inode.c 140.1 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
18
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 20 21 22
 */

#include <linux/fs.h>
#include <linux/time.h>
23
#include <linux/jbd2.h>
24 25 26 27 28 29
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
30
#include <linux/pagevec.h>
31
#include <linux/mpage.h>
32
#include <linux/namei.h>
33 34
#include <linux/uio.h>
#include <linux/bio.h>
35
#include <linux/workqueue.h>
36
#include <linux/kernel.h>
37
#include <linux/printk.h>
38
#include <linux/slab.h>
39
#include <linux/ratelimit.h>
40

41
#include "ext4_jbd2.h"
42 43
#include "xattr.h"
#include "acl.h"
44
#include "truncate.h"
45

46 47
#include <trace/events/ext4.h>

48 49
#define MPAGE_DA_EXTENT_TAIL 0x01

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
			      struct ext4_inode_info *ei)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	__u16 csum_lo;
	__u16 csum_hi = 0;
	__u32 csum;

	csum_lo = raw->i_checksum_lo;
	raw->i_checksum_lo = 0;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
		csum_hi = raw->i_checksum_hi;
		raw->i_checksum_hi = 0;
	}

	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
			   EXT4_INODE_SIZE(inode->i_sb));

	raw->i_checksum_lo = csum_lo;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = csum_hi;

	return csum;
}

static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
				  struct ext4_inode_info *ei)
{
	__u32 provided, calculated;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return 1;

	provided = le16_to_cpu(raw->i_checksum_lo);
	calculated = ext4_inode_csum(inode, raw, ei);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
	else
		calculated &= 0xFFFF;

	return provided == calculated;
}

static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
				struct ext4_inode_info *ei)
{
	__u32 csum;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return;

	csum = ext4_inode_csum(inode, raw, ei);
	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
}

117 118 119
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
120
	trace_ext4_begin_ordered_truncate(inode, new_size);
121 122 123 124 125 126 127 128 129 130 131
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
132 133
}

134
static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 136 137 138 139 140
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create);
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
E
Eric Sandeen 已提交
141 142 143
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags);
144

145 146 147
/*
 * Test whether an inode is a fast symlink.
 */
148
static int ext4_inode_is_fast_symlink(struct inode *inode)
149
{
150
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 152 153 154 155 156 157 158 159 160
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
161
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
162
				 int nblocks)
163
{
164 165 166
	int ret;

	/*
167
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
168 169 170 171
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
172
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
173
	jbd_debug(2, "restarting handle %p\n", handle);
174
	up_write(&EXT4_I(inode)->i_data_sem);
175
	ret = ext4_journal_restart(handle, nblocks);
176
	down_write(&EXT4_I(inode)->i_data_sem);
177
	ext4_discard_preallocations(inode);
178 179

	return ret;
180 181 182 183 184
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
185
void ext4_evict_inode(struct inode *inode)
186 187
{
	handle_t *handle;
188
	int err;
189

190
	trace_ext4_evict_inode(inode);
191 192 193

	ext4_ioend_wait(inode);

A
Al Viro 已提交
194
	if (inode->i_nlink) {
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
		/*
		 * When journalling data dirty buffers are tracked only in the
		 * journal. So although mm thinks everything is clean and
		 * ready for reaping the inode might still have some pages to
		 * write in the running transaction or waiting to be
		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
		 * (via truncate_inode_pages()) to discard these buffers can
		 * cause data loss. Also even if we did not discard these
		 * buffers, we would have no way to find them after the inode
		 * is reaped and thus user could see stale data if he tries to
		 * read them before the transaction is checkpointed. So be
		 * careful and force everything to disk here... We use
		 * ei->i_datasync_tid to store the newest transaction
		 * containing inode's data.
		 *
		 * Note that directories do not have this problem because they
		 * don't use page cache.
		 */
		if (ext4_should_journal_data(inode) &&
		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;

			jbd2_log_start_commit(journal, commit_tid);
			jbd2_log_wait_commit(journal, commit_tid);
			filemap_write_and_wait(&inode->i_data);
		}
A
Al Viro 已提交
222 223 224 225
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

226
	if (!is_bad_inode(inode))
227
		dquot_initialize(inode);
228

229 230
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
231 232 233 234 235
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

236
	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
237
	if (IS_ERR(handle)) {
238
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
239 240 241 242 243
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
244
		ext4_orphan_del(NULL, inode);
245 246 247 248
		goto no_delete;
	}

	if (IS_SYNC(inode))
249
		ext4_handle_sync(handle);
250
	inode->i_size = 0;
251 252
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
253
		ext4_warning(inode->i_sb,
254 255 256
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
257
	if (inode->i_blocks)
258
		ext4_truncate(inode);
259 260 261 262 263 264 265

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
266
	if (!ext4_handle_has_enough_credits(handle, 3)) {
267 268 269 270
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
271
			ext4_warning(inode->i_sb,
272 273 274
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
275
			ext4_orphan_del(NULL, inode);
276 277 278 279
			goto no_delete;
		}
	}

280
	/*
281
	 * Kill off the orphan record which ext4_truncate created.
282
	 * AKPM: I think this can be inside the above `if'.
283
	 * Note that ext4_orphan_del() has to be able to cope with the
284
	 * deletion of a non-existent orphan - this is because we don't
285
	 * know if ext4_truncate() actually created an orphan record.
286 287
	 * (Well, we could do this if we need to, but heck - it works)
	 */
288 289
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
290 291 292 293 294 295 296 297

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
298
	if (ext4_mark_inode_dirty(handle, inode))
299
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
300
		ext4_clear_inode(inode);
301
	else
302 303
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
304 305
	return;
no_delete:
A
Al Viro 已提交
306
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
307 308
}

309 310
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
311
{
312
	return &EXT4_I(inode)->i_reserved_quota;
313
}
314
#endif
315

316 317
/*
 * Calculate the number of metadata blocks need to reserve
318
 * to allocate a block located at @lblock
319
 */
320
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
321
{
322
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
323
		return ext4_ext_calc_metadata_amount(inode, lblock);
324

325
	return ext4_ind_calc_metadata_amount(inode, lblock);
326 327
}

328 329 330 331
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
332 333
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
334 335
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
336 337 338
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
339
	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
340 341
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
342
			 "with only %d reserved data blocks",
343 344 345 346 347
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
348

349 350 351 352 353 354 355 356 357
	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
			 "with only %d reserved metadata blocks\n", __func__,
			 inode->i_ino, ei->i_allocated_meta_blocks,
			 ei->i_reserved_meta_blocks);
		WARN_ON(1);
		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
	}

358 359 360
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
361
	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
362
			   used + ei->i_allocated_meta_blocks);
363
	ei->i_allocated_meta_blocks = 0;
364

365 366 367 368 369 370
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
371
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
372
				   ei->i_reserved_meta_blocks);
373
		ei->i_reserved_meta_blocks = 0;
374
		ei->i_da_metadata_calc_len = 0;
375
	}
376
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
377

378 379
	/* Update quota subsystem for data blocks */
	if (quota_claim)
380
		dquot_claim_block(inode, EXT4_C2B(sbi, used));
381
	else {
382 383 384
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
385
		 * not re-claim the quota for fallocated blocks.
386
		 */
387
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
388
	}
389 390 391 392 393 394

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
395 396
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
397
		ext4_discard_preallocations(inode);
398 399
}

400
static int __check_block_validity(struct inode *inode, const char *func,
401 402
				unsigned int line,
				struct ext4_map_blocks *map)
403
{
404 405
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
406 407 408 409
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
410 411 412 413 414
		return -EIO;
	}
	return 0;
}

415
#define check_block_validity(inode, map)	\
416
	__check_block_validity((inode), __func__, __LINE__, (map))
417

418
/*
419 420
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
454 455 456 457 458 459 460 461 462
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
463 464 465 466 467
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
468 469
			if (num >= max_pages) {
				done = 1;
470
				break;
471
			}
472 473 474 475 476 477
		}
		pagevec_release(&pvec);
	}
	return num;
}

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
/*
 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
 */
static void set_buffers_da_mapped(struct inode *inode,
				   struct ext4_map_blocks *map)
{
	struct address_space *mapping = inode->i_mapping;
	struct pagevec pvec;
	int i, nr_pages;
	pgoff_t index, end;

	index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (map->m_lblk + map->m_len - 1) >>
		(PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index,
					  min(end - index + 1,
					      (pgoff_t)PAGEVEC_SIZE));
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page))
				break;

			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					set_buffer_da_mapped(bh);
					bh = bh->b_this_page;
				} while (bh != head);
			}
			index++;
		}
		pagevec_release(&pvec);
	}
}

521
/*
522
 * The ext4_map_blocks() function tries to look up the requested blocks,
523
 * and returns if the blocks are already mapped.
524 525 526 527 528
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
529 530
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
531 532 533 534 535 536 537 538
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
539
 * that case, buffer head is unmapped
540 541 542
 *
 * It returns the error in case of allocation failure.
 */
543 544
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
545 546
{
	int retval;
547

548 549 550 551
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
552
	/*
553 554
	 * Try to see if we can get the block without requesting a new
	 * file system block.
555
	 */
556 557
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		down_read((&EXT4_I(inode)->i_data_sem));
558
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
559 560
		retval = ext4_ext_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
561
	} else {
562 563
		retval = ext4_ind_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
564
	}
565 566
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		up_read((&EXT4_I(inode)->i_data_sem));
567

568
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
569
		int ret = check_block_validity(inode, map);
570 571 572 573
		if (ret != 0)
			return ret;
	}

574
	/* If it is only a block(s) look up */
575
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
576 577 578 579 580 581
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
582
	 * ext4_ext_get_block() returns the create = 0
583 584
	 * with buffer head unmapped.
	 */
585
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
586 587
		return retval;

588 589 590 591 592 593 594 595 596 597
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
598
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
599

600
	/*
601 602 603 604
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
605 606
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
607 608 609 610 611 612 613

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
614
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
615
		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
616 617 618 619
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
620
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
621
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
622
	} else {
623
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
624

625
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
626 627 628 629 630
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
631
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
632
		}
633

634 635 636 637 638 639 640
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
641
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
642 643
			ext4_da_update_reserve_space(inode, retval, 1);
	}
644
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
645
		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
646

647 648 649 650 651 652 653 654
		/* If we have successfully mapped the delayed allocated blocks,
		 * set the BH_Da_Mapped bit on them. Its important to do this
		 * under the protection of i_data_sem.
		 */
		if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
			set_buffers_da_mapped(inode, map);
	}

655
	up_write((&EXT4_I(inode)->i_data_sem));
656
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
657
		int ret = check_block_validity(inode, map);
658 659 660
		if (ret != 0)
			return ret;
	}
661 662 663
	return retval;
}

664 665 666
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

667 668
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
669
{
670
	handle_t *handle = ext4_journal_current_handle();
671
	struct ext4_map_blocks map;
J
Jan Kara 已提交
672
	int ret = 0, started = 0;
673
	int dio_credits;
674

675 676 677 678
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

	if (flags && !handle) {
J
Jan Kara 已提交
679
		/* Direct IO write... */
680 681 682
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
683
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
684
		if (IS_ERR(handle)) {
685
			ret = PTR_ERR(handle);
686
			return ret;
687
		}
J
Jan Kara 已提交
688
		started = 1;
689 690
	}

691
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
692
	if (ret > 0) {
693 694 695
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
696
		ret = 0;
697
	}
J
Jan Kara 已提交
698 699
	if (started)
		ext4_journal_stop(handle);
700 701 702
	return ret;
}

703 704 705 706 707 708 709
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

710 711 712
/*
 * `handle' can be NULL if create is zero
 */
713
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
714
				ext4_lblk_t block, int create, int *errp)
715
{
716 717
	struct ext4_map_blocks map;
	struct buffer_head *bh;
718 719 720 721
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

722 723 724 725
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
726

727 728 729 730 731 732 733 734 735 736
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;
	*errp = 0;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
	if (!bh) {
		*errp = -EIO;
		return NULL;
737
	}
738 739 740
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
741

742 743 744 745 746 747 748 749 750 751 752 753 754
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
755
		}
756 757 758 759 760 761 762
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
763
	}
764 765 766 767 768 769
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
770 771
}

772
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
773
			       ext4_lblk_t block, int create, int *err)
774
{
775
	struct buffer_head *bh;
776

777
	bh = ext4_getblk(handle, inode, block, create, err);
778 779 780 781
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
782
	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
783 784 785 786 787 788 789 790
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

791 792 793 794 795 796 797
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
798 799 800 801 802 803 804
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

805 806
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
807
	     block_start = block_end, bh = next) {
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
825
 * close off a transaction and start a new one between the ext4_get_block()
826
 * and the commit_write().  So doing the jbd2_journal_start at the start of
827 828
 * prepare_write() is the right place.
 *
829 830
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
831 832 833 834
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
835
 * By accident, ext4 can be reentered when a transaction is open via
836 837 838 839 840 841
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
842
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
843 844 845 846 847
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
848
				       struct buffer_head *bh)
849
{
850 851 852
	int dirty = buffer_dirty(bh);
	int ret;

853 854
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
855
	/*
C
Christoph Hellwig 已提交
856
	 * __block_write_begin() could have dirtied some buffers. Clean
857 858
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
859
	 * by __block_write_begin() isn't a real problem here as we clear
860 861 862 863 864 865 866 867 868
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
869 870
}

871 872
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
873
static int ext4_write_begin(struct file *file, struct address_space *mapping,
874 875
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
876
{
877
	struct inode *inode = mapping->host;
878
	int ret, needed_blocks;
879 880
	handle_t *handle;
	int retries = 0;
881
	struct page *page;
882
	pgoff_t index;
883
	unsigned from, to;
N
Nick Piggin 已提交
884

885
	trace_ext4_write_begin(inode, pos, len, flags);
886 887 888 889 890
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
891
	index = pos >> PAGE_CACHE_SHIFT;
892 893
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
894 895

retry:
896 897 898 899
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
900
	}
901

902 903 904 905
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

906
	page = grab_cache_page_write_begin(mapping, index, flags);
907 908 909 910 911 912 913
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

914
	if (ext4_should_dioread_nolock(inode))
915
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
916
	else
917
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
918 919

	if (!ret && ext4_should_journal_data(inode)) {
920 921 922
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
923 924

	if (ret) {
925 926
		unlock_page(page);
		page_cache_release(page);
927
		/*
928
		 * __block_write_begin may have instantiated a few blocks
929 930
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
931 932 933
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
934
		 */
935
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
936 937 938 939
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
940
			ext4_truncate_failed_write(inode);
941
			/*
942
			 * If truncate failed early the inode might
943 944 945 946 947 948 949
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
950 951
	}

952
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
953
		goto retry;
954
out:
955 956 957
	return ret;
}

N
Nick Piggin 已提交
958 959
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
960 961 962 963
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
964
	return ext4_handle_dirty_metadata(handle, NULL, bh);
965 966
}

967
static int ext4_generic_write_end(struct file *file,
968 969 970
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1013 1014 1015 1016
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1017
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1018 1019
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1020
static int ext4_ordered_write_end(struct file *file,
1021 1022 1023
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1024
{
1025
	handle_t *handle = ext4_journal_current_handle();
1026
	struct inode *inode = mapping->host;
1027 1028
	int ret = 0, ret2;

1029
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1030
	ret = ext4_jbd2_file_inode(handle, inode);
1031 1032

	if (ret == 0) {
1033
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1034
							page, fsdata);
1035
		copied = ret2;
1036
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1037 1038 1039 1040 1041
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1042 1043
		if (ret2 < 0)
			ret = ret2;
1044 1045 1046
	} else {
		unlock_page(page);
		page_cache_release(page);
1047
	}
1048

1049
	ret2 = ext4_journal_stop(handle);
1050 1051
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1052

1053
	if (pos + len > inode->i_size) {
1054
		ext4_truncate_failed_write(inode);
1055
		/*
1056
		 * If truncate failed early the inode might still be
1057 1058 1059 1060 1061 1062 1063 1064
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1065
	return ret ? ret : copied;
1066 1067
}

N
Nick Piggin 已提交
1068
static int ext4_writeback_write_end(struct file *file,
1069 1070 1071
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1072
{
1073
	handle_t *handle = ext4_journal_current_handle();
1074
	struct inode *inode = mapping->host;
1075 1076
	int ret = 0, ret2;

1077
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1078
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1079
							page, fsdata);
1080
	copied = ret2;
1081
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1082 1083 1084 1085 1086 1087
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1088 1089
	if (ret2 < 0)
		ret = ret2;
1090

1091
	ret2 = ext4_journal_stop(handle);
1092 1093
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1094

1095
	if (pos + len > inode->i_size) {
1096
		ext4_truncate_failed_write(inode);
1097
		/*
1098
		 * If truncate failed early the inode might still be
1099 1100 1101 1102 1103 1104 1105
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1106
	return ret ? ret : copied;
1107 1108
}

N
Nick Piggin 已提交
1109
static int ext4_journalled_write_end(struct file *file,
1110 1111 1112
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1113
{
1114
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1115
	struct inode *inode = mapping->host;
1116 1117
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1118
	unsigned from, to;
1119
	loff_t new_i_size;
1120

1121
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1122 1123 1124
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

1125 1126
	BUG_ON(!ext4_handle_valid(handle));

N
Nick Piggin 已提交
1127 1128 1129 1130 1131
	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1132 1133

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1134
				to, &partial, write_end_fn);
1135 1136
	if (!partial)
		SetPageUptodate(page);
1137 1138
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1139
		i_size_write(inode, pos+copied);
1140
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1141
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1142 1143
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1144
		ret2 = ext4_mark_inode_dirty(handle, inode);
1145 1146 1147
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1148

1149
	unlock_page(page);
1150
	page_cache_release(page);
1151
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1152 1153 1154 1155 1156 1157
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1158
	ret2 = ext4_journal_stop(handle);
1159 1160
	if (!ret)
		ret = ret2;
1161
	if (pos + len > inode->i_size) {
1162
		ext4_truncate_failed_write(inode);
1163
		/*
1164
		 * If truncate failed early the inode might still be
1165 1166 1167 1168 1169 1170
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1171 1172

	return ret ? ret : copied;
1173
}
1174

1175
/*
1176
 * Reserve a single cluster located at lblock
1177
 */
1178
static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1179
{
A
Aneesh Kumar K.V 已提交
1180
	int retries = 0;
1181
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1182
	struct ext4_inode_info *ei = EXT4_I(inode);
1183
	unsigned int md_needed;
1184
	int ret;
1185 1186 1187 1188 1189 1190

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1191
repeat:
1192
	spin_lock(&ei->i_block_reservation_lock);
1193 1194
	md_needed = EXT4_NUM_B2C(sbi,
				 ext4_calc_metadata_amount(inode, lblock));
1195
	trace_ext4_da_reserve_space(inode, md_needed);
1196
	spin_unlock(&ei->i_block_reservation_lock);
1197

1198
	/*
1199 1200 1201
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
1202
	 */
1203
	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1204 1205
	if (ret)
		return ret;
1206 1207 1208 1209
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1210
	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1211
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
A
Aneesh Kumar K.V 已提交
1212 1213 1214 1215
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1216 1217
		return -ENOSPC;
	}
1218
	spin_lock(&ei->i_block_reservation_lock);
1219
	ei->i_reserved_data_blocks++;
1220 1221
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1222

1223 1224 1225
	return 0;       /* success */
}

1226
static void ext4_da_release_space(struct inode *inode, int to_free)
1227 1228
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1229
	struct ext4_inode_info *ei = EXT4_I(inode);
1230

1231 1232 1233
	if (!to_free)
		return;		/* Nothing to release, exit */

1234
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1235

L
Li Zefan 已提交
1236
	trace_ext4_da_release_space(inode, to_free);
1237
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1238
		/*
1239 1240 1241 1242
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1243
		 */
1244 1245
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
1246
			 "data blocks", inode->i_ino, to_free,
1247 1248 1249
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1250
	}
1251
	ei->i_reserved_data_blocks -= to_free;
1252

1253 1254 1255 1256 1257
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
1258 1259
		 * Note that in case of bigalloc, i_reserved_meta_blocks,
		 * i_reserved_data_blocks, etc. refer to number of clusters.
1260
		 */
1261
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1262
				   ei->i_reserved_meta_blocks);
1263
		ei->i_reserved_meta_blocks = 0;
1264
		ei->i_da_metadata_calc_len = 0;
1265
	}
1266

1267
	/* update fs dirty data blocks counter */
1268
	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1269 1270

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1271

1272
	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1273 1274 1275
}

static void ext4_da_page_release_reservation(struct page *page,
1276
					     unsigned long offset)
1277 1278 1279 1280
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;
1281 1282 1283
	struct inode *inode = page->mapping->host;
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int num_clusters;
1284 1285 1286 1287 1288 1289 1290 1291 1292

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
1293
			clear_buffer_da_mapped(bh);
1294 1295 1296
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310

	/* If we have released all the blocks belonging to a cluster, then we
	 * need to release the reserved space for that cluster. */
	num_clusters = EXT4_NUM_B2C(sbi, to_release);
	while (num_clusters > 0) {
		ext4_fsblk_t lblk;
		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
			((num_clusters - 1) << sbi->s_cluster_bits);
		if (sbi->s_cluster_ratio == 1 ||
		    !ext4_find_delalloc_cluster(inode, lblk, 1))
			ext4_da_release_space(inode, 1);

		num_clusters--;
	}
1311
}
1312

1313 1314 1315 1316 1317 1318
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1319
 * them with writepage() call back
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
1330 1331
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
1332
{
1333 1334 1335 1336 1337
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1338
	loff_t size = i_size_read(inode);
1339 1340
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
1341
	int journal_data = ext4_should_journal_data(inode);
1342
	sector_t pblock = 0, cur_logical = 0;
1343
	struct ext4_io_submit io_submit;
1344 1345

	BUG_ON(mpd->next_page <= mpd->first_page);
1346
	memset(&io_submit, 0, sizeof(io_submit));
1347 1348 1349
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1350
	 * If we look at mpd->b_blocknr we would only be looking
1351 1352
	 * at the currently mapped buffer_heads.
	 */
1353 1354 1355
	index = mpd->first_page;
	end = mpd->next_page - 1;

1356
	pagevec_init(&pvec, 0);
1357
	while (index <= end) {
1358
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1359 1360 1361
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
1362
			int commit_write = 0, skip_page = 0;
1363 1364
			struct page *page = pvec.pages[i];

1365 1366 1367
			index = page->index;
			if (index > end)
				break;
1368 1369 1370 1371 1372

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
1373 1374 1375 1376 1377 1378
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
1379 1380 1381 1382 1383
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1384
			/*
1385 1386
			 * If the page does not have buffers (for
			 * whatever reason), try to create them using
1387
			 * __block_write_begin.  If this fails,
1388
			 * skip the page and move on.
1389
			 */
1390
			if (!page_has_buffers(page)) {
1391
				if (__block_write_begin(page, 0, len,
1392
						noalloc_get_block_write)) {
1393
				skip_page:
1394 1395 1396 1397 1398
					unlock_page(page);
					continue;
				}
				commit_write = 1;
			}
1399

1400 1401
			bh = page_bufs = page_buffers(page);
			block_start = 0;
1402
			do {
1403
				if (!bh)
1404
					goto skip_page;
1405 1406 1407
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
1408 1409 1410 1411
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
1412 1413
					if (buffer_da_mapped(bh))
						clear_buffer_da_mapped(bh);
1414 1415 1416 1417 1418 1419 1420
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
1421

1422 1423 1424 1425 1426
				/*
				 * skip page if block allocation undone and
				 * block is dirty
				 */
				if (ext4_bh_delay_or_unwritten(NULL, bh))
1427
					skip_page = 1;
1428 1429
				bh = bh->b_this_page;
				block_start += bh->b_size;
1430 1431
				cur_logical++;
				pblock++;
1432 1433
			} while (bh != page_bufs);

1434 1435
			if (skip_page)
				goto skip_page;
1436 1437 1438 1439 1440

			if (commit_write)
				/* mark the buffer_heads as dirty & uptodate */
				block_commit_write(page, 0, len);

1441
			clear_page_dirty_for_io(page);
1442 1443 1444 1445 1446 1447
			/*
			 * Delalloc doesn't support data journalling,
			 * but eventually maybe we'll lift this
			 * restriction.
			 */
			if (unlikely(journal_data && PageChecked(page)))
1448
				err = __ext4_journalled_writepage(page, len);
1449
			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1450 1451
				err = ext4_bio_write_page(&io_submit, page,
							  len, mpd->wbc);
1452 1453 1454 1455 1456 1457
			else if (buffer_uninit(page_bufs)) {
				ext4_set_bh_endio(page_bufs, inode);
				err = block_write_full_page_endio(page,
					noalloc_get_block_write,
					mpd->wbc, ext4_end_io_buffer_write);
			} else
1458 1459
				err = block_write_full_page(page,
					noalloc_get_block_write, mpd->wbc);
1460 1461

			if (!err)
1462
				mpd->pages_written++;
1463 1464 1465 1466 1467 1468 1469 1470 1471
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
1472
	ext4_io_submit(&io_submit);
1473 1474 1475
	return ret;
}

1476
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1477 1478 1479 1480 1481 1482 1483
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

1484 1485
	index = mpd->first_page;
	end   = mpd->next_page - 1;
1486 1487 1488 1489 1490 1491
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
1492
			if (page->index > end)
1493 1494 1495 1496 1497 1498 1499
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
1500 1501
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
1502 1503 1504 1505
	}
	return;
}

1506 1507 1508
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1509 1510 1511
	struct super_block *sb = inode->i_sb;

	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1512 1513
	       EXT4_C2B(EXT4_SB(inode->i_sb),
			ext4_count_free_clusters(inode->i_sb)));
1514 1515
	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1516 1517
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1518
	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1519 1520
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1521 1522 1523 1524
	ext4_msg(sb, KERN_CRIT, "Block reservation details");
	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
		 EXT4_I(inode)->i_reserved_data_blocks);
	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1525
	       EXT4_I(inode)->i_reserved_meta_blocks);
1526 1527 1528
	return;
}

1529
/*
1530 1531
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
1532
 *
1533
 * @mpd - bh describing space
1534 1535 1536 1537
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1538
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1539
{
1540
	int err, blks, get_blocks_flags;
1541
	struct ext4_map_blocks map, *mapp = NULL;
1542 1543 1544 1545
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
1546 1547

	/*
1548 1549
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
1550
	 */
1551 1552 1553 1554 1555
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
1556 1557 1558 1559

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

1560
	/*
1561
	 * Call ext4_map_blocks() to allocate any delayed allocation
1562 1563 1564 1565 1566 1567 1568 1569
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
1570
	 * want to change *many* call functions, so ext4_map_blocks()
1571
	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1572 1573 1574 1575 1576
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
1577
	 */
1578 1579
	map.m_lblk = next;
	map.m_len = max_blocks;
1580
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1581 1582
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1583
	if (mpd->b_state & (1 << BH_Delay))
1584 1585
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

1586
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1587
	if (blks < 0) {
1588 1589
		struct super_block *sb = mpd->inode->i_sb;

1590
		err = blks;
1591
		/*
1592
		 * If get block returns EAGAIN or ENOSPC and there
1593 1594
		 * appears to be free blocks we will just let
		 * mpage_da_submit_io() unlock all of the pages.
1595 1596
		 */
		if (err == -EAGAIN)
1597
			goto submit_io;
1598

1599
		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1600
			mpd->retval = err;
1601
			goto submit_io;
1602 1603
		}

1604
		/*
1605 1606 1607 1608 1609
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
1610
		 */
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
				"This should not happen!! Data will be lost\n");
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
1622
		}
1623
		/* invalidate all the pages */
1624
		ext4_da_block_invalidatepages(mpd);
1625 1626 1627

		/* Mark this page range as having been completed */
		mpd->io_done = 1;
1628
		return;
1629
	}
1630 1631
	BUG_ON(blks == 0);

1632
	mapp = &map;
1633 1634 1635
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
1636

1637 1638
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
1639

1640 1641
		if (ext4_should_order_data(mpd->inode)) {
			err = ext4_jbd2_file_inode(handle, mpd->inode);
1642
			if (err) {
1643
				/* Only if the journal is aborted */
1644 1645 1646
				mpd->retval = err;
				goto submit_io;
			}
1647
		}
1648 1649 1650
	}

	/*
1651
	 * Update on-disk size along with block allocation.
1652 1653 1654 1655 1656 1657
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
1658 1659 1660 1661 1662
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
1663 1664
	}

1665
submit_io:
1666
	mpage_da_submit_io(mpd, mapp);
1667
	mpd->io_done = 1;
1668 1669
}

1670 1671
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1683 1684
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
1685 1686
{
	sector_t next;
1687
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1688

1689 1690 1691 1692
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
1693
	 * ext4_map_blocks() multiple times in a loop
1694 1695 1696 1697
	 */
	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
		goto flush_it;

1698
	/* check if thereserved journal credits might overflow */
1699
	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
1720 1721 1722
	/*
	 * First block in the extent
	 */
1723 1724 1725 1726
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
1727 1728 1729
		return;
	}

1730
	next = mpd->b_blocknr + nrblocks;
1731 1732 1733
	/*
	 * Can we merge the block to our big extent?
	 */
1734 1735
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
1736 1737 1738
		return;
	}

1739
flush_it:
1740 1741 1742 1743
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
1744
	mpage_da_map_and_submit(mpd);
1745
	return;
1746 1747
}

1748
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1749
{
1750
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1751 1752
}

1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
/*
 * This function is grabs code from the very beginning of
 * ext4_map_blocks, but assumes that the caller is from delayed write
 * time. This function looks up the requested blocks and sets the
 * buffer delay bit under the protection of i_data_sem.
 */
static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
			      struct ext4_map_blocks *map,
			      struct buffer_head *bh)
{
	int retval;
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;

	map->m_flags = 0;
	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, map->m_len,
		  (unsigned long) map->m_lblk);
	/*
	 * Try to see if we can get the block without requesting a new
	 * file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
	else
		retval = ext4_ind_map_blocks(NULL, inode, map, 0);

	if (retval == 0) {
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
		/* If the block was allocated from previously allocated cluster,
		 * then we dont need to reserve it again. */
		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
			retval = ext4_da_reserve_space(inode, iblock);
			if (retval)
				/* not enough space to reserve */
				goto out_unlock;
		}

		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
		 * and it should not appear on the bh->b_state.
		 */
		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;

		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
	}

out_unlock:
	up_read((&EXT4_I(inode)->i_data_sem));

	return retval;
}

1813
/*
1814 1815 1816
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
1817 1818 1819 1820 1821 1822 1823
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
1824 1825
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1826
				  struct buffer_head *bh, int create)
1827
{
1828
	struct ext4_map_blocks map;
1829 1830 1831
	int ret = 0;

	BUG_ON(create == 0);
1832 1833 1834 1835
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
1836 1837 1838 1839 1840 1841

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
1842 1843
	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
	if (ret <= 0)
1844
		return ret;
1845

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
1857
		set_buffer_mapped(bh);
1858 1859
	}
	return 0;
1860
}
1861

1862 1863 1864
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
C
Christoph Hellwig 已提交
1865
 * callback function for block_write_begin() and block_write_full_page().
1866
 * These functions should only try to map a single block at a time.
1867 1868 1869 1870 1871
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
1872 1873 1874
 * delayed allocation before calling  block_write_full_page().  Otherwise,
 * b_blocknr could be left unitialized, and the page write functions will
 * be taken by surprise.
1875 1876
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1877 1878
				   struct buffer_head *bh_result, int create)
{
1879
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1880
	return _ext4_get_block(inode, iblock, bh_result, 0);
1881 1882
}

1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

1905
	ClearPageChecked(page);
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

1919 1920
	BUG_ON(!ext4_handle_valid(handle));

1921 1922 1923 1924 1925 1926 1927
	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
1928
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1929 1930 1931 1932 1933
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1934
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1935 1936 1937 1938
out:
	return ret;
}

1939 1940 1941
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);

1942
/*
1943 1944 1945 1946
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
L
Lucas De Marchi 已提交
1947
 * we are writing back data modified via mmap(), no one guarantees in which
1948 1949 1950 1951
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
1952 1953 1954 1955 1956
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
1957 1958 1959 1960 1961 1962 1963 1964 1965
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
1966
 * but other buffer_heads would be unmapped but dirty (dirty done via the
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1982
 */
1983
static int ext4_writepage(struct page *page,
1984
			  struct writeback_control *wbc)
1985
{
T
Theodore Ts'o 已提交
1986
	int ret = 0, commit_write = 0;
1987
	loff_t size;
1988
	unsigned int len;
1989
	struct buffer_head *page_bufs = NULL;
1990 1991
	struct inode *inode = page->mapping->host;

L
Lukas Czerner 已提交
1992
	trace_ext4_writepage(page);
1993 1994 1995 1996 1997
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
1998

T
Theodore Ts'o 已提交
1999 2000
	/*
	 * If the page does not have buffers (for whatever reason),
2001
	 * try to create them using __block_write_begin.  If this
T
Theodore Ts'o 已提交
2002 2003
	 * fails, redirty the page and move on.
	 */
2004
	if (!page_has_buffers(page)) {
2005
		if (__block_write_begin(page, 0, len,
T
Theodore Ts'o 已提交
2006 2007
					noalloc_get_block_write)) {
		redirty_page:
2008 2009 2010 2011
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
2012 2013 2014 2015 2016
		commit_write = 1;
	}
	page_bufs = page_buffers(page);
	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
			      ext4_bh_delay_or_unwritten)) {
2017
		/*
2018 2019 2020
		 * We don't want to do block allocation, so redirty
		 * the page and return.  We may reach here when we do
		 * a journal commit via journal_submit_inode_data_buffers.
2021 2022 2023
		 * We can also reach here via shrink_page_list but it
		 * should never be for direct reclaim so warn if that
		 * happens
2024
		 */
2025 2026
		WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
								PF_MEMALLOC);
T
Theodore Ts'o 已提交
2027 2028 2029
		goto redirty_page;
	}
	if (commit_write)
2030
		/* now mark the buffer_heads as dirty and uptodate */
2031
		block_commit_write(page, 0, len);
2032

2033
	if (PageChecked(page) && ext4_should_journal_data(inode))
2034 2035 2036 2037
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
2038
		return __ext4_journalled_writepage(page, len);
2039

T
Theodore Ts'o 已提交
2040
	if (buffer_uninit(page_bufs)) {
2041 2042 2043 2044
		ext4_set_bh_endio(page_bufs, inode);
		ret = block_write_full_page_endio(page, noalloc_get_block_write,
					    wbc, ext4_end_io_buffer_write);
	} else
2045 2046
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
2047 2048 2049 2050

	return ret;
}

2051
/*
2052
 * This is called via ext4_da_writepages() to
L
Lucas De Marchi 已提交
2053
 * calculate the total number of credits to reserve to fit
2054 2055 2056
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2057
 */
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2069
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2070 2071 2072 2073 2074
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2075

2076 2077
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
2078
 * address space and accumulate pages that need writing, and call
2079 2080
 * mpage_da_map_and_submit to map a single contiguous memory region
 * and then write them.
2081 2082 2083
 */
static int write_cache_pages_da(struct address_space *mapping,
				struct writeback_control *wbc,
2084 2085
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
2086
{
2087
	struct buffer_head	*bh, *head;
2088
	struct inode		*inode = mapping->host;
2089 2090 2091 2092 2093 2094
	struct pagevec		pvec;
	unsigned int		nr_pages;
	sector_t		logical;
	pgoff_t			index, end;
	long			nr_to_write = wbc->nr_to_write;
	int			i, tag, ret = 0;
2095

2096 2097 2098
	memset(mpd, 0, sizeof(struct mpage_da_data));
	mpd->wbc = wbc;
	mpd->inode = inode;
2099 2100 2101 2102
	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

2103
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2104 2105 2106 2107
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

2108
	*done_index = index;
2109
	while (index <= end) {
2110
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2111 2112
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
2113
			return 0;
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
2125 2126
			if (page->index > end)
				goto out;
2127

2128 2129
			*done_index = page->index + 1;

2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
			/*
			 * If we can't merge this page, and we have
			 * accumulated an contiguous region, write it
			 */
			if ((mpd->next_page != page->index) &&
			    (mpd->next_page != mpd->first_page)) {
				mpage_da_map_and_submit(mpd);
				goto ret_extent_tail;
			}

2140 2141 2142
			lock_page(page);

			/*
2143 2144 2145 2146 2147 2148
			 * If the page is no longer dirty, or its
			 * mapping no longer corresponds to inode we
			 * are writing (which means it has been
			 * truncated or invalidated), or the page is
			 * already under writeback and we are not
			 * doing a data integrity writeback, skip the page
2149
			 */
2150 2151 2152 2153
			if (!PageDirty(page) ||
			    (PageWriteback(page) &&
			     (wbc->sync_mode == WB_SYNC_NONE)) ||
			    unlikely(page->mapping != mapping)) {
2154 2155 2156 2157
				unlock_page(page);
				continue;
			}

2158
			wait_on_page_writeback(page);
2159 2160
			BUG_ON(PageWriteback(page));

2161
			if (mpd->next_page != page->index)
2162 2163 2164 2165 2166 2167
				mpd->first_page = page->index;
			mpd->next_page = page->index + 1;
			logical = (sector_t) page->index <<
				(PAGE_CACHE_SHIFT - inode->i_blkbits);

			if (!page_has_buffers(page)) {
2168 2169
				mpage_add_bh_to_extent(mpd, logical,
						       PAGE_CACHE_SIZE,
2170
						       (1 << BH_Dirty) | (1 << BH_Uptodate));
2171 2172
				if (mpd->io_done)
					goto ret_extent_tail;
2173 2174
			} else {
				/*
2175 2176
				 * Page with regular buffer heads,
				 * just add all dirty ones
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
				 */
				head = page_buffers(page);
				bh = head;
				do {
					BUG_ON(buffer_locked(bh));
					/*
					 * We need to try to allocate
					 * unmapped blocks in the same page.
					 * Otherwise we won't make progress
					 * with the page in ext4_writepage
					 */
					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
						mpage_add_bh_to_extent(mpd, logical,
								       bh->b_size,
								       bh->b_state);
2192 2193
						if (mpd->io_done)
							goto ret_extent_tail;
2194 2195
					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
						/*
2196 2197 2198 2199 2200 2201 2202 2203 2204
						 * mapped dirty buffer. We need
						 * to update the b_state
						 * because we look at b_state
						 * in mpage_da_map_blocks.  We
						 * don't update b_size because
						 * if we find an unmapped
						 * buffer_head later we need to
						 * use the b_state flag of that
						 * buffer_head.
2205 2206 2207 2208 2209 2210
						 */
						if (mpd->b_size == 0)
							mpd->b_state = bh->b_state & BH_FLAGS;
					}
					logical++;
				} while ((bh = bh->b_this_page) != head);
2211 2212 2213 2214 2215
			}

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
2216
				    wbc->sync_mode == WB_SYNC_NONE)
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
2227
					goto out;
2228 2229 2230 2231 2232
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2233 2234 2235
	return 0;
ret_extent_tail:
	ret = MPAGE_DA_EXTENT_TAIL;
2236 2237 2238
out:
	pagevec_release(&pvec);
	cond_resched();
2239 2240 2241 2242
	return ret;
}


2243
static int ext4_da_writepages(struct address_space *mapping,
2244
			      struct writeback_control *wbc)
2245
{
2246 2247
	pgoff_t	index;
	int range_whole = 0;
2248
	handle_t *handle = NULL;
2249
	struct mpage_da_data mpd;
2250
	struct inode *inode = mapping->host;
2251
	int pages_written = 0;
2252
	unsigned int max_pages;
2253
	int range_cyclic, cycled = 1, io_done = 0;
2254 2255
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2256
	loff_t range_start = wbc->range_start;
2257
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2258
	pgoff_t done_index = 0;
2259
	pgoff_t end;
S
Shaohua Li 已提交
2260
	struct blk_plug plug;
2261

2262
	trace_ext4_da_writepages(inode, wbc);
2263

2264 2265 2266 2267 2268
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2269
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2270
		return 0;
2271 2272 2273 2274 2275

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2276
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2277 2278 2279 2280 2281
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2282
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2283 2284
		return -EROFS;

2285 2286
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2287

2288 2289
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2290
		index = mapping->writeback_index;
2291 2292 2293 2294 2295
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2296 2297
		end = -1;
	} else {
2298
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2299 2300
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2301

2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2319 2320 2321 2322 2323 2324
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2335
retry:
2336
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2337 2338
		tag_pages_for_writeback(mapping, index, end);

S
Shaohua Li 已提交
2339
	blk_start_plug(&plug);
2340
	while (!ret && wbc->nr_to_write > 0) {
2341 2342 2343 2344 2345 2346 2347 2348

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2349
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2350

2351 2352 2353 2354
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2355
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2356
			       "%ld pages, ino %lu; err %d", __func__,
2357
				wbc->nr_to_write, inode->i_ino, ret);
2358
			blk_finish_plug(&plug);
2359 2360
			goto out_writepages;
		}
2361 2362

		/*
2363
		 * Now call write_cache_pages_da() to find the next
2364
		 * contiguous region of logical blocks that need
2365
		 * blocks to be allocated by ext4 and submit them.
2366
		 */
2367
		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2368
		/*
2369
		 * If we have a contiguous extent of pages and we
2370 2371 2372 2373
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2374
			mpage_da_map_and_submit(&mpd);
2375 2376
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2377
		trace_ext4_da_write_pages(inode, &mpd);
2378
		wbc->nr_to_write -= mpd.pages_written;
2379

2380
		ext4_journal_stop(handle);
2381

2382
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2383 2384 2385 2386
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2387
			jbd2_journal_force_commit_nested(sbi->s_journal);
2388 2389
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2390
			/*
2391 2392 2393
			 * Got one extent now try with rest of the pages.
			 * If mpd.retval is set -EIO, journal is aborted.
			 * So we don't need to write any more.
2394
			 */
2395
			pages_written += mpd.pages_written;
2396
			ret = mpd.retval;
2397
			io_done = 1;
2398
		} else if (wbc->nr_to_write)
2399 2400 2401 2402 2403 2404
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2405
	}
S
Shaohua Li 已提交
2406
	blk_finish_plug(&plug);
2407 2408 2409 2410 2411 2412 2413
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2414 2415

	/* Update index */
2416
	wbc->range_cyclic = range_cyclic;
2417 2418 2419 2420 2421
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
2422
		mapping->writeback_index = done_index;
2423

2424
out_writepages:
2425
	wbc->nr_to_write -= nr_to_writebump;
2426
	wbc->range_start = range_start;
2427
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2428
	return ret;
2429 2430
}

2431 2432 2433 2434 2435 2436 2437 2438 2439
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2440
	 * counters can get slightly wrong with percpu_counter_batch getting
2441 2442 2443 2444
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
2445 2446 2447
	free_blocks  = EXT4_C2B(sbi,
		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2448
	if (2 * free_blocks < 3 * dirty_blocks ||
2449
		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2450
		/*
2451 2452
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
2453 2454 2455
		 */
		return 1;
	}
2456 2457 2458 2459 2460
	/*
	 * Even if we don't switch but are nearing capacity,
	 * start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (free_blocks < 2 * dirty_blocks)
2461
		writeback_inodes_sb_if_idle(sb, WB_REASON_FS_FREE_SPACE);
2462

2463 2464 2465
	return 0;
}

2466
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2467 2468
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
2469
{
2470
	int ret, retries = 0;
2471 2472 2473 2474 2475 2476
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
2477 2478 2479 2480 2481 2482 2483

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2484
	trace_ext4_da_write_begin(inode, pos, len, flags);
2485
retry:
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
2497 2498 2499
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
2500

2501
	page = grab_cache_page_write_begin(mapping, index, flags);
2502 2503 2504 2505 2506
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
2507 2508
	*pagep = page;

2509
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2510 2511 2512 2513
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
2514 2515 2516 2517 2518 2519
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
2520
			ext4_truncate_failed_write(inode);
2521 2522
	}

2523 2524
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
2525 2526 2527 2528
out:
	return ret;
}

2529 2530 2531 2532 2533
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
2534
					    unsigned long offset)
2535 2536 2537 2538 2539 2540 2541 2542 2543
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2544
	for (i = 0; i < idx; i++)
2545 2546
		bh = bh->b_this_page;

2547
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2548 2549 2550 2551
		return 0;
	return 1;
}

2552
static int ext4_da_write_end(struct file *file,
2553 2554 2555
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
2556 2557 2558 2559 2560
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2561
	unsigned long start, end;
2562 2563 2564
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2565 2566
		switch (ext4_inode_journal_mode(inode)) {
		case EXT4_INODE_ORDERED_DATA_MODE:
2567 2568
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2569
		case EXT4_INODE_WRITEBACK_DATA_MODE:
2570 2571
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2572
		default:
2573 2574 2575
			BUG();
		}
	}
2576

2577
	trace_ext4_da_write_end(inode, pos, len, copied);
2578
	start = pos & (PAGE_CACHE_SIZE - 1);
2579
	end = start + copied - 1;
2580 2581 2582 2583 2584 2585 2586 2587

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
2588
	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
2599

2600 2601 2602
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
2603 2604 2605 2606 2607
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2608
		}
2609
	}
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2631
	ext4_da_page_release_reservation(page, offset);
2632 2633 2634 2635 2636 2637 2638

out:
	ext4_invalidatepage(page, offset);

	return;
}

2639 2640 2641 2642 2643
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
2644 2645
	trace_ext4_alloc_da_blocks(inode);

2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
2656
	 *
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
2669
	 * the pages by calling redirty_page_for_writepage() but that
2670 2671
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
L
Lucas De Marchi 已提交
2672
	 * simplifying them because we wouldn't actually intend to
2673 2674 2675
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
2676
	 *
2677 2678 2679 2680 2681 2682
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
2683

2684 2685 2686 2687 2688
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2689
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2690 2691 2692 2693 2694 2695 2696 2697
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2698
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2699 2700 2701 2702 2703
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2714 2715
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2727
		 * NB. EXT4_STATE_JDATA is not set on files other than
2728 2729 2730 2731 2732 2733
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2734
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2735
		journal = EXT4_JOURNAL(inode);
2736 2737 2738
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2739 2740 2741 2742 2743

		if (err)
			return 0;
	}

2744
	return generic_block_bmap(mapping, block, ext4_get_block);
2745 2746
}

2747
static int ext4_readpage(struct file *file, struct page *page)
2748
{
2749
	trace_ext4_readpage(page);
2750
	return mpage_readpage(page, ext4_get_block);
2751 2752 2753
}

static int
2754
ext4_readpages(struct file *file, struct address_space *mapping,
2755 2756
		struct list_head *pages, unsigned nr_pages)
{
2757
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2758 2759
}

2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
{
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	if (!page_has_buffers(page))
		return;
	head = bh = page_buffers(page);
	do {
		if (offset <= curr_off && test_clear_buffer_uninit(bh)
					&& bh->b_private) {
			ext4_free_io_end(bh->b_private);
			bh->b_private = NULL;
			bh->b_end_io = NULL;
		}
		curr_off = curr_off + bh->b_size;
		bh = bh->b_this_page;
	} while (bh != head);
}

2780
static void ext4_invalidatepage(struct page *page, unsigned long offset)
2781
{
2782
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2783

2784 2785
	trace_ext4_invalidatepage(page, offset);

2786 2787 2788 2789 2790
	/*
	 * free any io_end structure allocated for buffers to be discarded
	 */
	if (ext4_should_dioread_nolock(page->mapping->host))
		ext4_invalidatepage_free_endio(page, offset);
2791 2792 2793 2794 2795 2796
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

2797 2798 2799 2800
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
2801 2802
}

2803
static int ext4_releasepage(struct page *page, gfp_t wait)
2804
{
2805
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2806

2807 2808
	trace_ext4_releasepage(page);

2809 2810 2811
	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
2812 2813 2814 2815
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
2816 2817
}

2818 2819 2820 2821 2822
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
2823
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2824 2825
		   struct buffer_head *bh_result, int create)
{
2826
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2827
		   inode->i_ino, create);
2828 2829
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2830 2831
}

2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int flags)
{
	handle_t *handle = ext4_journal_current_handle();
	struct ext4_map_blocks map;
	int ret = 0;

	ext4_debug("ext4_get_block_write_nolock: inode %lu, flag %d\n",
		   inode->i_ino, flags);

	flags = EXT4_GET_BLOCKS_NO_LOCK;

	map.m_lblk = iblock;
	map.m_len = bh_result->b_size >> inode->i_blkbits;

	ret = ext4_map_blocks(handle, inode, &map, flags);
	if (ret > 0) {
		map_bh(bh_result, inode->i_sb, map.m_pblk);
		bh_result->b_state = (bh_result->b_state & ~EXT4_MAP_FLAGS) |
					map.m_flags;
		bh_result->b_size = inode->i_sb->s_blocksize * map.m_len;
		ret = 0;
	}
	return ret;
}

2858
static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2859 2860
			    ssize_t size, void *private, int ret,
			    bool is_async)
2861
{
2862
	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2863 2864
        ext4_io_end_t *io_end = iocb->private;
	struct workqueue_struct *wq;
2865 2866
	unsigned long flags;
	struct ext4_inode_info *ei;
2867

2868 2869
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
2870
		goto out;
2871

2872
	ext_debug("ext4_end_io_dio(): io_end 0x%p "
2873
		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2874 2875 2876
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

2877 2878
	iocb->private = NULL;

2879
	/* if not aio dio with unwritten extents, just free io and return */
2880
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2881
		ext4_free_io_end(io_end);
2882 2883 2884
out:
		if (is_async)
			aio_complete(iocb, ret, 0);
2885
		inode_dio_done(inode);
2886
		return;
2887 2888
	}

2889 2890
	io_end->offset = offset;
	io_end->size = size;
2891 2892 2893 2894
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
2895 2896
	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;

2897
	/* Add the io_end to per-inode completed aio dio list*/
2898 2899 2900 2901
	ei = EXT4_I(io_end->inode);
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &ei->i_completed_io_list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2902 2903

	/* queue the work to convert unwritten extents to written */
2904
	queue_work(wq, &io_end->work);
2905
}
2906

2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
{
	ext4_io_end_t *io_end = bh->b_private;
	struct workqueue_struct *wq;
	struct inode *inode;
	unsigned long flags;

	if (!test_clear_buffer_uninit(bh) || !io_end)
		goto out;

	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2918 2919 2920
		ext4_msg(io_end->inode->i_sb, KERN_INFO,
			 "sb umounted, discard end_io request for inode %lu",
			 io_end->inode->i_ino);
2921 2922 2923 2924
		ext4_free_io_end(io_end);
		goto out;
	}

2925 2926 2927 2928
	/*
	 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
	 * but being more careful is always safe for the future change.
	 */
2929
	inode = io_end->inode;
2930
	ext4_set_io_unwritten_flag(inode, io_end);
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956

	/* Add the io_end to per-inode completed io list*/
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);

	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
out:
	bh->b_private = NULL;
	bh->b_end_io = NULL;
	clear_buffer_uninit(bh);
	end_buffer_async_write(bh, uptodate);
}

static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
{
	ext4_io_end_t *io_end;
	struct page *page = bh->b_page;
	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
	size_t size = bh->b_size;

retry:
	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
	if (!io_end) {
2957
		pr_warn_ratelimited("%s: allocation fail\n", __func__);
2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
		schedule();
		goto retry;
	}
	io_end->offset = offset;
	io_end->size = size;
	/*
	 * We need to hold a reference to the page to make sure it
	 * doesn't get evicted before ext4_end_io_work() has a chance
	 * to convert the extent from written to unwritten.
	 */
	io_end->page = page;
	get_page(io_end->page);

	bh->b_private = io_end;
	bh->b_end_io = ext4_end_io_buffer_write;
	return 0;
}

2976 2977 2978 2979 2980
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
2981
 * For holes, we fallocate those blocks, mark them as uninitialized
2982
 * If those blocks were preallocated, we mark sure they are splited, but
2983
 * still keep the range to write as uninitialized.
2984
 *
2985 2986
 * The unwrritten extents will be converted to written when DIO is completed.
 * For async direct IO, since the IO may still pending when return, we
L
Lucas De Marchi 已提交
2987
 * set up an end_io call back function, which will do the conversion
2988
 * when async direct IO completed.
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);

	loff_t final_size = offset + count;
	if (rw == WRITE && final_size <= inode->i_size) {
3006 3007
		int overwrite = 0;

3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
		BUG_ON(iocb->private == NULL);

		/* If we do a overwrite dio, i_mutex locking can be released */
		overwrite = *((int *)iocb->private);

		if (overwrite) {
			down_read(&EXT4_I(inode)->i_data_sem);
			mutex_unlock(&inode->i_mutex);
		}

3018
		/*
3019 3020 3021
 		 * We could direct write to holes and fallocate.
		 *
 		 * Allocated blocks to fill the hole are marked as uninitialized
L
Lucas De Marchi 已提交
3022
 		 * to prevent parallel buffered read to expose the stale data
3023
 		 * before DIO complete the data IO.
3024 3025
		 *
 		 * As to previously fallocated extents, ext4 get_block
3026 3027 3028
 		 * will just simply mark the buffer mapped but still
 		 * keep the extents uninitialized.
 		 *
3029 3030 3031 3032 3033 3034 3035 3036
		 * for non AIO case, we will convert those unwritten extents
		 * to written after return back from blockdev_direct_IO.
		 *
		 * for async DIO, the conversion needs to be defered when
		 * the IO is completed. The ext4 end_io callback function
		 * will be called to take care of the conversion work.
		 * Here for async case, we allocate an io_end structure to
		 * hook to the iocb.
3037
 		 */
3038 3039 3040
		iocb->private = NULL;
		EXT4_I(inode)->cur_aio_dio = NULL;
		if (!is_sync_kiocb(iocb)) {
3041 3042
			ext4_io_end_t *io_end =
				ext4_init_io_end(inode, GFP_NOFS);
3043 3044 3045 3046
			if (!io_end) {
				ret = -ENOMEM;
				goto retake_lock;
			}
3047 3048
			io_end->flag |= EXT4_IO_END_DIRECT;
			iocb->private = io_end;
3049 3050
			/*
			 * we save the io structure for current async
3051
			 * direct IO, so that later ext4_map_blocks()
3052 3053 3054 3055 3056 3057 3058
			 * could flag the io structure whether there
			 * is a unwritten extents needs to be converted
			 * when IO is completed.
			 */
			EXT4_I(inode)->cur_aio_dio = iocb->private;
		}

3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
		if (overwrite)
			ret = __blockdev_direct_IO(rw, iocb, inode,
						 inode->i_sb->s_bdev, iov,
						 offset, nr_segs,
						 ext4_get_block_write_nolock,
						 ext4_end_io_dio,
						 NULL,
						 0);
		else
			ret = __blockdev_direct_IO(rw, iocb, inode,
						 inode->i_sb->s_bdev, iov,
						 offset, nr_segs,
						 ext4_get_block_write,
						 ext4_end_io_dio,
						 NULL,
						 DIO_LOCKING);
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
		if (iocb->private)
			EXT4_I(inode)->cur_aio_dio = NULL;
		/*
		 * The io_end structure takes a reference to the inode,
		 * that structure needs to be destroyed and the
		 * reference to the inode need to be dropped, when IO is
		 * complete, even with 0 byte write, or failed.
		 *
		 * In the successful AIO DIO case, the io_end structure will be
		 * desctroyed and the reference to the inode will be dropped
		 * after the end_io call back function is called.
		 *
		 * In the case there is 0 byte write, or error case, since
		 * VFS direct IO won't invoke the end_io call back function,
		 * we need to free the end_io structure here.
		 */
		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
			ext4_free_io_end(iocb->private);
			iocb->private = NULL;
3094
		} else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3095
						EXT4_STATE_DIO_UNWRITTEN)) {
3096
			int err;
3097 3098
			/*
			 * for non AIO case, since the IO is already
L
Lucas De Marchi 已提交
3099
			 * completed, we could do the conversion right here
3100
			 */
3101 3102 3103 3104
			err = ext4_convert_unwritten_extents(inode,
							     offset, ret);
			if (err < 0)
				ret = err;
3105
			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3106
		}
3107 3108 3109 3110 3111 3112 3113 3114

	retake_lock:
		/* take i_mutex locking again if we do a ovewrite dio */
		if (overwrite) {
			up_read(&EXT4_I(inode)->i_data_sem);
			mutex_lock(&inode->i_mutex);
		}

3115 3116
		return ret;
	}
3117 3118

	/* for write the the end of file case, we fall back to old way */
3119 3120 3121 3122 3123 3124 3125 3126 3127
	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3128
	ssize_t ret;
3129

3130 3131 3132 3133 3134 3135
	/*
	 * If we are doing data journalling we don't support O_DIRECT
	 */
	if (ext4_should_journal_data(inode))
		return 0;

3136
	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3137
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3138 3139 3140 3141 3142 3143
		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
	else
		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
	trace_ext4_direct_IO_exit(inode, offset,
				iov_length(iov, nr_segs), rw, ret);
	return ret;
3144 3145
}

3146
/*
3147
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3159
static int ext4_journalled_set_page_dirty(struct page *page)
3160 3161 3162 3163 3164
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3165
static const struct address_space_operations ext4_ordered_aops = {
3166 3167
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3168
	.writepage		= ext4_writepage,
3169 3170 3171 3172 3173 3174 3175 3176
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3177
	.error_remove_page	= generic_error_remove_page,
3178 3179
};

3180
static const struct address_space_operations ext4_writeback_aops = {
3181 3182
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3183
	.writepage		= ext4_writepage,
3184 3185 3186 3187 3188 3189 3190 3191
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3192
	.error_remove_page	= generic_error_remove_page,
3193 3194
};

3195
static const struct address_space_operations ext4_journalled_aops = {
3196 3197
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3198
	.writepage		= ext4_writepage,
3199 3200 3201 3202 3203 3204
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
3205
	.direct_IO		= ext4_direct_IO,
3206
	.is_partially_uptodate  = block_is_partially_uptodate,
3207
	.error_remove_page	= generic_error_remove_page,
3208 3209
};

3210
static const struct address_space_operations ext4_da_aops = {
3211 3212
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3213
	.writepage		= ext4_writepage,
3214 3215 3216 3217 3218 3219 3220 3221 3222
	.writepages		= ext4_da_writepages,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3223
	.error_remove_page	= generic_error_remove_page,
3224 3225
};

3226
void ext4_set_aops(struct inode *inode)
3227
{
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
	switch (ext4_inode_journal_mode(inode)) {
	case EXT4_INODE_ORDERED_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_ordered_aops;
		break;
	case EXT4_INODE_WRITEBACK_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_writeback_aops;
		break;
	case EXT4_INODE_JOURNAL_DATA_MODE:
3242
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3243 3244 3245 3246
		break;
	default:
		BUG();
	}
3247 3248
}

3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268

/*
 * ext4_discard_partial_page_buffers()
 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
 * This function finds and locks the page containing the offset
 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
 * Calling functions that already have the page locked should call
 * ext4_discard_partial_page_buffers_no_lock directly.
 */
int ext4_discard_partial_page_buffers(handle_t *handle,
		struct address_space *mapping, loff_t from,
		loff_t length, int flags)
{
	struct inode *inode = mapping->host;
	struct page *page;
	int err = 0;

	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
	if (!page)
3269
		return -ENOMEM;
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311

	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
		from, length, flags);

	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * ext4_discard_partial_page_buffers_no_lock()
 * Zeros a page range of length 'length' starting from offset 'from'.
 * Buffer heads that correspond to the block aligned regions of the
 * zeroed range will be unmapped.  Unblock aligned regions
 * will have the corresponding buffer head mapped if needed so that
 * that region of the page can be updated with the partial zero out.
 *
 * This function assumes that the page has already been  locked.  The
 * The range to be discarded must be contained with in the given page.
 * If the specified range exceeds the end of the page it will be shortened
 * to the end of the page that corresponds to 'from'.  This function is
 * appropriate for updating a page and it buffer heads to be unmapped and
 * zeroed for blocks that have been either released, or are going to be
 * released.
 *
 * handle: The journal handle
 * inode:  The files inode
 * page:   A locked page that contains the offset "from"
 * from:   The starting byte offset (from the begining of the file)
 *         to begin discarding
 * len:    The length of bytes to discard
 * flags:  Optional flags that may be used:
 *
 *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
 *         Only zero the regions of the page whose buffer heads
 *         have already been unmapped.  This flag is appropriate
 *         for updateing the contents of a page whose blocks may
 *         have already been released, and we only want to zero
 *         out the regions that correspond to those released blocks.
 *
 * Returns zero on sucess or negative on failure.
 */
E
Eric Sandeen 已提交
3312
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags)
{
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
	unsigned int blocksize, max, pos;
	ext4_lblk_t iblock;
	struct buffer_head *bh;
	int err = 0;

	blocksize = inode->i_sb->s_blocksize;
	max = PAGE_CACHE_SIZE - offset;

	if (index != page->index)
		return -EINVAL;

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the page
	 */
	if (length > max || length < 0)
		length = max;

	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

3338 3339
	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	pos = offset;
	while (pos < offset + length) {
3352 3353
		unsigned int end_of_block, range_to_discard;

3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
		err = 0;

		/* The length of space left to zero and unmap */
		range_to_discard = offset + length - pos;

		/* The length of space until the end of the block */
		end_of_block = blocksize - (pos & (blocksize-1));

		/*
		 * Do not unmap or zero past end of block
		 * for this buffer head
		 */
		if (range_to_discard > end_of_block)
			range_to_discard = end_of_block;


		/*
		 * Skip this buffer head if we are only zeroing unampped
		 * regions of the page
		 */
		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
			buffer_mapped(bh))
				goto next;

		/* If the range is block aligned, unmap */
		if (range_to_discard == blocksize) {
			clear_buffer_dirty(bh);
			bh->b_bdev = NULL;
			clear_buffer_mapped(bh);
			clear_buffer_req(bh);
			clear_buffer_new(bh);
			clear_buffer_delay(bh);
			clear_buffer_unwritten(bh);
			clear_buffer_uptodate(bh);
			zero_user(page, pos, range_to_discard);
			BUFFER_TRACE(bh, "Buffer discarded");
			goto next;
		}

		/*
		 * If this block is not completely contained in the range
		 * to be discarded, then it is not going to be released. Because
		 * we need to keep this block, we need to make sure this part
		 * of the page is uptodate before we modify it by writeing
		 * partial zeros on it.
		 */
		if (!buffer_mapped(bh)) {
			/*
			 * Buffer head must be mapped before we can read
			 * from the block
			 */
			BUFFER_TRACE(bh, "unmapped");
			ext4_get_block(inode, iblock, bh, 0);
			/* unmapped? It's a hole - nothing to do */
			if (!buffer_mapped(bh)) {
				BUFFER_TRACE(bh, "still unmapped");
				goto next;
			}
		}

		/* Ok, it's mapped. Make sure it's up-to-date */
		if (PageUptodate(page))
			set_buffer_uptodate(bh);

		if (!buffer_uptodate(bh)) {
			err = -EIO;
			ll_rw_block(READ, 1, &bh);
			wait_on_buffer(bh);
			/* Uhhuh. Read error. Complain and punt.*/
			if (!buffer_uptodate(bh))
				goto next;
		}

		if (ext4_should_journal_data(inode)) {
			BUFFER_TRACE(bh, "get write access");
			err = ext4_journal_get_write_access(handle, bh);
			if (err)
				goto next;
		}

		zero_user(page, pos, range_to_discard);

		err = 0;
		if (ext4_should_journal_data(inode)) {
			err = ext4_handle_dirty_metadata(handle, inode, bh);
3439
		} else
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
			mark_buffer_dirty(bh);

		BUFFER_TRACE(bh, "Partial buffer zeroed");
next:
		bh = bh->b_this_page;
		iblock++;
		pos += range_to_discard;
	}

	return err;
}

3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
int ext4_can_truncate(struct inode *inode)
{
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
/*
 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 * associated with the given offset and length
 *
 * @inode:  File inode
 * @offset: The offset where the hole will begin
 * @len:    The length of the hole
 *
 * Returns: 0 on sucess or negative on failure
 */

int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	if (!S_ISREG(inode->i_mode))
3478
		return -EOPNOTSUPP;
3479 3480 3481

	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
		/* TODO: Add support for non extent hole punching */
3482
		return -EOPNOTSUPP;
3483 3484
	}

3485 3486
	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
		/* TODO: Add support for bigalloc file systems */
3487
		return -EOPNOTSUPP;
3488 3489
	}

3490 3491 3492
	return ext4_ext_punch_hole(file, offset, length);
}

3493
/*
3494
 * ext4_truncate()
3495
 *
3496 3497
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3498 3499
 * simultaneously on behalf of the same inode.
 *
3500
 * As we work through the truncate and commit bits of it to the journal there
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3514
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3515
 * that this inode's truncate did not complete and it will again call
3516 3517
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3518
 * that's fine - as long as they are linked from the inode, the post-crash
3519
 * ext4_truncate() run will find them and release them.
3520
 */
3521
void ext4_truncate(struct inode *inode)
3522
{
3523 3524
	trace_ext4_truncate_enter(inode);

3525
	if (!ext4_can_truncate(inode))
3526 3527
		return;

3528
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3529

3530
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3531
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3532

3533
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3534
		ext4_ext_truncate(inode);
3535 3536
	else
		ext4_ind_truncate(inode);
3537

3538
	trace_ext4_truncate_exit(inode);
3539 3540 3541
}

/*
3542
 * ext4_get_inode_loc returns with an extra refcount against the inode's
3543 3544 3545 3546
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
3547 3548
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
3549
{
3550 3551 3552 3553 3554 3555
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
3556
	iloc->bh = NULL;
3557 3558
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
3559

3560 3561 3562
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
3563 3564
		return -EIO;

3565 3566 3567
	/*
	 * Figure out the offset within the block group inode table
	 */
3568
	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3569 3570 3571 3572 3573 3574
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
3575
	if (!bh) {
3576 3577
		EXT4_ERROR_INODE_BLOCK(inode, block,
				       "unable to read itable block");
3578 3579 3580 3581
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
3605
			int i, start;
3606

3607
			start = inode_offset & ~(inodes_per_block - 1);
3608

3609 3610
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
3623
			for (i = start; i < start + inodes_per_block; i++) {
3624 3625
				if (i == inode_offset)
					continue;
3626
				if (ext4_test_bit(i, bitmap_bh->b_data))
3627 3628 3629
					break;
			}
			brelse(bitmap_bh);
3630
			if (i == start + inodes_per_block) {
3631 3632 3633 3634 3635 3636 3637 3638 3639
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
3640 3641 3642 3643 3644 3645 3646 3647 3648
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
3649
			/* s_inode_readahead_blks is always a power of 2 */
3650 3651 3652 3653 3654
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
3655
			if (ext4_has_group_desc_csum(sb))
3656
				num -= ext4_itable_unused_count(sb, gdp);
3657 3658 3659 3660 3661 3662 3663
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

3664 3665 3666 3667 3668
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
3669
		trace_ext4_load_inode(inode);
3670 3671
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
3672
		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3673 3674
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
3675 3676
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
3677 3678 3679 3680 3681 3682 3683 3684 3685
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

3686
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3687 3688
{
	/* We have all inode data except xattrs in memory here. */
3689
	return __ext4_get_inode_loc(inode, iloc,
3690
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3691 3692
}

3693
void ext4_set_inode_flags(struct inode *inode)
3694
{
3695
	unsigned int flags = EXT4_I(inode)->i_flags;
3696 3697

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3698
	if (flags & EXT4_SYNC_FL)
3699
		inode->i_flags |= S_SYNC;
3700
	if (flags & EXT4_APPEND_FL)
3701
		inode->i_flags |= S_APPEND;
3702
	if (flags & EXT4_IMMUTABLE_FL)
3703
		inode->i_flags |= S_IMMUTABLE;
3704
	if (flags & EXT4_NOATIME_FL)
3705
		inode->i_flags |= S_NOATIME;
3706
	if (flags & EXT4_DIRSYNC_FL)
3707 3708 3709
		inode->i_flags |= S_DIRSYNC;
}

3710 3711 3712
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3733
}
3734

3735
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3736
				  struct ext4_inode_info *ei)
3737 3738
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
3739 3740
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
3741 3742 3743 3744 3745 3746

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
3747
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
3748 3749 3750 3751 3752
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
3753 3754 3755 3756
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
3757

3758
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3759
{
3760 3761
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
3762 3763
	struct ext4_inode_info *ei;
	struct inode *inode;
3764
	journal_t *journal = EXT4_SB(sb)->s_journal;
3765
	long ret;
3766
	int block;
3767 3768
	uid_t i_uid;
	gid_t i_gid;
3769

3770 3771 3772 3773 3774 3775 3776
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
3777
	iloc.bh = NULL;
3778

3779 3780
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
3781
		goto bad_inode;
3782
	raw_inode = ext4_raw_inode(&iloc);
3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815

	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
		    EXT4_INODE_SIZE(inode->i_sb)) {
			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
				EXT4_INODE_SIZE(inode->i_sb));
			ret = -EIO;
			goto bad_inode;
		}
	} else
		ei->i_extra_isize = 0;

	/* Precompute checksum seed for inode metadata */
	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
		__u32 csum;
		__le32 inum = cpu_to_le32(inode->i_ino);
		__le32 gen = raw_inode->i_generation;
		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
				   sizeof(inum));
		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
					      sizeof(gen));
	}

	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
		EXT4_ERROR_INODE(inode, "checksum invalid");
		ret = -EIO;
		goto bad_inode;
	}

3816
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3817 3818
	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3819
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3820 3821
		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3822
	}
3823 3824
	i_uid_write(inode, i_uid);
	i_gid_write(inode, i_gid);
M
Miklos Szeredi 已提交
3825
	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3826

3827
	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3828 3829 3830 3831 3832 3833 3834 3835 3836
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
3837
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3838
			/* this inode is deleted */
3839
			ret = -ESTALE;
3840 3841 3842 3843 3844 3845 3846 3847
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3848
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3849
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3850
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
3851 3852
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3853
	inode->i_size = ext4_isize(raw_inode);
3854
	ei->i_disksize = inode->i_size;
3855 3856 3857
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
3858 3859
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
3860
	ei->i_last_alloc_group = ~0;
3861 3862 3863 3864
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
3865
	for (block = 0; block < EXT4_N_BLOCKS; block++)
3866 3867 3868
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

3880
		read_lock(&journal->j_state_lock);
3881 3882 3883 3884 3885 3886 3887 3888
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
3889
		read_unlock(&journal->j_state_lock);
3890 3891 3892 3893
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

3894
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3895 3896
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
3897 3898
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
3899 3900
		} else {
			__le32 *magic = (void *)raw_inode +
3901
					EXT4_GOOD_OLD_INODE_SIZE +
3902
					ei->i_extra_isize;
3903
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3904
				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3905
		}
3906
	}
3907

K
Kalpak Shah 已提交
3908 3909 3910 3911 3912
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

3913 3914 3915 3916 3917 3918 3919
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

3920
	ret = 0;
3921
	if (ei->i_file_acl &&
3922
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3923 3924
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
3925 3926
		ret = -EIO;
		goto bad_inode;
3927
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3928 3929 3930 3931 3932
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
3933
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3934 3935
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
3936
		/* Validate block references which are part of inode */
3937
		ret = ext4_ind_check_inode(inode);
3938
	}
3939
	if (ret)
3940
		goto bad_inode;
3941

3942
	if (S_ISREG(inode->i_mode)) {
3943 3944 3945
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
3946
	} else if (S_ISDIR(inode->i_mode)) {
3947 3948
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
3949
	} else if (S_ISLNK(inode->i_mode)) {
3950
		if (ext4_inode_is_fast_symlink(inode)) {
3951
			inode->i_op = &ext4_fast_symlink_inode_operations;
3952 3953 3954
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
3955 3956
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
3957
		}
3958 3959
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3960
		inode->i_op = &ext4_special_inode_operations;
3961 3962 3963 3964 3965 3966
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3967 3968
	} else {
		ret = -EIO;
3969
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3970
		goto bad_inode;
3971
	}
3972
	brelse(iloc.bh);
3973
	ext4_set_inode_flags(inode);
3974 3975
	unlock_new_inode(inode);
	return inode;
3976 3977

bad_inode:
3978
	brelse(iloc.bh);
3979 3980
	iget_failed(inode);
	return ERR_PTR(ret);
3981 3982
}

3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3996
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3997
		raw_inode->i_blocks_high = 0;
3998
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3999 4000 4001 4002 4003 4004
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
4005 4006 4007 4008
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4009
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4010
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4011
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4012
	} else {
4013
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
4014 4015 4016 4017
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4018
	}
4019
	return 0;
4020 4021
}

4022 4023 4024 4025 4026 4027 4028
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
4029
static int ext4_do_update_inode(handle_t *handle,
4030
				struct inode *inode,
4031
				struct ext4_iloc *iloc)
4032
{
4033 4034
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
4035 4036
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;
4037 4038
	uid_t i_uid;
	gid_t i_gid;
4039 4040 4041

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
4042
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4043
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4044

4045
	ext4_get_inode_flags(ei);
4046
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4047 4048
	i_uid = i_uid_read(inode);
	i_gid = i_gid_read(inode);
4049
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4050 4051
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4052 4053 4054 4055
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
4056
		if (!ei->i_dtime) {
4057
			raw_inode->i_uid_high =
4058
				cpu_to_le16(high_16_bits(i_uid));
4059
			raw_inode->i_gid_high =
4060
				cpu_to_le16(high_16_bits(i_gid));
4061 4062 4063 4064 4065
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
4066 4067
		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4068 4069 4070 4071
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4072 4073 4074 4075 4076 4077

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4078 4079
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4080
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4081
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4082 4083
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4084 4085
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4086
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4103
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4104
			ext4_handle_sync(handle);
4105
			err = ext4_handle_dirty_super(handle, sb);
4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4120 4121 4122
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
4123

4124 4125 4126 4127 4128
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4129
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4130 4131
	}

4132 4133
	ext4_inode_csum_set(inode, raw_inode, ei);

4134
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4135
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4136 4137
	if (!err)
		err = rc;
4138
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4139

4140
	ext4_update_inode_fsync_trans(handle, inode, 0);
4141
out_brelse:
4142
	brelse(bh);
4143
	ext4_std_error(inode->i_sb, err);
4144 4145 4146 4147
	return err;
}

/*
4148
 * ext4_write_inode()
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4165
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4182
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4183
{
4184 4185
	int err;

4186 4187 4188
	if (current->flags & PF_MEMALLOC)
		return 0;

4189 4190 4191 4192 4193 4194
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
4195

4196
		if (wbc->sync_mode != WB_SYNC_ALL)
4197 4198 4199 4200 4201
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
4202

4203
		err = __ext4_get_inode_loc(inode, &iloc, 0);
4204 4205
		if (err)
			return err;
4206
		if (wbc->sync_mode == WB_SYNC_ALL)
4207 4208
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4209 4210
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
4211 4212
			err = -EIO;
		}
4213
		brelse(iloc.bh);
4214 4215
	}
	return err;
4216 4217 4218
}

/*
4219
 * ext4_setattr()
4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4233 4234 4235 4236 4237 4238 4239 4240
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4241
 */
4242
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4243 4244 4245
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
4246
	int orphan = 0;
4247 4248 4249 4250 4251 4252
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

4253
	if (is_quota_modification(inode, attr))
4254
		dquot_initialize(inode);
4255 4256
	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4257 4258 4259 4260
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
D
Dmitry Monakhov 已提交
4261
		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4262
					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4263 4264 4265 4266
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4267
		error = dquot_transfer(inode, attr);
4268
		if (error) {
4269
			ext4_journal_stop(handle);
4270 4271 4272 4273 4274 4275 4276 4277
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4278 4279
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4280 4281
	}

4282
	if (attr->ia_valid & ATTR_SIZE) {
4283 4284
		inode_dio_wait(inode);

4285
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4286 4287
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

4288 4289
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
4290 4291 4292
		}
	}

4293
	if (S_ISREG(inode->i_mode) &&
4294
	    attr->ia_valid & ATTR_SIZE &&
4295
	    (attr->ia_size < inode->i_size)) {
4296 4297
		handle_t *handle;

4298
		handle = ext4_journal_start(inode, 3);
4299 4300 4301 4302
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4303 4304 4305 4306
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
4307 4308
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4309 4310
		if (!error)
			error = rc;
4311
		ext4_journal_stop(handle);
4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
4324
				orphan = 0;
4325 4326 4327 4328
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4329 4330
	}

4331
	if (attr->ia_valid & ATTR_SIZE) {
4332
		if (attr->ia_size != i_size_read(inode))
4333
			truncate_setsize(inode, attr->ia_size);
4334
		ext4_truncate(inode);
4335
	}
4336

C
Christoph Hellwig 已提交
4337 4338 4339 4340 4341 4342 4343 4344 4345
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
4346
	if (orphan && inode->i_nlink)
4347
		ext4_orphan_del(NULL, inode);
4348 4349

	if (!rc && (ia_valid & ATTR_MODE))
4350
		rc = ext4_acl_chmod(inode);
4351 4352

err_out:
4353
	ext4_std_error(inode->i_sb, error);
4354 4355 4356 4357 4358
	if (!error)
		error = rc;
	return error;
}

4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
4378 4379
	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
				EXT4_I(inode)->i_reserved_data_blocks);
4380 4381 4382 4383

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4384

4385 4386
static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
4387
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4388
		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4389
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4390
}
4391

4392
/*
4393 4394 4395
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4396
 *
4397
 * If datablocks are discontiguous, they are possible to spread over
4398
 * different block groups too. If they are contiuguous, with flexbg,
4399
 * they could still across block group boundary.
4400
 *
4401 4402
 * Also account for superblock, inode, quota and xattr blocks
 */
4403
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4404
{
4405 4406
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
4433 4434
	if (groups > ngroups)
		groups = ngroups;
4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
L
Lucas De Marchi 已提交
4448
 * Calculate the total number of credits to reserve to fit
4449 4450
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4451
 *
4452
 * This could be called via ext4_write_begin()
4453
 *
4454
 * We need to consider the worse case, when
4455
 * one new block per extent.
4456
 */
A
Alex Tomas 已提交
4457
int ext4_writepage_trans_blocks(struct inode *inode)
4458
{
4459
	int bpp = ext4_journal_blocks_per_page(inode);
4460 4461
	int ret;

4462
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4463

4464
	/* Account for data blocks for journalled mode */
4465
	if (ext4_should_journal_data(inode))
4466
		ret += bpp;
4467 4468
	return ret;
}
4469 4470 4471 4472 4473

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
4474
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4475 4476 4477 4478 4479 4480 4481 4482 4483
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4484
/*
4485
 * The caller must have previously called ext4_reserve_inode_write().
4486 4487
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4488
int ext4_mark_iloc_dirty(handle_t *handle,
4489
			 struct inode *inode, struct ext4_iloc *iloc)
4490 4491 4492
{
	int err = 0;

4493
	if (IS_I_VERSION(inode))
4494 4495
		inode_inc_iversion(inode);

4496 4497 4498
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4499
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4500
	err = ext4_do_update_inode(handle, inode, iloc);
4501 4502 4503 4504 4505 4506 4507 4508 4509 4510
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4511 4512
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4513
{
4514 4515 4516 4517 4518 4519 4520 4521 4522
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
4523 4524
		}
	}
4525
	ext4_std_error(inode->i_sb, err);
4526 4527 4528
	return err;
}

4529 4530 4531 4532
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
4533 4534 4535 4536
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
4549 4550
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
4583
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4584
{
4585
	struct ext4_iloc iloc;
4586 4587 4588
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
4589 4590

	might_sleep();
4591
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4592
	err = ext4_reserve_inode_write(handle, inode, &iloc);
4593 4594
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4595
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
4609 4610
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
4611 4612
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4613
					ext4_warning(inode->i_sb,
4614 4615 4616
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
4617 4618
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
4619 4620 4621 4622
				}
			}
		}
	}
4623
	if (!err)
4624
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4625 4626 4627 4628
	return err;
}

/*
4629
 * ext4_dirty_inode() is called from __mark_inode_dirty()
4630 4631 4632 4633 4634
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
4635
 * Also, dquot_alloc_block() will always dirty the inode when blocks
4636 4637 4638 4639 4640 4641
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
4642
void ext4_dirty_inode(struct inode *inode, int flags)
4643 4644 4645
{
	handle_t *handle;

4646
	handle = ext4_journal_start(inode, 2);
4647 4648
	if (IS_ERR(handle))
		goto out;
4649 4650 4651

	ext4_mark_inode_dirty(handle, inode);

4652
	ext4_journal_stop(handle);
4653 4654 4655 4656 4657 4658 4659 4660
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
4661
 * ext4_reserve_inode_write, this leaves behind no bh reference and
4662 4663 4664
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
4665
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4666
{
4667
	struct ext4_iloc iloc;
4668 4669 4670

	int err = 0;
	if (handle) {
4671
		err = ext4_get_inode_loc(inode, &iloc);
4672 4673
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
4674
			err = jbd2_journal_get_write_access(handle, iloc.bh);
4675
			if (!err)
4676
				err = ext4_handle_dirty_metadata(handle,
4677
								 NULL,
4678
								 iloc.bh);
4679 4680 4681
			brelse(iloc.bh);
		}
	}
4682
	ext4_std_error(inode->i_sb, err);
4683 4684 4685 4686
	return err;
}
#endif

4687
int ext4_change_inode_journal_flag(struct inode *inode, int val)
4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

4703
	journal = EXT4_JOURNAL(inode);
4704 4705
	if (!journal)
		return 0;
4706
	if (is_journal_aborted(journal))
4707
		return -EROFS;
4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718
	/* We have to allocate physical blocks for delalloc blocks
	 * before flushing journal. otherwise delalloc blocks can not
	 * be allocated any more. even more truncate on delalloc blocks
	 * could trigger BUG by flushing delalloc blocks in journal.
	 * There is no delalloc block in non-journal data mode.
	 */
	if (val && test_opt(inode->i_sb, DELALLOC)) {
		err = ext4_alloc_da_blocks(inode);
		if (err < 0)
			return err;
	}
4719

4720
	jbd2_journal_lock_updates(journal);
4721 4722 4723 4724 4725 4726 4727 4728 4729 4730

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
4731
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4732 4733
	else {
		jbd2_journal_flush(journal);
4734
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4735
	}
4736
	ext4_set_aops(inode);
4737

4738
	jbd2_journal_unlock_updates(journal);
4739 4740 4741

	/* Finally we can mark the inode as dirty. */

4742
	handle = ext4_journal_start(inode, 1);
4743 4744 4745
	if (IS_ERR(handle))
		return PTR_ERR(handle);

4746
	err = ext4_mark_inode_dirty(handle, inode);
4747
	ext4_handle_sync(handle);
4748 4749
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
4750 4751 4752

	return err;
}
4753 4754 4755 4756 4757 4758

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

4759
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4760
{
4761
	struct page *page = vmf->page;
4762 4763
	loff_t size;
	unsigned long len;
4764
	int ret;
4765 4766 4767
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;
4768 4769 4770
	handle_t *handle;
	get_block_t *get_block;
	int retries = 0;
4771 4772

	/*
4773 4774
	 * This check is racy but catches the common case. We rely on
	 * __block_page_mkwrite() to do a reliable check.
4775
	 */
4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786
	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
	/* Delalloc case is easy... */
	if (test_opt(inode->i_sb, DELALLOC) &&
	    !ext4_should_journal_data(inode) &&
	    !ext4_nonda_switch(inode->i_sb)) {
		do {
			ret = __block_page_mkwrite(vma, vmf,
						   ext4_da_get_block_prep);
		} while (ret == -ENOSPC &&
		       ext4_should_retry_alloc(inode->i_sb, &retries));
		goto out_ret;
4787
	}
4788 4789

	lock_page(page);
4790 4791 4792 4793 4794 4795
	size = i_size_read(inode);
	/* Page got truncated from under us? */
	if (page->mapping != mapping || page_offset(page) > size) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
4796
	}
4797 4798 4799 4800 4801

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
4802
	/*
4803 4804
	 * Return if we have all the buffers mapped. This avoids the need to do
	 * journal_start/journal_stop which can block and take a long time
4805
	 */
4806 4807
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4808
					ext4_bh_unmapped)) {
4809 4810 4811 4812
			/* Wait so that we don't change page under IO */
			wait_on_page_writeback(page);
			ret = VM_FAULT_LOCKED;
			goto out;
4813
		}
4814
	}
4815
	unlock_page(page);
4816 4817 4818 4819 4820 4821 4822 4823
	/* OK, we need to fill the hole... */
	if (ext4_should_dioread_nolock(inode))
		get_block = ext4_get_block_write;
	else
		get_block = ext4_get_block;
retry_alloc:
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
4824
		ret = VM_FAULT_SIGBUS;
4825 4826 4827 4828 4829 4830 4831 4832
		goto out;
	}
	ret = __block_page_mkwrite(vma, vmf, get_block);
	if (!ret && ext4_should_journal_data(inode)) {
		if (walk_page_buffers(handle, page_buffers(page), 0,
			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
			unlock_page(page);
			ret = VM_FAULT_SIGBUS;
4833
			ext4_journal_stop(handle);
4834 4835 4836 4837 4838 4839 4840 4841 4842 4843
			goto out;
		}
		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
	}
	ext4_journal_stop(handle);
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry_alloc;
out_ret:
	ret = block_page_mkwrite_return(ret);
out:
4844 4845
	return ret;
}