long offset)
3000 3001 3002 3003 3004
{
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);

	trace_ext4_journalled_invalidatepage(page, offset);

3005 3006 3007 3008 3009 3010
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3011 3012 3013 3014 3015 3016 3017 3018
	return jbd2_journal_invalidatepage(journal, page, offset);
}

/* Wrapper for aops... */
static void ext4_journalled_invalidatepage(struct page *page,
					   unsigned long offset)
{
	WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3019 3020
}

3021
static int ext4_releasepage(struct page *page, gfp_t wait)
3022
{
3023
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3024

3025 3026
	trace_ext4_releasepage(page);

3027 3028
	/* Page has dirty journalled data -> cannot release */
	if (PageChecked(page))
3029
		return 0;
3030 3031 3032 3033
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3034 3035
}

3036 3037 3038 3039 3040
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
3041
int ext4_get_block_write(struct inode *inode, sector_t iblock,
3042 3043
		   struct buffer_head *bh_result, int create)
{
3044
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3045
		   inode->i_ino, create);
3046 3047
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3048 3049
}

3050
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3051
		   struct buffer_head *bh_result, int create)
3052
{
3053 3054 3055 3056
	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
		   inode->i_ino, create);
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_NO_LOCK);
3057 3058
}

3059
static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3060 3061
			    ssize_t size, void *private, int ret,
			    bool is_async)
3062
{
A
Al Viro 已提交
3063
	struct inode *inode = file_inode(iocb->ki_filp);
3064 3065
        ext4_io_end_t *io_end = iocb->private;

3066 3067
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
3068
		goto out;
3069

3070
	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3071
		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3072 3073 3074
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

3075 3076
	iocb->private = NULL;

3077
	/* if not aio dio with unwritten extents, just free io and return */
3078
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3079
		ext4_free_io_end(io_end);
3080
out:
3081
		inode_dio_done(inode);
3082 3083 3084
		if (is_async)
			aio_complete(iocb, ret, 0);
		return;
3085 3086
	}

3087 3088
	io_end->offset = offset;
	io_end->size = size;
3089 3090 3091 3092
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
3093

3094
	ext4_add_complete_io(io_end);
3095
}
3096

3097 3098 3099 3100 3101
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
3102
 * For holes, we fallocate those blocks, mark them as uninitialized
3103
 * If those blocks were preallocated, we mark sure they are split, but
3104
 * still keep the range to write as uninitialized.
3105
 *
3106
 * The unwritten extents will be converted to written when DIO is completed.
3107
 * For async direct IO, since the IO may still pending when return, we
L
Lucas De Marchi 已提交
3108
 * set up an end_io call back function, which will do the conversion
3109
 * when async direct IO completed.
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);
3124 3125 3126
	int overwrite = 0;
	get_block_t *get_block_func = NULL;
	int dio_flags = 0;
3127
	loff_t final_size = offset + count;
3128

3129 3130 3131
	/* Use the old path for reads and writes beyond i_size. */
	if (rw != WRITE || final_size > inode->i_size)
		return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3132

3133
	BUG_ON(iocb->private == NULL);
3134

3135 3136
	/* If we do a overwrite dio, i_mutex locking can be released */
	overwrite = *((int *)iocb->private);
3137

3138 3139 3140 3141 3142
	if (overwrite) {
		atomic_inc(&inode->i_dio_count);
		down_read(&EXT4_I(inode)->i_data_sem);
		mutex_unlock(&inode->i_mutex);
	}
3143

3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
	/*
	 * We could direct write to holes and fallocate.
	 *
	 * Allocated blocks to fill the hole are marked as
	 * uninitialized to prevent parallel buffered read to expose
	 * the stale data before DIO complete the data IO.
	 *
	 * As to previously fallocated extents, ext4 get_block will
	 * just simply mark the buffer mapped but still keep the
	 * extents uninitialized.
	 *
	 * For non AIO case, we will convert those unwritten extents
	 * to written after return back from blockdev_direct_IO.
	 *
	 * For async DIO, the conversion needs to be deferred when the
	 * IO is completed. The ext4 end_io callback function will be
	 * called to take care of the conversion work.  Here for async
	 * case, we allocate an io_end structure to hook to the iocb.
	 */
	iocb->private = NULL;
	ext4_inode_aio_set(inode, NULL);
	if (!is_sync_kiocb(iocb)) {
		ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
		if (!io_end) {
			ret = -ENOMEM;
			goto retake_lock;
3170
		}
3171 3172
		io_end->flag |= EXT4_IO_END_DIRECT;
		iocb->private = io_end;
3173
		/*
3174 3175 3176 3177
		 * we save the io structure for current async direct
		 * IO, so that later ext4_map_blocks() could flag the
		 * io structure whether there is a unwritten extents
		 * needs to be converted when IO is completed.
3178
		 */
3179 3180
		ext4_inode_aio_set(inode, io_end);
	}
3181

3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
	if (overwrite) {
		get_block_func = ext4_get_block_write_nolock;
	} else {
		get_block_func = ext4_get_block_write;
		dio_flags = DIO_LOCKING;
	}
	ret = __blockdev_direct_IO(rw, iocb, inode,
				   inode->i_sb->s_bdev, iov,
				   offset, nr_segs,
				   get_block_func,
				   ext4_end_io_dio,
				   NULL,
				   dio_flags);

	if (iocb->private)
		ext4_inode_aio_set(inode, NULL);
	/*
	 * The io_end structure takes a reference to the inode, that
	 * structure needs to be destroyed and the reference to the
	 * inode need to be dropped, when IO is complete, even with 0
	 * byte write, or failed.
	 *
	 * In the successful AIO DIO case, the io_end structure will
	 * be destroyed and the reference to the inode will be dropped
	 * after the end_io call back function is called.
	 *
	 * In the case there is 0 byte write, or error case, since VFS
	 * direct IO won't invoke the end_io call back function, we
	 * need to free the end_io structure here.
	 */
	if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
		ext4_free_io_end(iocb->private);
		iocb->private = NULL;
	} else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
		int err;
		/*
		 * for non AIO case, since the IO is already
		 * completed, we could do the conversion right here
		 */
		err = ext4_convert_unwritten_extents(inode,
						     offset, ret);
		if (err < 0)
			ret = err;
		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
	}
3228

3229 3230 3231 3232 3233 3234
retake_lock:
	/* take i_mutex locking again if we do a ovewrite dio */
	if (overwrite) {
		inode_dio_done(inode);
		up_read(&EXT4_I(inode)->i_data_sem);
		mutex_lock(&inode->i_mutex);
3235
	}
3236

3237
	return ret;
3238 3239 3240 3241 3242 3243 3244 3245
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3246
	ssize_t ret;
3247

3248 3249 3250 3251 3252 3253
	/*
	 * If we are doing data journalling we don't support O_DIRECT
	 */
	if (ext4_should_journal_data(inode))
		return 0;

T
Tao Ma 已提交
3254 3255 3256 3257
	/* Let buffer I/O handle the inline data case. */
	if (ext4_has_inline_data(inode))
		return 0;

3258
	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3259
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3260 3261 3262 3263 3264 3265
		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
	else
		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
	trace_ext4_direct_IO_exit(inode, offset,
				iov_length(iov, nr_segs), rw, ret);
	return ret;
3266 3267
}

3268
/*
3269
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3281
static int ext4_journalled_set_page_dirty(struct page *page)
3282 3283 3284 3285 3286
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3287
static const struct address_space_operations ext4_aops = {
3288 3289
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3290
	.writepage		= ext4_writepage,
3291
	.write_begin		= ext4_write_begin,
3292
	.write_end		= ext4_write_end,
3293 3294 3295 3296 3297 3298
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3299
	.error_remove_page	= generic_error_remove_page,
3300 3301
};

3302
static const struct address_space_operations ext4_journalled_aops = {
3303 3304
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3305
	.writepage		= ext4_writepage,
3306 3307 3308 3309
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
3310
	.invalidatepage		= ext4_journalled_invalidatepage,
3311
	.releasepage		= ext4_releasepage,
3312
	.direct_IO		= ext4_direct_IO,
3313
	.is_partially_uptodate  = block_is_partially_uptodate,
3314
	.error_remove_page	= generic_error_remove_page,
3315 3316
};

3317
static const struct address_space_operations ext4_da_aops = {
3318 3319
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3320
	.writepage		= ext4_writepage,
3321 3322 3323 3324 3325 3326 3327 3328 3329
	.writepages		= ext4_da_writepages,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3330
	.error_remove_page	= generic_error_remove_page,
3331 3332
};

3333
void ext4_set_aops(struct inode *inode)
3334
{
3335 3336
	switch (ext4_inode_journal_mode(inode)) {
	case EXT4_INODE_ORDERED_DATA_MODE:
3337
		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3338 3339
		break;
	case EXT4_INODE_WRITEBACK_DATA_MODE:
3340
		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3341 3342
		break;
	case EXT4_INODE_JOURNAL_DATA_MODE:
3343
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3344
		return;
3345 3346 3347
	default:
		BUG();
	}
3348 3349 3350 3351
	if (test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else
		inode->i_mapping->a_ops = &ext4_aops;
3352 3353
}

3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373

/*
 * ext4_discard_partial_page_buffers()
 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
 * This function finds and locks the page containing the offset
 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
 * Calling functions that already have the page locked should call
 * ext4_discard_partial_page_buffers_no_lock directly.
 */
int ext4_discard_partial_page_buffers(handle_t *handle,
		struct address_space *mapping, loff_t from,
		loff_t length, int flags)
{
	struct inode *inode = mapping->host;
	struct page *page;
	int err = 0;

	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
	if (!page)
3374
		return -ENOMEM;
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402

	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
		from, length, flags);

	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * ext4_discard_partial_page_buffers_no_lock()
 * Zeros a page range of length 'length' starting from offset 'from'.
 * Buffer heads that correspond to the block aligned regions of the
 * zeroed range will be unmapped.  Unblock aligned regions
 * will have the corresponding buffer head mapped if needed so that
 * that region of the page can be updated with the partial zero out.
 *
 * This function assumes that the page has already been  locked.  The
 * The range to be discarded must be contained with in the given page.
 * If the specified range exceeds the end of the page it will be shortened
 * to the end of the page that corresponds to 'from'.  This function is
 * appropriate for updating a page and it buffer heads to be unmapped and
 * zeroed for blocks that have been either released, or are going to be
 * released.
 *
 * handle: The journal handle
 * inode:  The files inode
 * page:   A locked page that contains the offset "from"
3403
 * from:   The starting byte offset (from the beginning of the file)
3404 3405 3406 3407 3408 3409 3410
 *         to begin discarding
 * len:    The length of bytes to discard
 * flags:  Optional flags that may be used:
 *
 *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
 *         Only zero the regions of the page whose buffer heads
 *         have already been unmapped.  This flag is appropriate
3411
 *         for updating the contents of a page whose blocks may
3412 3413 3414
 *         have already been released, and we only want to zero
 *         out the regions that correspond to those released blocks.
 *
3415
 * Returns zero on success or negative on failure.
3416
 */
E
Eric Sandeen 已提交
3417
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags)
{
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
	unsigned int blocksize, max, pos;
	ext4_lblk_t iblock;
	struct buffer_head *bh;
	int err = 0;

	blocksize = inode->i_sb->s_blocksize;
	max = PAGE_CACHE_SIZE - offset;

	if (index != page->index)
		return -EINVAL;

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the page
	 */
	if (length > max || length < 0)
		length = max;

	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

3443 3444
	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	pos = offset;
	while (pos < offset + length) {
3457 3458
		unsigned int end_of_block, range_to_discard;

3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
		err = 0;

		/* The length of space left to zero and unmap */
		range_to_discard = offset + length - pos;

		/* The length of space until the end of the block */
		end_of_block = blocksize - (pos & (blocksize-1));

		/*
		 * Do not unmap or zero past end of block
		 * for this buffer head
		 */
		if (range_to_discard > end_of_block)
			range_to_discard = end_of_block;


		/*
		 * Skip this buffer head if we are only zeroing unampped
		 * regions of the page
		 */
		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
			buffer_mapped(bh))
				goto next;

		/* If the range is block aligned, unmap */
		if (range_to_discard == blocksize) {
			clear_buffer_dirty(bh);
			bh->b_bdev = NULL;
			clear_buffer_mapped(bh);
			clear_buffer_req(bh);
			clear_buffer_new(bh);
			clear_buffer_delay(bh);
			clear_buffer_unwritten(bh);
			clear_buffer_uptodate(bh);
			zero_user(page, pos, range_to_discard);
			BUFFER_TRACE(bh, "Buffer discarded");
			goto next;
		}

		/*
		 * If this block is not completely contained in the range
		 * to be discarded, then it is not going to be released. Because
		 * we need to keep this block, we need to make sure this part
		 * of the page is uptodate before we modify it by writeing
		 * partial zeros on it.
		 */
		if (!buffer_mapped(bh)) {
			/*
			 * Buffer head must be mapped before we can read
			 * from the block
			 */
			BUFFER_TRACE(bh, "unmapped");
			ext4_get_block(inode, iblock, bh, 0);
			/* unmapped? It's a hole - nothing to do */
			if (!buffer_mapped(bh)) {
				BUFFER_TRACE(bh, "still unmapped");
				goto next;
			}
		}

		/* Ok, it's mapped. Make sure it's up-to-date */
		if (PageUptodate(page))
			set_buffer_uptodate(bh);

		if (!buffer_uptodate(bh)) {
			err = -EIO;
			ll_rw_block(READ, 1, &bh);
			wait_on_buffer(bh);
			/* Uhhuh. Read error. Complain and punt.*/
			if (!buffer_uptodate(bh))
				goto next;
		}

		if (ext4_should_journal_data(inode)) {
			BUFFER_TRACE(bh, "get write access");
			err = ext4_journal_get_write_access(handle, bh);
			if (err)
				goto next;
		}

		zero_user(page, pos, range_to_discard);

		err = 0;
		if (ext4_should_journal_data(inode)) {
			err = ext4_handle_dirty_metadata(handle, inode, bh);
3544
		} else
3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
			mark_buffer_dirty(bh);

		BUFFER_TRACE(bh, "Partial buffer zeroed");
next:
		bh = bh->b_this_page;
		iblock++;
		pos += range_to_discard;
	}

	return err;
}

3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
int ext4_can_truncate(struct inode *inode)
{
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3568 3569 3570 3571 3572 3573 3574 3575
/*
 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 * associated with the given offset and length
 *
 * @inode:  File inode
 * @offset: The offset where the hole will begin
 * @len:    The length of the hole
 *
3576
 * Returns: 0 on success or negative on failure
3577 3578 3579 3580
 */

int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
{
A
Al Viro 已提交
3581
	struct inode *inode = file_inode(file);
3582
	if (!S_ISREG(inode->i_mode))
3583
		return -EOPNOTSUPP;
3584

3585 3586
	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
		return ext4_ind_punch_hole(file, offset, length);
3587

3588 3589
	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
		/* TODO: Add support for bigalloc file systems */
3590
		return -EOPNOTSUPP;
3591 3592
	}

3593 3594
	trace_ext4_punch_hole(inode, offset, length);

3595 3596 3597
	return ext4_ext_punch_hole(file, offset, length);
}

3598
/*
3599
 * ext4_truncate()
3600
 *
3601 3602
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3603 3604
 * simultaneously on behalf of the same inode.
 *
3605
 * As we work through the truncate and commit bits of it to the journal there
3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3619
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3620
 * that this inode's truncate did not complete and it will again call
3621 3622
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3623
 * that's fine - as long as they are linked from the inode, the post-crash
3624
 * ext4_truncate() run will find them and release them.
3625
 */
3626
void ext4_truncate(struct inode *inode)
3627
{
3628 3629
	trace_ext4_truncate_enter(inode);

3630
	if (!ext4_can_truncate(inode))
3631 3632
		return;

3633
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3634

3635
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3636
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3637

3638 3639 3640 3641 3642 3643 3644 3645
	if (ext4_has_inline_data(inode)) {
		int has_inline = 1;

		ext4_inline_data_truncate(inode, &has_inline);
		if (has_inline)
			return;
	}

3646
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3647
		ext4_ext_truncate(inode);
3648 3649
	else
		ext4_ind_truncate(inode);
3650

3651
	trace_ext4_truncate_exit(inode);
3652 3653 3654
}

/*
3655
 * ext4_get_inode_loc returns with an extra refcount against the inode's
3656 3657 3658 3659
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
3660 3661
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
3662
{
3663 3664 3665 3666 3667 3668
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
3669
	iloc->bh = NULL;
3670 3671
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
3672

3673 3674 3675
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
3676 3677
		return -EIO;

3678 3679 3680
	/*
	 * Figure out the offset within the block group inode table
	 */
3681
	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3682 3683 3684 3685 3686 3687
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
3688
	if (unlikely(!bh))
3689
		return -ENOMEM;
3690 3691
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
3692 3693 3694 3695 3696 3697 3698 3699 3700 3701

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
3715
			int i, start;
3716

3717
			start = inode_offset & ~(inodes_per_block - 1);
3718

3719 3720
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3721
			if (unlikely(!bitmap_bh))
3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
3733
			for (i = start; i < start + inodes_per_block; i++) {
3734 3735
				if (i == inode_offset)
					continue;
3736
				if (ext4_test_bit(i, bitmap_bh->b_data))
3737 3738 3739
					break;
			}
			brelse(bitmap_bh);
3740
			if (i == start + inodes_per_block) {
3741 3742 3743 3744 3745 3746 3747 3748 3749
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
3750 3751 3752 3753 3754 3755 3756 3757 3758
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
3759
			/* s_inode_readahead_blks is always a power of 2 */
3760 3761 3762 3763 3764
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
3765
			if (ext4_has_group_desc_csum(sb))
3766
				num -= ext4_itable_unused_count(sb, gdp);
3767 3768 3769 3770 3771 3772 3773
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

3774 3775 3776 3777 3778
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
3779
		trace_ext4_load_inode(inode);
3780 3781
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
3782
		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3783 3784
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
3785 3786
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
3787 3788 3789 3790 3791 3792 3793 3794 3795
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

3796
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3797 3798
{
	/* We have all inode data except xattrs in memory here. */
3799
	return __ext4_get_inode_loc(inode, iloc,
3800
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3801 3802
}

3803
void ext4_set_inode_flags(struct inode *inode)
3804
{
3805
	unsigned int flags = EXT4_I(inode)->i_flags;
3806 3807

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3808
	if (flags & EXT4_SYNC_FL)
3809
		inode->i_flags |= S_SYNC;
3810
	if (flags & EXT4_APPEND_FL)
3811
		inode->i_flags |= S_APPEND;
3812
	if (flags & EXT4_IMMUTABLE_FL)
3813
		inode->i_flags |= S_IMMUTABLE;
3814
	if (flags & EXT4_NOATIME_FL)
3815
		inode->i_flags |= S_NOATIME;
3816
	if (flags & EXT4_DIRSYNC_FL)
3817 3818 3819
		inode->i_flags |= S_DIRSYNC;
}

3820 3821 3822
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3843
}
3844

3845
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3846
				  struct ext4_inode_info *ei)
3847 3848
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
3849 3850
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
3851 3852 3853 3854 3855 3856

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
3857
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
3858 3859 3860 3861 3862
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
3863 3864 3865 3866
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
3867

3868 3869 3870 3871 3872 3873
static inline void ext4_iget_extra_inode(struct inode *inode,
					 struct ext4_inode *raw_inode,
					 struct ext4_inode_info *ei)
{
	__le32 *magic = (void *)raw_inode +
			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3874
	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3875
		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3876
		ext4_find_inline_data_nolock(inode);
3877 3878
	} else
		EXT4_I(inode)->i_inline_off = 0;
3879 3880
}

3881
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3882
{
3883 3884
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
3885 3886
	struct ext4_inode_info *ei;
	struct inode *inode;
3887
	journal_t *journal = EXT4_SB(sb)->s_journal;
3888
	long ret;
3889
	int block;
3890 3891
	uid_t i_uid;
	gid_t i_gid;
3892

3893 3894 3895 3896 3897 3898 3899
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
3900
	iloc.bh = NULL;
3901

3902 3903
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
3904
		goto bad_inode;
3905
	raw_inode = ext4_raw_inode(&iloc);
3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938

	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
		    EXT4_INODE_SIZE(inode->i_sb)) {
			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
				EXT4_INODE_SIZE(inode->i_sb));
			ret = -EIO;
			goto bad_inode;
		}
	} else
		ei->i_extra_isize = 0;

	/* Precompute checksum seed for inode metadata */
	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
		__u32 csum;
		__le32 inum = cpu_to_le32(inode->i_ino);
		__le32 gen = raw_inode->i_generation;
		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
				   sizeof(inum));
		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
					      sizeof(gen));
	}

	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
		EXT4_ERROR_INODE(inode, "checksum invalid");
		ret = -EIO;
		goto bad_inode;
	}

3939
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3940 3941
	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3942
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3943 3944
		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3945
	}
3946 3947
	i_uid_write(inode, i_uid);
	i_gid_write(inode, i_gid);
M
Miklos Szeredi 已提交
3948
	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3949

3950
	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3951
	ei->i_inline_off = 0;
3952 3953 3954 3955 3956 3957 3958 3959 3960
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
3961
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3962
			/* this inode is deleted */
3963
			ret = -ESTALE;
3964 3965 3966 3967 3968 3969 3970 3971
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3972
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3973
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3974
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
3975 3976
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3977
	inode->i_size = ext4_isize(raw_inode);
3978
	ei->i_disksize = inode->i_size;
3979 3980 3981
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
3982 3983
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
3984
	ei->i_last_alloc_group = ~0;
3985 3986 3987 3988
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
3989
	for (block = 0; block < EXT4_N_BLOCKS; block++)
3990 3991 3992
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

4004
		read_lock(&journal->j_state_lock);
4005 4006 4007 4008 4009 4010 4011 4012
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
4013
		read_unlock(&journal->j_state_lock);
4014 4015 4016 4017
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

4018
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4019 4020
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
4021 4022
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
4023
		} else {
4024
			ext4_iget_extra_inode(inode, raw_inode, ei);
4025
		}
4026
	}
4027

K
Kalpak Shah 已提交
4028 4029 4030 4031 4032
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

4033 4034 4035 4036 4037 4038 4039
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

4040
	ret = 0;
4041
	if (ei->i_file_acl &&
4042
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4043 4044
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
4045 4046
		ret = -EIO;
		goto bad_inode;
4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
	} else if (!ext4_has_inline_data(inode)) {
		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
			    (S_ISLNK(inode->i_mode) &&
			     !ext4_inode_is_fast_symlink(inode))))
				/* Validate extent which is part of inode */
				ret = ext4_ext_check_inode(inode);
		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
			   (S_ISLNK(inode->i_mode) &&
			    !ext4_inode_is_fast_symlink(inode))) {
			/* Validate block references which are part of inode */
			ret = ext4_ind_check_inode(inode);
		}
4060
	}
4061
	if (ret)
4062
		goto bad_inode;
4063

4064
	if (S_ISREG(inode->i_mode)) {
4065 4066 4067
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
4068
	} else if (S_ISDIR(inode->i_mode)) {
4069 4070
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
4071
	} else if (S_ISLNK(inode->i_mode)) {
4072
		if (ext4_inode_is_fast_symlink(inode)) {
4073
			inode->i_op = &ext4_fast_symlink_inode_operations;
4074 4075 4076
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
4077 4078
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
4079
		}
4080 4081
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4082
		inode->i_op = &ext4_special_inode_operations;
4083 4084 4085 4086 4087 4088
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4089 4090
	} else {
		ret = -EIO;
4091
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4092
		goto bad_inode;
4093
	}
4094
	brelse(iloc.bh);
4095
	ext4_set_inode_flags(inode);
4096 4097
	unlock_new_inode(inode);
	return inode;
4098 4099

bad_inode:
4100
	brelse(iloc.bh);
4101 4102
	iget_failed(inode);
	return ERR_PTR(ret);
4103 4104
}

4105 4106 4107 4108 4109 4110 4111 4112 4113 4114
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
4115
		 * i_blocks can be represented in a 32 bit variable
4116 4117
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4118
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4119
		raw_inode->i_blocks_high = 0;
4120
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4121 4122 4123 4124 4125 4126
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
4127 4128 4129 4130
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4131
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4132
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4133
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4134
	} else {
4135
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
4136 4137 4138 4139
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4140
	}
4141
	return 0;
4142 4143
}

4144 4145 4146 4147 4148 4149 4150
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
4151
static int ext4_do_update_inode(handle_t *handle,
4152
				struct inode *inode,
4153
				struct ext4_iloc *iloc)
4154
{
4155 4156
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
4157 4158
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;
4159
	int need_datasync = 0;
4160 4161
	uid_t i_uid;
	gid_t i_gid;
4162 4163 4164

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
4165
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4166
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4167

4168
	ext4_get_inode_flags(ei);
4169
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4170 4171
	i_uid = i_uid_read(inode);
	i_gid = i_gid_read(inode);
4172
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4173 4174
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4175 4176 4177 4178
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
4179
		if (!ei->i_dtime) {
4180
			raw_inode->i_uid_high =
4181
				cpu_to_le16(high_16_bits(i_uid));
4182
			raw_inode->i_gid_high =
4183
				cpu_to_le16(high_16_bits(i_gid));
4184 4185 4186 4187 4188
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
4189 4190
		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4191 4192 4193 4194
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4195 4196 4197 4198 4199 4200

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4201 4202
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4203
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4204
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4205 4206
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4207 4208
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4209
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4210 4211 4212 4213
	if (ei->i_disksize != ext4_isize(raw_inode)) {
		ext4_isize_set(raw_inode, ei->i_disksize);
		need_datasync = 1;
	}
4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4229
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4230
			ext4_handle_sync(handle);
4231
			err = ext4_handle_dirty_super(handle, sb);
4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4246
	} else if (!ext4_has_inline_data(inode)) {
4247 4248
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
4249
	}
4250

4251 4252 4253 4254 4255
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4256
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4257 4258
	}

4259 4260
	ext4_inode_csum_set(inode, raw_inode, ei);

4261
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4262
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4263 4264
	if (!err)
		err = rc;
4265
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4266

4267
	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4268
out_brelse:
4269
	brelse(bh);
4270
	ext4_std_error(inode->i_sb, err);
4271 4272 4273 4274
	return err;
}

/*
4275
 * ext4_write_inode()
4276 4277 4278 4279 4280
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
4281
 *   transaction to commit.
4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4292
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4309
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4310
{
4311 4312
	int err;

4313 4314 4315
	if (current->flags & PF_MEMALLOC)
		return 0;

4316 4317 4318 4319 4320 4321
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
4322

4323
		if (wbc->sync_mode != WB_SYNC_ALL)
4324 4325 4326 4327 4328
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
4329

4330
		err = __ext4_get_inode_loc(inode, &iloc, 0);
4331 4332
		if (err)
			return err;
4333
		if (wbc->sync_mode == WB_SYNC_ALL)
4334 4335
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4336 4337
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
4338 4339
			err = -EIO;
		}
4340
		brelse(iloc.bh);
4341 4342
	}
	return err;
4343 4344
}

4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
/*
 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
 * buffers that are attached to a page stradding i_size and are undergoing
 * commit. In that case we have to wait for commit to finish and try again.
 */
static void ext4_wait_for_tail_page_commit(struct inode *inode)
{
	struct page *page;
	unsigned offset;
	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
	tid_t commit_tid = 0;
	int ret;

	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
	/*
	 * All buffers in the last page remain valid? Then there's nothing to
	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
	 * blocksize case
	 */
	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
		return;
	while (1) {
		page = find_lock_page(inode->i_mapping,
				      inode->i_size >> PAGE_CACHE_SHIFT);
		if (!page)
			return;
		ret = __ext4_journalled_invalidatepage(page, offset);
		unlock_page(page);
		page_cache_release(page);
		if (ret != -EBUSY)
			return;
		commit_tid = 0;
		read_lock(&journal->j_state_lock);
		if (journal->j_committing_transaction)
			commit_tid = journal->j_committing_transaction->t_tid;
		read_unlock(&journal->j_state_lock);
		if (commit_tid)
			jbd2_log_wait_commit(journal, commit_tid);
	}
}

4386
/*
4387
 * ext4_setattr()
4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4401 4402 4403 4404 4405 4406 4407 4408
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4409
 */
4410
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4411 4412 4413
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
4414
	int orphan = 0;
4415 4416 4417 4418 4419 4420
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

4421
	if (is_quota_modification(inode, attr))
4422
		dquot_initialize(inode);
4423 4424
	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4425 4426 4427 4428
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
4429 4430 4431
		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4432 4433 4434 4435
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4436
		error = dquot_transfer(inode, attr);
4437
		if (error) {
4438
			ext4_journal_stop(handle);
4439 4440 4441 4442 4443 4444 4445 4446
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4447 4448
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4449 4450
	}

4451
	if (attr->ia_valid & ATTR_SIZE) {
4452

4453
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4454 4455
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

4456 4457
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
4458 4459 4460
		}
	}

4461
	if (S_ISREG(inode->i_mode) &&
4462
	    attr->ia_valid & ATTR_SIZE &&
4463
	    (attr->ia_size < inode->i_size)) {
4464 4465
		handle_t *handle;

4466
		handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4467 4468 4469 4470
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4471 4472 4473 4474
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
4475 4476
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4477 4478
		if (!error)
			error = rc;
4479
		ext4_journal_stop(handle);
4480 4481 4482 4483 4484 4485

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
4486 4487
				handle = ext4_journal_start(inode,
							    EXT4_HT_INODE, 3);
4488 4489 4490 4491 4492
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
4493
				orphan = 0;
4494 4495 4496 4497
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4498 4499
	}

4500
	if (attr->ia_valid & ATTR_SIZE) {
4501 4502 4503 4504 4505 4506 4507 4508 4509
		if (attr->ia_size != inode->i_size) {
			loff_t oldsize = inode->i_size;

			i_size_write(inode, attr->ia_size);
			/*
			 * Blocks are going to be removed from the inode. Wait
			 * for dio in flight.  Temporarily disable
			 * dioread_nolock to prevent livelock.
			 */
4510
			if (orphan) {
4511 4512 4513 4514 4515 4516
				if (!ext4_should_journal_data(inode)) {
					ext4_inode_block_unlocked_dio(inode);
					inode_dio_wait(inode);
					ext4_inode_resume_unlocked_dio(inode);
				} else
					ext4_wait_for_tail_page_commit(inode);
4517
			}
4518 4519 4520 4521 4522
			/*
			 * Truncate pagecache after we've waited for commit
			 * in data=journal mode to make pages freeable.
			 */
			truncate_pagecache(inode, oldsize, inode->i_size);
4523
		}
4524
		ext4_truncate(inode);
4525
	}
4526

C
Christoph Hellwig 已提交
4527 4528 4529 4530 4531 4532 4533 4534 4535
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
4536
	if (orphan && inode->i_nlink)
4537
		ext4_orphan_del(NULL, inode);
4538 4539

	if (!rc && (ia_valid & ATTR_MODE))
4540
		rc = ext4_acl_chmod(inode);
4541 4542

err_out:
4543
	ext4_std_error(inode->i_sb, error);
4544 4545 4546 4547 4548
	if (!error)
		error = rc;
	return error;
}

4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
4568 4569
	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
				EXT4_I(inode)->i_reserved_data_blocks);
4570 4571 4572 4573

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4574

4575 4576
static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
4577
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4578
		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4579
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4580
}
4581

4582
/*
4583 4584 4585
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4586
 *
4587
 * If datablocks are discontiguous, they are possible to spread over
4588
 * different block groups too. If they are contiguous, with flexbg,
4589
 * they could still across block group boundary.
4590
 *
4591 4592
 * Also account for superblock, inode, quota and xattr blocks
 */
4593
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4594
{
4595 4596
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
4623 4624
	if (groups > ngroups)
		groups = ngroups;
4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
L
Lucas De Marchi 已提交
4638
 * Calculate the total number of credits to reserve to fit
4639 4640
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4641
 *
4642
 * This could be called via ext4_write_begin()
4643
 *
4644
 * We need to consider the worse case, when
4645
 * one new block per extent.
4646
 */
A
Alex Tomas 已提交
4647
int ext4_writepage_trans_blocks(struct inode *inode)
4648
{
4649
	int bpp = ext4_journal_blocks_per_page(inode);
4650 4651
	int ret;

4652
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4653

4654
	/* Account for data blocks for journalled mode */
4655
	if (ext4_should_journal_data(inode))
4656
		ret += bpp;
4657 4658
	return ret;
}
4659 4660 4661 4662 4663

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
4664
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4665 4666 4667 4668 4669 4670 4671 4672 4673
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4674
/*
4675
 * The caller must have previously called ext4_reserve_inode_write().
4676 4677
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4678
int ext4_mark_iloc_dirty(handle_t *handle,
4679
			 struct inode *inode, struct ext4_iloc *iloc)
4680 4681 4682
{
	int err = 0;

4683
	if (IS_I_VERSION(inode))
4684 4685
		inode_inc_iversion(inode);

4686 4687 4688
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4689
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4690
	err = ext4_do_update_inode(handle, inode, iloc);
4691 4692 4693 4694 4695 4696 4697 4698 4699 4700
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4701 4702
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4703
{
4704 4705 4706 4707 4708 4709 4710 4711 4712
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
4713 4714
		}
	}
4715
	ext4_std_error(inode->i_sb, err);
4716 4717 4718
	return err;
}

4719 4720 4721 4722
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
4723 4724 4725 4726
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
4739 4740
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 */
4765
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4766
{
4767
	struct ext4_iloc iloc;
4768 4769 4770
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
4771 4772

	might_sleep();
4773
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4774
	err = ext4_reserve_inode_write(handle, inode, &iloc);
4775 4776
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4777
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
4791 4792
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
4793 4794
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4795
					ext4_warning(inode->i_sb,
4796 4797 4798
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
4799 4800
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
4801 4802 4803 4804
				}
			}
		}
	}
4805
	if (!err)
4806
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4807 4808 4809 4810
	return err;
}

/*
4811
 * ext4_dirty_inode() is called from __mark_inode_dirty()
4812 4813 4814 4815 4816
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
4817
 * Also, dquot_alloc_block() will always dirty the inode when blocks
4818 4819 4820 4821 4822 4823
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
4824
void ext4_dirty_inode(struct inode *inode, int flags)
4825 4826 4827
{
	handle_t *handle;

4828
	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4829 4830
	if (IS_ERR(handle))
		goto out;
4831 4832 4833

	ext4_mark_inode_dirty(handle, inode);

4834
	ext4_journal_stop(handle);
4835 4836 4837 4838 4839 4840 4841 4842
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
4843
 * ext4_reserve_inode_write, this leaves behind no bh reference and
4844 4845 4846
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
4847
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4848
{
4849
	struct ext4_iloc iloc;
4850 4851 4852

	int err = 0;
	if (handle) {
4853
		err = ext4_get_inode_loc(inode, &iloc);
4854 4855
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
4856
			err = jbd2_journal_get_write_access(handle, iloc.bh);
4857
			if (!err)
4858
				err = ext4_handle_dirty_metadata(handle,
4859
								 NULL,
4860
								 iloc.bh);
4861 4862 4863
			brelse(iloc.bh);
		}
	}
4864
	ext4_std_error(inode->i_sb, err);
4865 4866 4867 4868
	return err;
}
#endif

4869
int ext4_change_inode_journal_flag(struct inode *inode, int val)
4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

4885
	journal = EXT4_JOURNAL(inode);
4886 4887
	if (!journal)
		return 0;
4888
	if (is_journal_aborted(journal))
4889
		return -EROFS;
4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900
	/* We have to allocate physical blocks for delalloc blocks
	 * before flushing journal. otherwise delalloc blocks can not
	 * be allocated any more. even more truncate on delalloc blocks
	 * could trigger BUG by flushing delalloc blocks in journal.
	 * There is no delalloc block in non-journal data mode.
	 */
	if (val && test_opt(inode->i_sb, DELALLOC)) {
		err = ext4_alloc_da_blocks(inode);
		if (err < 0)
			return err;
	}
4901

4902 4903 4904 4905
	/* Wait for all existing dio workers */
	ext4_inode_block_unlocked_dio(inode);
	inode_dio_wait(inode);

4906
	jbd2_journal_lock_updates(journal);
4907 4908 4909 4910 4911 4912 4913 4914 4915 4916

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
4917
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4918 4919
	else {
		jbd2_journal_flush(journal);
4920
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4921
	}
4922
	ext4_set_aops(inode);
4923

4924
	jbd2_journal_unlock_updates(journal);
4925
	ext4_inode_resume_unlocked_dio(inode);
4926 4927 4928

	/* Finally we can mark the inode as dirty. */

4929
	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4930 4931 4932
	if (IS_ERR(handle))
		return PTR_ERR(handle);

4933
	err = ext4_mark_inode_dirty(handle, inode);
4934
	ext4_handle_sync(handle);
4935 4936
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
4937 4938 4939

	return err;
}
4940 4941 4942 4943 4944 4945

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

4946
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4947
{
4948
	struct page *page = vmf->page;
4949 4950
	loff_t size;
	unsigned long len;
4951
	int ret;
4952
	struct file *file = vma->vm_file;
A
Al Viro 已提交
4953
	struct inode *inode = file_inode(file);
4954
	struct address_space *mapping = inode->i_mapping;
4955 4956 4957
	handle_t *handle;
	get_block_t *get_block;
	int retries = 0;
4958

4959
	sb_start_pagefault(inode->i_sb);
4960
	file_update_time(vma->vm_file);
4961 4962 4963 4964 4965 4966 4967 4968 4969 4970
	/* Delalloc case is easy... */
	if (test_opt(inode->i_sb, DELALLOC) &&
	    !ext4_should_journal_data(inode) &&
	    !ext4_nonda_switch(inode->i_sb)) {
		do {
			ret = __block_page_mkwrite(vma, vmf,
						   ext4_da_get_block_prep);
		} while (ret == -ENOSPC &&
		       ext4_should_retry_alloc(inode->i_sb, &retries));
		goto out_ret;
4971
	}
4972 4973

	lock_page(page);
4974 4975 4976 4977 4978 4979
	size = i_size_read(inode);
	/* Page got truncated from under us? */
	if (page->mapping != mapping || page_offset(page) > size) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
4980
	}
4981 4982 4983 4984 4985

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
4986
	/*
4987 4988
	 * Return if we have all the buffers mapped. This avoids the need to do
	 * journal_start/journal_stop which can block and take a long time
4989
	 */
4990
	if (page_has_buffers(page)) {
4991 4992 4993
		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
					    0, len, NULL,
					    ext4_bh_unmapped)) {
4994
			/* Wait so that we don't change page under IO */
4995
			wait_for_stable_page(page);
4996 4997
			ret = VM_FAULT_LOCKED;
			goto out;
4998
		}
4999
	}
5000
	unlock_page(page);
5001 5002 5003 5004 5005 5006
	/* OK, we need to fill the hole... */
	if (ext4_should_dioread_nolock(inode))
		get_block = ext4_get_block_write;
	else
		get_block = ext4_get_block;
retry_alloc:
5007 5008
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
				    ext4_writepage_trans_blocks(inode));
5009
	if (IS_ERR(handle)) {
5010
		ret = VM_FAULT_SIGBUS;
5011 5012 5013 5014
		goto out;
	}
	ret = __block_page_mkwrite(vma, vmf, get_block);
	if (!ret && ext4_should_journal_data(inode)) {
5015
		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5016 5017 5018
			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
			unlock_page(page);
			ret = VM_FAULT_SIGBUS;
5019
			ext4_journal_stop(handle);
5020 5021 5022 5023 5024 5025 5026 5027 5028 5029
			goto out;
		}
		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
	}
	ext4_journal_stop(handle);
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry_alloc;
out_ret:
	ret = block_page_mkwrite_return(ret);
out:
5030
	sb_end_pagefault(inode->i_sb);
5031 5032
	return ret;
}