inode.c 139.4 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
18
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 20 21 22
 */

#include <linux/fs.h>
#include <linux/time.h>
23
#include <linux/jbd2.h>
24 25 26 27 28 29
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
30
#include <linux/pagevec.h>
31
#include <linux/mpage.h>
32
#include <linux/namei.h>
33 34
#include <linux/uio.h>
#include <linux/bio.h>
35
#include <linux/workqueue.h>
36
#include <linux/kernel.h>
37
#include <linux/printk.h>
38
#include <linux/slab.h>
39
#include <linux/ratelimit.h>
40

41
#include "ext4_jbd2.h"
42 43
#include "xattr.h"
#include "acl.h"
44
#include "truncate.h"
45

46 47
#include <trace/events/ext4.h>

48 49
#define MPAGE_DA_EXTENT_TAIL 0x01

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
			      struct ext4_inode_info *ei)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	__u16 csum_lo;
	__u16 csum_hi = 0;
	__u32 csum;

	csum_lo = raw->i_checksum_lo;
	raw->i_checksum_lo = 0;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
		csum_hi = raw->i_checksum_hi;
		raw->i_checksum_hi = 0;
	}

	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
			   EXT4_INODE_SIZE(inode->i_sb));

	raw->i_checksum_lo = csum_lo;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = csum_hi;

	return csum;
}

static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
				  struct ext4_inode_info *ei)
{
	__u32 provided, calculated;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return 1;

	provided = le16_to_cpu(raw->i_checksum_lo);
	calculated = ext4_inode_csum(inode, raw, ei);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
	else
		calculated &= 0xFFFF;

	return provided == calculated;
}

static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
				struct ext4_inode_info *ei)
{
	__u32 csum;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return;

	csum = ext4_inode_csum(inode, raw, ei);
	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
}

117 118 119
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
120
	trace_ext4_begin_ordered_truncate(inode, new_size);
121 122 123 124 125 126 127 128 129 130 131
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
132 133
}

134
static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 136
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
E
Eric Sandeen 已提交
137 138 139
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags);
140

141 142 143
/*
 * Test whether an inode is a fast symlink.
 */
144
static int ext4_inode_is_fast_symlink(struct inode *inode)
145
{
146
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
147 148 149 150 151 152 153 154 155 156
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
157
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158
				 int nblocks)
159
{
160 161 162
	int ret;

	/*
163
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164 165 166 167
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
168
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
169
	jbd_debug(2, "restarting handle %p\n", handle);
170
	up_write(&EXT4_I(inode)->i_data_sem);
171
	ret = ext4_journal_restart(handle, nblocks);
172
	down_write(&EXT4_I(inode)->i_data_sem);
173
	ext4_discard_preallocations(inode);
174 175

	return ret;
176 177 178 179 180
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
181
void ext4_evict_inode(struct inode *inode)
182 183
{
	handle_t *handle;
184
	int err;
185

186
	trace_ext4_evict_inode(inode);
187 188 189

	ext4_ioend_wait(inode);

A
Al Viro 已提交
190
	if (inode->i_nlink) {
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
		/*
		 * When journalling data dirty buffers are tracked only in the
		 * journal. So although mm thinks everything is clean and
		 * ready for reaping the inode might still have some pages to
		 * write in the running transaction or waiting to be
		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
		 * (via truncate_inode_pages()) to discard these buffers can
		 * cause data loss. Also even if we did not discard these
		 * buffers, we would have no way to find them after the inode
		 * is reaped and thus user could see stale data if he tries to
		 * read them before the transaction is checkpointed. So be
		 * careful and force everything to disk here... We use
		 * ei->i_datasync_tid to store the newest transaction
		 * containing inode's data.
		 *
		 * Note that directories do not have this problem because they
		 * don't use page cache.
		 */
		if (ext4_should_journal_data(inode) &&
		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;

			jbd2_log_start_commit(journal, commit_tid);
			jbd2_log_wait_commit(journal, commit_tid);
			filemap_write_and_wait(&inode->i_data);
		}
A
Al Viro 已提交
218 219 220 221
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

222
	if (!is_bad_inode(inode))
223
		dquot_initialize(inode);
224

225 226
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
227 228 229 230 231
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

232 233 234 235 236
	/*
	 * Protect us against freezing - iput() caller didn't have to have any
	 * protection against it
	 */
	sb_start_intwrite(inode->i_sb);
237 238
	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
				    ext4_blocks_for_truncate(inode)+3);
239
	if (IS_ERR(handle)) {
240
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
241 242 243 244 245
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
246
		ext4_orphan_del(NULL, inode);
247
		sb_end_intwrite(inode->i_sb);
248 249 250 251
		goto no_delete;
	}

	if (IS_SYNC(inode))
252
		ext4_handle_sync(handle);
253
	inode->i_size = 0;
254 255
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
256
		ext4_warning(inode->i_sb,
257 258 259
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
260
	if (inode->i_blocks)
261
		ext4_truncate(inode);
262 263 264 265 266 267 268

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
269
	if (!ext4_handle_has_enough_credits(handle, 3)) {
270 271 272 273
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
274
			ext4_warning(inode->i_sb,
275 276 277
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
278
			ext4_orphan_del(NULL, inode);
279
			sb_end_intwrite(inode->i_sb);
280 281 282 283
			goto no_delete;
		}
	}

284
	/*
285
	 * Kill off the orphan record which ext4_truncate created.
286
	 * AKPM: I think this can be inside the above `if'.
287
	 * Note that ext4_orphan_del() has to be able to cope with the
288
	 * deletion of a non-existent orphan - this is because we don't
289
	 * know if ext4_truncate() actually created an orphan record.
290 291
	 * (Well, we could do this if we need to, but heck - it works)
	 */
292 293
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
294 295 296 297 298 299 300 301

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
302
	if (ext4_mark_inode_dirty(handle, inode))
303
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
304
		ext4_clear_inode(inode);
305
	else
306 307
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
308
	sb_end_intwrite(inode->i_sb);
309 310
	return;
no_delete:
A
Al Viro 已提交
311
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
312 313
}

314 315
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
316
{
317
	return &EXT4_I(inode)->i_reserved_quota;
318
}
319
#endif
320

321 322
/*
 * Calculate the number of metadata blocks need to reserve
323
 * to allocate a block located at @lblock
324
 */
325
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
326
{
327
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
328
		return ext4_ext_calc_metadata_amount(inode, lblock);
329

330
	return ext4_ind_calc_metadata_amount(inode, lblock);
331 332
}

333 334 335 336
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
337 338
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
339 340
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
341 342 343
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
344
	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
345
	if (unlikely(used > ei->i_reserved_data_blocks)) {
346
		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
347
			 "with only %d reserved data blocks",
348 349 350 351 352
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
353

354
	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
355 356 357 358 359 360
		ext4_warning(inode->i_sb, "ino %lu, allocated %d "
			"with only %d reserved metadata blocks "
			"(releasing %d blocks with reserved %d data blocks)",
			inode->i_ino, ei->i_allocated_meta_blocks,
			     ei->i_reserved_meta_blocks, used,
			     ei->i_reserved_data_blocks);
361 362 363 364
		WARN_ON(1);
		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
	}

365 366 367
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
368
	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
369
			   used + ei->i_allocated_meta_blocks);
370
	ei->i_allocated_meta_blocks = 0;
371

372 373 374 375 376 377
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
378
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
379
				   ei->i_reserved_meta_blocks);
380
		ei->i_reserved_meta_blocks = 0;
381
		ei->i_da_metadata_calc_len = 0;
382
	}
383
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
384

385 386
	/* Update quota subsystem for data blocks */
	if (quota_claim)
387
		dquot_claim_block(inode, EXT4_C2B(sbi, used));
388
	else {
389 390 391
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
392
		 * not re-claim the quota for fallocated blocks.
393
		 */
394
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
395
	}
396 397 398 399 400 401

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
402 403
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
404
		ext4_discard_preallocations(inode);
405 406
}

407
static int __check_block_validity(struct inode *inode, const char *func,
408 409
				unsigned int line,
				struct ext4_map_blocks *map)
410
{
411 412
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
413 414 415 416
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
417 418 419 420 421
		return -EIO;
	}
	return 0;
}

422
#define check_block_validity(inode, map)	\
423
	__check_block_validity((inode), __func__, __LINE__, (map))
424

425
/*
426 427
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
461 462 463 464 465 466 467 468 469
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
470 471 472 473 474
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
475 476
			if (num >= max_pages) {
				done = 1;
477
				break;
478
			}
479 480 481 482 483 484
		}
		pagevec_release(&pvec);
	}
	return num;
}

485
/*
486
 * The ext4_map_blocks() function tries to look up the requested blocks,
487
 * and returns if the blocks are already mapped.
488 489 490 491 492
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
493 494
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
495 496 497 498 499 500 501 502
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
503
 * that case, buffer head is unmapped
504 505 506
 *
 * It returns the error in case of allocation failure.
 */
507 508
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
509 510
{
	int retval;
511

512 513 514 515
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
516
	/*
517 518
	 * Try to see if we can get the block without requesting a new
	 * file system block.
519
	 */
520 521
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		down_read((&EXT4_I(inode)->i_data_sem));
522
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
523 524
		retval = ext4_ext_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
525
	} else {
526 527
		retval = ext4_ind_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
528
	}
529 530
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		up_read((&EXT4_I(inode)->i_data_sem));
531

532
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
533 534 535 536 537 538 539 540 541 542
		int ret;
		if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
			/* delayed alloc may be allocated by fallocate and
			 * coverted to initialized by directIO.
			 * we need to handle delayed extent here.
			 */
			down_write((&EXT4_I(inode)->i_data_sem));
			goto delayed_mapped;
		}
		ret = check_block_validity(inode, map);
543 544 545 546
		if (ret != 0)
			return ret;
	}

547
	/* If it is only a block(s) look up */
548
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
549 550 551 552 553 554
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
555
	 * ext4_ext_get_block() returns the create = 0
556 557
	 * with buffer head unmapped.
	 */
558
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
559 560
		return retval;

561
	/*
562 563
	 * Here we clear m_flags because after allocating an new extent,
	 * it will be set again.
564
	 */
565
	map->m_flags &= ~EXT4_MAP_FLAGS;
566

567
	/*
568 569 570 571
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
572 573
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
574 575 576 577 578 579 580

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
581
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
582
		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
583 584 585 586
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
587
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
588
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
589
	} else {
590
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
591

592
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
593 594 595 596 597
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
598
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
599
		}
600

601 602 603 604 605 606 607
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
608
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
609 610
			ext4_da_update_reserve_space(inode, retval, 1);
	}
611
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
612
		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
613

614 615 616 617 618 619 620 621 622
		if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
			int ret;
delayed_mapped:
			/* delayed allocation blocks has been allocated */
			ret = ext4_es_remove_extent(inode, map->m_lblk,
						    map->m_len);
			if (ret < 0)
				retval = ret;
		}
623 624
	}

625
	up_write((&EXT4_I(inode)->i_data_sem));
626
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
627
		int ret = check_block_validity(inode, map);
628 629 630
		if (ret != 0)
			return ret;
	}
631 632 633
	return retval;
}

634 635 636
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

637 638
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
639
{
640
	handle_t *handle = ext4_journal_current_handle();
641
	struct ext4_map_blocks map;
J
Jan Kara 已提交
642
	int ret = 0, started = 0;
643
	int dio_credits;
644

T
Tao Ma 已提交
645 646 647
	if (ext4_has_inline_data(inode))
		return -ERANGE;

648 649 650
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

651
	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
J
Jan Kara 已提交
652
		/* Direct IO write... */
653 654 655
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
656 657
		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
					    dio_credits);
J
Jan Kara 已提交
658
		if (IS_ERR(handle)) {
659
			ret = PTR_ERR(handle);
660
			return ret;
661
		}
J
Jan Kara 已提交
662
		started = 1;
663 664
	}

665
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
666
	if (ret > 0) {
667 668 669
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
670
		ret = 0;
671
	}
J
Jan Kara 已提交
672 673
	if (started)
		ext4_journal_stop(handle);
674 675 676
	return ret;
}

677 678 679 680 681 682 683
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

684 685 686
/*
 * `handle' can be NULL if create is zero
 */
687
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
688
				ext4_lblk_t block, int create, int *errp)
689
{
690 691
	struct ext4_map_blocks map;
	struct buffer_head *bh;
692 693 694 695
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

696 697 698 699
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
700

701 702 703
	/* ensure we send some value back into *errp */
	*errp = 0;

704 705
	if (create && err == 0)
		err = -ENOSPC;	/* should never happen */
706 707 708 709 710 711
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
712
	if (unlikely(!bh)) {
713
		*errp = -ENOMEM;
714
		return NULL;
715
	}
716 717 718
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
719

720 721 722 723 724 725 726 727 728 729 730 731 732
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
733
		}
734 735 736 737 738 739 740
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
741
	}
742 743 744 745 746 747
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
748 749
}

750
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
751
			       ext4_lblk_t block, int create, int *err)
752
{
753
	struct buffer_head *bh;
754

755
	bh = ext4_getblk(handle, inode, block, create, err);
756 757 758 759
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
760
	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
761 762 763 764 765 766 767 768
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

769 770 771 772 773 774 775
int ext4_walk_page_buffers(handle_t *handle,
			   struct buffer_head *head,
			   unsigned from,
			   unsigned to,
			   int *partial,
			   int (*fn)(handle_t *handle,
				     struct buffer_head *bh))
776 777 778 779 780 781 782
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

783 784
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
785
	     block_start = block_end, bh = next) {
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
803
 * close off a transaction and start a new one between the ext4_get_block()
804
 * and the commit_write().  So doing the jbd2_journal_start at the start of
805 806
 * prepare_write() is the right place.
 *
807 808 809 810
 * Also, this function can nest inside ext4_writepage().  In that case, we
 * *know* that ext4_writepage() has generated enough buffer credits to do the
 * whole page.  So we won't block on the journal in that case, which is good,
 * because the caller may be PF_MEMALLOC.
811
 *
812
 * By accident, ext4 can be reentered when a transaction is open via
813 814 815 816 817 818
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
819
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
820 821 822 823
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
824 825
int do_journal_get_write_access(handle_t *handle,
				struct buffer_head *bh)
826
{
827 828 829
	int dirty = buffer_dirty(bh);
	int ret;

830 831
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
832
	/*
C
Christoph Hellwig 已提交
833
	 * __block_write_begin() could have dirtied some buffers. Clean
834 835
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
836
	 * by __block_write_begin() isn't a real problem here as we clear
837 838 839 840 841 842 843 844 845
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
846 847
}

848 849
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
850
static int ext4_write_begin(struct file *file, struct address_space *mapping,
851 852
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
853
{
854
	struct inode *inode = mapping->host;
855
	int ret, needed_blocks;
856 857
	handle_t *handle;
	int retries = 0;
858
	struct page *page;
859
	pgoff_t index;
860
	unsigned from, to;
N
Nick Piggin 已提交
861

862
	trace_ext4_write_begin(inode, pos, len, flags);
863 864 865 866 867
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
868
	index = pos >> PAGE_CACHE_SHIFT;
869 870
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
871

872 873 874 875
	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
						    flags, pagep);
		if (ret < 0)
876 877 878
			return ret;
		if (ret == 1)
			return 0;
879 880
	}

881 882 883 884 885 886 887 888 889 890 891 892 893 894
	/*
	 * grab_cache_page_write_begin() can take a long time if the
	 * system is thrashing due to memory pressure, or if the page
	 * is being written back.  So grab it first before we start
	 * the transaction handle.  This also allows us to allocate
	 * the page (if needed) without using GFP_NOFS.
	 */
retry_grab:
	page = grab_cache_page_write_begin(mapping, index, flags);
	if (!page)
		return -ENOMEM;
	unlock_page(page);

retry_journal:
895
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
896
	if (IS_ERR(handle)) {
897 898
		page_cache_release(page);
		return PTR_ERR(handle);
899
	}
900

901 902 903 904 905
	lock_page(page);
	if (page->mapping != mapping) {
		/* The page got truncated from under us */
		unlock_page(page);
		page_cache_release(page);
906
		ext4_journal_stop(handle);
907
		goto retry_grab;
908
	}
909
	wait_on_page_writeback(page);
910

911
	if (ext4_should_dioread_nolock(inode))
912
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
913
	else
914
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
915 916

	if (!ret && ext4_should_journal_data(inode)) {
917 918 919
		ret = ext4_walk_page_buffers(handle, page_buffers(page),
					     from, to, NULL,
					     do_journal_get_write_access);
920
	}
N
Nick Piggin 已提交
921 922

	if (ret) {
923
		unlock_page(page);
924
		/*
925
		 * __block_write_begin may have instantiated a few blocks
926 927
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
928 929 930
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
931
		 */
932
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
933 934 935 936
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
937
			ext4_truncate_failed_write(inode);
938
			/*
939
			 * If truncate failed early the inode might
940 941 942 943 944 945 946
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
947

948 949 950 951 952 953 954
		if (ret == -ENOSPC &&
		    ext4_should_retry_alloc(inode->i_sb, &retries))
			goto retry_journal;
		page_cache_release(page);
		return ret;
	}
	*pagep = page;
955 956 957
	return ret;
}

N
Nick Piggin 已提交
958 959
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
960 961 962 963
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
964
	return ext4_handle_dirty_metadata(handle, NULL, bh);
965 966
}

967
static int ext4_generic_write_end(struct file *file,
968 969 970
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
971 972 973 974 975
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

976 977 978 979 980 981
	if (ext4_has_inline_data(inode))
		copied = ext4_write_inline_data_end(inode, pos, len,
						    copied, page);
	else
		copied = block_write_end(file, mapping, pos,
					 len, copied, page, fsdata);
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1018 1019 1020 1021
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1022
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1023 1024
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1025
static int ext4_ordered_write_end(struct file *file,
1026 1027 1028
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1029
{
1030
	handle_t *handle = ext4_journal_current_handle();
1031
	struct inode *inode = mapping->host;
1032 1033
	int ret = 0, ret2;

1034
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1035
	ret = ext4_jbd2_file_inode(handle, inode);
1036 1037

	if (ret == 0) {
1038
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1039
							page, fsdata);
1040
		copied = ret2;
1041
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1042 1043 1044 1045 1046
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1047 1048
		if (ret2 < 0)
			ret = ret2;
1049 1050 1051
	} else {
		unlock_page(page);
		page_cache_release(page);
1052
	}
1053

1054
	ret2 = ext4_journal_stop(handle);
1055 1056
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1057

1058
	if (pos + len > inode->i_size) {
1059
		ext4_truncate_failed_write(inode);
1060
		/*
1061
		 * If truncate failed early the inode might still be
1062 1063 1064 1065 1066 1067 1068 1069
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1070
	return ret ? ret : copied;
1071 1072
}

N
Nick Piggin 已提交
1073
static int ext4_writeback_write_end(struct file *file,
1074 1075 1076
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1077
{
1078
	handle_t *handle = ext4_journal_current_handle();
1079
	struct inode *inode = mapping->host;
1080 1081
	int ret = 0, ret2;

1082
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1083
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1084
							page, fsdata);
1085
	copied = ret2;
1086
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1087 1088 1089 1090 1091 1092
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1093 1094
	if (ret2 < 0)
		ret = ret2;
1095

1096
	ret2 = ext4_journal_stop(handle);
1097 1098
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1099

1100
	if (pos + len > inode->i_size) {
1101
		ext4_truncate_failed_write(inode);
1102
		/*
1103
		 * If truncate failed early the inode might still be
1104 1105 1106 1107 1108 1109 1110
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1111
	return ret ? ret : copied;
1112 1113
}

N
Nick Piggin 已提交
1114
static int ext4_journalled_write_end(struct file *file,
1115 1116 1117
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1118
{
1119
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1120
	struct inode *inode = mapping->host;
1121 1122
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1123
	unsigned from, to;
1124
	loff_t new_i_size;
1125

1126
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1127 1128 1129
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

1130 1131
	BUG_ON(!ext4_handle_valid(handle));

1132 1133 1134 1135 1136 1137 1138 1139 1140
	if (ext4_has_inline_data(inode))
		copied = ext4_write_inline_data_end(inode, pos, len,
						    copied, page);
	else {
		if (copied < len) {
			if (!PageUptodate(page))
				copied = 0;
			page_zero_new_buffers(page, from+copied, to);
		}
1141

1142 1143 1144 1145 1146
		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
					     to, &partial, write_end_fn);
		if (!partial)
			SetPageUptodate(page);
	}
1147 1148
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1149
		i_size_write(inode, pos+copied);
1150
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1151
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1152 1153
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1154
		ret2 = ext4_mark_inode_dirty(handle, inode);
1155 1156 1157
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1158

1159
	unlock_page(page);
1160
	page_cache_release(page);
1161
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1162 1163 1164 1165 1166 1167
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1168
	ret2 = ext4_journal_stop(handle);
1169 1170
	if (!ret)
		ret = ret2;
1171
	if (pos + len > inode->i_size) {
1172
		ext4_truncate_failed_write(inode);
1173
		/*
1174
		 * If truncate failed early the inode might still be
1175 1176 1177 1178 1179 1180
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1181 1182

	return ret ? ret : copied;
1183
}
1184

1185
/*
1186
 * Reserve a single cluster located at lblock
1187
 */
1188
static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1189
{
A
Aneesh Kumar K.V 已提交
1190
	int retries = 0;
1191
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1192
	struct ext4_inode_info *ei = EXT4_I(inode);
1193
	unsigned int md_needed;
1194
	int ret;
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
	ext4_lblk_t save_last_lblock;
	int save_len;

	/*
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
	 */
	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
	if (ret)
		return ret;
1206 1207 1208 1209 1210 1211

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1212
repeat:
1213
	spin_lock(&ei->i_block_reservation_lock);
1214 1215 1216 1217 1218 1219
	/*
	 * ext4_calc_metadata_amount() has side effects, which we have
	 * to be prepared undo if we fail to claim space.
	 */
	save_len = ei->i_da_metadata_calc_len;
	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1220 1221
	md_needed = EXT4_NUM_B2C(sbi,
				 ext4_calc_metadata_amount(inode, lblock));
1222
	trace_ext4_da_reserve_space(inode, md_needed);
1223

1224 1225 1226 1227
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1228
	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1229 1230 1231
		ei->i_da_metadata_calc_len = save_len;
		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
		spin_unlock(&ei->i_block_reservation_lock);
A
Aneesh Kumar K.V 已提交
1232 1233 1234 1235
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1236
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1237 1238
		return -ENOSPC;
	}
1239
	ei->i_reserved_data_blocks++;
1240 1241
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1242

1243 1244 1245
	return 0;       /* success */
}

1246
static void ext4_da_release_space(struct inode *inode, int to_free)
1247 1248
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1249
	struct ext4_inode_info *ei = EXT4_I(inode);
1250

1251 1252 1253
	if (!to_free)
		return;		/* Nothing to release, exit */

1254
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1255

L
Li Zefan 已提交
1256
	trace_ext4_da_release_space(inode, to_free);
1257
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1258
		/*
1259 1260 1261 1262
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1263
		 */
1264
		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1265
			 "ino %lu, to_free %d with only %d reserved "
1266
			 "data blocks", inode->i_ino, to_free,
1267 1268 1269
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1270
	}
1271
	ei->i_reserved_data_blocks -= to_free;
1272

1273 1274 1275 1276 1277
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
1278 1279
		 * Note that in case of bigalloc, i_reserved_meta_blocks,
		 * i_reserved_data_blocks, etc. refer to number of clusters.
1280
		 */
1281
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1282
				   ei->i_reserved_meta_blocks);
1283
		ei->i_reserved_meta_blocks = 0;
1284
		ei->i_da_metadata_calc_len = 0;
1285
	}
1286

1287
	/* update fs dirty data blocks counter */
1288
	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1289 1290

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1291

1292
	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1293 1294 1295
}

static void ext4_da_page_release_reservation(struct page *page,
1296
					     unsigned long offset)
1297 1298 1299 1300
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;
1301 1302 1303
	struct inode *inode = page->mapping->host;
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int num_clusters;
1304
	ext4_fsblk_t lblk;
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1317

1318 1319 1320 1321 1322
	if (to_release) {
		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
		ext4_es_remove_extent(inode, lblk, to_release);
	}

1323 1324 1325 1326 1327 1328 1329
	/* If we have released all the blocks belonging to a cluster, then we
	 * need to release the reserved space for that cluster. */
	num_clusters = EXT4_NUM_B2C(sbi, to_release);
	while (num_clusters > 0) {
		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
			((num_clusters - 1) << sbi->s_cluster_bits);
		if (sbi->s_cluster_ratio == 1 ||
1330
		    !ext4_find_delalloc_cluster(inode, lblk))
1331 1332 1333 1334
			ext4_da_release_space(inode, 1);

		num_clusters--;
	}
1335
}
1336

1337 1338 1339 1340 1341 1342
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1343
 * them with writepage() call back
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
1354 1355
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
1356
{
1357 1358 1359 1360 1361
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1362
	loff_t size = i_size_read(inode);
1363 1364
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
1365
	sector_t pblock = 0, cur_logical = 0;
1366
	struct ext4_io_submit io_submit;
1367 1368

	BUG_ON(mpd->next_page <= mpd->first_page);
1369
	memset(&io_submit, 0, sizeof(io_submit));
1370 1371 1372
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1373
	 * If we look at mpd->b_blocknr we would only be looking
1374 1375
	 * at the currently mapped buffer_heads.
	 */
1376 1377 1378
	index = mpd->first_page;
	end = mpd->next_page - 1;

1379
	pagevec_init(&pvec, 0);
1380
	while (index <= end) {
1381
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1382 1383 1384
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
1385
			int skip_page = 0;
1386 1387
			struct page *page = pvec.pages[i];

1388 1389 1390
			index = page->index;
			if (index > end)
				break;
1391 1392 1393 1394 1395

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
1396 1397 1398 1399 1400 1401
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
1402 1403 1404 1405 1406
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1407 1408
			bh = page_bufs = page_buffers(page);
			block_start = 0;
1409
			do {
1410 1411 1412
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
1413 1414 1415 1416
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
1417 1418 1419 1420 1421 1422 1423
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
1424

1425 1426 1427 1428 1429
				/*
				 * skip page if block allocation undone and
				 * block is dirty
				 */
				if (ext4_bh_delay_or_unwritten(NULL, bh))
1430
					skip_page = 1;
1431 1432
				bh = bh->b_this_page;
				block_start += bh->b_size;
1433 1434
				cur_logical++;
				pblock++;
1435 1436
			} while (bh != page_bufs);

1437 1438 1439 1440
			if (skip_page) {
				unlock_page(page);
				continue;
			}
1441

1442
			clear_page_dirty_for_io(page);
1443 1444
			err = ext4_bio_write_page(&io_submit, page, len,
						  mpd->wbc);
1445
			if (!err)
1446
				mpd->pages_written++;
1447 1448 1449 1450 1451 1452 1453 1454 1455
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
1456
	ext4_io_submit(&io_submit);
1457 1458 1459
	return ret;
}

1460
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1461 1462 1463 1464 1465 1466
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1467
	ext4_lblk_t start, last;
1468

1469 1470
	index = mpd->first_page;
	end   = mpd->next_page - 1;
1471 1472 1473 1474 1475

	start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	ext4_es_remove_extent(inode, start, last - start + 1);

1476
	pagevec_init(&pvec, 0);
1477 1478 1479 1480 1481 1482
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
1483
			if (page->index > end)
1484 1485 1486 1487 1488 1489 1490
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
1491 1492
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
1493 1494 1495 1496
	}
	return;
}

1497 1498 1499
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1500 1501 1502
	struct super_block *sb = inode->i_sb;

	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1503 1504
	       EXT4_C2B(EXT4_SB(inode->i_sb),
			ext4_count_free_clusters(inode->i_sb)));
1505 1506
	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1507 1508
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1509
	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1510 1511
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1512 1513 1514 1515
	ext4_msg(sb, KERN_CRIT, "Block reservation details");
	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
		 EXT4_I(inode)->i_reserved_data_blocks);
	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1516
	       EXT4_I(inode)->i_reserved_meta_blocks);
1517 1518 1519
	return;
}

1520
/*
1521 1522
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
1523
 *
1524
 * @mpd - bh describing space
1525 1526 1527 1528
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1529
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1530
{
1531
	int err, blks, get_blocks_flags;
1532
	struct ext4_map_blocks map, *mapp = NULL;
1533 1534 1535 1536
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
1537 1538

	/*
1539 1540
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
1541
	 */
1542 1543 1544 1545 1546
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
1547 1548 1549 1550

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

1551
	/*
1552
	 * Call ext4_map_blocks() to allocate any delayed allocation
1553 1554 1555 1556 1557 1558 1559 1560
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
1561
	 * want to change *many* call functions, so ext4_map_blocks()
1562
	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1563 1564 1565 1566 1567
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
1568
	 */
1569 1570
	map.m_lblk = next;
	map.m_len = max_blocks;
1571
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1572 1573
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1574
	if (mpd->b_state & (1 << BH_Delay))
1575 1576
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

1577
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1578
	if (blks < 0) {
1579 1580
		struct super_block *sb = mpd->inode->i_sb;

1581
		err = blks;
1582
		/*
1583
		 * If get block returns EAGAIN or ENOSPC and there
1584 1585
		 * appears to be free blocks we will just let
		 * mpage_da_submit_io() unlock all of the pages.
1586 1587
		 */
		if (err == -EAGAIN)
1588
			goto submit_io;
1589

1590
		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1591
			mpd->retval = err;
1592
			goto submit_io;
1593 1594
		}

1595
		/*
1596 1597 1598 1599 1600
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
1601
		 */
1602 1603 1604 1605 1606 1607 1608 1609
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
1610
				"This should not happen!! Data will be lost");
1611 1612
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
1613
		}
1614
		/* invalidate all the pages */
1615
		ext4_da_block_invalidatepages(mpd);
1616 1617 1618

		/* Mark this page range as having been completed */
		mpd->io_done = 1;
1619
		return;
1620
	}
1621 1622
	BUG_ON(blks == 0);

1623
	mapp = &map;
1624 1625 1626
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
1627

1628 1629
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
1630 1631 1632
	}

	/*
1633
	 * Update on-disk size along with block allocation.
1634 1635 1636 1637 1638 1639
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
1640 1641 1642 1643 1644
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
1645 1646
	}

1647
submit_io:
1648
	mpage_da_submit_io(mpd, mapp);
1649
	mpd->io_done = 1;
1650 1651
}

1652 1653
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
1654 1655 1656 1657 1658 1659

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
1660
 * @b_state - b_state of the buffer head added
1661 1662 1663
 *
 * the function is used to collect contig. blocks in same state
 */
1664
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1665
				   unsigned long b_state)
1666 1667
{
	sector_t next;
1668 1669
	int blkbits = mpd->inode->i_blkbits;
	int nrblocks = mpd->b_size >> blkbits;
1670

1671 1672 1673 1674
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
1675
	 * ext4_map_blocks() multiple times in a loop
1676
	 */
1677
	if (nrblocks >= (8*1024*1024 >> blkbits))
1678 1679
		goto flush_it;

1680 1681
	/* check if the reserved journal credits might overflow */
	if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		}
	}
1692 1693 1694
	/*
	 * First block in the extent
	 */
1695 1696
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
1697
		mpd->b_size = 1 << blkbits;
1698
		mpd->b_state = b_state & BH_FLAGS;
1699 1700 1701
		return;
	}

1702
	next = mpd->b_blocknr + nrblocks;
1703 1704 1705
	/*
	 * Can we merge the block to our big extent?
	 */
1706
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1707
		mpd->b_size += 1 << blkbits;
1708 1709 1710
		return;
	}

1711
flush_it:
1712 1713 1714 1715
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
1716
	mpage_da_map_and_submit(mpd);
1717
	return;
1718 1719
}

1720
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1721
{
1722
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1723 1724
}

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
/*
 * This function is grabs code from the very beginning of
 * ext4_map_blocks, but assumes that the caller is from delayed write
 * time. This function looks up the requested blocks and sets the
 * buffer delay bit under the protection of i_data_sem.
 */
static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
			      struct ext4_map_blocks *map,
			      struct buffer_head *bh)
{
	int retval;
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;

	map->m_flags = 0;
	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, map->m_len,
		  (unsigned long) map->m_lblk);
	/*
	 * Try to see if we can get the block without requesting a new
	 * file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
	if (ext4_has_inline_data(inode)) {
		/*
		 * We will soon create blocks for this page, and let
		 * us pretend as if the blocks aren't allocated yet.
		 * In case of clusters, we have to handle the work
		 * of mapping from cluster so that the reserved space
		 * is calculated properly.
		 */
		if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
		    ext4_find_delalloc_cluster(inode, map->m_lblk))
			map->m_flags |= EXT4_MAP_FROM_CLUSTER;
		retval = 0;
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
	else
		retval = ext4_ind_map_blocks(NULL, inode, map, 0);

	if (retval == 0) {
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
		/* If the block was allocated from previously allocated cluster,
		 * then we dont need to reserve it again. */
		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
			retval = ext4_da_reserve_space(inode, iblock);
			if (retval)
				/* not enough space to reserve */
				goto out_unlock;
		}

1781 1782
		retval = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
					       ~0, EXTENT_STATUS_DELAYED);
1783 1784 1785
		if (retval)
			goto out_unlock;

1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
		 * and it should not appear on the bh->b_state.
		 */
		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;

		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
	}

out_unlock:
	up_read((&EXT4_I(inode)->i_data_sem));

	return retval;
}

1802
/*
1803 1804 1805
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
1806 1807 1808 1809 1810 1811 1812
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
1813
 */
1814 1815
int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int create)
1816
{
1817
	struct ext4_map_blocks map;
1818 1819 1820
	int ret = 0;

	BUG_ON(create == 0);
1821 1822 1823 1824
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
1825 1826 1827 1828 1829 1830

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
1831 1832
	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
	if (ret <= 0)
1833
		return ret;
1834

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
1846
		set_buffer_mapped(bh);
1847 1848
	}
	return 0;
1849
}
1850

1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
1868
	struct buffer_head *page_bufs = NULL;
1869
	handle_t *handle = NULL;
1870 1871 1872
	int ret = 0, err = 0;
	int inline_data = ext4_has_inline_data(inode);
	struct buffer_head *inode_bh = NULL;
1873

1874
	ClearPageChecked(page);
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890

	if (inline_data) {
		BUG_ON(page->index != 0);
		BUG_ON(len > ext4_get_max_inline_size(inode));
		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
		if (inode_bh == NULL)
			goto out;
	} else {
		page_bufs = page_buffers(page);
		if (!page_bufs) {
			BUG();
			goto out;
		}
		ext4_walk_page_buffers(handle, page_bufs, 0, len,
				       NULL, bget_one);
	}
1891 1892 1893 1894
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

1895 1896
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
				    ext4_writepage_trans_blocks(inode));
1897 1898 1899 1900 1901
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

1902 1903
	BUG_ON(!ext4_handle_valid(handle));

1904 1905
	if (inline_data) {
		ret = ext4_journal_get_write_access(handle, inode_bh);
1906

1907 1908 1909 1910 1911 1912 1913 1914 1915
		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);

	} else {
		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
					     do_journal_get_write_access);

		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
					     write_end_fn);
	}
1916 1917
	if (ret == 0)
		ret = err;
1918
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1919 1920 1921 1922
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

1923 1924 1925
	if (!ext4_has_inline_data(inode))
		ext4_walk_page_buffers(handle, page_bufs, 0, len,
				       NULL, bput_one);
1926
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1927
out:
1928
	brelse(inode_bh);
1929 1930 1931
	return ret;
}

1932
/*
1933 1934 1935 1936
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
L
Lucas De Marchi 已提交
1937
 * we are writing back data modified via mmap(), no one guarantees in which
1938 1939 1940 1941
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
1942 1943 1944
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
1945
 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1946
 *   - grab_page_cache when doing write_begin (have journal handle)
1947 1948 1949 1950 1951 1952 1953 1954 1955
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
1956
 * but other buffer_heads would be unmapped but dirty (dirty done via the
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1972
 */
1973
static int ext4_writepage(struct page *page,
1974
			  struct writeback_control *wbc)
1975
{
1976
	int ret = 0;
1977
	loff_t size;
1978
	unsigned int len;
1979
	struct buffer_head *page_bufs = NULL;
1980
	struct inode *inode = page->mapping->host;
1981
	struct ext4_io_submit io_submit;
1982

L
Lukas Czerner 已提交
1983
	trace_ext4_writepage(page);
1984 1985 1986 1987 1988
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
1989

T
Theodore Ts'o 已提交
1990
	page_bufs = page_buffers(page);
1991 1992 1993 1994 1995 1996 1997
	/*
	 * We cannot do block allocation or other extent handling in this
	 * function. If there are buffers needing that, we have to redirty
	 * the page. But we may reach here when we do a journal commit via
	 * journal_submit_inode_data_buffers() and in that case we must write
	 * allocated buffers to achieve data=ordered mode guarantees.
	 */
1998 1999
	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
				   ext4_bh_delay_or_unwritten)) {
2000
		redirty_page_for_writepage(wbc, page);
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
		if (current->flags & PF_MEMALLOC) {
			/*
			 * For memory cleaning there's no point in writing only
			 * some buffers. So just bail out. Warn if we came here
			 * from direct reclaim.
			 */
			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
							== PF_MEMALLOC);
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
2012
	}
2013

2014
	if (PageChecked(page) && ext4_should_journal_data(inode))
2015 2016 2017 2018
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
2019
		return __ext4_journalled_writepage(page, len);
2020

2021 2022 2023
	memset(&io_submit, 0, sizeof(io_submit));
	ret = ext4_bio_write_page(&io_submit, page, len, wbc);
	ext4_io_submit(&io_submit);
2024 2025 2026
	return ret;
}

2027
/*
2028
 * This is called via ext4_da_writepages() to
L
Lucas De Marchi 已提交
2029
 * calculate the total number of credits to reserve to fit
2030 2031 2032
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2033
 */
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2045
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2046 2047 2048 2049 2050
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2051

2052 2053
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
2054
 * address space and accumulate pages that need writing, and call
2055 2056
 * mpage_da_map_and_submit to map a single contiguous memory region
 * and then write them.
2057
 */
2058 2059
static int write_cache_pages_da(handle_t *handle,
				struct address_space *mapping,
2060
				struct writeback_control *wbc,
2061 2062
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
2063
{
2064
	struct buffer_head	*bh, *head;
2065
	struct inode		*inode = mapping->host;
2066 2067 2068 2069 2070 2071
	struct pagevec		pvec;
	unsigned int		nr_pages;
	sector_t		logical;
	pgoff_t			index, end;
	long			nr_to_write = wbc->nr_to_write;
	int			i, tag, ret = 0;
2072

2073 2074 2075
	memset(mpd, 0, sizeof(struct mpage_da_data));
	mpd->wbc = wbc;
	mpd->inode = inode;
2076 2077 2078 2079
	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

2080
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2081 2082 2083 2084
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

2085
	*done_index = index;
2086
	while (index <= end) {
2087
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2088 2089
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
2090
			return 0;
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
2102 2103
			if (page->index > end)
				goto out;
2104

2105 2106
			*done_index = page->index + 1;

2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
			/*
			 * If we can't merge this page, and we have
			 * accumulated an contiguous region, write it
			 */
			if ((mpd->next_page != page->index) &&
			    (mpd->next_page != mpd->first_page)) {
				mpage_da_map_and_submit(mpd);
				goto ret_extent_tail;
			}

2117 2118 2119
			lock_page(page);

			/*
2120 2121 2122 2123 2124 2125
			 * If the page is no longer dirty, or its
			 * mapping no longer corresponds to inode we
			 * are writing (which means it has been
			 * truncated or invalidated), or the page is
			 * already under writeback and we are not
			 * doing a data integrity writeback, skip the page
2126
			 */
2127 2128 2129 2130
			if (!PageDirty(page) ||
			    (PageWriteback(page) &&
			     (wbc->sync_mode == WB_SYNC_NONE)) ||
			    unlikely(page->mapping != mapping)) {
2131 2132 2133 2134
				unlock_page(page);
				continue;
			}

2135
			wait_on_page_writeback(page);
2136 2137
			BUG_ON(PageWriteback(page));

2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
			/*
			 * If we have inline data and arrive here, it means that
			 * we will soon create the block for the 1st page, so
			 * we'd better clear the inline data here.
			 */
			if (ext4_has_inline_data(inode)) {
				BUG_ON(ext4_test_inode_state(inode,
						EXT4_STATE_MAY_INLINE_DATA));
				ext4_destroy_inline_data(handle, inode);
			}

2149
			if (mpd->next_page != page->index)
2150 2151 2152 2153 2154
				mpd->first_page = page->index;
			mpd->next_page = page->index + 1;
			logical = (sector_t) page->index <<
				(PAGE_CACHE_SHIFT - inode->i_blkbits);

2155 2156 2157 2158 2159
			/* Add all dirty buffers to mpd */
			head = page_buffers(page);
			bh = head;
			do {
				BUG_ON(buffer_locked(bh));
2160
				/*
2161 2162 2163
				 * We need to try to allocate unmapped blocks
				 * in the same page.  Otherwise we won't make
				 * progress with the page in ext4_writepage
2164
				 */
2165 2166 2167 2168 2169 2170 2171
				if (ext4_bh_delay_or_unwritten(NULL, bh)) {
					mpage_add_bh_to_extent(mpd, logical,
							       bh->b_state);
					if (mpd->io_done)
						goto ret_extent_tail;
				} else if (buffer_dirty(bh) &&
					   buffer_mapped(bh)) {
2172
					/*
2173 2174 2175 2176 2177 2178 2179
					 * mapped dirty buffer. We need to
					 * update the b_state because we look
					 * at b_state in mpage_da_map_blocks.
					 * We don't update b_size because if we
					 * find an unmapped buffer_head later
					 * we need to use the b_state flag of
					 * that buffer_head.
2180
					 */
2181 2182 2183 2184 2185 2186
					if (mpd->b_size == 0)
						mpd->b_state =
							bh->b_state & BH_FLAGS;
				}
				logical++;
			} while ((bh = bh->b_this_page) != head);
2187 2188 2189 2190

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
2191
				    wbc->sync_mode == WB_SYNC_NONE)
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
2202
					goto out;
2203 2204 2205 2206 2207
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2208 2209 2210
	return 0;
ret_extent_tail:
	ret = MPAGE_DA_EXTENT_TAIL;
2211 2212 2213
out:
	pagevec_release(&pvec);
	cond_resched();
2214 2215 2216 2217
	return ret;
}


2218
static int ext4_da_writepages(struct address_space *mapping,
2219
			      struct writeback_control *wbc)
2220
{
2221 2222
	pgoff_t	index;
	int range_whole = 0;
2223
	handle_t *handle = NULL;
2224
	struct mpage_da_data mpd;
2225
	struct inode *inode = mapping->host;
2226
	int pages_written = 0;
2227
	unsigned int max_pages;
2228
	int range_cyclic, cycled = 1, io_done = 0;
2229 2230
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2231
	loff_t range_start = wbc->range_start;
2232
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2233
	pgoff_t done_index = 0;
2234
	pgoff_t end;
S
Shaohua Li 已提交
2235
	struct blk_plug plug;
2236

2237
	trace_ext4_da_writepages(inode, wbc);
2238

2239 2240 2241 2242 2243
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2244
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2245
		return 0;
2246 2247 2248 2249 2250

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2251
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2252 2253 2254 2255 2256
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2257
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2258 2259
		return -EROFS;

2260 2261
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2262

2263 2264
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2265
		index = mapping->writeback_index;
2266 2267 2268 2269 2270
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2271 2272
		end = -1;
	} else {
2273
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2274 2275
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2276

2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2294 2295 2296 2297 2298 2299
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2310
retry:
2311
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2312 2313
		tag_pages_for_writeback(mapping, index, end);

S
Shaohua Li 已提交
2314
	blk_start_plug(&plug);
2315
	while (!ret && wbc->nr_to_write > 0) {
2316 2317 2318 2319 2320 2321 2322 2323

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2324
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2325

2326
		/* start a new transaction*/
2327 2328
		handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
					    needed_blocks);
2329 2330
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2331
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2332
			       "%ld pages, ino %lu; err %d", __func__,
2333
				wbc->nr_to_write, inode->i_ino, ret);
2334
			blk_finish_plug(&plug);
2335 2336
			goto out_writepages;
		}
2337 2338

		/*
2339
		 * Now call write_cache_pages_da() to find the next
2340
		 * contiguous region of logical blocks that need
2341
		 * blocks to be allocated by ext4 and submit them.
2342
		 */
2343 2344
		ret = write_cache_pages_da(handle, mapping,
					   wbc, &mpd, &done_index);
2345
		/*
2346
		 * If we have a contiguous extent of pages and we
2347 2348 2349 2350
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2351
			mpage_da_map_and_submit(&mpd);
2352 2353
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2354
		trace_ext4_da_write_pages(inode, &mpd);
2355
		wbc->nr_to_write -= mpd.pages_written;
2356

2357
		ext4_journal_stop(handle);
2358

2359
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2360 2361 2362 2363
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2364
			jbd2_journal_force_commit_nested(sbi->s_journal);
2365 2366
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2367
			/*
2368 2369 2370
			 * Got one extent now try with rest of the pages.
			 * If mpd.retval is set -EIO, journal is aborted.
			 * So we don't need to write any more.
2371
			 */
2372
			pages_written += mpd.pages_written;
2373
			ret = mpd.retval;
2374
			io_done = 1;
2375
		} else if (wbc->nr_to_write)
2376 2377 2378 2379 2380 2381
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2382
	}
S
Shaohua Li 已提交
2383
	blk_finish_plug(&plug);
2384 2385 2386 2387 2388 2389 2390
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2391 2392

	/* Update index */
2393
	wbc->range_cyclic = range_cyclic;
2394 2395 2396 2397 2398
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
2399
		mapping->writeback_index = done_index;
2400

2401
out_writepages:
2402
	wbc->nr_to_write -= nr_to_writebump;
2403
	wbc->range_start = range_start;
2404
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2405
	return ret;
2406 2407
}

2408 2409 2410 2411 2412 2413 2414 2415
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2416
	 * counters can get slightly wrong with percpu_counter_batch getting
2417 2418 2419 2420
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
2421 2422 2423
	free_blocks  = EXT4_C2B(sbi,
		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
	/*
	 * Start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
	    !writeback_in_progress(sb->s_bdi) &&
	    down_read_trylock(&sb->s_umount)) {
		writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
		up_read(&sb->s_umount);
	}

2434
	if (2 * free_blocks < 3 * dirty_blocks ||
2435
		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2436
		/*
2437 2438
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
2439 2440 2441 2442 2443 2444
		 */
		return 1;
	}
	return 0;
}

2445
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2446 2447
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
2448
{
2449
	int ret, retries = 0;
2450 2451 2452 2453 2454 2455
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
2456 2457 2458 2459 2460 2461 2462

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2463
	trace_ext4_da_write_begin(inode, pos, len, flags);
2464 2465 2466 2467 2468 2469

	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
		ret = ext4_da_write_inline_data_begin(mapping, inode,
						      pos, len, flags,
						      pagep, fsdata);
		if (ret < 0)
2470 2471 2472
			return ret;
		if (ret == 1)
			return 0;
2473 2474
	}

2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
	/*
	 * grab_cache_page_write_begin() can take a long time if the
	 * system is thrashing due to memory pressure, or if the page
	 * is being written back.  So grab it first before we start
	 * the transaction handle.  This also allows us to allocate
	 * the page (if needed) without using GFP_NOFS.
	 */
retry_grab:
	page = grab_cache_page_write_begin(mapping, index, flags);
	if (!page)
		return -ENOMEM;
	unlock_page(page);

2488 2489 2490 2491 2492 2493
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
2494
retry_journal:
2495
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2496
	if (IS_ERR(handle)) {
2497 2498
		page_cache_release(page);
		return PTR_ERR(handle);
2499 2500
	}

2501 2502 2503 2504 2505
	lock_page(page);
	if (page->mapping != mapping) {
		/* The page got truncated from under us */
		unlock_page(page);
		page_cache_release(page);
2506
		ext4_journal_stop(handle);
2507
		goto retry_grab;
2508
	}
2509 2510
	/* In case writeback began while the page was unlocked */
	wait_on_page_writeback(page);
2511

2512
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2513 2514 2515
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
2516 2517 2518 2519 2520 2521
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
2522
			ext4_truncate_failed_write(inode);
2523 2524 2525 2526 2527 2528 2529

		if (ret == -ENOSPC &&
		    ext4_should_retry_alloc(inode->i_sb, &retries))
			goto retry_journal;

		page_cache_release(page);
		return ret;
2530 2531
	}

2532
	*pagep = page;
2533 2534 2535
	return ret;
}

2536 2537 2538 2539 2540
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
2541
					    unsigned long offset)
2542 2543 2544 2545 2546 2547 2548 2549 2550
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2551
	for (i = 0; i < idx; i++)
2552 2553
		bh = bh->b_this_page;

2554
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2555 2556 2557 2558
		return 0;
	return 1;
}

2559
static int ext4_da_write_end(struct file *file,
2560 2561 2562
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
2563 2564 2565 2566 2567
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2568
	unsigned long start, end;
2569 2570 2571
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2572 2573
		switch (ext4_inode_journal_mode(inode)) {
		case EXT4_INODE_ORDERED_DATA_MODE:
2574 2575
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2576
		case EXT4_INODE_WRITEBACK_DATA_MODE:
2577 2578
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2579
		default:
2580 2581 2582
			BUG();
		}
	}
2583

2584
	trace_ext4_da_write_end(inode, pos, len, copied);
2585
	start = pos & (PAGE_CACHE_SIZE - 1);
2586
	end = start + copied - 1;
2587 2588 2589 2590 2591 2592 2593

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */
	new_i_size = pos + copied;
2594
	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2595 2596
		if (ext4_has_inline_data(inode) ||
		    ext4_da_should_update_i_disksize(page, end)) {
2597
			down_write(&EXT4_I(inode)->i_data_sem);
2598
			if (new_i_size > EXT4_I(inode)->i_disksize)
2599 2600
				EXT4_I(inode)->i_disksize = new_i_size;
			up_write(&EXT4_I(inode)->i_data_sem);
2601 2602 2603 2604 2605
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2606
		}
2607
	}
2608 2609 2610 2611 2612 2613 2614 2615

	if (write_mode != CONVERT_INLINE_DATA &&
	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
	    ext4_has_inline_data(inode))
		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
						     page);
	else
		ret2 = generic_write_end(file, mapping, pos, len, copied,
2616
							page, fsdata);
2617

2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2637
	ext4_da_page_release_reservation(page, offset);
2638 2639 2640 2641 2642 2643 2644

out:
	ext4_invalidatepage(page, offset);

	return;
}

2645 2646 2647 2648 2649
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
2650 2651
	trace_ext4_alloc_da_blocks(inode);

2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
2662
	 *
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
2675
	 * the pages by calling redirty_page_for_writepage() but that
2676 2677
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
L
Lucas De Marchi 已提交
2678
	 * simplifying them because we wouldn't actually intend to
2679 2680 2681
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
2682
	 *
2683 2684 2685 2686 2687 2688
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
2689

2690 2691 2692 2693 2694
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2695
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2696 2697 2698 2699 2700 2701 2702 2703
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2704
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2705 2706 2707 2708 2709
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

T
Tao Ma 已提交
2710 2711 2712 2713 2714 2715
	/*
	 * We can get here for an inline file via the FIBMAP ioctl
	 */
	if (ext4_has_inline_data(inode))
		return 0;

2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2726 2727
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2739
		 * NB. EXT4_STATE_JDATA is not set on files other than
2740 2741 2742 2743 2744 2745
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2746
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2747
		journal = EXT4_JOURNAL(inode);
2748 2749 2750
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2751 2752 2753 2754 2755

		if (err)
			return 0;
	}

2756
	return generic_block_bmap(mapping, block, ext4_get_block);
2757 2758
}

2759
static int ext4_readpage(struct file *file, struct page *page)
2760
{
T
Tao Ma 已提交
2761 2762 2763
	int ret = -EAGAIN;
	struct inode *inode = page->mapping->host;

2764
	trace_ext4_readpage(page);
T
Tao Ma 已提交
2765 2766 2767 2768 2769 2770 2771 2772

	if (ext4_has_inline_data(inode))
		ret = ext4_readpage_inline(inode, page);

	if (ret == -EAGAIN)
		return mpage_readpage(page, ext4_get_block);

	return ret;
2773 2774 2775
}

static int
2776
ext4_readpages(struct file *file, struct address_space *mapping,
2777 2778
		struct list_head *pages, unsigned nr_pages)
{
T
Tao Ma 已提交
2779 2780 2781 2782 2783 2784
	struct inode *inode = mapping->host;

	/* If the file has inline data, no need to do readpages. */
	if (ext4_has_inline_data(inode))
		return 0;

2785
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2786 2787
}

2788
static void ext4_invalidatepage(struct page *page, unsigned long offset)
2789
{
2790 2791
	trace_ext4_invalidatepage(page, offset);

2792 2793 2794 2795 2796 2797
	/* No journalling happens on data buffers when this function is used */
	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));

	block_invalidatepage(page, offset);
}

2798 2799
static int __ext4_journalled_invalidatepage(struct page *page,
					    unsigned long offset)
2800 2801 2802 2803 2804
{
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);

	trace_ext4_journalled_invalidatepage(page, offset);

2805 2806 2807 2808 2809 2810
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

2811 2812 2813 2814 2815 2816 2817 2818
	return jbd2_journal_invalidatepage(journal, page, offset);
}

/* Wrapper for aops... */
static void ext4_journalled_invalidatepage(struct page *page,
					   unsigned long offset)
{
	WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
2819 2820
}

2821
static int ext4_releasepage(struct page *page, gfp_t wait)
2822
{
2823
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2824

2825 2826
	trace_ext4_releasepage(page);

2827 2828 2829
	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
2830 2831 2832 2833
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
2834 2835
}

2836 2837 2838 2839 2840
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
2841
int ext4_get_block_write(struct inode *inode, sector_t iblock,
2842 2843
		   struct buffer_head *bh_result, int create)
{
2844
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2845
		   inode->i_ino, create);
2846 2847
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2848 2849
}

2850
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2851
		   struct buffer_head *bh_result, int create)
2852
{
2853 2854 2855 2856
	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
		   inode->i_ino, create);
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_NO_LOCK);
2857 2858
}

2859
static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2860 2861
			    ssize_t size, void *private, int ret,
			    bool is_async)
2862
{
2863
	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2864 2865
        ext4_io_end_t *io_end = iocb->private;

2866 2867
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
2868
		goto out;
2869

2870
	ext_debug("ext4_end_io_dio(): io_end 0x%p "
2871
		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2872 2873 2874
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

2875 2876
	iocb->private = NULL;

2877
	/* if not aio dio with unwritten extents, just free io and return */
2878
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2879
		ext4_free_io_end(io_end);
2880
out:
2881
		inode_dio_done(inode);
2882 2883 2884
		if (is_async)
			aio_complete(iocb, ret, 0);
		return;
2885 2886
	}

2887 2888
	io_end->offset = offset;
	io_end->size = size;
2889 2890 2891 2892
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
2893

2894
	ext4_add_complete_io(io_end);
2895
}
2896

2897 2898 2899 2900 2901
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
2902
 * For holes, we fallocate those blocks, mark them as uninitialized
2903
 * If those blocks were preallocated, we mark sure they are split, but
2904
 * still keep the range to write as uninitialized.
2905
 *
2906
 * The unwritten extents will be converted to written when DIO is completed.
2907
 * For async direct IO, since the IO may still pending when return, we
L
Lucas De Marchi 已提交
2908
 * set up an end_io call back function, which will do the conversion
2909
 * when async direct IO completed.
2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);
2924 2925 2926
	int overwrite = 0;
	get_block_t *get_block_func = NULL;
	int dio_flags = 0;
2927
	loff_t final_size = offset + count;
2928

2929 2930 2931
	/* Use the old path for reads and writes beyond i_size. */
	if (rw != WRITE || final_size > inode->i_size)
		return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2932

2933
	BUG_ON(iocb->private == NULL);
2934

2935 2936
	/* If we do a overwrite dio, i_mutex locking can be released */
	overwrite = *((int *)iocb->private);
2937

2938 2939 2940 2941 2942
	if (overwrite) {
		atomic_inc(&inode->i_dio_count);
		down_read(&EXT4_I(inode)->i_data_sem);
		mutex_unlock(&inode->i_mutex);
	}
2943

2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
	/*
	 * We could direct write to holes and fallocate.
	 *
	 * Allocated blocks to fill the hole are marked as
	 * uninitialized to prevent parallel buffered read to expose
	 * the stale data before DIO complete the data IO.
	 *
	 * As to previously fallocated extents, ext4 get_block will
	 * just simply mark the buffer mapped but still keep the
	 * extents uninitialized.
	 *
	 * For non AIO case, we will convert those unwritten extents
	 * to written after return back from blockdev_direct_IO.
	 *
	 * For async DIO, the conversion needs to be deferred when the
	 * IO is completed. The ext4 end_io callback function will be
	 * called to take care of the conversion work.  Here for async
	 * case, we allocate an io_end structure to hook to the iocb.
	 */
	iocb->private = NULL;
	ext4_inode_aio_set(inode, NULL);
	if (!is_sync_kiocb(iocb)) {
		ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
		if (!io_end) {
			ret = -ENOMEM;
			goto retake_lock;
2970
		}
2971 2972
		io_end->flag |= EXT4_IO_END_DIRECT;
		iocb->private = io_end;
2973
		/*
2974 2975 2976 2977
		 * we save the io structure for current async direct
		 * IO, so that later ext4_map_blocks() could flag the
		 * io structure whether there is a unwritten extents
		 * needs to be converted when IO is completed.
2978
		 */
2979 2980
		ext4_inode_aio_set(inode, io_end);
	}
2981

2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
	if (overwrite) {
		get_block_func = ext4_get_block_write_nolock;
	} else {
		get_block_func = ext4_get_block_write;
		dio_flags = DIO_LOCKING;
	}
	ret = __blockdev_direct_IO(rw, iocb, inode,
				   inode->i_sb->s_bdev, iov,
				   offset, nr_segs,
				   get_block_func,
				   ext4_end_io_dio,
				   NULL,
				   dio_flags);

	if (iocb->private)
		ext4_inode_aio_set(inode, NULL);
	/*
	 * The io_end structure takes a reference to the inode, that
	 * structure needs to be destroyed and the reference to the
	 * inode need to be dropped, when IO is complete, even with 0
	 * byte write, or failed.
	 *
	 * In the successful AIO DIO case, the io_end structure will
	 * be destroyed and the reference to the inode will be dropped
	 * after the end_io call back function is called.
	 *
	 * In the case there is 0 byte write, or error case, since VFS
	 * direct IO won't invoke the end_io call back function, we
	 * need to free the end_io structure here.
	 */
	if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
		ext4_free_io_end(iocb->private);
		iocb->private = NULL;
	} else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
		int err;
		/*
		 * for non AIO case, since the IO is already
		 * completed, we could do the conversion right here
		 */
		err = ext4_convert_unwritten_extents(inode,
						     offset, ret);
		if (err < 0)
			ret = err;
		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
	}
3028

3029 3030 3031 3032 3033 3034
retake_lock:
	/* take i_mutex locking again if we do a ovewrite dio */
	if (overwrite) {
		inode_dio_done(inode);
		up_read(&EXT4_I(inode)->i_data_sem);
		mutex_lock(&inode->i_mutex);
3035
	}
3036

3037
	return ret;
3038 3039 3040 3041 3042 3043 3044 3045
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3046
	ssize_t ret;
3047

3048 3049 3050 3051 3052 3053
	/*
	 * If we are doing data journalling we don't support O_DIRECT
	 */
	if (ext4_should_journal_data(inode))
		return 0;

T
Tao Ma 已提交
3054 3055 3056 3057
	/* Let buffer I/O handle the inline data case. */
	if (ext4_has_inline_data(inode))
		return 0;

3058
	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3059
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3060 3061 3062 3063 3064 3065
		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
	else
		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
	trace_ext4_direct_IO_exit(inode, offset,
				iov_length(iov, nr_segs), rw, ret);
	return ret;
3066 3067
}

3068
/*
3069
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3081
static int ext4_journalled_set_page_dirty(struct page *page)
3082 3083 3084 3085 3086
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3087
static const struct address_space_operations ext4_ordered_aops = {
3088 3089
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3090
	.writepage		= ext4_writepage,
3091 3092 3093 3094 3095 3096 3097 3098
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3099
	.error_remove_page	= generic_error_remove_page,
3100 3101
};

3102
static const struct address_space_operations ext4_writeback_aops = {
3103 3104
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3105
	.writepage		= ext4_writepage,
3106 3107 3108 3109 3110 3111 3112 3113
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3114
	.error_remove_page	= generic_error_remove_page,
3115 3116
};

3117
static const struct address_space_operations ext4_journalled_aops = {
3118 3119
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3120
	.writepage		= ext4_writepage,
3121 3122 3123 3124
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
3125
	.invalidatepage		= ext4_journalled_invalidatepage,
3126
	.releasepage		= ext4_releasepage,
3127
	.direct_IO		= ext4_direct_IO,
3128
	.is_partially_uptodate  = block_is_partially_uptodate,
3129
	.error_remove_page	= generic_error_remove_page,
3130 3131
};

3132
static const struct address_space_operations ext4_da_aops = {
3133 3134
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3135
	.writepage		= ext4_writepage,
3136 3137 3138 3139 3140 3141 3142 3143 3144
	.writepages		= ext4_da_writepages,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3145
	.error_remove_page	= generic_error_remove_page,
3146 3147
};

3148
void ext4_set_aops(struct inode *inode)
3149
{
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
	switch (ext4_inode_journal_mode(inode)) {
	case EXT4_INODE_ORDERED_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_ordered_aops;
		break;
	case EXT4_INODE_WRITEBACK_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_writeback_aops;
		break;
	case EXT4_INODE_JOURNAL_DATA_MODE:
3164
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3165 3166 3167 3168
		break;
	default:
		BUG();
	}
3169 3170
}

3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190

/*
 * ext4_discard_partial_page_buffers()
 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
 * This function finds and locks the page containing the offset
 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
 * Calling functions that already have the page locked should call
 * ext4_discard_partial_page_buffers_no_lock directly.
 */
int ext4_discard_partial_page_buffers(handle_t *handle,
		struct address_space *mapping, loff_t from,
		loff_t length, int flags)
{
	struct inode *inode = mapping->host;
	struct page *page;
	int err = 0;

	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
	if (!page)
3191
		return -ENOMEM;
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219

	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
		from, length, flags);

	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * ext4_discard_partial_page_buffers_no_lock()
 * Zeros a page range of length 'length' starting from offset 'from'.
 * Buffer heads that correspond to the block aligned regions of the
 * zeroed range will be unmapped.  Unblock aligned regions
 * will have the corresponding buffer head mapped if needed so that
 * that region of the page can be updated with the partial zero out.
 *
 * This function assumes that the page has already been  locked.  The
 * The range to be discarded must be contained with in the given page.
 * If the specified range exceeds the end of the page it will be shortened
 * to the end of the page that corresponds to 'from'.  This function is
 * appropriate for updating a page and it buffer heads to be unmapped and
 * zeroed for blocks that have been either released, or are going to be
 * released.
 *
 * handle: The journal handle
 * inode:  The files inode
 * page:   A locked page that contains the offset "from"
3220
 * from:   The starting byte offset (from the beginning of the file)
3221 3222 3223 3224 3225 3226 3227
 *         to begin discarding
 * len:    The length of bytes to discard
 * flags:  Optional flags that may be used:
 *
 *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
 *         Only zero the regions of the page whose buffer heads
 *         have already been unmapped.  This flag is appropriate
3228
 *         for updating the contents of a page whose blocks may
3229 3230 3231
 *         have already been released, and we only want to zero
 *         out the regions that correspond to those released blocks.
 *
3232
 * Returns zero on success or negative on failure.
3233
 */
E
Eric Sandeen 已提交
3234
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags)
{
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
	unsigned int blocksize, max, pos;
	ext4_lblk_t iblock;
	struct buffer_head *bh;
	int err = 0;

	blocksize = inode->i_sb->s_blocksize;
	max = PAGE_CACHE_SIZE - offset;

	if (index != page->index)
		return -EINVAL;

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the page
	 */
	if (length > max || length < 0)
		length = max;

	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

3260 3261
	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);
3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	pos = offset;
	while (pos < offset + length) {
3274 3275
		unsigned int end_of_block, range_to_discard;

3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
		err = 0;

		/* The length of space left to zero and unmap */
		range_to_discard = offset + length - pos;

		/* The length of space until the end of the block */
		end_of_block = blocksize - (pos & (blocksize-1));

		/*
		 * Do not unmap or zero past end of block
		 * for this buffer head
		 */
		if (range_to_discard > end_of_block)
			range_to_discard = end_of_block;


		/*
		 * Skip this buffer head if we are only zeroing unampped
		 * regions of the page
		 */
		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
			buffer_mapped(bh))
				goto next;

		/* If the range is block aligned, unmap */
		if (range_to_discard == blocksize) {
			clear_buffer_dirty(bh);
			bh->b_bdev = NULL;
			clear_buffer_mapped(bh);
			clear_buffer_req(bh);
			clear_buffer_new(bh);
			clear_buffer_delay(bh);
			clear_buffer_unwritten(bh);
			clear_buffer_uptodate(bh);
			zero_user(page, pos, range_to_discard);
			BUFFER_TRACE(bh, "Buffer discarded");
			goto next;
		}

		/*
		 * If this block is not completely contained in the range
		 * to be discarded, then it is not going to be released. Because
		 * we need to keep this block, we need to make sure this part
		 * of the page is uptodate before we modify it by writeing
		 * partial zeros on it.
		 */
		if (!buffer_mapped(bh)) {
			/*
			 * Buffer head must be mapped before we can read
			 * from the block
			 */
			BUFFER_TRACE(bh, "unmapped");
			ext4_get_block(inode, iblock, bh, 0);
			/* unmapped? It's a hole - nothing to do */
			if (!buffer_mapped(bh)) {
				BUFFER_TRACE(bh, "still unmapped");
				goto next;
			}
		}

		/* Ok, it's mapped. Make sure it's up-to-date */
		if (PageUptodate(page))
			set_buffer_uptodate(bh);

		if (!buffer_uptodate(bh)) {
			err = -EIO;
			ll_rw_block(READ, 1, &bh);
			wait_on_buffer(bh);
			/* Uhhuh. Read error. Complain and punt.*/
			if (!buffer_uptodate(bh))
				goto next;
		}

		if (ext4_should_journal_data(inode)) {
			BUFFER_TRACE(bh, "get write access");
			err = ext4_journal_get_write_access(handle, bh);
			if (err)
				goto next;
		}

		zero_user(page, pos, range_to_discard);

		err = 0;
		if (ext4_should_journal_data(inode)) {
			err = ext4_handle_dirty_metadata(handle, inode, bh);
3361
		} else
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
			mark_buffer_dirty(bh);

		BUFFER_TRACE(bh, "Partial buffer zeroed");
next:
		bh = bh->b_this_page;
		iblock++;
		pos += range_to_discard;
	}

	return err;
}

3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
int ext4_can_truncate(struct inode *inode)
{
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3385 3386 3387 3388 3389 3390 3391 3392
/*
 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 * associated with the given offset and length
 *
 * @inode:  File inode
 * @offset: The offset where the hole will begin
 * @len:    The length of the hole
 *
3393
 * Returns: 0 on success or negative on failure
3394 3395 3396 3397 3398 3399
 */

int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	if (!S_ISREG(inode->i_mode))
3400
		return -EOPNOTSUPP;
3401

3402 3403
	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
		return ext4_ind_punch_hole(file, offset, length);
3404

3405 3406
	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
		/* TODO: Add support for bigalloc file systems */
3407
		return -EOPNOTSUPP;
3408 3409
	}

3410 3411
	trace_ext4_punch_hole(inode, offset, length);

3412 3413 3414
	return ext4_ext_punch_hole(file, offset, length);
}

3415
/*
3416
 * ext4_truncate()
3417
 *
3418 3419
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3420 3421
 * simultaneously on behalf of the same inode.
 *
3422
 * As we work through the truncate and commit bits of it to the journal there
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3436
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3437
 * that this inode's truncate did not complete and it will again call
3438 3439
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3440
 * that's fine - as long as they are linked from the inode, the post-crash
3441
 * ext4_truncate() run will find them and release them.
3442
 */
3443
void ext4_truncate(struct inode *inode)
3444
{
3445 3446
	trace_ext4_truncate_enter(inode);

3447
	if (!ext4_can_truncate(inode))
3448 3449
		return;

3450
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3451

3452
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3453
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3454

3455 3456 3457 3458 3459 3460 3461 3462
	if (ext4_has_inline_data(inode)) {
		int has_inline = 1;

		ext4_inline_data_truncate(inode, &has_inline);
		if (has_inline)
			return;
	}

3463
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3464
		ext4_ext_truncate(inode);
3465 3466
	else
		ext4_ind_truncate(inode);
3467

3468
	trace_ext4_truncate_exit(inode);
3469 3470 3471
}

/*
3472
 * ext4_get_inode_loc returns with an extra refcount against the inode's
3473 3474 3475 3476
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
3477 3478
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
3479
{
3480 3481 3482 3483 3484 3485
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
3486
	iloc->bh = NULL;
3487 3488
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
3489

3490 3491 3492
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
3493 3494
		return -EIO;

3495 3496 3497
	/*
	 * Figure out the offset within the block group inode table
	 */
3498
	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3499 3500 3501 3502 3503 3504
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
3505
	if (unlikely(!bh))
3506
		return -ENOMEM;
3507 3508
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
3509 3510 3511 3512 3513 3514 3515 3516 3517 3518

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
3532
			int i, start;
3533

3534
			start = inode_offset & ~(inodes_per_block - 1);
3535

3536 3537
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3538
			if (unlikely(!bitmap_bh))
3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
3550
			for (i = start; i < start + inodes_per_block; i++) {
3551 3552
				if (i == inode_offset)
					continue;
3553
				if (ext4_test_bit(i, bitmap_bh->b_data))
3554 3555 3556
					break;
			}
			brelse(bitmap_bh);
3557
			if (i == start + inodes_per_block) {
3558 3559 3560 3561 3562 3563 3564 3565 3566
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
3567 3568 3569 3570 3571 3572 3573 3574 3575
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
3576
			/* s_inode_readahead_blks is always a power of 2 */
3577 3578 3579 3580 3581
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
3582
			if (ext4_has_group_desc_csum(sb))
3583
				num -= ext4_itable_unused_count(sb, gdp);
3584 3585 3586 3587 3588 3589 3590
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

3591 3592 3593 3594 3595
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
3596
		trace_ext4_load_inode(inode);
3597 3598
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
3599
		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3600 3601
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
3602 3603
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
3604 3605 3606 3607 3608 3609 3610 3611 3612
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

3613
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3614 3615
{
	/* We have all inode data except xattrs in memory here. */
3616
	return __ext4_get_inode_loc(inode, iloc,
3617
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3618 3619
}

3620
void ext4_set_inode_flags(struct inode *inode)
3621
{
3622
	unsigned int flags = EXT4_I(inode)->i_flags;
3623 3624

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3625
	if (flags & EXT4_SYNC_FL)
3626
		inode->i_flags |= S_SYNC;
3627
	if (flags & EXT4_APPEND_FL)
3628
		inode->i_flags |= S_APPEND;
3629
	if (flags & EXT4_IMMUTABLE_FL)
3630
		inode->i_flags |= S_IMMUTABLE;
3631
	if (flags & EXT4_NOATIME_FL)
3632
		inode->i_flags |= S_NOATIME;
3633
	if (flags & EXT4_DIRSYNC_FL)
3634 3635 3636
		inode->i_flags |= S_DIRSYNC;
}

3637 3638 3639
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3660
}
3661

3662
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3663
				  struct ext4_inode_info *ei)
3664 3665
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
3666 3667
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
3668 3669 3670 3671 3672 3673

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
3674
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
3675 3676 3677 3678 3679
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
3680 3681 3682 3683
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
3684

3685 3686 3687 3688 3689 3690
static inline void ext4_iget_extra_inode(struct inode *inode,
					 struct ext4_inode *raw_inode,
					 struct ext4_inode_info *ei)
{
	__le32 *magic = (void *)raw_inode +
			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3691
	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3692
		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3693
		ext4_find_inline_data_nolock(inode);
3694 3695
	} else
		EXT4_I(inode)->i_inline_off = 0;
3696 3697
}

3698
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3699
{
3700 3701
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
3702 3703
	struct ext4_inode_info *ei;
	struct inode *inode;
3704
	journal_t *journal = EXT4_SB(sb)->s_journal;
3705
	long ret;
3706
	int block;
3707 3708
	uid_t i_uid;
	gid_t i_gid;
3709

3710 3711 3712 3713 3714 3715 3716
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
3717
	iloc.bh = NULL;
3718

3719 3720
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
3721
		goto bad_inode;
3722
	raw_inode = ext4_raw_inode(&iloc);
3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755

	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
		    EXT4_INODE_SIZE(inode->i_sb)) {
			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
				EXT4_INODE_SIZE(inode->i_sb));
			ret = -EIO;
			goto bad_inode;
		}
	} else
		ei->i_extra_isize = 0;

	/* Precompute checksum seed for inode metadata */
	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
		__u32 csum;
		__le32 inum = cpu_to_le32(inode->i_ino);
		__le32 gen = raw_inode->i_generation;
		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
				   sizeof(inum));
		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
					      sizeof(gen));
	}

	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
		EXT4_ERROR_INODE(inode, "checksum invalid");
		ret = -EIO;
		goto bad_inode;
	}

3756
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3757 3758
	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3759
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3760 3761
		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3762
	}
3763 3764
	i_uid_write(inode, i_uid);
	i_gid_write(inode, i_gid);
M
Miklos Szeredi 已提交
3765
	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3766

3767
	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3768
	ei->i_inline_off = 0;
3769 3770 3771 3772 3773 3774 3775 3776 3777
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
3778
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3779
			/* this inode is deleted */
3780
			ret = -ESTALE;
3781 3782 3783 3784 3785 3786 3787 3788
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3789
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3790
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3791
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
3792 3793
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3794
	inode->i_size = ext4_isize(raw_inode);
3795
	ei->i_disksize = inode->i_size;
3796 3797 3798
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
3799 3800
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
3801
	ei->i_last_alloc_group = ~0;
3802 3803 3804 3805
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
3806
	for (block = 0; block < EXT4_N_BLOCKS; block++)
3807 3808 3809
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

3821
		read_lock(&journal->j_state_lock);
3822 3823 3824 3825 3826 3827 3828 3829
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
3830
		read_unlock(&journal->j_state_lock);
3831 3832 3833 3834
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

3835
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3836 3837
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
3838 3839
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
3840
		} else {
3841
			ext4_iget_extra_inode(inode, raw_inode, ei);
3842
		}
3843
	}
3844

K
Kalpak Shah 已提交
3845 3846 3847 3848 3849
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

3850 3851 3852 3853 3854 3855 3856
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

3857
	ret = 0;
3858
	if (ei->i_file_acl &&
3859
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3860 3861
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
3862 3863
		ret = -EIO;
		goto bad_inode;
3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876
	} else if (!ext4_has_inline_data(inode)) {
		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
			    (S_ISLNK(inode->i_mode) &&
			     !ext4_inode_is_fast_symlink(inode))))
				/* Validate extent which is part of inode */
				ret = ext4_ext_check_inode(inode);
		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
			   (S_ISLNK(inode->i_mode) &&
			    !ext4_inode_is_fast_symlink(inode))) {
			/* Validate block references which are part of inode */
			ret = ext4_ind_check_inode(inode);
		}
3877
	}
3878
	if (ret)
3879
		goto bad_inode;
3880

3881
	if (S_ISREG(inode->i_mode)) {
3882 3883 3884
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
3885
	} else if (S_ISDIR(inode->i_mode)) {
3886 3887
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
3888
	} else if (S_ISLNK(inode->i_mode)) {
3889
		if (ext4_inode_is_fast_symlink(inode)) {
3890
			inode->i_op = &ext4_fast_symlink_inode_operations;
3891 3892 3893
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
3894 3895
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
3896
		}
3897 3898
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3899
		inode->i_op = &ext4_special_inode_operations;
3900 3901 3902 3903 3904 3905
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3906 3907
	} else {
		ret = -EIO;
3908
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3909
		goto bad_inode;
3910
	}
3911
	brelse(iloc.bh);
3912
	ext4_set_inode_flags(inode);
3913 3914
	unlock_new_inode(inode);
	return inode;
3915 3916

bad_inode:
3917
	brelse(iloc.bh);
3918 3919
	iget_failed(inode);
	return ERR_PTR(ret);
3920 3921
}

3922 3923 3924 3925 3926 3927 3928 3929 3930 3931
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
3932
		 * i_blocks can be represented in a 32 bit variable
3933 3934
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3935
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3936
		raw_inode->i_blocks_high = 0;
3937
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3938 3939 3940 3941 3942 3943
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
3944 3945 3946 3947
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3948
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3949
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3950
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3951
	} else {
3952
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
3953 3954 3955 3956
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3957
	}
3958
	return 0;
3959 3960
}

3961 3962 3963 3964 3965 3966 3967
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
3968
static int ext4_do_update_inode(handle_t *handle,
3969
				struct inode *inode,
3970
				struct ext4_iloc *iloc)
3971
{
3972 3973
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
3974 3975
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;
3976
	int need_datasync = 0;
3977 3978
	uid_t i_uid;
	gid_t i_gid;
3979 3980 3981

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
3982
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3983
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3984

3985
	ext4_get_inode_flags(ei);
3986
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3987 3988
	i_uid = i_uid_read(inode);
	i_gid = i_gid_read(inode);
3989
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3990 3991
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
3992 3993 3994 3995
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
3996
		if (!ei->i_dtime) {
3997
			raw_inode->i_uid_high =
3998
				cpu_to_le16(high_16_bits(i_uid));
3999
			raw_inode->i_gid_high =
4000
				cpu_to_le16(high_16_bits(i_gid));
4001 4002 4003 4004 4005
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
4006 4007
		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4008 4009 4010 4011
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4012 4013 4014 4015 4016 4017

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4018 4019
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4020
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4021
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4022 4023
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4024 4025
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4026
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4027 4028 4029 4030
	if (ei->i_disksize != ext4_isize(raw_inode)) {
		ext4_isize_set(raw_inode, ei->i_disksize);
		need_datasync = 1;
	}
4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4046
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4047
			ext4_handle_sync(handle);
4048
			err = ext4_handle_dirty_super(handle, sb);
4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4063
	} else if (!ext4_has_inline_data(inode)) {
4064 4065
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
4066
	}
4067

4068 4069 4070 4071 4072
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4073
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4074 4075
	}

4076 4077
	ext4_inode_csum_set(inode, raw_inode, ei);

4078
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4079
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4080 4081
	if (!err)
		err = rc;
4082
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4083

4084
	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4085
out_brelse:
4086
	brelse(bh);
4087
	ext4_std_error(inode->i_sb, err);
4088 4089 4090 4091
	return err;
}

/*
4092
 * ext4_write_inode()
4093 4094 4095 4096 4097
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
4098
 *   transaction to commit.
4099 4100 4101 4102 4103 4104 4105 4106 4107 4108
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4109
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4126
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4127
{
4128 4129
	int err;

4130 4131 4132
	if (current->flags & PF_MEMALLOC)
		return 0;

4133 4134 4135 4136 4137 4138
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
4139

4140
		if (wbc->sync_mode != WB_SYNC_ALL)
4141 4142 4143 4144 4145
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
4146

4147
		err = __ext4_get_inode_loc(inode, &iloc, 0);
4148 4149
		if (err)
			return err;
4150
		if (wbc->sync_mode == WB_SYNC_ALL)
4151 4152
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4153 4154
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
4155 4156
			err = -EIO;
		}
4157
		brelse(iloc.bh);
4158 4159
	}
	return err;
4160 4161
}

4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
/*
 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
 * buffers that are attached to a page stradding i_size and are undergoing
 * commit. In that case we have to wait for commit to finish and try again.
 */
static void ext4_wait_for_tail_page_commit(struct inode *inode)
{
	struct page *page;
	unsigned offset;
	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
	tid_t commit_tid = 0;
	int ret;

	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
	/*
	 * All buffers in the last page remain valid? Then there's nothing to
	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
	 * blocksize case
	 */
	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
		return;
	while (1) {
		page = find_lock_page(inode->i_mapping,
				      inode->i_size >> PAGE_CACHE_SHIFT);
		if (!page)
			return;
		ret = __ext4_journalled_invalidatepage(page, offset);
		unlock_page(page);
		page_cache_release(page);
		if (ret != -EBUSY)
			return;
		commit_tid = 0;
		read_lock(&journal->j_state_lock);
		if (journal->j_committing_transaction)
			commit_tid = journal->j_committing_transaction->t_tid;
		read_unlock(&journal->j_state_lock);
		if (commit_tid)
			jbd2_log_wait_commit(journal, commit_tid);
	}
}

4203
/*
4204
 * ext4_setattr()
4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4218 4219 4220 4221 4222 4223 4224 4225
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4226
 */
4227
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4228 4229 4230
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
4231
	int orphan = 0;
4232 4233 4234 4235 4236 4237
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

4238
	if (is_quota_modification(inode, attr))
4239
		dquot_initialize(inode);
4240 4241
	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4242 4243 4244 4245
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
4246 4247 4248
		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4249 4250 4251 4252
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4253
		error = dquot_transfer(inode, attr);
4254
		if (error) {
4255
			ext4_journal_stop(handle);
4256 4257 4258 4259 4260 4261 4262 4263
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4264 4265
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4266 4267
	}

4268
	if (attr->ia_valid & ATTR_SIZE) {
4269

4270
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4271 4272
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

4273 4274
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
4275 4276 4277
		}
	}

4278
	if (S_ISREG(inode->i_mode) &&
4279
	    attr->ia_valid & ATTR_SIZE &&
4280
	    (attr->ia_size < inode->i_size)) {
4281 4282
		handle_t *handle;

4283
		handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4284 4285 4286 4287
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4288 4289 4290 4291
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
4292 4293
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4294 4295
		if (!error)
			error = rc;
4296
		ext4_journal_stop(handle);
4297 4298 4299 4300 4301 4302

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
4303 4304
				handle = ext4_journal_start(inode,
							    EXT4_HT_INODE, 3);
4305 4306 4307 4308 4309
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
4310
				orphan = 0;
4311 4312 4313 4314
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4315 4316
	}

4317
	if (attr->ia_valid & ATTR_SIZE) {
4318 4319 4320 4321 4322 4323 4324 4325 4326
		if (attr->ia_size != inode->i_size) {
			loff_t oldsize = inode->i_size;

			i_size_write(inode, attr->ia_size);
			/*
			 * Blocks are going to be removed from the inode. Wait
			 * for dio in flight.  Temporarily disable
			 * dioread_nolock to prevent livelock.
			 */
4327
			if (orphan) {
4328 4329 4330 4331 4332 4333
				if (!ext4_should_journal_data(inode)) {
					ext4_inode_block_unlocked_dio(inode);
					inode_dio_wait(inode);
					ext4_inode_resume_unlocked_dio(inode);
				} else
					ext4_wait_for_tail_page_commit(inode);
4334
			}
4335 4336 4337 4338 4339
			/*
			 * Truncate pagecache after we've waited for commit
			 * in data=journal mode to make pages freeable.
			 */
			truncate_pagecache(inode, oldsize, inode->i_size);
4340
		}
4341
		ext4_truncate(inode);
4342
	}
4343

C
Christoph Hellwig 已提交
4344 4345 4346 4347 4348 4349 4350 4351 4352
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
4353
	if (orphan && inode->i_nlink)
4354
		ext4_orphan_del(NULL, inode);
4355 4356

	if (!rc && (ia_valid & ATTR_MODE))
4357
		rc = ext4_acl_chmod(inode);
4358 4359

err_out:
4360
	ext4_std_error(inode->i_sb, error);
4361 4362 4363 4364 4365
	if (!error)
		error = rc;
	return error;
}

4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
4385 4386
	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
				EXT4_I(inode)->i_reserved_data_blocks);
4387 4388 4389 4390

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4391

4392 4393
static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
4394
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4395
		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4396
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4397
}
4398

4399
/*
4400 4401 4402
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4403
 *
4404
 * If datablocks are discontiguous, they are possible to spread over
4405
 * different block groups too. If they are contiguous, with flexbg,
4406
 * they could still across block group boundary.
4407
 *
4408 4409
 * Also account for superblock, inode, quota and xattr blocks
 */
4410
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4411
{
4412 4413
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
4440 4441
	if (groups > ngroups)
		groups = ngroups;
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
L
Lucas De Marchi 已提交
4455
 * Calculate the total number of credits to reserve to fit
4456 4457
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4458
 *
4459
 * This could be called via ext4_write_begin()
4460
 *
4461
 * We need to consider the worse case, when
4462
 * one new block per extent.
4463
 */
A
Alex Tomas 已提交
4464
int ext4_writepage_trans_blocks(struct inode *inode)
4465
{
4466
	int bpp = ext4_journal_blocks_per_page(inode);
4467 4468
	int ret;

4469
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4470

4471
	/* Account for data blocks for journalled mode */
4472
	if (ext4_should_journal_data(inode))
4473
		ret += bpp;
4474 4475
	return ret;
}
4476 4477 4478 4479 4480

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
4481
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4482 4483 4484 4485 4486 4487 4488 4489 4490
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4491
/*
4492
 * The caller must have previously called ext4_reserve_inode_write().
4493 4494
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4495
int ext4_mark_iloc_dirty(handle_t *handle,
4496
			 struct inode *inode, struct ext4_iloc *iloc)
4497 4498 4499
{
	int err = 0;

4500
	if (IS_I_VERSION(inode))
4501 4502
		inode_inc_iversion(inode);

4503 4504 4505
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4506
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4507
	err = ext4_do_update_inode(handle, inode, iloc);
4508 4509 4510 4511 4512 4513 4514 4515 4516 4517
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4518 4519
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4520
{
4521 4522 4523 4524 4525 4526 4527 4528 4529
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
4530 4531
		}
	}
4532
	ext4_std_error(inode->i_sb, err);
4533 4534 4535
	return err;
}

4536 4537 4538 4539
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
4540 4541 4542 4543
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
4556 4557
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 */
4582
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4583
{
4584
	struct ext4_iloc iloc;
4585 4586 4587
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
4588 4589

	might_sleep();
4590
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4591
	err = ext4_reserve_inode_write(handle, inode, &iloc);
4592 4593
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4594
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
4608 4609
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
4610 4611
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4612
					ext4_warning(inode->i_sb,
4613 4614 4615
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
4616 4617
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
4618 4619 4620 4621
				}
			}
		}
	}
4622
	if (!err)
4623
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4624 4625 4626 4627
	return err;
}

/*
4628
 * ext4_dirty_inode() is called from __mark_inode_dirty()
4629 4630 4631 4632 4633
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
4634
 * Also, dquot_alloc_block() will always dirty the inode when blocks
4635 4636 4637 4638 4639 4640
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
4641
void ext4_dirty_inode(struct inode *inode, int flags)
4642 4643 4644
{
	handle_t *handle;

4645
	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4646 4647
	if (IS_ERR(handle))
		goto out;
4648 4649 4650

	ext4_mark_inode_dirty(handle, inode);

4651
	ext4_journal_stop(handle);
4652 4653 4654 4655 4656 4657 4658 4659
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
4660
 * ext4_reserve_inode_write, this leaves behind no bh reference and
4661 4662 4663
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
4664
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4665
{
4666
	struct ext4_iloc iloc;
4667 4668 4669

	int err = 0;
	if (handle) {
4670
		err = ext4_get_inode_loc(inode, &iloc);
4671 4672
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
4673
			err = jbd2_journal_get_write_access(handle, iloc.bh);
4674
			if (!err)
4675
				err = ext4_handle_dirty_metadata(handle,
4676
								 NULL,
4677
								 iloc.bh);
4678 4679 4680
			brelse(iloc.bh);
		}
	}
4681
	ext4_std_error(inode->i_sb, err);
4682 4683 4684 4685
	return err;
}
#endif

4686
int ext4_change_inode_journal_flag(struct inode *inode, int val)
4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

4702
	journal = EXT4_JOURNAL(inode);
4703 4704
	if (!journal)
		return 0;
4705
	if (is_journal_aborted(journal))
4706
		return -EROFS;
4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717
	/* We have to allocate physical blocks for delalloc blocks
	 * before flushing journal. otherwise delalloc blocks can not
	 * be allocated any more. even more truncate on delalloc blocks
	 * could trigger BUG by flushing delalloc blocks in journal.
	 * There is no delalloc block in non-journal data mode.
	 */
	if (val && test_opt(inode->i_sb, DELALLOC)) {
		err = ext4_alloc_da_blocks(inode);
		if (err < 0)
			return err;
	}
4718

4719 4720 4721 4722
	/* Wait for all existing dio workers */
	ext4_inode_block_unlocked_dio(inode);
	inode_dio_wait(inode);

4723
	jbd2_journal_lock_updates(journal);
4724 4725 4726 4727 4728 4729 4730 4731 4732 4733

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
4734
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4735 4736
	else {
		jbd2_journal_flush(journal);
4737
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4738
	}
4739
	ext4_set_aops(inode);
4740

4741
	jbd2_journal_unlock_updates(journal);
4742
	ext4_inode_resume_unlocked_dio(inode);
4743 4744 4745

	/* Finally we can mark the inode as dirty. */

4746
	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4747 4748 4749
	if (IS_ERR(handle))
		return PTR_ERR(handle);

4750
	err = ext4_mark_inode_dirty(handle, inode);
4751
	ext4_handle_sync(handle);
4752 4753
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
4754 4755 4756

	return err;
}
4757 4758 4759 4760 4761 4762

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

4763
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4764
{
4765
	struct page *page = vmf->page;
4766 4767
	loff_t size;
	unsigned long len;
4768
	int ret;
4769 4770 4771
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;
4772 4773 4774
	handle_t *handle;
	get_block_t *get_block;
	int retries = 0;
4775

4776
	sb_start_pagefault(inode->i_sb);
4777
	file_update_time(vma->vm_file);
4778 4779 4780 4781 4782 4783 4784 4785 4786 4787
	/* Delalloc case is easy... */
	if (test_opt(inode->i_sb, DELALLOC) &&
	    !ext4_should_journal_data(inode) &&
	    !ext4_nonda_switch(inode->i_sb)) {
		do {
			ret = __block_page_mkwrite(vma, vmf,
						   ext4_da_get_block_prep);
		} while (ret == -ENOSPC &&
		       ext4_should_retry_alloc(inode->i_sb, &retries));
		goto out_ret;
4788
	}
4789 4790

	lock_page(page);
4791 4792 4793 4794 4795 4796
	size = i_size_read(inode);
	/* Page got truncated from under us? */
	if (page->mapping != mapping || page_offset(page) > size) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
4797
	}
4798 4799 4800 4801 4802

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
4803
	/*
4804 4805
	 * Return if we have all the buffers mapped. This avoids the need to do
	 * journal_start/journal_stop which can block and take a long time
4806
	 */
4807
	if (page_has_buffers(page)) {
4808 4809 4810
		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
					    0, len, NULL,
					    ext4_bh_unmapped)) {
4811 4812 4813 4814
			/* Wait so that we don't change page under IO */
			wait_on_page_writeback(page);
			ret = VM_FAULT_LOCKED;
			goto out;
4815
		}
4816
	}
4817
	unlock_page(page);
4818 4819 4820 4821 4822 4823
	/* OK, we need to fill the hole... */
	if (ext4_should_dioread_nolock(inode))
		get_block = ext4_get_block_write;
	else
		get_block = ext4_get_block;
retry_alloc:
4824 4825
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
				    ext4_writepage_trans_blocks(inode));
4826
	if (IS_ERR(handle)) {
4827
		ret = VM_FAULT_SIGBUS;
4828 4829 4830 4831
		goto out;
	}
	ret = __block_page_mkwrite(vma, vmf, get_block);
	if (!ret && ext4_should_journal_data(inode)) {
4832
		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
4833 4834 4835
			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
			unlock_page(page);
			ret = VM_FAULT_SIGBUS;
4836
			ext4_journal_stop(handle);
4837 4838 4839 4840 4841 4842 4843 4844 4845 4846
			goto out;
		}
		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
	}
	ext4_journal_stop(handle);
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry_alloc;
out_ret:
	ret = block_page_mkwrite_return(ret);
out:
4847
	sb_end_pagefault(inode->i_sb);
4848 4849
	return ret;
}