inode.c 155.5 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38 39
#include <linux/uio.h>
#include <linux/bio.h>
40
#include "ext4_jbd2.h"
41 42
#include "xattr.h"
#include "acl.h"
43
#include "ext4_extents.h"
44

45 46
#define MPAGE_DA_EXTENT_TAIL 0x01

47 48 49
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
50 51 52 53
	return jbd2_journal_begin_ordered_truncate(
					EXT4_SB(inode->i_sb)->s_journal,
					&EXT4_I(inode)->jinode,
					new_size);
54 55
}

56 57
static void ext4_invalidatepage(struct page *page, unsigned long offset);

58 59 60
/*
 * Test whether an inode is a fast symlink.
 */
61
static int ext4_inode_is_fast_symlink(struct inode *inode)
62
{
63
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
64 65 66 67 68 69
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
70
 * The ext4 forget function must perform a revoke if we are freeing data
71 72 73 74 75 76
 * which has been journaled.  Metadata (eg. indirect blocks) must be
 * revoked in all cases.
 *
 * "bh" may be NULL: a metadata block may have been freed from memory
 * but there may still be a record of it in the journal, and that record
 * still needs to be revoked.
77 78
 *
 * If the handle isn't valid we're not journaling so there's nothing to do.
79
 */
80 81
int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
			struct buffer_head *bh, ext4_fsblk_t blocknr)
82 83 84
{
	int err;

85 86 87
	if (!ext4_handle_valid(handle))
		return 0;

88 89 90 91 92 93 94 95 96 97 98 99 100 101
	might_sleep();

	BUFFER_TRACE(bh, "enter");

	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
		  "data mode %lx\n",
		  bh, is_metadata, inode->i_mode,
		  test_opt(inode->i_sb, DATA_FLAGS));

	/* Never use the revoke function if we are doing full data
	 * journaling: there is no need to, and a V1 superblock won't
	 * support it.  Otherwise, only skip the revoke on un-journaled
	 * data blocks. */

102 103
	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
	    (!is_metadata && !ext4_should_journal_data(inode))) {
104
		if (bh) {
105
			BUFFER_TRACE(bh, "call jbd2_journal_forget");
106
			return ext4_journal_forget(handle, bh);
107 108 109 110 111 112 113
		}
		return 0;
	}

	/*
	 * data!=journal && (is_metadata || should_journal_data(inode))
	 */
114 115
	BUFFER_TRACE(bh, "call ext4_journal_revoke");
	err = ext4_journal_revoke(handle, blocknr, bh);
116
	if (err)
117
		ext4_abort(inode->i_sb, __func__,
118 119 120 121 122 123 124 125 126 127 128
			   "error %d when attempting revoke", err);
	BUFFER_TRACE(bh, "exit");
	return err;
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
129
	ext4_lblk_t needed;
130 131 132 133 134 135

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
136
	 * like a regular file for ext4 to try to delete it.  Things
137 138 139 140 141 142 143
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
144 145
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
146

147
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

164
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
165 166 167
	if (!IS_ERR(result))
		return result;

168
	ext4_std_error(inode->i_sb, PTR_ERR(result));
169 170 171 172 173 174 175 176 177 178 179
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
180 181 182
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
183
		return 0;
184
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
185 186 187 188 189 190 191 192 193
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
194
static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
195
{
196
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
197
	jbd_debug(2, "restarting handle %p\n", handle);
198
	return ext4_journal_restart(handle, blocks_for_truncate(inode));
199 200 201 202 203
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
204
void ext4_delete_inode(struct inode *inode)
205 206
{
	handle_t *handle;
207
	int err;
208

209 210
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
211 212 213 214 215
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

216
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
217
	if (IS_ERR(handle)) {
218
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
219 220 221 222 223
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
224
		ext4_orphan_del(NULL, inode);
225 226 227 228
		goto no_delete;
	}

	if (IS_SYNC(inode))
229
		ext4_handle_sync(handle);
230
	inode->i_size = 0;
231 232 233 234 235 236
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
		ext4_warning(inode->i_sb, __func__,
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
237
	if (inode->i_blocks)
238
		ext4_truncate(inode);
239 240 241 242 243 244 245

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
246
	if (!ext4_handle_has_enough_credits(handle, 3)) {
247 248 249 250 251 252 253 254 255 256 257 258
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
			ext4_warning(inode->i_sb, __func__,
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
			goto no_delete;
		}
	}

259
	/*
260
	 * Kill off the orphan record which ext4_truncate created.
261
	 * AKPM: I think this can be inside the above `if'.
262
	 * Note that ext4_orphan_del() has to be able to cope with the
263
	 * deletion of a non-existent orphan - this is because we don't
264
	 * know if ext4_truncate() actually created an orphan record.
265 266
	 * (Well, we could do this if we need to, but heck - it works)
	 */
267 268
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
269 270 271 272 273 274 275 276

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
277
	if (ext4_mark_inode_dirty(handle, inode))
278 279 280
		/* If that failed, just do the required in-core inode clear. */
		clear_inode(inode);
	else
281 282
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
	return;
no_delete:
	clear_inode(inode);	/* We must guarantee clearing of inode... */
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
301
 *	ext4_block_to_path - parse the block number into array of offsets
302 303 304
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
305 306
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
307
 *
308
 *	To store the locations of file's data ext4 uses a data structure common
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

331
static int ext4_block_to_path(struct inode *inode,
A
Aneesh Kumar K.V 已提交
332 333
			ext4_lblk_t i_block,
			ext4_lblk_t offsets[4], int *boundary)
334
{
335 336 337
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
338 339 340 341 342 343
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

	if (i_block < 0) {
344
		ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
345 346 347
	} else if (i_block < direct_blocks) {
		offsets[n++] = i_block;
		final = direct_blocks;
348
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
349
		offsets[n++] = EXT4_IND_BLOCK;
350 351 352
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
353
		offsets[n++] = EXT4_DIND_BLOCK;
354 355 356 357
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
358
		offsets[n++] = EXT4_TIND_BLOCK;
359 360 361 362 363
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
364
		ext4_warning(inode->i_sb, "ext4_block_to_path",
365
				"block %lu > max in inode %lu",
366
				i_block + direct_blocks +
367
				indirect_blocks + double_blocks, inode->i_ino);
368 369 370 371 372 373
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

374
static int __ext4_check_blockref(const char *function, struct inode *inode,
375
				 __le32 *p, unsigned int max) {
376 377

	unsigned int maxblocks = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es);
378
	__le32 *bref = p;
379
	while (bref < p+max) {
380
		if (unlikely(le32_to_cpu(*bref) >= maxblocks)) {
381 382 383
			ext4_error(inode->i_sb, function,
				   "block reference %u >= max (%u) "
				   "in inode #%lu, offset=%d",
384
				   le32_to_cpu(*bref), maxblocks,
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
				   inode->i_ino, (int)(bref-p));
 			return -EIO;
 		}
		bref++;
 	}
 	return 0;
}


#define ext4_check_indirect_blockref(inode, bh)                         \
        __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))

#define ext4_check_inode_blockref(inode)                                \
        __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
			      EXT4_NDIR_BLOCKS)

402
/**
403
 *	ext4_get_branch - read the chain of indirect blocks leading to data
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
428 429
 *
 *      Need to be called with
430
 *      down_read(&EXT4_I(inode)->i_data_sem)
431
 */
A
Aneesh Kumar K.V 已提交
432 433
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
434 435 436 437 438 439 440 441
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
442
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
443 444 445
	if (!p->key)
		goto no_block;
	while (--depth) {
446 447
		bh = sb_getblk(sb, le32_to_cpu(p->key));
		if (unlikely(!bh))
448
			goto failure;
449 450 451 452 453 454 455 456 457 458 459 460 461
                  
		if (!bh_uptodate_or_lock(bh)) {
			if (bh_submit_read(bh) < 0) {
				put_bh(bh);
				goto failure;
			}
			/* validate block references */
			if (ext4_check_indirect_blockref(inode, bh)) {
				put_bh(bh);
				goto failure;
			}
		}
		
462
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
463 464 465 466 467 468 469 470 471 472 473 474 475
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
476
 *	ext4_find_near - find a place for allocation with sufficient locality
477 478 479
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
480
 *	This function returns the preferred place for block allocation.
481 482 483 484 485 486 487 488 489 490 491 492 493 494
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
495
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
496
{
497
	struct ext4_inode_info *ei = EXT4_I(inode);
498
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
499
	__le32 *p;
500
	ext4_fsblk_t bg_start;
501
	ext4_fsblk_t last_block;
502
	ext4_grpblk_t colour;
503 504
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
520 521 522 523 524 525 526
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
527 528
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

529 530 531 532 533 534 535
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

536 537
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
538
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
539 540
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
541 542 543 544
	return bg_start + colour;
}

/**
545
 *	ext4_find_goal - find a preferred place for allocation.
546 547 548 549
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
550
 *	Normally this function find the preferred place for block allocation,
551
 *	returns it.
552
 */
A
Aneesh Kumar K.V 已提交
553
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
554
		Indirect *partial)
555 556
{
	/*
557
	 * XXX need to get goal block from mballoc's data structures
558 559
	 */

560
	return ext4_find_near(inode, partial);
561 562 563
}

/**
564
 *	ext4_blks_to_allocate: Look up the block map and count the number
565 566 567 568 569 570 571 572 573 574
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
575
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
576 577
		int blocks_to_boundary)
{
578
	unsigned int count = 0;
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
602
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
603 604 605 606 607 608 609 610
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
611
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
612 613 614
				ext4_lblk_t iblock, ext4_fsblk_t goal,
				int indirect_blks, int blks,
				ext4_fsblk_t new_blocks[4], int *err)
615
{
616
	struct ext4_allocation_request ar;
617
	int target, i;
618
	unsigned long count = 0, blk_allocated = 0;
619
	int index = 0;
620
	ext4_fsblk_t current_block = 0;
621 622 623 624 625 626 627 628 629 630
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
631 632 633
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
634 635
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
636 637
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
638 639 640 641 642 643 644 645 646
		if (*err)
			goto failed_out;

		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
647 648 649 650 651 652 653 654 655
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
656
			break;
657
		}
658 659
	}

660 661 662 663 664
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
665 666 667 668 669 670 671 672 673 674 675
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
		/*
		 * save the new block number
		 * for the first direct block
		 */
			new_blocks[index] = current_block;
		}
691
		blk_allocated += ar.len;
692 693
	}
allocated:
694
	/* total number of blocks allocated for direct blocks */
695
	ret = blk_allocated;
696 697 698
	*err = 0;
	return ret;
failed_out:
699
	for (i = 0; i < index; i++)
700
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
701 702 703 704
	return ret;
}

/**
705
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
706 707 708 709 710 711 712 713 714 715
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
716
 *	the same format as ext4_get_branch() would do. We are calling it after
717 718
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
719
 *	picture as after the successful ext4_get_block(), except that in one
720 721 722 723 724 725
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
726
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
727 728
 *	as described above and return 0.
 */
729
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
730 731 732
				ext4_lblk_t iblock, int indirect_blks,
				int *blks, ext4_fsblk_t goal,
				ext4_lblk_t *offsets, Indirect *branch)
733 734 735 736 737 738
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
739 740
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
741

742
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
761
		err = ext4_journal_get_create_access(handle, bh);
762 763 764 765 766 767 768 769 770 771
		if (err) {
			unlock_buffer(bh);
			brelse(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
772
		if (n == indirect_blks) {
773 774 775 776 777 778 779 780 781 782 783 784 785
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
			for (i=1; i < num; i++)
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

786 787
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
788 789 790 791 792 793 794 795
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
	for (i = 1; i <= n ; i++) {
796
		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
797
		ext4_journal_forget(handle, branch[i].bh);
798
	}
799
	for (i = 0; i < indirect_blks; i++)
800
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
801

802
	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
803 804 805 806 807

	return err;
}

/**
808
 * ext4_splice_branch - splice the allocated branch onto inode.
809 810 811
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
812
 *	ext4_alloc_branch)
813 814 815 816 817 818 819 820
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
821
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
822
			ext4_lblk_t block, Indirect *where, int num, int blks)
823 824 825
{
	int i;
	int err = 0;
826
	ext4_fsblk_t current_block;
827 828 829 830 831 832 833 834

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
835
		err = ext4_journal_get_write_access(handle, where->bh);
836 837 838 839 840 841 842 843 844 845 846 847 848 849
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
850
			*(where->p + i) = cpu_to_le32(current_block++);
851 852 853 854
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */

K
Kalpak Shah 已提交
855
	inode->i_ctime = ext4_current_time(inode);
856
	ext4_mark_inode_dirty(handle, inode);
857 858 859 860 861 862 863 864 865

	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
866
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
867 868
		 */
		jbd_debug(5, "splicing indirect only\n");
869 870
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
871 872 873 874 875 876 877 878 879 880 881 882 883
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 * Inode was dirtied above.
		 */
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
884
		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
885
		ext4_journal_forget(handle, where[i].bh);
886 887
		ext4_free_blocks(handle, inode,
					le32_to_cpu(where[i-1].key), 1, 0);
888
	}
889
	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910

	return err;
}

/*
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
911 912 913
 *
 *
 * Need to be called with
914 915
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
916
 */
917
static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
918 919
				  ext4_lblk_t iblock, unsigned int maxblocks,
				  struct buffer_head *bh_result,
920
				  int flags)
921 922
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
923
	ext4_lblk_t offsets[4];
924 925
	Indirect chain[4];
	Indirect *partial;
926
	ext4_fsblk_t goal;
927 928 929
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
930
	struct ext4_inode_info *ei = EXT4_I(inode);
931
	int count = 0;
932
	ext4_fsblk_t first_block = 0;
933
	loff_t disksize;
934 935


A
Alex Tomas 已提交
936
	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
937
	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
A
Aneesh Kumar K.V 已提交
938 939
	depth = ext4_block_to_path(inode, iblock, offsets,
					&blocks_to_boundary);
940 941 942 943

	if (depth == 0)
		goto out;

944
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
945 946 947 948 949 950 951 952

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		clear_buffer_new(bh_result);
		count++;
		/*map more blocks*/
		while (count < maxblocks && count <= blocks_to_boundary) {
953
			ext4_fsblk_t blk;
954 955 956 957 958 959 960 961

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
962
		goto got_it;
963 964 965
	}

	/* Next simple case - plain lookup or failed read of indirect block */
966
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
967 968 969
		goto cleanup;

	/*
970
	 * Okay, we need to do block allocation.
971
	*/
972
	goal = ext4_find_goal(inode, iblock, partial);
973 974 975 976 977 978 979 980

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
981
	count = ext4_blks_to_allocate(partial, indirect_blks,
982 983
					maxblocks, blocks_to_boundary);
	/*
984
	 * Block out ext4_truncate while we alter the tree
985
	 */
986 987 988
	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
					&count, goal,
					offsets + (partial - chain), partial);
989 990

	/*
991
	 * The ext4_splice_branch call will free and forget any buffers
992 993 994 995 996 997
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
998
		err = ext4_splice_branch(handle, inode, iblock,
999 1000
					partial, indirect_blks, count);
	/*
1001
	 * i_disksize growing is protected by i_data_sem.  Don't forget to
1002
	 * protect it if you're about to implement concurrent
1003
	 * ext4_get_block() -bzzz
1004
	*/
1005
	if (!err && (flags & EXT4_GET_BLOCKS_EXTEND_DISKSIZE)) {
1006 1007 1008 1009 1010 1011
		disksize = ((loff_t) iblock + count) << inode->i_blkbits;
		if (disksize > i_size_read(inode))
			disksize = i_size_read(inode);
		if (disksize > ei->i_disksize)
			ei->i_disksize = disksize;
	}
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
	if (err)
		goto cleanup;

	set_buffer_new(bh_result);
got_it:
	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
	if (count > blocks_to_boundary)
		set_buffer_boundary(bh_result);
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
	BUFFER_TRACE(bh_result, "returned");
out:
	return err;
}

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
qsize_t ext4_get_reserved_space(struct inode *inode)
{
	unsigned long long total;

	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	total = EXT4_I(inode)->i_reserved_data_blocks +
		EXT4_I(inode)->i_reserved_meta_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	return total;
}
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
/*
 * Calculate the number of metadata blocks need to reserve
 * to allocate @blocks for non extent file based file
 */
static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
{
	int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ind_blks, dind_blks, tind_blks;

	/* number of new indirect blocks needed */
	ind_blks = (blocks + icap - 1) / icap;

	dind_blks = (ind_blks + icap - 1) / icap;

	tind_blks = 1;

	return ind_blks + dind_blks + tind_blks;
}

/*
 * Calculate the number of metadata blocks need to reserve
 * to allocate given number of blocks
 */
static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
{
1070 1071 1072
	if (!blocks)
		return 0;

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
		return ext4_ext_calc_metadata_amount(inode, blocks);

	return ext4_indirect_calc_metadata_amount(inode, blocks);
}

static void ext4_da_update_reserve_space(struct inode *inode, int used)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int total, mdb, mdb_free;

	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	/* recalculate the number of metablocks still need to be reserved */
	total = EXT4_I(inode)->i_reserved_data_blocks - used;
	mdb = ext4_calc_metadata_amount(inode, total);

	/* figure out how many metablocks to release */
	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;

1093 1094 1095 1096 1097 1098 1099 1100 1101
	if (mdb_free) {
		/* Account for allocated meta_blocks */
		mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;

		/* update fs dirty blocks counter */
		percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
		EXT4_I(inode)->i_allocated_meta_blocks = 0;
		EXT4_I(inode)->i_reserved_meta_blocks = mdb;
	}
1102 1103 1104 1105 1106

	/* update per-inode reservations */
	BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
	EXT4_I(inode)->i_reserved_data_blocks -= used;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1107 1108 1109 1110 1111 1112

	/*
	 * free those over-booking quota for metadata blocks
	 */
	if (mdb_free)
		vfs_dq_release_reservation_block(inode, mdb_free);
1113 1114 1115 1116 1117 1118 1119 1120

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
	if (!total && (atomic_read(&inode->i_writecount) == 0))
		ext4_discard_preallocations(inode);
1121 1122
}

1123
/*
1124
 * The ext4_get_blocks() function tries to look up the requested blocks,
1125
 * and returns if the blocks are already mapped.
1126 1127 1128 1129 1130 1131
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
 * If file type is extents based, it will call ext4_ext_get_blocks(),
1132
 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
1145 1146
int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
		    unsigned int max_blocks, struct buffer_head *bh,
1147
		    int flags)
1148 1149
{
	int retval;
1150 1151

	clear_buffer_mapped(bh);
1152
	clear_buffer_unwritten(bh);
1153

1154 1155 1156 1157 1158 1159 1160
	/*
	 * Try to see if we can get  the block without requesting
	 * for new file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1161
				bh, 0);
1162
	} else {
1163
		retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1164
					     bh, 0);
1165
	}
1166
	up_read((&EXT4_I(inode)->i_data_sem));
1167 1168

	/* If it is only a block(s) look up */
1169
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
	if (retval > 0 && buffer_mapped(bh))
1180 1181
		return retval;

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
	clear_buffer_unwritten(bh);

1194
	/*
1195 1196 1197 1198
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1199 1200
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
1201 1202 1203 1204 1205 1206 1207

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
1208
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1209
		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1210 1211 1212 1213
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1214 1215
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1216
					      bh, flags);
1217
	} else {
1218
		retval = ext4_ind_get_blocks(handle, inode, block,
1219
					     max_blocks, bh, flags);
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229

		if (retval > 0 && buffer_new(bh)) {
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
			EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
							~EXT4_EXT_MIGRATE;
		}
1230
	}
1231

1232
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
1233 1234 1235 1236 1237 1238 1239
		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
		/*
		 * Update reserved blocks/metadata blocks
		 * after successful block allocation
		 * which were deferred till now
		 */
		if ((retval > 0) && buffer_delay(bh))
1240
			ext4_da_update_reserve_space(inode, retval);
1241 1242
	}

1243
	up_write((&EXT4_I(inode)->i_data_sem));
1244 1245 1246
	return retval;
}

1247 1248 1249
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

1250 1251
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create)
1252
{
1253
	handle_t *handle = ext4_journal_current_handle();
J
Jan Kara 已提交
1254
	int ret = 0, started = 0;
1255
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1256
	int dio_credits;
1257

J
Jan Kara 已提交
1258 1259 1260 1261
	if (create && !handle) {
		/* Direct IO write... */
		if (max_blocks > DIO_MAX_BLOCKS)
			max_blocks = DIO_MAX_BLOCKS;
1262 1263
		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
1264
		if (IS_ERR(handle)) {
1265
			ret = PTR_ERR(handle);
J
Jan Kara 已提交
1266
			goto out;
1267
		}
J
Jan Kara 已提交
1268
		started = 1;
1269 1270
	}

1271
	ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1272
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
J
Jan Kara 已提交
1273 1274 1275
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
1276
	}
J
Jan Kara 已提交
1277 1278 1279
	if (started)
		ext4_journal_stop(handle);
out:
1280 1281 1282 1283 1284 1285
	return ret;
}

/*
 * `handle' can be NULL if create is zero
 */
1286
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1287
				ext4_lblk_t block, int create, int *errp)
1288 1289 1290
{
	struct buffer_head dummy;
	int fatal = 0, err;
1291
	int flags = EXT4_GET_BLOCKS_EXTEND_DISKSIZE;
1292 1293 1294 1295 1296 1297

	J_ASSERT(handle != NULL || create == 0);

	dummy.b_state = 0;
	dummy.b_blocknr = -1000;
	buffer_trace_init(&dummy.b_history);
1298 1299 1300
	if (create)
		flags |= EXT4_GET_BLOCKS_CREATE;
	err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1301
	/*
1302 1303
	 * ext4_get_blocks() returns number of blocks mapped. 0 in
	 * case of a HOLE.
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
	 */
	if (err > 0) {
		if (err > 1)
			WARN_ON(1);
		err = 0;
	}
	*errp = err;
	if (!err && buffer_mapped(&dummy)) {
		struct buffer_head *bh;
		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
		if (!bh) {
			*errp = -EIO;
			goto err;
		}
		if (buffer_new(&dummy)) {
			J_ASSERT(create != 0);
A
Aneesh Kumar K.V 已提交
1320
			J_ASSERT(handle != NULL);
1321 1322 1323 1324 1325

			/*
			 * Now that we do not always journal data, we should
			 * keep in mind whether this should always journal the
			 * new buffer as metadata.  For now, regular file
1326
			 * writes use ext4_get_block instead, so it's not a
1327 1328 1329 1330
			 * problem.
			 */
			lock_buffer(bh);
			BUFFER_TRACE(bh, "call get_create_access");
1331
			fatal = ext4_journal_get_create_access(handle, bh);
1332
			if (!fatal && !buffer_uptodate(bh)) {
1333
				memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1334 1335 1336
				set_buffer_uptodate(bh);
			}
			unlock_buffer(bh);
1337 1338
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			err = ext4_handle_dirty_metadata(handle, inode, bh);
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
			if (!fatal)
				fatal = err;
		} else {
			BUFFER_TRACE(bh, "not a new buffer");
		}
		if (fatal) {
			*errp = fatal;
			brelse(bh);
			bh = NULL;
		}
		return bh;
	}
err:
	return NULL;
}

1355
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1356
			       ext4_lblk_t block, int create, int *err)
1357
{
1358
	struct buffer_head *bh;
1359

1360
	bh = ext4_getblk(handle, inode, block, create, err);
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

1374 1375 1376 1377 1378 1379 1380
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
1381 1382 1383 1384 1385 1386 1387
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

1388 1389 1390
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
	     block_start = block_end, bh = next)
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
	{
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1409
 * close off a transaction and start a new one between the ext4_get_block()
1410
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1411 1412
 * prepare_write() is the right place.
 *
1413 1414
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1415 1416 1417 1418
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1419
 * By accident, ext4 can be reentered when a transaction is open via
1420 1421 1422 1423 1424 1425
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1426
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1427 1428 1429 1430 1431 1432 1433 1434 1435
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
					struct buffer_head *bh)
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1436
	return ext4_journal_get_write_access(handle, bh);
1437 1438
}

N
Nick Piggin 已提交
1439 1440 1441
static int ext4_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
1442
{
1443
	struct inode *inode = mapping->host;
1444
	int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1445 1446
	handle_t *handle;
	int retries = 0;
1447
	struct page *page;
N
Nick Piggin 已提交
1448
 	pgoff_t index;
1449
	unsigned from, to;
N
Nick Piggin 已提交
1450

1451 1452 1453 1454
	trace_mark(ext4_write_begin,
		   "dev %s ino %lu pos %llu len %u flags %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, flags);
N
Nick Piggin 已提交
1455
 	index = pos >> PAGE_CACHE_SHIFT;
1456 1457
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
1458 1459

retry:
1460 1461 1462 1463
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
1464
	}
1465

1466 1467 1468 1469
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

1470
	page = grab_cache_page_write_begin(mapping, index, flags);
1471 1472 1473 1474 1475 1476 1477
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

N
Nick Piggin 已提交
1478
	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1479
				ext4_get_block);
N
Nick Piggin 已提交
1480 1481

	if (!ret && ext4_should_journal_data(inode)) {
1482 1483 1484
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1485 1486

	if (ret) {
1487
		unlock_page(page);
1488
		ext4_journal_stop(handle);
1489
		page_cache_release(page);
1490 1491 1492 1493 1494 1495 1496
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
			vmtruncate(inode, inode->i_size);
N
Nick Piggin 已提交
1497 1498
	}

1499
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1500
		goto retry;
1501
out:
1502 1503 1504
	return ret;
}

N
Nick Piggin 已提交
1505 1506
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1507 1508 1509 1510
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1511
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1512 1513 1514 1515 1516 1517
}

/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1518
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1519 1520
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1521 1522 1523 1524
static int ext4_ordered_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1525
{
1526
	handle_t *handle = ext4_journal_current_handle();
1527
	struct inode *inode = mapping->host;
1528 1529
	int ret = 0, ret2;

1530 1531 1532 1533
	trace_mark(ext4_ordered_write_end,
		   "dev %s ino %lu pos %llu len %u copied %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, copied);
1534
	ret = ext4_jbd2_file_inode(handle, inode);
1535 1536 1537 1538

	if (ret == 0) {
		loff_t new_i_size;

N
Nick Piggin 已提交
1539
		new_i_size = pos + copied;
1540 1541 1542 1543 1544 1545 1546 1547 1548
		if (new_i_size > EXT4_I(inode)->i_disksize) {
			ext4_update_i_disksize(inode, new_i_size);
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
		}

1549
		ret2 = generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1550
							page, fsdata);
1551 1552 1553
		copied = ret2;
		if (ret2 < 0)
			ret = ret2;
1554
	}
1555
	ret2 = ext4_journal_stop(handle);
1556 1557
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1558 1559

	return ret ? ret : copied;
1560 1561
}

N
Nick Piggin 已提交
1562 1563 1564 1565
static int ext4_writeback_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1566
{
1567
	handle_t *handle = ext4_journal_current_handle();
1568
	struct inode *inode = mapping->host;
1569 1570 1571
	int ret = 0, ret2;
	loff_t new_i_size;

1572 1573 1574 1575
	trace_mark(ext4_writeback_write_end,
		   "dev %s ino %lu pos %llu len %u copied %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, copied);
N
Nick Piggin 已提交
1576
	new_i_size = pos + copied;
1577 1578 1579 1580 1581 1582 1583 1584
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_mark_inode_dirty(handle, inode);
	}
1585

1586
	ret2 = generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1587
							page, fsdata);
1588 1589 1590
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
1591

1592
	ret2 = ext4_journal_stop(handle);
1593 1594
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1595 1596

	return ret ? ret : copied;
1597 1598
}

N
Nick Piggin 已提交
1599 1600 1601 1602
static int ext4_journalled_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1603
{
1604
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1605
	struct inode *inode = mapping->host;
1606 1607
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1608
	unsigned from, to;
1609
	loff_t new_i_size;
1610

1611 1612 1613 1614
	trace_mark(ext4_journalled_write_end,
		   "dev %s ino %lu pos %llu len %u copied %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, copied);
N
Nick Piggin 已提交
1615 1616 1617 1618 1619 1620 1621 1622
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1623 1624

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1625
				to, &partial, write_end_fn);
1626 1627
	if (!partial)
		SetPageUptodate(page);
1628 1629
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1630
		i_size_write(inode, pos+copied);
1631
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1632 1633
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1634
		ret2 = ext4_mark_inode_dirty(handle, inode);
1635 1636 1637
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1638

1639
	unlock_page(page);
1640
	ret2 = ext4_journal_stop(handle);
1641 1642
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1643 1644 1645
	page_cache_release(page);

	return ret ? ret : copied;
1646
}
1647 1648 1649

static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
{
A
Aneesh Kumar K.V 已提交
1650
	int retries = 0;
1651 1652
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	unsigned long md_needed, mdblocks, total = 0;
1653 1654 1655 1656 1657 1658

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1659
repeat:
1660 1661 1662 1663 1664 1665 1666 1667
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
	mdblocks = ext4_calc_metadata_amount(inode, total);
	BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);

	md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
	total = md_needed + nrblocks;

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
	/*
	 * Make quota reservation here to prevent quota overflow
	 * later. Real quota accounting is done at pages writeout
	 * time.
	 */
	if (vfs_dq_reserve_block(inode, total)) {
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
		return -EDQUOT;
	}

1678
	if (ext4_claim_free_blocks(sbi, total)) {
1679
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
A
Aneesh Kumar K.V 已提交
1680 1681 1682 1683
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1684
		vfs_dq_release_reservation_block(inode, total);
1685 1686 1687 1688 1689 1690 1691 1692 1693
		return -ENOSPC;
	}
	EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
	EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
	return 0;       /* success */
}

1694
static void ext4_da_release_space(struct inode *inode, int to_free)
1695 1696 1697 1698
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int total, mdb, mdb_free, release;

1699 1700 1701
	if (!to_free)
		return;		/* Nothing to release, exit */

1702
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717

	if (!EXT4_I(inode)->i_reserved_data_blocks) {
		/*
		 * if there is no reserved blocks, but we try to free some
		 * then the counter is messed up somewhere.
		 * but since this function is called from invalidate
		 * page, it's harmless to return without any action
		 */
		printk(KERN_INFO "ext4 delalloc try to release %d reserved "
			    "blocks for inode %lu, but there is no reserved "
			    "data blocks\n", to_free, inode->i_ino);
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
		return;
	}

1718
	/* recalculate the number of metablocks still need to be reserved */
1719
	total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1720 1721 1722 1723 1724 1725 1726 1727
	mdb = ext4_calc_metadata_amount(inode, total);

	/* figure out how many metablocks to release */
	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;

	release = to_free + mdb_free;

1728 1729
	/* update fs dirty blocks counter for truncate case */
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1730 1731

	/* update per-inode reservations */
1732 1733
	BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
	EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1734 1735 1736 1737

	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	EXT4_I(inode)->i_reserved_meta_blocks = mdb;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1738 1739

	vfs_dq_release_reservation_block(inode, release);
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
}

static void ext4_da_page_release_reservation(struct page *page,
						unsigned long offset)
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1760
	ext4_da_release_space(page->mapping->host, to_release);
1761
}
1762

1763 1764 1765 1766 1767 1768
/*
 * Delayed allocation stuff
 */

struct mpage_da_data {
	struct inode *inode;
1769 1770 1771
	sector_t b_blocknr;		/* start block number of extent */
	size_t b_size;			/* size of extent */
	unsigned long b_state;		/* state of the extent */
1772 1773
	unsigned long first_page, next_page;	/* extent of pages */
	struct writeback_control *wbc;
1774
	int io_done;
1775
	int pages_written;
1776
	int retval;
1777 1778 1779 1780
};

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1781
 * them with writepage() call back
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
static int mpage_da_submit_io(struct mpage_da_data *mpd)
{
1794
	long pages_skipped;
1795 1796 1797 1798 1799
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1800 1801

	BUG_ON(mpd->next_page <= mpd->first_page);
1802 1803 1804
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1805
	 * If we look at mpd->b_blocknr we would only be looking
1806 1807
	 * at the currently mapped buffer_heads.
	 */
1808 1809 1810
	index = mpd->first_page;
	end = mpd->next_page - 1;

1811
	pagevec_init(&pvec, 0);
1812
	while (index <= end) {
1813
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1814 1815 1816 1817 1818
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

1819 1820 1821 1822 1823 1824 1825 1826
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1827
			pages_skipped = mpd->wbc->pages_skipped;
1828
			err = mapping->a_ops->writepage(page, mpd->wbc);
1829 1830 1831 1832 1833
			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
				/*
				 * have successfully written the page
				 * without skipping the same
				 */
1834
				mpd->pages_written++;
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 * XXX: unlock and re-dirty them?
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
	return ret;
}

/*
 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
 *
 * @mpd->inode - inode to walk through
 * @exbh->b_blocknr - first block on a disk
 * @exbh->b_size - amount of space in bytes
 * @logical - first logical block to start assignment with
 *
 * the function goes through all passed space and put actual disk
1857
 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1858 1859 1860 1861 1862 1863 1864 1865 1866
 */
static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
				 struct buffer_head *exbh)
{
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
	int blocks = exbh->b_size >> inode->i_blkbits;
	sector_t pblock = exbh->b_blocknr, cur_logical;
	struct buffer_head *head, *bh;
1867
	pgoff_t index, end;
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
	struct pagevec pvec;
	int nr_pages, i;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);

	while (index <= end) {
		/* XXX: optimize tail */
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			BUG_ON(!page_has_buffers(page));

			bh = page_buffers(page);
			head = bh;

			/* skip blocks out of the range */
			do {
				if (cur_logical >= logical)
					break;
				cur_logical++;
			} while ((bh = bh->b_this_page) != head);

			do {
				if (cur_logical >= logical + blocks)
					break;
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924

				if (buffer_delay(bh) ||
						buffer_unwritten(bh)) {

					BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);

					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					} else {
						/*
						 * unwritten already should have
						 * blocknr assigned. Verify that
						 */
						clear_buffer_unwritten(bh);
						BUG_ON(bh->b_blocknr != pblock);
					}

1925
				} else if (buffer_mapped(bh))
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
					BUG_ON(bh->b_blocknr != pblock);

				cur_logical++;
				pblock++;
			} while ((bh = bh->b_this_page) != head);
		}
		pagevec_release(&pvec);
	}
}


/*
 * __unmap_underlying_blocks - just a helper function to unmap
 * set of blocks described by @bh
 */
static inline void __unmap_underlying_blocks(struct inode *inode,
					     struct buffer_head *bh)
{
	struct block_device *bdev = inode->i_sb->s_bdev;
	int blocks, i;

	blocks = bh->b_size >> inode->i_blkbits;
	for (i = 0; i < blocks; i++)
		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
}

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
					sector_t logical, long blk_cnt)
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end   = (logical + blk_cnt - 1) >>
				(PAGE_CACHE_SHIFT - inode->i_blkbits);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
	}
	return;
}

1985 1986 1987 1988 1989 1990 1991
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	printk(KERN_EMERG "Total free blocks count %lld\n",
			ext4_count_free_blocks(inode->i_sb));
	printk(KERN_EMERG "Free/Dirty block details\n");
	printk(KERN_EMERG "free_blocks=%lld\n",
1992
			(long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
1993
	printk(KERN_EMERG "dirty_blocks=%lld\n",
1994
			(long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1995
	printk(KERN_EMERG "Block reservation details\n");
1996
	printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
1997
			EXT4_I(inode)->i_reserved_data_blocks);
1998
	printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
1999 2000 2001 2002
			EXT4_I(inode)->i_reserved_meta_blocks);
	return;
}

2003
static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2004
				   struct buffer_head *bh_result)
2005 2006 2007 2008 2009 2010 2011 2012
{
	int ret;
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
	loff_t disksize = EXT4_I(inode)->i_disksize;
	handle_t *handle = NULL;

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);
2013
	ret = ext4_get_blocks(handle, inode, iblock, max_blocks,
2014 2015
			      bh_result, EXT4_GET_BLOCKS_CREATE|
			      EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
	if (ret <= 0)
		return ret;

	bh_result->b_size = (ret << inode->i_blkbits);

	if (ext4_should_order_data(inode)) {
		int retval;
		retval = ext4_jbd2_file_inode(handle, inode);
		if (retval)
			/*
			 * Failed to add inode for ordered mode. Don't
			 * update file size
			 */
			return retval;
	}

	/*
	 * Update on-disk size along with block allocation we don't
	 * use 'extend_disksize' as size may change within already
	 * allocated block -bzzz
	 */
	disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
	if (disksize > i_size_read(inode))
		disksize = i_size_read(inode);
	if (disksize > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, disksize);
		ret = ext4_mark_inode_dirty(handle, inode);
		return ret;
	}
	return 0;
}

2048 2049 2050
/*
 * mpage_da_map_blocks - go through given space
 *
2051
 * @mpd - bh describing space
2052 2053 2054 2055
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
2056
static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2057
{
2058
	int err = 0;
A
Aneesh Kumar K.V 已提交
2059
	struct buffer_head new;
2060
	sector_t next;
2061 2062 2063 2064

	/*
	 * We consider only non-mapped and non-allocated blocks
	 */
2065
	if ((mpd->b_state  & (1 << BH_Mapped)) &&
2066 2067
		!(mpd->b_state & (1 << BH_Delay)) &&
		!(mpd->b_state & (1 << BH_Unwritten)))
2068
		return 0;
2069 2070
	/*
	 * We need to make sure the BH_Delay flag is passed down to
2071 2072 2073
	 * ext4_da_get_block_write(), since it calls ext4_get_blocks()
	 * with the EXT4_GET_BLOCKS_DELALLOC_RESERVE flag.  This flag
	 * causes ext4_get_blocks() to call
2074 2075
	 * ext4_da_update_reserve_space() if the passed buffer head
	 * has the BH_Delay flag set.  In the future, once we clean up
2076 2077
	 * the interfaces to ext4_get_blocks(), we should pass in a
	 * separate flag which requests that the delayed allocation
2078 2079
	 * statistics should be updated, instead of depending on the
	 * state information getting passed down via the map_bh's
2080 2081
	 * state bitmasks plus the magic
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE flag.
2082 2083
	 */
	new.b_state = mpd->b_state & (1 << BH_Delay);
2084
	new.b_blocknr = 0;
2085 2086
	new.b_size = mpd->b_size;
	next = mpd->b_blocknr;
2087 2088 2089 2090 2091
	/*
	 * If we didn't accumulate anything
	 * to write simply return
	 */
	if (!new.b_size)
2092 2093
		return 0;

2094
	err = ext4_da_get_block_write(mpd->inode, next, &new);
2095 2096 2097 2098 2099
	if (err) {
		/*
		 * If get block returns with error we simply
		 * return. Later writepage will redirty the page and
		 * writepages will find the dirty page again
2100 2101 2102
		 */
		if (err == -EAGAIN)
			return 0;
2103 2104

		if (err == -ENOSPC &&
2105
		    ext4_count_free_blocks(mpd->inode->i_sb)) {
2106 2107 2108 2109
			mpd->retval = err;
			return 0;
		}

2110
		/*
2111 2112 2113 2114 2115
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
2116 2117 2118 2119 2120 2121
		 */
		printk(KERN_EMERG "%s block allocation failed for inode %lu "
				  "at logical offset %llu with max blocks "
				  "%zd with error %d\n",
				  __func__, mpd->inode->i_ino,
				  (unsigned long long)next,
2122
				  mpd->b_size >> mpd->inode->i_blkbits, err);
2123 2124
		printk(KERN_EMERG "This should not happen.!! "
					"Data will be lost\n");
A
Aneesh Kumar K.V 已提交
2125
		if (err == -ENOSPC) {
2126
			ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
2127
		}
2128 2129
		/* invlaidate all the pages */
		ext4_da_block_invalidatepages(mpd, next,
2130
				mpd->b_size >> mpd->inode->i_blkbits);
2131 2132
		return err;
	}
2133
	BUG_ON(new.b_size == 0);
2134

2135 2136
	if (buffer_new(&new))
		__unmap_underlying_blocks(mpd->inode, &new);
2137

2138 2139 2140 2141
	/*
	 * If blocks are delayed marked, we need to
	 * put actual blocknr and drop delayed bit
	 */
2142 2143
	if ((mpd->b_state & (1 << BH_Delay)) ||
	    (mpd->b_state & (1 << BH_Unwritten)))
2144
		mpage_put_bnr_to_bhs(mpd, next, &new);
2145

2146
	return 0;
2147 2148
}

2149 2150
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2162 2163
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
2164 2165
{
	sector_t next;
2166
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2167

2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
	/* check if thereserved journal credits might overflow */
	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
2190 2191 2192
	/*
	 * First block in the extent
	 */
2193 2194 2195 2196
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
2197 2198 2199
		return;
	}

2200
	next = mpd->b_blocknr + nrblocks;
2201 2202 2203
	/*
	 * Can we merge the block to our big extent?
	 */
2204 2205
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
2206 2207 2208
		return;
	}

2209
flush_it:
2210 2211 2212 2213
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
2214 2215
	if (mpage_da_map_blocks(mpd) == 0)
		mpage_da_submit_io(mpd);
2216 2217
	mpd->io_done = 1;
	return;
2218 2219
}

2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
{
	/*
	 * unmapped buffer is possible for holes.
	 * delay buffer is possible with delayed allocation.
	 * We also need to consider unwritten buffer as unmapped.
	 */
	return (!buffer_mapped(bh) || buffer_delay(bh) ||
				buffer_unwritten(bh)) && buffer_dirty(bh);
}

2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
/*
 * __mpage_da_writepage - finds extent of pages and blocks
 *
 * @page: page to consider
 * @wbc: not used, we just follow rules
 * @data: context
 *
 * The function finds extents of pages and scan them for all blocks.
 */
static int __mpage_da_writepage(struct page *page,
				struct writeback_control *wbc, void *data)
{
	struct mpage_da_data *mpd = data;
	struct inode *inode = mpd->inode;
2245
	struct buffer_head *bh, *head;
2246 2247
	sector_t logical;

2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
	if (mpd->io_done) {
		/*
		 * Rest of the page in the page_vec
		 * redirty then and skip then. We will
		 * try to to write them again after
		 * starting a new transaction
		 */
		redirty_page_for_writepage(wbc, page);
		unlock_page(page);
		return MPAGE_DA_EXTENT_TAIL;
	}
2259 2260 2261 2262 2263 2264
	/*
	 * Can we merge this page to current extent?
	 */
	if (mpd->next_page != page->index) {
		/*
		 * Nope, we can't. So, we map non-allocated blocks
2265
		 * and start IO on them using writepage()
2266 2267
		 */
		if (mpd->next_page != mpd->first_page) {
2268 2269
			if (mpage_da_map_blocks(mpd) == 0)
				mpage_da_submit_io(mpd);
2270 2271 2272 2273 2274 2275 2276
			/*
			 * skip rest of the page in the page_vec
			 */
			mpd->io_done = 1;
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return MPAGE_DA_EXTENT_TAIL;
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
		}

		/*
		 * Start next extent of pages ...
		 */
		mpd->first_page = page->index;

		/*
		 * ... and blocks
		 */
2287 2288 2289
		mpd->b_size = 0;
		mpd->b_state = 0;
		mpd->b_blocknr = 0;
2290 2291 2292 2293 2294 2295 2296
	}

	mpd->next_page = page->index + 1;
	logical = (sector_t) page->index <<
		  (PAGE_CACHE_SHIFT - inode->i_blkbits);

	if (!page_has_buffers(page)) {
2297 2298
		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2299 2300
		if (mpd->io_done)
			return MPAGE_DA_EXTENT_TAIL;
2301 2302 2303 2304 2305 2306 2307 2308
	} else {
		/*
		 * Page with regular buffer heads, just add all dirty ones
		 */
		head = page_buffers(page);
		bh = head;
		do {
			BUG_ON(buffer_locked(bh));
2309 2310 2311 2312 2313 2314
			/*
			 * We need to try to allocate
			 * unmapped blocks in the same page.
			 * Otherwise we won't make progress
			 * with the page in ext4_da_writepage
			 */
2315
			if (ext4_bh_unmapped_or_delay(NULL, bh)) {
2316 2317 2318
				mpage_add_bh_to_extent(mpd, logical,
						       bh->b_size,
						       bh->b_state);
2319 2320
				if (mpd->io_done)
					return MPAGE_DA_EXTENT_TAIL;
2321 2322 2323 2324 2325 2326 2327 2328 2329
			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
				/*
				 * mapped dirty buffer. We need to update
				 * the b_state because we look at
				 * b_state in mpage_da_map_blocks. We don't
				 * update b_size because if we find an
				 * unmapped buffer_head later we need to
				 * use the b_state flag of that buffer_head.
				 */
2330 2331
				if (mpd->b_size == 0)
					mpd->b_state = bh->b_state & BH_FLAGS;
2332
			}
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
			logical++;
		} while ((bh = bh->b_this_page) != head);
	}

	return 0;
}

/*
 * this is a special callback for ->write_begin() only
 * it's intention is to return mapped block or reserve space
2343 2344 2345 2346 2347 2348 2349 2350
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
 *
2351 2352 2353 2354 2355
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
				  struct buffer_head *bh_result, int create)
{
	int ret = 0;
2356 2357 2358 2359
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;
2360 2361 2362 2363 2364 2365 2366 2367 2368

	BUG_ON(create == 0);
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2369
	ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2370 2371
	if ((ret == 0) && !buffer_delay(bh_result)) {
		/* the block isn't (pre)allocated yet, let's reserve space */
2372 2373 2374 2375
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
2376 2377 2378 2379 2380
		ret = ext4_da_reserve_space(inode, 1);
		if (ret)
			/* not enough space to reserve */
			return ret;

2381
		map_bh(bh_result, inode->i_sb, invalid_block);
2382 2383 2384 2385
		set_buffer_new(bh_result);
		set_buffer_delay(bh_result);
	} else if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
2386 2387 2388 2389 2390 2391 2392 2393
		if (buffer_unwritten(bh_result)) {
			/* A delayed write to unwritten bh should
			 * be marked new and mapped.  Mapped ensures
			 * that we don't do get_block multiple times
			 * when we write to the same offset and new
			 * ensures that we do proper zero out for
			 * partial write.
			 */
2394
			set_buffer_new(bh_result);
2395 2396
			set_buffer_mapped(bh_result);
		}
2397 2398 2399 2400 2401
		ret = 0;
	}

	return ret;
}
2402

2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create)
{
	int ret = 0;
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;

	/*
	 * we don't want to do block allocation in writepage
	 * so call get_block_wrap with create = 0
	 */
2413
	ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2414 2415 2416 2417 2418
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
	}
	return ret;
2419 2420 2421
}

/*
2422 2423 2424 2425
 * get called vi ext4_da_writepages after taking page lock (have journal handle)
 * get called via journal_submit_inode_data_buffers (no journal handle)
 * get called via shrink_page_list via pdflush (no journal handle)
 * or grab_page_cache when doing write_begin (have journal handle)
2426
 */
2427 2428 2429 2430
static int ext4_da_writepage(struct page *page,
				struct writeback_control *wbc)
{
	int ret = 0;
2431
	loff_t size;
2432
	unsigned int len;
2433 2434 2435
	struct buffer_head *page_bufs;
	struct inode *inode = page->mapping->host;

2436 2437 2438
	trace_mark(ext4_da_writepage,
		   "dev %s ino %lu page_index %lu",
		   inode->i_sb->s_id, inode->i_ino, page->index);
2439 2440 2441 2442 2443
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2444

2445
	if (page_has_buffers(page)) {
2446
		page_bufs = page_buffers(page);
2447 2448
		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
					ext4_bh_unmapped_or_delay)) {
2449
			/*
2450 2451
			 * We don't want to do  block allocation
			 * So redirty the page and return
2452 2453 2454
			 * We may reach here when we do a journal commit
			 * via journal_submit_inode_data_buffers.
			 * If we don't have mapping block we just ignore
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
			 * them. We can also reach here via shrink_page_list
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
	} else {
		/*
		 * The test for page_has_buffers() is subtle:
		 * We know the page is dirty but it lost buffers. That means
		 * that at some moment in time after write_begin()/write_end()
		 * has been called all buffers have been clean and thus they
		 * must have been written at least once. So they are all
		 * mapped and we can happily proceed with mapping them
		 * and writing the page.
		 *
		 * Try to initialize the buffer_heads and check whether
		 * all are mapped and non delay. We don't want to
		 * do block allocation here.
		 */
		ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
						ext4_normal_get_block_write);
		if (!ret) {
			page_bufs = page_buffers(page);
			/* check whether all are mapped and non delay */
			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
						ext4_bh_unmapped_or_delay)) {
				redirty_page_for_writepage(wbc, page);
				unlock_page(page);
				return 0;
			}
		} else {
			/*
			 * We can't do block allocation here
			 * so just redity the page and unlock
			 * and return
2491 2492 2493 2494 2495
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
2496 2497
		/* now mark the buffer_heads as dirty and uptodate */
		block_commit_write(page, 0, PAGE_CACHE_SIZE);
2498 2499 2500
	}

	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2501
		ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2502
	else
2503 2504 2505
		ret = block_write_full_page(page,
						ext4_normal_get_block_write,
						wbc);
2506 2507 2508 2509

	return ret;
}

2510
/*
2511 2512 2513 2514 2515
 * This is called via ext4_da_writepages() to
 * calulate the total number of credits to reserve to fit
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2516
 */
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
	if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2534

2535
static int ext4_da_writepages(struct address_space *mapping,
2536
			      struct writeback_control *wbc)
2537
{
2538 2539
	pgoff_t	index;
	int range_whole = 0;
2540
	handle_t *handle = NULL;
2541
	struct mpage_da_data mpd;
2542
	struct inode *inode = mapping->host;
2543
	int no_nrwrite_index_update;
2544 2545
	int pages_written = 0;
	long pages_skipped;
2546
	int range_cyclic, cycled = 1, io_done = 0;
2547 2548
	int needed_blocks, ret = 0, nr_to_writebump = 0;
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2549

2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
	trace_mark(ext4_da_writepages,
		   "dev %s ino %lu nr_t_write %ld "
		   "pages_skipped %ld range_start %llu "
		   "range_end %llu nonblocking %d "
		   "for_kupdate %d for_reclaim %d "
		   "for_writepages %d range_cyclic %d",
		   inode->i_sb->s_id, inode->i_ino,
		   wbc->nr_to_write, wbc->pages_skipped,
		   (unsigned long long) wbc->range_start,
		   (unsigned long long) wbc->range_end,
		   wbc->nonblocking, wbc->for_kupdate,
		   wbc->for_reclaim, wbc->for_writepages,
		   wbc->range_cyclic);

2564 2565 2566 2567 2568
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2569
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2570
		return 0;
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
	 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
	if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
		return -EROFS;

2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
	/*
	 * Make sure nr_to_write is >= sbi->s_mb_stream_request
	 * This make sure small files blocks are allocated in
	 * single attempt. This ensure that small files
	 * get less fragmented.
	 */
	if (wbc->nr_to_write < sbi->s_mb_stream_request) {
		nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
		wbc->nr_to_write = sbi->s_mb_stream_request;
	}
2595 2596
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2597

2598 2599
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2600
		index = mapping->writeback_index;
2601 2602 2603 2604 2605 2606
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
	} else
2607
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2608

2609 2610 2611
	mpd.wbc = wbc;
	mpd.inode = mapping->host;

2612 2613 2614 2615 2616 2617 2618 2619
	/*
	 * we don't want write_cache_pages to update
	 * nr_to_write and writeback_index
	 */
	no_nrwrite_index_update = wbc->no_nrwrite_index_update;
	wbc->no_nrwrite_index_update = 1;
	pages_skipped = wbc->pages_skipped;

2620
retry:
2621
	while (!ret && wbc->nr_to_write > 0) {
2622 2623 2624 2625 2626 2627 2628 2629

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2630
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2631

2632 2633 2634 2635
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2636
			printk(KERN_CRIT "%s: jbd2_start: "
2637 2638 2639
			       "%ld pages, ino %lu; err %d\n", __func__,
				wbc->nr_to_write, inode->i_ino, ret);
			dump_stack();
2640 2641
			goto out_writepages;
		}
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673

		/*
		 * Now call __mpage_da_writepage to find the next
		 * contiguous region of logical blocks that need
		 * blocks to be allocated by ext4.  We don't actually
		 * submit the blocks for I/O here, even though
		 * write_cache_pages thinks it will, and will set the
		 * pages as clean for write before calling
		 * __mpage_da_writepage().
		 */
		mpd.b_size = 0;
		mpd.b_state = 0;
		mpd.b_blocknr = 0;
		mpd.first_page = 0;
		mpd.next_page = 0;
		mpd.io_done = 0;
		mpd.pages_written = 0;
		mpd.retval = 0;
		ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
					&mpd);
		/*
		 * If we have a contigous extent of pages and we
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
			if (mpage_da_map_blocks(&mpd) == 0)
				mpage_da_submit_io(&mpd);
			mpd.io_done = 1;
			ret = MPAGE_DA_EXTENT_TAIL;
		}
		wbc->nr_to_write -= mpd.pages_written;
2674

2675
		ext4_journal_stop(handle);
2676

2677
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2678 2679 2680 2681
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2682
			jbd2_journal_force_commit_nested(sbi->s_journal);
2683 2684 2685
			wbc->pages_skipped = pages_skipped;
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2686 2687 2688 2689
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
2690 2691
			pages_written += mpd.pages_written;
			wbc->pages_skipped = pages_skipped;
2692
			ret = 0;
2693
			io_done = 1;
2694
		} else if (wbc->nr_to_write)
2695 2696 2697 2698 2699 2700
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2701
	}
2702 2703 2704 2705 2706 2707 2708
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2709 2710 2711 2712 2713 2714 2715
	if (pages_skipped != wbc->pages_skipped)
		printk(KERN_EMERG "This should not happen leaving %s "
				"with nr_to_write = %ld ret = %d\n",
				__func__, wbc->nr_to_write, ret);

	/* Update index */
	index += pages_written;
2716
	wbc->range_cyclic = range_cyclic;
2717 2718 2719 2720 2721 2722
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
		mapping->writeback_index = index;
2723

2724
out_writepages:
2725 2726 2727
	if (!no_nrwrite_index_update)
		wbc->no_nrwrite_index_update = 0;
	wbc->nr_to_write -= nr_to_writebump;
2728 2729 2730 2731 2732 2733 2734 2735
	trace_mark(ext4_da_writepage_result,
		   "dev %s ino %lu ret %d pages_written %d "
		   "pages_skipped %ld congestion %d "
		   "more_io %d no_nrwrite_index_update %d",
		   inode->i_sb->s_id, inode->i_ino, ret,
		   pages_written, wbc->pages_skipped,
		   wbc->encountered_congestion, wbc->more_io,
		   wbc->no_nrwrite_index_update);
2736
	return ret;
2737 2738
}

2739 2740 2741 2742 2743 2744 2745 2746 2747
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2748
	 * counters can get slightly wrong with percpu_counter_batch getting
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
		 * free block count is less that 150% of dirty blocks
		 * or free blocks is less that watermark
		 */
		return 1;
	}
	return 0;
}

2766 2767 2768 2769
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
{
2770
	int ret, retries = 0;
2771 2772 2773 2774 2775 2776 2777 2778 2779
	struct page *page;
	pgoff_t index;
	unsigned from, to;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
2780 2781 2782 2783 2784 2785 2786

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2787 2788 2789 2790 2791

	trace_mark(ext4_da_write_begin,
		   "dev %s ino %lu pos %llu len %u flags %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, flags);
2792
retry:
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
2804 2805 2806
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
2807

2808
	page = grab_cache_page_write_begin(mapping, index, flags);
2809 2810 2811 2812 2813
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
2814 2815 2816 2817 2818 2819 2820 2821
	*pagep = page;

	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
							ext4_da_get_block_prep);
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
2822 2823 2824 2825 2826 2827 2828
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
			vmtruncate(inode, inode->i_size);
2829 2830
	}

2831 2832
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
2833 2834 2835 2836
out:
	return ret;
}

2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
					 unsigned long offset)
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2852
	for (i = 0; i < idx; i++)
2853 2854
		bh = bh->b_this_page;

2855
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2856 2857 2858 2859
		return 0;
	return 1;
}

2860 2861 2862 2863 2864 2865 2866 2867 2868
static int ext4_da_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2869
	unsigned long start, end;
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
2883

2884 2885 2886 2887
	trace_mark(ext4_da_write_end,
		   "dev %s ino %lu pos %llu len %u copied %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, copied);
2888
	start = pos & (PAGE_CACHE_SIZE - 1);
2889
	end = start + copied - 1;
2890 2891 2892 2893 2894 2895 2896 2897

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
2909

2910 2911 2912
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
2913 2914 2915 2916 2917
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2918
		}
2919
	}
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2941
	ext4_da_page_release_reservation(page, offset);
2942 2943 2944 2945 2946 2947 2948

out:
	ext4_invalidatepage(page, offset);

	return;
}

2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
	 * 
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
	 * the pages by calling redirty_page_for_writeback() but that
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
	 * simplifying them becuase we wouldn't actually intend to
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
	 * 
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
2991

2992 2993 2994 2995 2996
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2997
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2998 2999 3000 3001 3002 3003 3004 3005
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
3006
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3007 3008 3009 3010 3011
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

3022
	if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
3034
		 * NB. EXT4_STATE_JDATA is not set on files other than
3035 3036 3037 3038 3039 3040
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

3041 3042
		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
		journal = EXT4_JOURNAL(inode);
3043 3044 3045
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
3046 3047 3048 3049 3050

		if (err)
			return 0;
	}

3051
	return generic_block_bmap(mapping, block, ext4_get_block);
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
}

static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

/*
3067 3068 3069 3070 3071 3072 3073 3074
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
 * we are writing back data modified via mmap(), noone guarantees in which
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
3075
 *
3076
 * In all journaling modes block_write_full_page() will start the I/O.
3077 3078 3079
 *
 * Problem:
 *
3080 3081
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
3082 3083 3084
 *
 * Similar for:
 *
3085
 *	ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
3086
 *
3087
 * Same applies to ext4_get_block().  We will deadlock on various things like
3088
 * lock_journal and i_data_sem
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
 *
 * Setting PF_MEMALLOC here doesn't work - too many internal memory
 * allocations fail.
 *
 * 16May01: If we're reentered then journal_current_handle() will be
 *	    non-zero. We simply *return*.
 *
 * 1 July 2001: @@@ FIXME:
 *   In journalled data mode, a data buffer may be metadata against the
 *   current transaction.  But the same file is part of a shared mapping
 *   and someone does a writepage() on it.
 *
 *   We will move the buffer onto the async_data list, but *after* it has
 *   been dirtied. So there's a small window where we have dirty data on
 *   BJ_Metadata.
 *
 *   Note that this only applies to the last partial page in the file.  The
 *   bit which block_write_full_page() uses prepare/commit for.  (That's
 *   broken code anyway: it's wrong for msync()).
 *
 *   It's a rare case: affects the final partial page, for journalled data
 *   where the file is subject to bith write() and writepage() in the same
 *   transction.  To fix it we'll need a custom block_write_full_page().
 *   We'll probably need that anyway for journalling writepage() output.
 *
 * We don't honour synchronous mounts for writepage().  That would be
 * disastrous.  Any write() or metadata operation will sync the fs for
 * us.
 *
 */
3119
static int __ext4_normal_writepage(struct page *page,
3120 3121 3122 3123 3124
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;

	if (test_opt(inode->i_sb, NOBH))
3125 3126
		return nobh_writepage(page,
					ext4_normal_get_block_write, wbc);
3127
	else
3128 3129 3130
		return block_write_full_page(page,
						ext4_normal_get_block_write,
						wbc);
3131 3132
}

3133
static int ext4_normal_writepage(struct page *page,
3134 3135 3136
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
3137 3138 3139
	loff_t size = i_size_read(inode);
	loff_t len;

3140 3141 3142
	trace_mark(ext4_normal_writepage,
		   "dev %s ino %lu page_index %lu",
		   inode->i_sb->s_id, inode->i_ino, page->index);
3143 3144 3145 3146 3147
	J_ASSERT(PageLocked(page));
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161

	if (page_has_buffers(page)) {
		/* if page has buffers it should all be mapped
		 * and allocated. If there are not buffers attached
		 * to the page we know the page is dirty but it lost
		 * buffers. That means that at some moment in time
		 * after write_begin() / write_end() has been called
		 * all buffers have been clean and thus they must have been
		 * written at least once. So they are all mapped and we can
		 * happily proceed with mapping them and writing the page.
		 */
		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
					ext4_bh_unmapped_or_delay));
	}
3162 3163

	if (!ext4_journal_current_handle())
3164
		return __ext4_normal_writepage(page, wbc);
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176

	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				struct writeback_control *wbc)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
3177 3178 3179 3180
	handle_t *handle = NULL;
	int ret = 0;
	int err;

3181 3182
	ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
					ext4_normal_get_block_write);
3183 3184 3185 3186 3187 3188 3189 3190 3191
	if (ret != 0)
		goto out_unlock;

	page_bufs = page_buffers(page);
	walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
								bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);
3192

3193
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
3194 3195
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
3196
		goto out;
3197 3198
	}

3199 3200
	ret = walk_page_buffers(handle, page_bufs, 0,
			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
3201

3202 3203 3204 3205
	err = walk_page_buffers(handle, page_bufs, 0,
				PAGE_CACHE_SIZE, NULL, write_end_fn);
	if (ret == 0)
		ret = err;
3206
	err = ext4_journal_stop(handle);
3207 3208 3209
	if (!ret)
		ret = err;

3210 3211 3212 3213 3214 3215
	walk_page_buffers(handle, page_bufs, 0,
				PAGE_CACHE_SIZE, NULL, bput_one);
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
	goto out;

out_unlock:
3216
	unlock_page(page);
3217
out:
3218 3219 3220
	return ret;
}

3221
static int ext4_journalled_writepage(struct page *page,
3222 3223 3224
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
3225 3226
	loff_t size = i_size_read(inode);
	loff_t len;
3227

3228 3229 3230
	trace_mark(ext4_journalled_writepage,
		   "dev %s ino %lu page_index %lu",
		   inode->i_sb->s_id, inode->i_ino, page->index);
3231 3232 3233 3234 3235
	J_ASSERT(PageLocked(page));
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249

	if (page_has_buffers(page)) {
		/* if page has buffers it should all be mapped
		 * and allocated. If there are not buffers attached
		 * to the page we know the page is dirty but it lost
		 * buffers. That means that at some moment in time
		 * after write_begin() / write_end() has been called
		 * all buffers have been clean and thus they must have been
		 * written at least once. So they are all mapped and we can
		 * happily proceed with mapping them and writing the page.
		 */
		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
					ext4_bh_unmapped_or_delay));
	}
3250

3251
	if (ext4_journal_current_handle())
3252 3253
		goto no_write;

3254
	if (PageChecked(page)) {
3255 3256 3257 3258 3259
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
		ClearPageChecked(page);
3260
		return __ext4_journalled_writepage(page, wbc);
3261 3262 3263 3264 3265 3266
	} else {
		/*
		 * It may be a page full of checkpoint-mode buffers.  We don't
		 * really know unless we go poke around in the buffer_heads.
		 * But block_write_full_page will do the right thing.
		 */
3267 3268 3269
		return block_write_full_page(page,
						ext4_normal_get_block_write,
						wbc);
3270 3271 3272 3273
	}
no_write:
	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
3274
	return 0;
3275 3276
}

3277
static int ext4_readpage(struct file *file, struct page *page)
3278
{
3279
	return mpage_readpage(page, ext4_get_block);
3280 3281 3282
}

static int
3283
ext4_readpages(struct file *file, struct address_space *mapping,
3284 3285
		struct list_head *pages, unsigned nr_pages)
{
3286
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3287 3288
}

3289
static void ext4_invalidatepage(struct page *page, unsigned long offset)
3290
{
3291
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3292 3293 3294 3295 3296 3297 3298

	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3299 3300 3301 3302
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
3303 3304
}

3305
static int ext4_releasepage(struct page *page, gfp_t wait)
3306
{
3307
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3308 3309 3310 3311

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
3312 3313 3314 3315
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3316 3317 3318 3319 3320 3321 3322 3323
}

/*
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
3324 3325
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
3326
 */
3327
static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3328 3329 3330 3331 3332
			const struct iovec *iov, loff_t offset,
			unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3333
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
3334
	handle_t *handle;
3335 3336 3337 3338 3339 3340 3341 3342
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
3343 3344 3345 3346 3347 3348
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
3349
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
3350 3351 3352 3353
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
3354 3355
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
3356
			ext4_journal_stop(handle);
3357 3358 3359 3360 3361
		}
	}

	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
3362
				 ext4_get_block, NULL);
3363

J
Jan Kara 已提交
3364
	if (orphan) {
3365 3366
		int err;

J
Jan Kara 已提交
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
			goto out;
		}
		if (inode->i_nlink)
3377
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
3378
		if (ret > 0) {
3379 3380 3381 3382 3383 3384 3385 3386
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
3387
				 * ext4_mark_inode_dirty() to userspace.  So
3388 3389
				 * ignore it.
				 */
3390
				ext4_mark_inode_dirty(handle, inode);
3391 3392
			}
		}
3393
		err = ext4_journal_stop(handle);
3394 3395 3396 3397 3398 3399 3400 3401
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

/*
3402
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3414
static int ext4_journalled_set_page_dirty(struct page *page)
3415 3416 3417 3418 3419
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3420
static const struct address_space_operations ext4_ordered_aops = {
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_normal_writepage,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3433 3434
};

3435
static const struct address_space_operations ext4_writeback_aops = {
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_normal_writepage,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3448 3449
};

3450
static const struct address_space_operations ext4_journalled_aops = {
3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_journalled_writepage,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
3462 3463
};

3464
static const struct address_space_operations ext4_da_aops = {
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_da_writepage,
	.writepages		= ext4_da_writepages,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3478 3479
};

3480
void ext4_set_aops(struct inode *inode)
3481
{
3482 3483 3484 3485
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
3486
		inode->i_mapping->a_ops = &ext4_ordered_aops;
3487 3488 3489
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
3490 3491
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
3492
	else
3493
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3494 3495 3496
}

/*
3497
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3498 3499 3500 3501
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
3502
int ext4_block_truncate_page(handle_t *handle,
3503 3504
		struct address_space *mapping, loff_t from)
{
3505
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3506
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
3507 3508
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
3509 3510
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
3511
	struct page *page;
3512 3513
	int err = 0;

3514 3515 3516 3517
	page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
	if (!page)
		return -EINVAL;

3518 3519 3520 3521 3522 3523 3524 3525 3526
	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	/*
	 * For "nobh" option,  we can only work if we don't need to
	 * read-in the page - otherwise we create buffers to do the IO.
	 */
	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3527
	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
3528
		zero_user(page, offset, length);
3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
		set_page_dirty(page);
		goto unlock;
	}

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
3553
		ext4_get_block(inode, iblock, bh, 0);
3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

3574
	if (ext4_should_journal_data(inode)) {
3575
		BUFFER_TRACE(bh, "get write access");
3576
		err = ext4_journal_get_write_access(handle, bh);
3577 3578 3579 3580
		if (err)
			goto unlock;
	}

3581
	zero_user(page, offset, length);
3582 3583 3584 3585

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
3586
	if (ext4_should_journal_data(inode)) {
3587
		err = ext4_handle_dirty_metadata(handle, inode, bh);
3588
	} else {
3589
		if (ext4_should_order_data(inode))
3590
			err = ext4_jbd2_file_inode(handle, inode);
3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
3614
 *	ext4_find_shared - find the indirect blocks for partial truncation.
3615 3616
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
3617
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
3618 3619 3620
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
3621
 *	This is a helper function used by ext4_truncate().
3622 3623 3624 3625 3626 3627 3628
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
3629
 *	past the truncation point is possible until ext4_truncate()
3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

3648
static Indirect *ext4_find_shared(struct inode *inode, int depth,
A
Aneesh Kumar K.V 已提交
3649
			ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3650 3651 3652 3653 3654 3655 3656 3657
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
	/* Make k index the deepest non-null offest + 1 */
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
3658
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
3659 3660 3661 3662 3663 3664 3665 3666 3667 3668
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
3669
	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
3681
		/* Nope, don't do this in ext4.  Must leave the tree intact */
3682 3683 3684 3685 3686 3687
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

3688
	while (partial > p) {
3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
3704 3705
static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
		struct buffer_head *bh, ext4_fsblk_t block_to_free,
3706 3707 3708 3709 3710
		unsigned long count, __le32 *first, __le32 *last)
{
	__le32 *p;
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
3711 3712
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			ext4_handle_dirty_metadata(handle, inode, bh);
3713
		}
3714 3715
		ext4_mark_inode_dirty(handle, inode);
		ext4_journal_test_restart(handle, inode);
3716 3717
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
3718
			ext4_journal_get_write_access(handle, bh);
3719 3720 3721 3722 3723
		}
	}

	/*
	 * Any buffers which are on the journal will be in memory. We find
3724
	 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3725
	 * on them.  We've already detached each block from the file, so
3726
	 * bforget() in jbd2_journal_forget() should be safe.
3727
	 *
3728
	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3729 3730 3731 3732
	 */
	for (p = first; p < last; p++) {
		u32 nr = le32_to_cpu(*p);
		if (nr) {
A
Aneesh Kumar K.V 已提交
3733
			struct buffer_head *tbh;
3734 3735

			*p = 0;
A
Aneesh Kumar K.V 已提交
3736 3737
			tbh = sb_find_get_block(inode->i_sb, nr);
			ext4_forget(handle, 0, inode, tbh, nr);
3738 3739 3740
		}
	}

3741
	ext4_free_blocks(handle, inode, block_to_free, count, 0);
3742 3743 3744
}

/**
3745
 * ext4_free_data - free a list of data blocks
3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
3763
static void ext4_free_data(handle_t *handle, struct inode *inode,
3764 3765 3766
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
3767
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3768 3769 3770 3771
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
3772
	ext4_fsblk_t nr;		    /* Current block # */
3773 3774 3775 3776 3777 3778
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
3779
		err = ext4_journal_get_write_access(handle, this_bh);
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
3797
				ext4_clear_blocks(handle, inode, this_bh,
3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
						  block_to_free,
						  count, block_to_free_p, p);
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
3808
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3809 3810 3811
				  count, block_to_free_p, p);

	if (this_bh) {
3812
		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3813 3814 3815 3816 3817 3818 3819

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
3820
		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3821
			ext4_handle_dirty_metadata(handle, inode, this_bh);
3822 3823 3824 3825 3826 3827
		else
			ext4_error(inode->i_sb, __func__,
				   "circular indirect block detected, "
				   "inode=%lu, block=%llu",
				   inode->i_ino,
				   (unsigned long long) this_bh->b_blocknr);
3828 3829 3830 3831
	}
}

/**
3832
 *	ext4_free_branches - free an array of branches
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
3844
static void ext4_free_branches(handle_t *handle, struct inode *inode,
3845 3846 3847
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
3848
	ext4_fsblk_t nr;
3849 3850
	__le32 *p;

3851
	if (ext4_handle_is_aborted(handle))
3852 3853 3854 3855
		return;

	if (depth--) {
		struct buffer_head *bh;
3856
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
3871
				ext4_error(inode->i_sb, "ext4_free_branches",
3872
					   "Read failure, inode=%lu, block=%llu",
3873 3874 3875 3876 3877 3878
					   inode->i_ino, nr);
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
3879
			ext4_free_branches(handle, inode, bh,
3880 3881 3882
					(__le32 *) bh->b_data,
					(__le32 *) bh->b_data + addr_per_block,
					depth);
3883 3884 3885 3886 3887

			/*
			 * We've probably journalled the indirect block several
			 * times during the truncate.  But it's no longer
			 * needed and we now drop it from the transaction via
3888
			 * jbd2_journal_revoke().
3889 3890 3891
			 *
			 * That's easy if it's exclusively part of this
			 * transaction.  But if it's part of the committing
3892
			 * transaction then jbd2_journal_forget() will simply
3893
			 * brelse() it.  That means that if the underlying
3894
			 * block is reallocated in ext4_get_block(),
3895 3896 3897 3898 3899 3900 3901 3902
			 * unmap_underlying_metadata() will find this block
			 * and will try to get rid of it.  damn, damn.
			 *
			 * If this block has already been committed to the
			 * journal, a revoke record will be written.  And
			 * revoke records must be emitted *before* clearing
			 * this block's bit in the bitmaps.
			 */
3903
			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
3921
			if (ext4_handle_is_aborted(handle))
3922 3923
				return;
			if (try_to_extend_transaction(handle, inode)) {
3924 3925
				ext4_mark_inode_dirty(handle, inode);
				ext4_journal_test_restart(handle, inode);
3926 3927
			}

3928
			ext4_free_blocks(handle, inode, nr, 1, 1);
3929 3930 3931 3932 3933 3934 3935

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
3936
				if (!ext4_journal_get_write_access(handle,
3937 3938 3939
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
3940 3941 3942 3943
					"call ext4_handle_dirty_metadata");
					ext4_handle_dirty_metadata(handle,
								   inode,
								   parent_bh);
3944 3945 3946 3947 3948 3949
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
3950
		ext4_free_data(handle, inode, parent_bh, first, last);
3951 3952 3953
	}
}

3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
int ext4_can_truncate(struct inode *inode)
{
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return 0;
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3967
/*
3968
 * ext4_truncate()
3969
 *
3970 3971
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3988
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3989
 * that this inode's truncate did not complete and it will again call
3990 3991
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3992
 * that's fine - as long as they are linked from the inode, the post-crash
3993
 * ext4_truncate() run will find them and release them.
3994
 */
3995
void ext4_truncate(struct inode *inode)
3996 3997
{
	handle_t *handle;
3998
	struct ext4_inode_info *ei = EXT4_I(inode);
3999
	__le32 *i_data = ei->i_data;
4000
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4001
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
4002
	ext4_lblk_t offsets[4];
4003 4004 4005 4006
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
4007
	ext4_lblk_t last_block;
4008 4009
	unsigned blocksize = inode->i_sb->s_blocksize;

4010
	if (!ext4_can_truncate(inode))
4011 4012
		return;

4013
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4014 4015
		ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;

A
Aneesh Kumar K.V 已提交
4016
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4017
		ext4_ext_truncate(inode);
A
Aneesh Kumar K.V 已提交
4018 4019
		return;
	}
A
Alex Tomas 已提交
4020

4021
	handle = start_transaction(inode);
4022
	if (IS_ERR(handle))
4023 4024 4025
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
4026
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4027

4028 4029 4030
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
4031

4032
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
4045
	if (ext4_orphan_add(handle, inode))
4046 4047
		goto out_stop;

4048 4049 4050 4051 4052
	/*
	 * From here we block out all ext4_get_block() callers who want to
	 * modify the block allocation tree.
	 */
	down_write(&ei->i_data_sem);
4053

4054
	ext4_discard_preallocations(inode);
4055

4056 4057 4058 4059 4060
	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
4061
	 * ext4 *really* writes onto the disk inode.
4062 4063 4064 4065
	 */
	ei->i_disksize = inode->i_size;

	if (n == 1) {		/* direct blocks */
4066 4067
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
4068 4069 4070
		goto do_indirects;
	}

4071
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4072 4073 4074 4075
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
4076
			ext4_free_branches(handle, inode, NULL,
4077 4078 4079 4080 4081 4082 4083 4084 4085
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
4086
			ext4_free_branches(handle, inode, partial->bh,
4087 4088 4089 4090 4091 4092
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
4093
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse (partial->bh);
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
4104
		nr = i_data[EXT4_IND_BLOCK];
4105
		if (nr) {
4106 4107
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
4108
		}
4109 4110
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
4111
		if (nr) {
4112 4113
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
4114
		}
4115 4116
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
4117
		if (nr) {
4118 4119
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
4120
		}
4121
	case EXT4_TIND_BLOCK:
4122 4123 4124
		;
	}

4125
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
4126
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4127
	ext4_mark_inode_dirty(handle, inode);
4128 4129 4130 4131 4132 4133

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
4134
		ext4_handle_sync(handle);
4135 4136 4137 4138 4139
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
4140
	 * ext4_delete_inode(), and we allow that function to clean up the
4141 4142 4143
	 * orphan info for us.
	 */
	if (inode->i_nlink)
4144
		ext4_orphan_del(handle, inode);
4145

4146
	ext4_journal_stop(handle);
4147 4148 4149
}

/*
4150
 * ext4_get_inode_loc returns with an extra refcount against the inode's
4151 4152 4153 4154
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
4155 4156
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
4157
{
4158 4159 4160 4161 4162 4163
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
4164
	iloc->bh = NULL;
4165 4166
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
4167

4168 4169 4170
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
4171 4172
		return -EIO;

4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
	/*
	 * Figure out the offset within the block group inode table
	 */
	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
4183
	if (!bh) {
4184 4185 4186
		ext4_error(sb, "ext4_get_inode_loc", "unable to read "
			   "inode block - inode=%lu, block=%llu",
			   inode->i_ino, block);
4187 4188 4189 4190
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
4191 4192 4193 4194 4195 4196 4197 4198 4199 4200

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
4214
			int i, start;
4215

4216
			start = inode_offset & ~(inodes_per_block - 1);
4217

4218 4219
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
4232
			for (i = start; i < start + inodes_per_block; i++) {
4233 4234
				if (i == inode_offset)
					continue;
4235
				if (ext4_test_bit(i, bitmap_bh->b_data))
4236 4237 4238
					break;
			}
			brelse(bitmap_bh);
4239
			if (i == start + inodes_per_block) {
4240 4241 4242 4243 4244 4245 4246 4247 4248
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
4249 4250 4251 4252 4253 4254 4255 4256 4257
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
4258
			/* s_inode_readahead_blks is always a power of 2 */
4259 4260 4261 4262 4263 4264 4265
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4266
				num -= ext4_itable_unused_count(sb, gdp);
4267 4268 4269 4270 4271 4272 4273
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
4284 4285 4286
			ext4_error(sb, __func__,
				   "unable to read inode block - inode=%lu, "
				   "block=%llu", inode->i_ino, block);
4287 4288 4289 4290 4291 4292 4293 4294 4295
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

4296
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4297 4298
{
	/* We have all inode data except xattrs in memory here. */
4299 4300
	return __ext4_get_inode_loc(inode, iloc,
		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4301 4302
}

4303
void ext4_set_inode_flags(struct inode *inode)
4304
{
4305
	unsigned int flags = EXT4_I(inode)->i_flags;
4306 4307

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4308
	if (flags & EXT4_SYNC_FL)
4309
		inode->i_flags |= S_SYNC;
4310
	if (flags & EXT4_APPEND_FL)
4311
		inode->i_flags |= S_APPEND;
4312
	if (flags & EXT4_IMMUTABLE_FL)
4313
		inode->i_flags |= S_IMMUTABLE;
4314
	if (flags & EXT4_NOATIME_FL)
4315
		inode->i_flags |= S_NOATIME;
4316
	if (flags & EXT4_DIRSYNC_FL)
4317 4318 4319
		inode->i_flags |= S_DIRSYNC;
}

4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
	unsigned int flags = ei->vfs_inode.i_flags;

	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
	if (flags & S_SYNC)
		ei->i_flags |= EXT4_SYNC_FL;
	if (flags & S_APPEND)
		ei->i_flags |= EXT4_APPEND_FL;
	if (flags & S_IMMUTABLE)
		ei->i_flags |= EXT4_IMMUTABLE_FL;
	if (flags & S_NOATIME)
		ei->i_flags |= EXT4_NOATIME_FL;
	if (flags & S_DIRSYNC)
		ei->i_flags |= EXT4_DIRSYNC_FL;
}
4338 4339 4340 4341
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
					struct ext4_inode_info *ei)
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
4342 4343
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
4344 4345 4346 4347 4348 4349

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
A
Aneesh Kumar K.V 已提交
4350 4351 4352 4353 4354 4355
		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
4356 4357 4358 4359
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
4360

4361
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4362
{
4363 4364
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
4365
	struct ext4_inode_info *ei;
4366
	struct buffer_head *bh;
4367 4368
	struct inode *inode;
	long ret;
4369 4370
	int block;

4371 4372 4373 4374 4375 4376 4377
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
T
Theodore Ts'o 已提交
4378
#ifdef CONFIG_EXT4_FS_POSIX_ACL
4379 4380
	ei->i_acl = EXT4_ACL_NOT_CACHED;
	ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4381 4382
#endif

4383 4384
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
4385 4386
		goto bad_inode;
	bh = iloc.bh;
4387
	raw_inode = ext4_raw_inode(&iloc);
4388 4389 4390
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4391
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

	ei->i_state = 0;
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
4407
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4408
			/* this inode is deleted */
4409
			brelse(bh);
4410
			ret = -ESTALE;
4411 4412 4413 4414 4415 4416 4417 4418
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4419
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4420
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4421
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
4422 4423
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4424
	inode->i_size = ext4_isize(raw_inode);
4425 4426 4427
	ei->i_disksize = inode->i_size;
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
4428
	ei->i_last_alloc_group = ~0;
4429 4430 4431 4432
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
4433
	for (block = 0; block < EXT4_N_BLOCKS; block++)
4434 4435 4436
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

4437
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4438
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4439
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4440
		    EXT4_INODE_SIZE(inode->i_sb)) {
4441
			brelse(bh);
4442
			ret = -EIO;
4443
			goto bad_inode;
4444
		}
4445 4446
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
4447 4448
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
4449 4450
		} else {
			__le32 *magic = (void *)raw_inode +
4451
					EXT4_GOOD_OLD_INODE_SIZE +
4452
					ei->i_extra_isize;
4453 4454
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
				 ei->i_state |= EXT4_STATE_XATTR;
4455 4456 4457 4458
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
4459 4460 4461 4462 4463
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

4464 4465 4466 4467 4468 4469 4470
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

4471
	ret = 0;
4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482
	if (ei->i_file_acl &&
	    ((ei->i_file_acl < 
	      (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
	       EXT4_SB(sb)->s_gdb_count)) ||
	     (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
		ext4_error(sb, __func__,
			   "bad extended attribute block %llu in inode #%lu",
			   ei->i_file_acl, inode->i_ino);
		ret = -EIO;
		goto bad_inode;
	} else if (ei->i_flags & EXT4_EXTENTS_FL) {
4483 4484 4485 4486 4487
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
4488 4489 4490 4491 4492 4493 4494 4495 4496
 	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
	 	/* Validate block references which are part of inode */
		ret = ext4_check_inode_blockref(inode);
	}
	if (ret) {
 		brelse(bh);
 		goto bad_inode;
4497 4498
	}

4499
	if (S_ISREG(inode->i_mode)) {
4500 4501 4502
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
4503
	} else if (S_ISDIR(inode->i_mode)) {
4504 4505
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
4506
	} else if (S_ISLNK(inode->i_mode)) {
4507
		if (ext4_inode_is_fast_symlink(inode)) {
4508
			inode->i_op = &ext4_fast_symlink_inode_operations;
4509 4510 4511
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
4512 4513
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
4514
		}
4515 4516
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4517
		inode->i_op = &ext4_special_inode_operations;
4518 4519 4520 4521 4522 4523
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4524 4525 4526 4527 4528 4529 4530
	} else {
		brelse(bh);
		ret = -EIO;
		ext4_error(inode->i_sb, __func__, 
			   "bogus i_mode (%o) for inode=%lu",
			   inode->i_mode, inode->i_ino);
		goto bad_inode;
4531
	}
4532
	brelse(iloc.bh);
4533
	ext4_set_inode_flags(inode);
4534 4535
	unlock_new_inode(inode);
	return inode;
4536 4537

bad_inode:
4538 4539
	iget_failed(inode);
	return ERR_PTR(ret);
4540 4541
}

4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4555
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4556
		raw_inode->i_blocks_high = 0;
A
Aneesh Kumar K.V 已提交
4557
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4558 4559 4560 4561 4562 4563
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
4564 4565 4566 4567
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4568
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4569
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
A
Aneesh Kumar K.V 已提交
4570
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4571
	} else {
A
Aneesh Kumar K.V 已提交
4572 4573 4574 4575 4576
		ei->i_flags |= EXT4_HUGE_FILE_FL;
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4577
	}
4578
	return 0;
4579 4580
}

4581 4582 4583 4584 4585 4586 4587
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
4588
static int ext4_do_update_inode(handle_t *handle,
4589
				struct inode *inode,
4590
				struct ext4_iloc *iloc)
4591
{
4592 4593
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
4594 4595 4596 4597 4598
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
4599 4600
	if (ei->i_state & EXT4_STATE_NEW)
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4601

4602
	ext4_get_inode_flags(ei);
4603
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4604
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4605 4606 4607 4608 4609 4610
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
4611
		if (!ei->i_dtime) {
4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4629 4630 4631 4632 4633 4634

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4635 4636
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4637
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4638 4639
	/* clear the migrate flag in the raw_inode */
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4640 4641
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4642 4643
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4644
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4661
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4662
			sb->s_dirt = 1;
4663 4664
			ext4_handle_sync(handle);
			err = ext4_handle_dirty_metadata(handle, inode,
4665
					EXT4_SB(sb)->s_sbh);
4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4680
	} else for (block = 0; block < EXT4_N_BLOCKS; block++)
4681 4682
		raw_inode->i_block[block] = ei->i_data[block];

4683 4684 4685 4686 4687
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4688
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4689 4690
	}

4691 4692
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
	rc = ext4_handle_dirty_metadata(handle, inode, bh);
4693 4694
	if (!err)
		err = rc;
4695
	ei->i_state &= ~EXT4_STATE_NEW;
4696 4697

out_brelse:
4698
	brelse(bh);
4699
	ext4_std_error(inode->i_sb, err);
4700 4701 4702 4703
	return err;
}

/*
4704
 * ext4_write_inode()
4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4721
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4738
int ext4_write_inode(struct inode *inode, int wait)
4739 4740 4741 4742
{
	if (current->flags & PF_MEMALLOC)
		return 0;

4743
	if (ext4_journal_current_handle()) {
M
Mingming Cao 已提交
4744
		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4745 4746 4747 4748 4749 4750 4751
		dump_stack();
		return -EIO;
	}

	if (!wait)
		return 0;

4752
	return ext4_force_commit(inode->i_sb);
4753 4754
}

4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773
int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
{
	int err = 0;

	mark_buffer_dirty(bh);
	if (inode && inode_needs_sync(inode)) {
		sync_dirty_buffer(bh);
		if (buffer_req(bh) && !buffer_uptodate(bh)) {
			ext4_error(inode->i_sb, __func__,
				   "IO error syncing inode, "
				   "inode=%lu, block=%llu",
				   inode->i_ino,
				   (unsigned long long)bh->b_blocknr);
			err = -EIO;
		}
	}
	return err;
}

4774
/*
4775
 * ext4_setattr()
4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4789 4790 4791 4792 4793 4794 4795 4796
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4797
 */
4798
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
4814 4815
		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4816 4817 4818 4819
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4820
		error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4821
		if (error) {
4822
			ext4_journal_stop(handle);
4823 4824 4825 4826 4827 4828 4829 4830
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4831 4832
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4833 4834
	}

4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845
	if (attr->ia_valid & ATTR_SIZE) {
		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
				error = -EFBIG;
				goto err_out;
			}
		}
	}

4846 4847 4848 4849
	if (S_ISREG(inode->i_mode) &&
	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
		handle_t *handle;

4850
		handle = ext4_journal_start(inode, 3);
4851 4852 4853 4854 4855
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}

4856 4857 4858
		error = ext4_orphan_add(handle, inode);
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4859 4860
		if (!error)
			error = rc;
4861
		ext4_journal_stop(handle);
4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4878 4879 4880 4881
	}

	rc = inode_setattr(inode, attr);

4882
	/* If inode_setattr's call to ext4_truncate failed to get a
4883 4884 4885
	 * transaction handle at all, we need to clean up the in-core
	 * orphan list manually. */
	if (inode->i_nlink)
4886
		ext4_orphan_del(NULL, inode);
4887 4888

	if (!rc && (ia_valid & ATTR_MODE))
4889
		rc = ext4_acl_chmod(inode);
4890 4891

err_out:
4892
	ext4_std_error(inode->i_sb, error);
4893 4894 4895 4896 4897
	if (!error)
		error = rc;
	return error;
}

4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4924

4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952
static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
				      int chunk)
{
	int indirects;

	/* if nrblocks are contiguous */
	if (chunk) {
		/*
		 * With N contiguous data blocks, it need at most
		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
		 * 2 dindirect blocks
		 * 1 tindirect block
		 */
		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
		return indirects + 3;
	}
	/*
	 * if nrblocks are not contiguous, worse case, each block touch
	 * a indirect block, and each indirect block touch a double indirect
	 * block, plus a triple indirect block
	 */
	indirects = nrblocks * 2 + 1;
	return indirects;
}

static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4953 4954
		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4955
}
4956

4957
/*
4958 4959 4960
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4961
 *
4962 4963 4964
 * If datablocks are discontiguous, they are possible to spread over
 * different block groups too. If they are contiugous, with flexbg,
 * they could still across block group boundary.
4965
 *
4966 4967 4968 4969
 * Also account for superblock, inode, quota and xattr blocks
 */
int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
4970 4971
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
4998 4999
	if (groups > ngroups)
		groups = ngroups;
5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
 * Calulate the total number of credits to reserve to fit
5014 5015
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
5016
 *
5017
 * This could be called via ext4_write_begin()
5018
 *
5019
 * We need to consider the worse case, when
5020
 * one new block per extent.
5021
 */
A
Alex Tomas 已提交
5022
int ext4_writepage_trans_blocks(struct inode *inode)
5023
{
5024
	int bpp = ext4_journal_blocks_per_page(inode);
5025 5026
	int ret;

5027
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
5028

5029
	/* Account for data blocks for journalled mode */
5030
	if (ext4_should_journal_data(inode))
5031
		ret += bpp;
5032 5033
	return ret;
}
5034 5035 5036 5037 5038

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
5039
 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5040 5041 5042 5043 5044 5045 5046 5047 5048
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

5049
/*
5050
 * The caller must have previously called ext4_reserve_inode_write().
5051 5052
 * Give this, we know that the caller already has write access to iloc->bh.
 */
5053 5054
int ext4_mark_iloc_dirty(handle_t *handle,
		struct inode *inode, struct ext4_iloc *iloc)
5055 5056 5057
{
	int err = 0;

5058 5059 5060
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

5061 5062 5063
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

5064
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5065
	err = ext4_do_update_inode(handle, inode, iloc);
5066 5067 5068 5069 5070 5071 5072 5073 5074 5075
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
5076 5077
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
5078
{
5079 5080 5081 5082 5083 5084 5085 5086 5087
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
5088 5089
		}
	}
5090
	ext4_std_error(inode->i_sb, err);
5091 5092 5093
	return err;
}

5094 5095 5096 5097
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
5098 5099 5100 5101
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;
	struct ext4_xattr_entry *entry;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);
	entry = IFIRST(header);

	/* No extended attributes present */
	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
5150
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5151
{
5152
	struct ext4_iloc iloc;
5153 5154 5155
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
5156 5157

	might_sleep();
5158
	err = ext4_reserve_inode_write(handle, inode, &iloc);
5159 5160
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175
	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
A
Aneesh Kumar K.V 已提交
5176 5177
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5178
					ext4_warning(inode->i_sb, __func__,
5179 5180 5181
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
5182 5183
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
5184 5185 5186 5187
				}
			}
		}
	}
5188
	if (!err)
5189
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5190 5191 5192 5193
	return err;
}

/*
5194
 * ext4_dirty_inode() is called from __mark_inode_dirty()
5195 5196 5197 5198 5199
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
5200
 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5201 5202 5203 5204 5205 5206
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
5207
void ext4_dirty_inode(struct inode *inode)
5208
{
5209
	handle_t *current_handle = ext4_journal_current_handle();
5210 5211
	handle_t *handle;

5212 5213 5214 5215 5216
	if (!ext4_handle_valid(current_handle)) {
		ext4_mark_inode_dirty(current_handle, inode);
		return;
	}

5217
	handle = ext4_journal_start(inode, 2);
5218 5219 5220 5221 5222 5223
	if (IS_ERR(handle))
		goto out;
	if (current_handle &&
		current_handle->h_transaction != handle->h_transaction) {
		/* This task has a transaction open against a different fs */
		printk(KERN_EMERG "%s: transactions do not match!\n",
5224
		       __func__);
5225 5226 5227
	} else {
		jbd_debug(5, "marking dirty.  outer handle=%p\n",
				current_handle);
5228
		ext4_mark_inode_dirty(handle, inode);
5229
	}
5230
	ext4_journal_stop(handle);
5231 5232 5233 5234 5235 5236 5237 5238
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
5239
 * ext4_reserve_inode_write, this leaves behind no bh reference and
5240 5241 5242
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
5243
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5244
{
5245
	struct ext4_iloc iloc;
5246 5247 5248

	int err = 0;
	if (handle) {
5249
		err = ext4_get_inode_loc(inode, &iloc);
5250 5251
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
5252
			err = jbd2_journal_get_write_access(handle, iloc.bh);
5253
			if (!err)
5254 5255 5256
				err = ext4_handle_dirty_metadata(handle,
								 inode,
								 iloc.bh);
5257 5258 5259
			brelse(iloc.bh);
		}
	}
5260
	ext4_std_error(inode->i_sb, err);
5261 5262 5263 5264
	return err;
}
#endif

5265
int ext4_change_inode_journal_flag(struct inode *inode, int val)
5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

5281
	journal = EXT4_JOURNAL(inode);
5282 5283
	if (!journal)
		return 0;
5284
	if (is_journal_aborted(journal))
5285 5286
		return -EROFS;

5287 5288
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
5289 5290 5291 5292 5293 5294 5295 5296 5297 5298

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
5299
		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5300
	else
5301 5302
		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
	ext4_set_aops(inode);
5303

5304
	jbd2_journal_unlock_updates(journal);
5305 5306 5307

	/* Finally we can mark the inode as dirty. */

5308
	handle = ext4_journal_start(inode, 1);
5309 5310 5311
	if (IS_ERR(handle))
		return PTR_ERR(handle);

5312
	err = ext4_mark_inode_dirty(handle, inode);
5313
	ext4_handle_sync(handle);
5314 5315
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
5316 5317 5318

	return err;
}
5319 5320 5321 5322 5323 5324

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

5325
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5326
{
5327
	struct page *page = vmf->page;
5328 5329 5330
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
5331
	void *fsdata;
5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
	if (PageMappedToDisk(page))
		goto out_unlock;

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

	if (page_has_buffers(page)) {
		/* return if we have all the buffers mapped */
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
				       ext4_bh_unmapped))
			goto out_unlock;
	}
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5370
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5371 5372 5373
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5374
			len, len, page, fsdata);
5375 5376 5377 5378
	if (ret < 0)
		goto out_unlock;
	ret = 0;
out_unlock:
5379 5380
	if (ret)
		ret = VM_FAULT_SIGBUS;
5381 5382 5383
	up_read(&inode->i_alloc_sem);
	return ret;
}