inode.c 150.9 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38 39
#include <linux/uio.h>
#include <linux/bio.h>
40
#include "ext4_jbd2.h"
41 42
#include "xattr.h"
#include "acl.h"
43
#include "ext4_extents.h"
44

45 46
#define MPAGE_DA_EXTENT_TAIL 0x01

47 48 49
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
50 51 52 53
	return jbd2_journal_begin_ordered_truncate(
					EXT4_SB(inode->i_sb)->s_journal,
					&EXT4_I(inode)->jinode,
					new_size);
54 55
}

56 57
static void ext4_invalidatepage(struct page *page, unsigned long offset);

58 59 60
/*
 * Test whether an inode is a fast symlink.
 */
61
static int ext4_inode_is_fast_symlink(struct inode *inode)
62
{
63
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
64 65 66 67 68 69
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
70
 * The ext4 forget function must perform a revoke if we are freeing data
71 72 73 74 75 76
 * which has been journaled.  Metadata (eg. indirect blocks) must be
 * revoked in all cases.
 *
 * "bh" may be NULL: a metadata block may have been freed from memory
 * but there may still be a record of it in the journal, and that record
 * still needs to be revoked.
77 78
 *
 * If the handle isn't valid we're not journaling so there's nothing to do.
79
 */
80 81
int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
			struct buffer_head *bh, ext4_fsblk_t blocknr)
82 83 84
{
	int err;

85 86 87
	if (!ext4_handle_valid(handle))
		return 0;

88 89 90 91 92 93 94 95 96 97 98 99 100 101
	might_sleep();

	BUFFER_TRACE(bh, "enter");

	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
		  "data mode %lx\n",
		  bh, is_metadata, inode->i_mode,
		  test_opt(inode->i_sb, DATA_FLAGS));

	/* Never use the revoke function if we are doing full data
	 * journaling: there is no need to, and a V1 superblock won't
	 * support it.  Otherwise, only skip the revoke on un-journaled
	 * data blocks. */

102 103
	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
	    (!is_metadata && !ext4_should_journal_data(inode))) {
104
		if (bh) {
105
			BUFFER_TRACE(bh, "call jbd2_journal_forget");
106
			return ext4_journal_forget(handle, bh);
107 108 109 110 111 112 113
		}
		return 0;
	}

	/*
	 * data!=journal && (is_metadata || should_journal_data(inode))
	 */
114 115
	BUFFER_TRACE(bh, "call ext4_journal_revoke");
	err = ext4_journal_revoke(handle, blocknr, bh);
116
	if (err)
117
		ext4_abort(inode->i_sb, __func__,
118 119 120 121 122 123 124 125 126 127 128
			   "error %d when attempting revoke", err);
	BUFFER_TRACE(bh, "exit");
	return err;
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
129
	ext4_lblk_t needed;
130 131 132 133 134 135

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
136
	 * like a regular file for ext4 to try to delete it.  Things
137 138 139 140 141 142 143
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
144 145
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
146

147
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

164
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
165 166 167
	if (!IS_ERR(result))
		return result;

168
	ext4_std_error(inode->i_sb, PTR_ERR(result));
169 170 171 172 173 174 175 176 177 178 179
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
180 181 182
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
183
		return 0;
184
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
185 186 187 188 189 190 191 192 193
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
194
static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
195
{
196
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
197
	jbd_debug(2, "restarting handle %p\n", handle);
198
	return ext4_journal_restart(handle, blocks_for_truncate(inode));
199 200 201 202 203
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
204
void ext4_delete_inode(struct inode *inode)
205 206
{
	handle_t *handle;
207
	int err;
208

209 210
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
211 212 213 214 215
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

216
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
217
	if (IS_ERR(handle)) {
218
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
219 220 221 222 223
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
224
		ext4_orphan_del(NULL, inode);
225 226 227 228
		goto no_delete;
	}

	if (IS_SYNC(inode))
229
		ext4_handle_sync(handle);
230
	inode->i_size = 0;
231 232 233 234 235 236
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
		ext4_warning(inode->i_sb, __func__,
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
237
	if (inode->i_blocks)
238
		ext4_truncate(inode);
239 240 241 242 243 244 245

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
246
	if (!ext4_handle_has_enough_credits(handle, 3)) {
247 248 249 250 251 252 253 254 255 256 257 258
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
			ext4_warning(inode->i_sb, __func__,
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
			goto no_delete;
		}
	}

259
	/*
260
	 * Kill off the orphan record which ext4_truncate created.
261
	 * AKPM: I think this can be inside the above `if'.
262
	 * Note that ext4_orphan_del() has to be able to cope with the
263
	 * deletion of a non-existent orphan - this is because we don't
264
	 * know if ext4_truncate() actually created an orphan record.
265 266
	 * (Well, we could do this if we need to, but heck - it works)
	 */
267 268
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
269 270 271 272 273 274 275 276

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
277
	if (ext4_mark_inode_dirty(handle, inode))
278 279 280
		/* If that failed, just do the required in-core inode clear. */
		clear_inode(inode);
	else
281 282
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
	return;
no_delete:
	clear_inode(inode);	/* We must guarantee clearing of inode... */
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
301
 *	ext4_block_to_path - parse the block number into array of offsets
302 303 304
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
305 306
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
307
 *
308
 *	To store the locations of file's data ext4 uses a data structure common
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

331
static int ext4_block_to_path(struct inode *inode,
A
Aneesh Kumar K.V 已提交
332 333
			ext4_lblk_t i_block,
			ext4_lblk_t offsets[4], int *boundary)
334
{
335 336 337
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
338 339 340 341 342 343
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

	if (i_block < 0) {
344
		ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
345 346 347
	} else if (i_block < direct_blocks) {
		offsets[n++] = i_block;
		final = direct_blocks;
348
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
349
		offsets[n++] = EXT4_IND_BLOCK;
350 351 352
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
353
		offsets[n++] = EXT4_DIND_BLOCK;
354 355 356 357
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
358
		offsets[n++] = EXT4_TIND_BLOCK;
359 360 361 362 363
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
364
		ext4_warning(inode->i_sb, "ext4_block_to_path",
365
				"block %lu > max in inode %lu",
366
				i_block + direct_blocks +
367
				indirect_blocks + double_blocks, inode->i_ino);
368 369 370 371 372 373 374
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

/**
375
 *	ext4_get_branch - read the chain of indirect blocks leading to data
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
400 401
 *
 *      Need to be called with
402
 *      down_read(&EXT4_I(inode)->i_data_sem)
403
 */
A
Aneesh Kumar K.V 已提交
404 405
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
406 407 408 409 410 411 412 413
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
414
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
415 416 417 418 419 420
	if (!p->key)
		goto no_block;
	while (--depth) {
		bh = sb_bread(sb, le32_to_cpu(p->key));
		if (!bh)
			goto failure;
421
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
422 423 424 425 426 427 428 429 430 431 432 433 434
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
435
 *	ext4_find_near - find a place for allocation with sufficient locality
436 437 438
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
439
 *	This function returns the preferred place for block allocation.
440 441 442 443 444 445 446 447 448 449 450 451 452 453
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
454
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
455
{
456
	struct ext4_inode_info *ei = EXT4_I(inode);
457
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
458
	__le32 *p;
459
	ext4_fsblk_t bg_start;
460
	ext4_fsblk_t last_block;
461
	ext4_grpblk_t colour;
462 463
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
479 480 481 482 483 484 485
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
486 487
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

488 489 490 491 492 493 494
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

495 496
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
497
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
498 499
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
500 501 502 503
	return bg_start + colour;
}

/**
504
 *	ext4_find_goal - find a preferred place for allocation.
505 506 507 508
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
509
 *	Normally this function find the preferred place for block allocation,
510
 *	returns it.
511
 */
A
Aneesh Kumar K.V 已提交
512
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
513
		Indirect *partial)
514 515
{
	/*
516
	 * XXX need to get goal block from mballoc's data structures
517 518
	 */

519
	return ext4_find_near(inode, partial);
520 521 522
}

/**
523
 *	ext4_blks_to_allocate: Look up the block map and count the number
524 525 526 527 528 529 530 531 532 533
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
534
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
535 536
		int blocks_to_boundary)
{
537
	unsigned int count = 0;
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
561
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
562 563 564 565 566 567 568 569
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
570
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
571 572 573
				ext4_lblk_t iblock, ext4_fsblk_t goal,
				int indirect_blks, int blks,
				ext4_fsblk_t new_blocks[4], int *err)
574
{
575
	struct ext4_allocation_request ar;
576
	int target, i;
577
	unsigned long count = 0, blk_allocated = 0;
578
	int index = 0;
579
	ext4_fsblk_t current_block = 0;
580 581 582 583 584 585 586 587 588 589
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
590 591 592
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
593 594
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
595 596
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
597 598 599 600 601 602 603 604 605
		if (*err)
			goto failed_out;

		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
606 607 608 609 610 611 612 613 614
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
615
			break;
616
		}
617 618
	}

619 620 621 622 623
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
624 625 626 627 628 629 630 631 632 633 634
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
		/*
		 * save the new block number
		 * for the first direct block
		 */
			new_blocks[index] = current_block;
		}
650
		blk_allocated += ar.len;
651 652
	}
allocated:
653
	/* total number of blocks allocated for direct blocks */
654
	ret = blk_allocated;
655 656 657
	*err = 0;
	return ret;
failed_out:
658
	for (i = 0; i < index; i++)
659
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
660 661 662 663
	return ret;
}

/**
664
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
665 666 667 668 669 670 671 672 673 674
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
675
 *	the same format as ext4_get_branch() would do. We are calling it after
676 677
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
678
 *	picture as after the successful ext4_get_block(), except that in one
679 680 681 682 683 684
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
685
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
686 687
 *	as described above and return 0.
 */
688
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
689 690 691
				ext4_lblk_t iblock, int indirect_blks,
				int *blks, ext4_fsblk_t goal,
				ext4_lblk_t *offsets, Indirect *branch)
692 693 694 695 696 697
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
698 699
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
700

701
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
720
		err = ext4_journal_get_create_access(handle, bh);
721 722 723 724 725 726 727 728 729 730
		if (err) {
			unlock_buffer(bh);
			brelse(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
731
		if (n == indirect_blks) {
732 733 734 735 736 737 738 739 740 741 742 743 744
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
			for (i=1; i < num; i++)
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

745 746
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
747 748 749 750 751 752 753 754
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
	for (i = 1; i <= n ; i++) {
755
		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
756
		ext4_journal_forget(handle, branch[i].bh);
757
	}
758
	for (i = 0; i < indirect_blks; i++)
759
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
760

761
	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
762 763 764 765 766

	return err;
}

/**
767
 * ext4_splice_branch - splice the allocated branch onto inode.
768 769 770
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
771
 *	ext4_alloc_branch)
772 773 774 775 776 777 778 779
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
780
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
781
			ext4_lblk_t block, Indirect *where, int num, int blks)
782 783 784
{
	int i;
	int err = 0;
785
	ext4_fsblk_t current_block;
786 787 788 789 790 791 792 793

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
794
		err = ext4_journal_get_write_access(handle, where->bh);
795 796 797 798 799 800 801 802 803 804 805 806 807 808
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
809
			*(where->p + i) = cpu_to_le32(current_block++);
810 811 812 813
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */

K
Kalpak Shah 已提交
814
	inode->i_ctime = ext4_current_time(inode);
815
	ext4_mark_inode_dirty(handle, inode);
816 817 818 819 820 821 822 823 824

	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
825
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
826 827
		 */
		jbd_debug(5, "splicing indirect only\n");
828 829
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
830 831 832 833 834 835 836 837 838 839 840 841 842
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 * Inode was dirtied above.
		 */
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
843
		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
844
		ext4_journal_forget(handle, where[i].bh);
845 846
		ext4_free_blocks(handle, inode,
					le32_to_cpu(where[i-1].key), 1, 0);
847
	}
848
	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869

	return err;
}

/*
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
870 871 872
 *
 *
 * Need to be called with
873 874
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
875
 */
876 877 878 879
static int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
				  ext4_lblk_t iblock, unsigned int maxblocks,
				  struct buffer_head *bh_result,
				  int create, int extend_disksize)
880 881
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
882
	ext4_lblk_t offsets[4];
883 884
	Indirect chain[4];
	Indirect *partial;
885
	ext4_fsblk_t goal;
886 887 888
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
889
	struct ext4_inode_info *ei = EXT4_I(inode);
890
	int count = 0;
891
	ext4_fsblk_t first_block = 0;
892
	loff_t disksize;
893 894


A
Alex Tomas 已提交
895
	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
896
	J_ASSERT(handle != NULL || create == 0);
A
Aneesh Kumar K.V 已提交
897 898
	depth = ext4_block_to_path(inode, iblock, offsets,
					&blocks_to_boundary);
899 900 901 902

	if (depth == 0)
		goto out;

903
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
904 905 906 907 908 909 910 911

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		clear_buffer_new(bh_result);
		count++;
		/*map more blocks*/
		while (count < maxblocks && count <= blocks_to_boundary) {
912
			ext4_fsblk_t blk;
913 914 915 916 917 918 919 920

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
921
		goto got_it;
922 923 924 925 926 927 928
	}

	/* Next simple case - plain lookup or failed read of indirect block */
	if (!create || err == -EIO)
		goto cleanup;

	/*
929
	 * Okay, we need to do block allocation.
930
	*/
931
	goal = ext4_find_goal(inode, iblock, partial);
932 933 934 935 936 937 938 939

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
940
	count = ext4_blks_to_allocate(partial, indirect_blks,
941 942
					maxblocks, blocks_to_boundary);
	/*
943
	 * Block out ext4_truncate while we alter the tree
944
	 */
945 946 947
	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
					&count, goal,
					offsets + (partial - chain), partial);
948 949

	/*
950
	 * The ext4_splice_branch call will free and forget any buffers
951 952 953 954 955 956
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
957
		err = ext4_splice_branch(handle, inode, iblock,
958 959
					partial, indirect_blks, count);
	/*
960
	 * i_disksize growing is protected by i_data_sem.  Don't forget to
961
	 * protect it if you're about to implement concurrent
962
	 * ext4_get_block() -bzzz
963
	*/
964 965 966 967 968 969 970
	if (!err && extend_disksize) {
		disksize = ((loff_t) iblock + count) << inode->i_blkbits;
		if (disksize > i_size_read(inode))
			disksize = i_size_read(inode);
		if (disksize > ei->i_disksize)
			ei->i_disksize = disksize;
	}
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
	if (err)
		goto cleanup;

	set_buffer_new(bh_result);
got_it:
	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
	if (count > blocks_to_boundary)
		set_buffer_boundary(bh_result);
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
	BUFFER_TRACE(bh_result, "returned");
out:
	return err;
}

993 994 995 996 997 998 999 1000 1001 1002 1003
qsize_t ext4_get_reserved_space(struct inode *inode)
{
	unsigned long long total;

	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	total = EXT4_I(inode)->i_reserved_data_blocks +
		EXT4_I(inode)->i_reserved_meta_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	return total;
}
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
/*
 * Calculate the number of metadata blocks need to reserve
 * to allocate @blocks for non extent file based file
 */
static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
{
	int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ind_blks, dind_blks, tind_blks;

	/* number of new indirect blocks needed */
	ind_blks = (blocks + icap - 1) / icap;

	dind_blks = (ind_blks + icap - 1) / icap;

	tind_blks = 1;

	return ind_blks + dind_blks + tind_blks;
}

/*
 * Calculate the number of metadata blocks need to reserve
 * to allocate given number of blocks
 */
static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
{
1029 1030 1031
	if (!blocks)
		return 0;

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
		return ext4_ext_calc_metadata_amount(inode, blocks);

	return ext4_indirect_calc_metadata_amount(inode, blocks);
}

static void ext4_da_update_reserve_space(struct inode *inode, int used)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int total, mdb, mdb_free;

	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	/* recalculate the number of metablocks still need to be reserved */
	total = EXT4_I(inode)->i_reserved_data_blocks - used;
	mdb = ext4_calc_metadata_amount(inode, total);

	/* figure out how many metablocks to release */
	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;

1052 1053 1054 1055 1056 1057 1058 1059 1060
	if (mdb_free) {
		/* Account for allocated meta_blocks */
		mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;

		/* update fs dirty blocks counter */
		percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
		EXT4_I(inode)->i_allocated_meta_blocks = 0;
		EXT4_I(inode)->i_reserved_meta_blocks = mdb;
	}
1061 1062 1063 1064 1065

	/* update per-inode reservations */
	BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
	EXT4_I(inode)->i_reserved_data_blocks -= used;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1066 1067 1068 1069 1070 1071 1072

	/*
	 * free those over-booking quota for metadata blocks
	 */

	if (mdb_free)
		vfs_dq_release_reservation_block(inode, mdb_free);
1073 1074
}

1075
/*
1076 1077
 * The ext4_get_blocks_wrap() function try to look up the requested blocks,
 * and returns if the blocks are already mapped.
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
 * If file type is extents based, it will call ext4_ext_get_blocks(),
 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
1097
int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1098
			unsigned int max_blocks, struct buffer_head *bh,
1099
			int create, int extend_disksize, int flag)
1100 1101
{
	int retval;
1102 1103 1104

	clear_buffer_mapped(bh);

1105 1106 1107 1108 1109 1110 1111 1112
	/*
	 * Try to see if we can get  the block without requesting
	 * for new file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
				bh, 0, 0);
1113
	} else {
1114 1115
		retval = ext4_get_blocks_handle(handle,
				inode, block, max_blocks, bh, 0, 0);
1116
	}
1117
	up_read((&EXT4_I(inode)->i_data_sem));
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130

	/* If it is only a block(s) look up */
	if (!create)
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
	if (retval > 0 && buffer_mapped(bh))
1131 1132 1133
		return retval;

	/*
1134 1135 1136 1137
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1138 1139
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
1140 1141 1142 1143 1144 1145 1146 1147 1148

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
	if (flag)
		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1149 1150 1151 1152
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1153 1154 1155 1156 1157 1158
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
				bh, create, extend_disksize);
	} else {
		retval = ext4_get_blocks_handle(handle, inode, block,
				max_blocks, bh, create, extend_disksize);
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168

		if (retval > 0 && buffer_new(bh)) {
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
			EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
							~EXT4_EXT_MIGRATE;
		}
1169
	}
1170 1171 1172 1173 1174 1175 1176 1177 1178

	if (flag) {
		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
		/*
		 * Update reserved blocks/metadata blocks
		 * after successful block allocation
		 * which were deferred till now
		 */
		if ((retval > 0) && buffer_delay(bh))
1179
			ext4_da_update_reserve_space(inode, retval);
1180 1181
	}

1182
	up_write((&EXT4_I(inode)->i_data_sem));
1183 1184 1185
	return retval;
}

1186 1187 1188
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

1189 1190
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create)
1191
{
1192
	handle_t *handle = ext4_journal_current_handle();
J
Jan Kara 已提交
1193
	int ret = 0, started = 0;
1194
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1195
	int dio_credits;
1196

J
Jan Kara 已提交
1197 1198 1199 1200
	if (create && !handle) {
		/* Direct IO write... */
		if (max_blocks > DIO_MAX_BLOCKS)
			max_blocks = DIO_MAX_BLOCKS;
1201 1202
		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
1203
		if (IS_ERR(handle)) {
1204
			ret = PTR_ERR(handle);
J
Jan Kara 已提交
1205
			goto out;
1206
		}
J
Jan Kara 已提交
1207
		started = 1;
1208 1209
	}

J
Jan Kara 已提交
1210
	ret = ext4_get_blocks_wrap(handle, inode, iblock,
1211
					max_blocks, bh_result, create, 0, 0);
J
Jan Kara 已提交
1212 1213 1214
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
1215
	}
J
Jan Kara 已提交
1216 1217 1218
	if (started)
		ext4_journal_stop(handle);
out:
1219 1220 1221 1222 1223 1224
	return ret;
}

/*
 * `handle' can be NULL if create is zero
 */
1225
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1226
				ext4_lblk_t block, int create, int *errp)
1227 1228 1229 1230 1231 1232 1233 1234 1235
{
	struct buffer_head dummy;
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

	dummy.b_state = 0;
	dummy.b_blocknr = -1000;
	buffer_trace_init(&dummy.b_history);
A
Alex Tomas 已提交
1236
	err = ext4_get_blocks_wrap(handle, inode, block, 1,
1237
					&dummy, create, 1, 0);
1238
	/*
1239
	 * ext4_get_blocks_handle() returns number of blocks
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
	 * mapped. 0 in case of a HOLE.
	 */
	if (err > 0) {
		if (err > 1)
			WARN_ON(1);
		err = 0;
	}
	*errp = err;
	if (!err && buffer_mapped(&dummy)) {
		struct buffer_head *bh;
		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
		if (!bh) {
			*errp = -EIO;
			goto err;
		}
		if (buffer_new(&dummy)) {
			J_ASSERT(create != 0);
A
Aneesh Kumar K.V 已提交
1257
			J_ASSERT(handle != NULL);
1258 1259 1260 1261 1262

			/*
			 * Now that we do not always journal data, we should
			 * keep in mind whether this should always journal the
			 * new buffer as metadata.  For now, regular file
1263
			 * writes use ext4_get_block instead, so it's not a
1264 1265 1266 1267
			 * problem.
			 */
			lock_buffer(bh);
			BUFFER_TRACE(bh, "call get_create_access");
1268
			fatal = ext4_journal_get_create_access(handle, bh);
1269
			if (!fatal && !buffer_uptodate(bh)) {
1270
				memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1271 1272 1273
				set_buffer_uptodate(bh);
			}
			unlock_buffer(bh);
1274 1275
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			err = ext4_handle_dirty_metadata(handle, inode, bh);
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
			if (!fatal)
				fatal = err;
		} else {
			BUFFER_TRACE(bh, "not a new buffer");
		}
		if (fatal) {
			*errp = fatal;
			brelse(bh);
			bh = NULL;
		}
		return bh;
	}
err:
	return NULL;
}

1292
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1293
			       ext4_lblk_t block, int create, int *err)
1294
{
1295
	struct buffer_head *bh;
1296

1297
	bh = ext4_getblk(handle, inode, block, create, err);
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

1311 1312 1313 1314 1315 1316 1317
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
1318 1319 1320 1321 1322 1323 1324
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

1325 1326 1327
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
	     block_start = block_end, bh = next)
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
	{
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1346
 * close off a transaction and start a new one between the ext4_get_block()
1347
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1348 1349
 * prepare_write() is the right place.
 *
1350 1351
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1352 1353 1354 1355
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1356
 * By accident, ext4 can be reentered when a transaction is open via
1357 1358 1359 1360 1361 1362
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1363
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1364 1365 1366 1367 1368 1369 1370 1371 1372
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
					struct buffer_head *bh)
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1373
	return ext4_journal_get_write_access(handle, bh);
1374 1375
}

N
Nick Piggin 已提交
1376 1377 1378
static int ext4_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
1379
{
1380
	struct inode *inode = mapping->host;
1381
	int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1382 1383
	handle_t *handle;
	int retries = 0;
1384
	struct page *page;
N
Nick Piggin 已提交
1385
 	pgoff_t index;
1386
	unsigned from, to;
N
Nick Piggin 已提交
1387

1388 1389 1390 1391
	trace_mark(ext4_write_begin,
		   "dev %s ino %lu pos %llu len %u flags %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, flags);
N
Nick Piggin 已提交
1392
 	index = pos >> PAGE_CACHE_SHIFT;
1393 1394
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
1395 1396

retry:
1397 1398 1399 1400
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
1401
	}
1402

1403 1404 1405 1406
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

1407
	page = grab_cache_page_write_begin(mapping, index, flags);
1408 1409 1410 1411 1412 1413 1414
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

N
Nick Piggin 已提交
1415
	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1416
				ext4_get_block);
N
Nick Piggin 已提交
1417 1418

	if (!ret && ext4_should_journal_data(inode)) {
1419 1420 1421
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1422 1423

	if (ret) {
1424
		unlock_page(page);
1425
		ext4_journal_stop(handle);
1426
		page_cache_release(page);
1427 1428 1429 1430 1431 1432 1433
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
			vmtruncate(inode, inode->i_size);
N
Nick Piggin 已提交
1434 1435
	}

1436
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1437
		goto retry;
1438
out:
1439 1440 1441
	return ret;
}

N
Nick Piggin 已提交
1442 1443
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1444 1445 1446 1447
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1448
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1449 1450 1451 1452 1453 1454
}

/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1455
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1456 1457
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1458 1459 1460 1461
static int ext4_ordered_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1462
{
1463
	handle_t *handle = ext4_journal_current_handle();
1464
	struct inode *inode = mapping->host;
1465 1466
	int ret = 0, ret2;

1467 1468 1469 1470
	trace_mark(ext4_ordered_write_end,
		   "dev %s ino %lu pos %llu len %u copied %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, copied);
1471
	ret = ext4_jbd2_file_inode(handle, inode);
1472 1473 1474 1475

	if (ret == 0) {
		loff_t new_i_size;

N
Nick Piggin 已提交
1476
		new_i_size = pos + copied;
1477 1478 1479 1480 1481 1482 1483 1484 1485
		if (new_i_size > EXT4_I(inode)->i_disksize) {
			ext4_update_i_disksize(inode, new_i_size);
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
		}

1486
		ret2 = generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1487
							page, fsdata);
1488 1489 1490
		copied = ret2;
		if (ret2 < 0)
			ret = ret2;
1491
	}
1492
	ret2 = ext4_journal_stop(handle);
1493 1494
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1495 1496

	return ret ? ret : copied;
1497 1498
}

N
Nick Piggin 已提交
1499 1500 1501 1502
static int ext4_writeback_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1503
{
1504
	handle_t *handle = ext4_journal_current_handle();
1505
	struct inode *inode = mapping->host;
1506 1507 1508
	int ret = 0, ret2;
	loff_t new_i_size;

1509 1510 1511 1512
	trace_mark(ext4_writeback_write_end,
		   "dev %s ino %lu pos %llu len %u copied %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, copied);
N
Nick Piggin 已提交
1513
	new_i_size = pos + copied;
1514 1515 1516 1517 1518 1519 1520 1521
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_mark_inode_dirty(handle, inode);
	}
1522

1523
	ret2 = generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1524
							page, fsdata);
1525 1526 1527
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
1528

1529
	ret2 = ext4_journal_stop(handle);
1530 1531
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1532 1533

	return ret ? ret : copied;
1534 1535
}

N
Nick Piggin 已提交
1536 1537 1538 1539
static int ext4_journalled_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1540
{
1541
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1542
	struct inode *inode = mapping->host;
1543 1544
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1545
	unsigned from, to;
1546
	loff_t new_i_size;
1547

1548 1549 1550 1551
	trace_mark(ext4_journalled_write_end,
		   "dev %s ino %lu pos %llu len %u copied %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, copied);
N
Nick Piggin 已提交
1552 1553 1554 1555 1556 1557 1558 1559
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1560 1561

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1562
				to, &partial, write_end_fn);
1563 1564
	if (!partial)
		SetPageUptodate(page);
1565 1566
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1567
		i_size_write(inode, pos+copied);
1568
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1569 1570
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1571
		ret2 = ext4_mark_inode_dirty(handle, inode);
1572 1573 1574
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1575

1576
	unlock_page(page);
1577
	ret2 = ext4_journal_stop(handle);
1578 1579
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1580 1581 1582
	page_cache_release(page);

	return ret ? ret : copied;
1583
}
1584 1585 1586

static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
{
A
Aneesh Kumar K.V 已提交
1587
	int retries = 0;
1588 1589
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	unsigned long md_needed, mdblocks, total = 0;
1590 1591 1592 1593 1594 1595

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1596
repeat:
1597 1598 1599 1600 1601 1602 1603 1604
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
	mdblocks = ext4_calc_metadata_amount(inode, total);
	BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);

	md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
	total = md_needed + nrblocks;

1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
	/*
	 * Make quota reservation here to prevent quota overflow
	 * later. Real quota accounting is done at pages writeout
	 * time.
	 */
	if (vfs_dq_reserve_block(inode, total)) {
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
		return -EDQUOT;
	}

1615
	if (ext4_claim_free_blocks(sbi, total)) {
1616
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
A
Aneesh Kumar K.V 已提交
1617 1618 1619 1620
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1621
		vfs_dq_release_reservation_block(inode, total);
1622 1623 1624 1625 1626 1627 1628 1629 1630
		return -ENOSPC;
	}
	EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
	EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
	return 0;       /* success */
}

1631
static void ext4_da_release_space(struct inode *inode, int to_free)
1632 1633 1634 1635
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int total, mdb, mdb_free, release;

1636 1637 1638
	if (!to_free)
		return;		/* Nothing to release, exit */

1639
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654

	if (!EXT4_I(inode)->i_reserved_data_blocks) {
		/*
		 * if there is no reserved blocks, but we try to free some
		 * then the counter is messed up somewhere.
		 * but since this function is called from invalidate
		 * page, it's harmless to return without any action
		 */
		printk(KERN_INFO "ext4 delalloc try to release %d reserved "
			    "blocks for inode %lu, but there is no reserved "
			    "data blocks\n", to_free, inode->i_ino);
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
		return;
	}

1655
	/* recalculate the number of metablocks still need to be reserved */
1656
	total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1657 1658 1659 1660 1661 1662 1663 1664
	mdb = ext4_calc_metadata_amount(inode, total);

	/* figure out how many metablocks to release */
	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;

	release = to_free + mdb_free;

1665 1666
	/* update fs dirty blocks counter for truncate case */
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1667 1668

	/* update per-inode reservations */
1669 1670
	BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
	EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1671 1672 1673 1674

	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	EXT4_I(inode)->i_reserved_meta_blocks = mdb;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1675 1676

	vfs_dq_release_reservation_block(inode, release);
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
}

static void ext4_da_page_release_reservation(struct page *page,
						unsigned long offset)
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1697
	ext4_da_release_space(page->mapping->host, to_release);
1698
}
1699

1700 1701 1702 1703 1704 1705
/*
 * Delayed allocation stuff
 */

struct mpage_da_data {
	struct inode *inode;
1706 1707 1708
	sector_t b_blocknr;		/* start block number of extent */
	size_t b_size;			/* size of extent */
	unsigned long b_state;		/* state of the extent */
1709 1710
	unsigned long first_page, next_page;	/* extent of pages */
	struct writeback_control *wbc;
1711
	int io_done;
1712
	int pages_written;
1713
	int retval;
1714 1715 1716 1717
};

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1718
 * them with writepage() call back
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
static int mpage_da_submit_io(struct mpage_da_data *mpd)
{
1731
	long pages_skipped;
1732 1733 1734 1735 1736
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1737 1738

	BUG_ON(mpd->next_page <= mpd->first_page);
1739 1740 1741
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1742
	 * If we look at mpd->b_blocknr we would only be looking
1743 1744
	 * at the currently mapped buffer_heads.
	 */
1745 1746 1747
	index = mpd->first_page;
	end = mpd->next_page - 1;

1748
	pagevec_init(&pvec, 0);
1749
	while (index <= end) {
1750
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1751 1752 1753 1754 1755
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

1756 1757 1758 1759 1760 1761 1762 1763
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1764
			pages_skipped = mpd->wbc->pages_skipped;
1765
			err = mapping->a_ops->writepage(page, mpd->wbc);
1766 1767 1768 1769 1770
			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
				/*
				 * have successfully written the page
				 * without skipping the same
				 */
1771
				mpd->pages_written++;
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 * XXX: unlock and re-dirty them?
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
	return ret;
}

/*
 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
 *
 * @mpd->inode - inode to walk through
 * @exbh->b_blocknr - first block on a disk
 * @exbh->b_size - amount of space in bytes
 * @logical - first logical block to start assignment with
 *
 * the function goes through all passed space and put actual disk
 * block numbers into buffer heads, dropping BH_Delay
 */
static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
				 struct buffer_head *exbh)
{
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
	int blocks = exbh->b_size >> inode->i_blkbits;
	sector_t pblock = exbh->b_blocknr, cur_logical;
	struct buffer_head *head, *bh;
1804
	pgoff_t index, end;
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
	struct pagevec pvec;
	int nr_pages, i;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);

	while (index <= end) {
		/* XXX: optimize tail */
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			BUG_ON(!page_has_buffers(page));

			bh = page_buffers(page);
			head = bh;

			/* skip blocks out of the range */
			do {
				if (cur_logical >= logical)
					break;
				cur_logical++;
			} while ((bh = bh->b_this_page) != head);

			do {
				if (cur_logical >= logical + blocks)
					break;
				if (buffer_delay(bh)) {
					bh->b_blocknr = pblock;
					clear_buffer_delay(bh);
1847 1848 1849 1850 1851 1852 1853
					bh->b_bdev = inode->i_sb->s_bdev;
				} else if (buffer_unwritten(bh)) {
					bh->b_blocknr = pblock;
					clear_buffer_unwritten(bh);
					set_buffer_mapped(bh);
					set_buffer_new(bh);
					bh->b_bdev = inode->i_sb->s_bdev;
1854
				} else if (buffer_mapped(bh))
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
					BUG_ON(bh->b_blocknr != pblock);

				cur_logical++;
				pblock++;
			} while ((bh = bh->b_this_page) != head);
		}
		pagevec_release(&pvec);
	}
}


/*
 * __unmap_underlying_blocks - just a helper function to unmap
 * set of blocks described by @bh
 */
static inline void __unmap_underlying_blocks(struct inode *inode,
					     struct buffer_head *bh)
{
	struct block_device *bdev = inode->i_sb->s_bdev;
	int blocks, i;

	blocks = bh->b_size >> inode->i_blkbits;
	for (i = 0; i < blocks; i++)
		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
}

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
					sector_t logical, long blk_cnt)
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end   = (logical + blk_cnt - 1) >>
				(PAGE_CACHE_SHIFT - inode->i_blkbits);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
	}
	return;
}

1914 1915 1916 1917 1918 1919 1920
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	printk(KERN_EMERG "Total free blocks count %lld\n",
			ext4_count_free_blocks(inode->i_sb));
	printk(KERN_EMERG "Free/Dirty block details\n");
	printk(KERN_EMERG "free_blocks=%lld\n",
1921
			(long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
1922
	printk(KERN_EMERG "dirty_blocks=%lld\n",
1923
			(long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1924
	printk(KERN_EMERG "Block reservation details\n");
1925
	printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
1926
			EXT4_I(inode)->i_reserved_data_blocks);
1927
	printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
1928 1929 1930 1931
			EXT4_I(inode)->i_reserved_meta_blocks);
	return;
}

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
#define		EXT4_DELALLOC_RSVED	1
static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create)
{
	int ret;
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
	loff_t disksize = EXT4_I(inode)->i_disksize;
	handle_t *handle = NULL;

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);
	ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
				   bh_result, create, 0, EXT4_DELALLOC_RSVED);
	if (ret <= 0)
		return ret;

	bh_result->b_size = (ret << inode->i_blkbits);

	if (ext4_should_order_data(inode)) {
		int retval;
		retval = ext4_jbd2_file_inode(handle, inode);
		if (retval)
			/*
			 * Failed to add inode for ordered mode. Don't
			 * update file size
			 */
			return retval;
	}

	/*
	 * Update on-disk size along with block allocation we don't
	 * use 'extend_disksize' as size may change within already
	 * allocated block -bzzz
	 */
	disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
	if (disksize > i_size_read(inode))
		disksize = i_size_read(inode);
	if (disksize > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, disksize);
		ret = ext4_mark_inode_dirty(handle, inode);
		return ret;
	}
	return 0;
}

1977 1978 1979
/*
 * mpage_da_map_blocks - go through given space
 *
1980
 * @mpd - bh describing space
1981 1982 1983 1984
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1985
static int mpage_da_map_blocks(struct mpage_da_data *mpd)
1986
{
1987
	int err = 0;
A
Aneesh Kumar K.V 已提交
1988
	struct buffer_head new;
1989
	sector_t next;
1990 1991 1992 1993

	/*
	 * We consider only non-mapped and non-allocated blocks
	 */
1994 1995
	if ((mpd->b_state  & (1 << BH_Mapped)) &&
	    !(mpd->b_state & (1 << BH_Delay)))
1996
		return 0;
1997
	new.b_state = mpd->b_state;
1998
	new.b_blocknr = 0;
1999 2000
	new.b_size = mpd->b_size;
	next = mpd->b_blocknr;
2001 2002 2003 2004 2005
	/*
	 * If we didn't accumulate anything
	 * to write simply return
	 */
	if (!new.b_size)
2006 2007
		return 0;

2008 2009 2010 2011 2012 2013
	err = ext4_da_get_block_write(mpd->inode, next, &new, 1);
	if (err) {
		/*
		 * If get block returns with error we simply
		 * return. Later writepage will redirty the page and
		 * writepages will find the dirty page again
2014 2015 2016
		 */
		if (err == -EAGAIN)
			return 0;
2017 2018

		if (err == -ENOSPC &&
2019
		    ext4_count_free_blocks(mpd->inode->i_sb)) {
2020 2021 2022 2023
			mpd->retval = err;
			return 0;
		}

2024
		/*
2025 2026 2027 2028 2029
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
2030 2031 2032 2033 2034 2035
		 */
		printk(KERN_EMERG "%s block allocation failed for inode %lu "
				  "at logical offset %llu with max blocks "
				  "%zd with error %d\n",
				  __func__, mpd->inode->i_ino,
				  (unsigned long long)next,
2036
				  mpd->b_size >> mpd->inode->i_blkbits, err);
2037 2038
		printk(KERN_EMERG "This should not happen.!! "
					"Data will be lost\n");
A
Aneesh Kumar K.V 已提交
2039
		if (err == -ENOSPC) {
2040
			ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
2041
		}
2042 2043
		/* invlaidate all the pages */
		ext4_da_block_invalidatepages(mpd, next,
2044
				mpd->b_size >> mpd->inode->i_blkbits);
2045 2046
		return err;
	}
2047
	BUG_ON(new.b_size == 0);
2048

2049 2050
	if (buffer_new(&new))
		__unmap_underlying_blocks(mpd->inode, &new);
2051

2052 2053 2054 2055
	/*
	 * If blocks are delayed marked, we need to
	 * put actual blocknr and drop delayed bit
	 */
2056 2057
	if ((mpd->b_state & (1 << BH_Delay)) ||
	    (mpd->b_state & (1 << BH_Unwritten)))
2058
		mpage_put_bnr_to_bhs(mpd, next, &new);
2059

2060
	return 0;
2061 2062
}

2063 2064
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2076 2077
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
2078 2079
{
	sector_t next;
2080
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2081

2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
	/* check if thereserved journal credits might overflow */
	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
2104 2105 2106
	/*
	 * First block in the extent
	 */
2107 2108 2109 2110
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
2111 2112 2113
		return;
	}

2114
	next = mpd->b_blocknr + nrblocks;
2115 2116 2117
	/*
	 * Can we merge the block to our big extent?
	 */
2118 2119
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
2120 2121 2122
		return;
	}

2123
flush_it:
2124 2125 2126 2127
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
2128 2129
	if (mpage_da_map_blocks(mpd) == 0)
		mpage_da_submit_io(mpd);
2130 2131
	mpd->io_done = 1;
	return;
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
}

/*
 * __mpage_da_writepage - finds extent of pages and blocks
 *
 * @page: page to consider
 * @wbc: not used, we just follow rules
 * @data: context
 *
 * The function finds extents of pages and scan them for all blocks.
 */
static int __mpage_da_writepage(struct page *page,
				struct writeback_control *wbc, void *data)
{
	struct mpage_da_data *mpd = data;
	struct inode *inode = mpd->inode;
2148
	struct buffer_head *bh, *head;
2149 2150
	sector_t logical;

2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
	if (mpd->io_done) {
		/*
		 * Rest of the page in the page_vec
		 * redirty then and skip then. We will
		 * try to to write them again after
		 * starting a new transaction
		 */
		redirty_page_for_writepage(wbc, page);
		unlock_page(page);
		return MPAGE_DA_EXTENT_TAIL;
	}
2162 2163 2164 2165 2166 2167
	/*
	 * Can we merge this page to current extent?
	 */
	if (mpd->next_page != page->index) {
		/*
		 * Nope, we can't. So, we map non-allocated blocks
2168
		 * and start IO on them using writepage()
2169 2170
		 */
		if (mpd->next_page != mpd->first_page) {
2171 2172
			if (mpage_da_map_blocks(mpd) == 0)
				mpage_da_submit_io(mpd);
2173 2174 2175 2176 2177 2178 2179
			/*
			 * skip rest of the page in the page_vec
			 */
			mpd->io_done = 1;
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return MPAGE_DA_EXTENT_TAIL;
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
		}

		/*
		 * Start next extent of pages ...
		 */
		mpd->first_page = page->index;

		/*
		 * ... and blocks
		 */
2190 2191 2192
		mpd->b_size = 0;
		mpd->b_state = 0;
		mpd->b_blocknr = 0;
2193 2194 2195 2196 2197 2198 2199
	}

	mpd->next_page = page->index + 1;
	logical = (sector_t) page->index <<
		  (PAGE_CACHE_SHIFT - inode->i_blkbits);

	if (!page_has_buffers(page)) {
2200 2201
		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2202 2203
		if (mpd->io_done)
			return MPAGE_DA_EXTENT_TAIL;
2204 2205 2206 2207 2208 2209 2210 2211
	} else {
		/*
		 * Page with regular buffer heads, just add all dirty ones
		 */
		head = page_buffers(page);
		bh = head;
		do {
			BUG_ON(buffer_locked(bh));
2212 2213 2214 2215 2216 2217
			/*
			 * We need to try to allocate
			 * unmapped blocks in the same page.
			 * Otherwise we won't make progress
			 * with the page in ext4_da_writepage
			 */
2218
			if (buffer_dirty(bh) &&
2219 2220 2221 2222
			    (!buffer_mapped(bh) || buffer_delay(bh))) {
				mpage_add_bh_to_extent(mpd, logical,
						       bh->b_size,
						       bh->b_state);
2223 2224
				if (mpd->io_done)
					return MPAGE_DA_EXTENT_TAIL;
2225 2226 2227 2228 2229 2230 2231 2232 2233
			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
				/*
				 * mapped dirty buffer. We need to update
				 * the b_state because we look at
				 * b_state in mpage_da_map_blocks. We don't
				 * update b_size because if we find an
				 * unmapped buffer_head later we need to
				 * use the b_state flag of that buffer_head.
				 */
2234 2235
				if (mpd->b_size == 0)
					mpd->b_state = bh->b_state & BH_FLAGS;
2236
			}
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
			logical++;
		} while ((bh = bh->b_this_page) != head);
	}

	return 0;
}

/*
 * this is a special callback for ->write_begin() only
 * it's intention is to return mapped block or reserve space
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
				  struct buffer_head *bh_result, int create)
{
	int ret = 0;

	BUG_ON(create == 0);
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2261 2262 2263
	ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
	if ((ret == 0) && !buffer_delay(bh_result)) {
		/* the block isn't (pre)allocated yet, let's reserve space */
2264 2265 2266 2267
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
2268 2269 2270 2271 2272
		ret = ext4_da_reserve_space(inode, 1);
		if (ret)
			/* not enough space to reserve */
			return ret;

2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
		map_bh(bh_result, inode->i_sb, 0);
		set_buffer_new(bh_result);
		set_buffer_delay(bh_result);
	} else if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
	}

	return ret;
}
2283 2284 2285

static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
{
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
	/*
	 * unmapped buffer is possible for holes.
	 * delay buffer is possible with delayed allocation
	 */
	return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
}

static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create)
{
	int ret = 0;
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;

	/*
	 * we don't want to do block allocation in writepage
	 * so call get_block_wrap with create = 0
	 */
	ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
				   bh_result, 0, 0, 0);
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
	}
	return ret;
2310 2311 2312
}

/*
2313 2314 2315 2316
 * get called vi ext4_da_writepages after taking page lock (have journal handle)
 * get called via journal_submit_inode_data_buffers (no journal handle)
 * get called via shrink_page_list via pdflush (no journal handle)
 * or grab_page_cache when doing write_begin (have journal handle)
2317
 */
2318 2319 2320 2321
static int ext4_da_writepage(struct page *page,
				struct writeback_control *wbc)
{
	int ret = 0;
2322
	loff_t size;
2323
	unsigned int len;
2324 2325 2326
	struct buffer_head *page_bufs;
	struct inode *inode = page->mapping->host;

2327 2328 2329
	trace_mark(ext4_da_writepage,
		   "dev %s ino %lu page_index %lu",
		   inode->i_sb->s_id, inode->i_ino, page->index);
2330 2331 2332 2333 2334
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2335

2336
	if (page_has_buffers(page)) {
2337
		page_bufs = page_buffers(page);
2338 2339
		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
					ext4_bh_unmapped_or_delay)) {
2340
			/*
2341 2342
			 * We don't want to do  block allocation
			 * So redirty the page and return
2343 2344 2345
			 * We may reach here when we do a journal commit
			 * via journal_submit_inode_data_buffers.
			 * If we don't have mapping block we just ignore
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
			 * them. We can also reach here via shrink_page_list
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
	} else {
		/*
		 * The test for page_has_buffers() is subtle:
		 * We know the page is dirty but it lost buffers. That means
		 * that at some moment in time after write_begin()/write_end()
		 * has been called all buffers have been clean and thus they
		 * must have been written at least once. So they are all
		 * mapped and we can happily proceed with mapping them
		 * and writing the page.
		 *
		 * Try to initialize the buffer_heads and check whether
		 * all are mapped and non delay. We don't want to
		 * do block allocation here.
		 */
		ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
						ext4_normal_get_block_write);
		if (!ret) {
			page_bufs = page_buffers(page);
			/* check whether all are mapped and non delay */
			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
						ext4_bh_unmapped_or_delay)) {
				redirty_page_for_writepage(wbc, page);
				unlock_page(page);
				return 0;
			}
		} else {
			/*
			 * We can't do block allocation here
			 * so just redity the page and unlock
			 * and return
2382 2383 2384 2385 2386
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
2387 2388
		/* now mark the buffer_heads as dirty and uptodate */
		block_commit_write(page, 0, PAGE_CACHE_SIZE);
2389 2390 2391
	}

	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2392
		ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2393
	else
2394 2395 2396
		ret = block_write_full_page(page,
						ext4_normal_get_block_write,
						wbc);
2397 2398 2399 2400

	return ret;
}

2401
/*
2402 2403 2404 2405 2406
 * This is called via ext4_da_writepages() to
 * calulate the total number of credits to reserve to fit
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2407
 */
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
	if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2425

2426
static int ext4_da_writepages(struct address_space *mapping,
2427
			      struct writeback_control *wbc)
2428
{
2429 2430
	pgoff_t	index;
	int range_whole = 0;
2431
	handle_t *handle = NULL;
2432
	struct mpage_da_data mpd;
2433
	struct inode *inode = mapping->host;
2434
	int no_nrwrite_index_update;
2435 2436
	int pages_written = 0;
	long pages_skipped;
2437
	int range_cyclic, cycled = 1, io_done = 0;
2438 2439
	int needed_blocks, ret = 0, nr_to_writebump = 0;
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2440

2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
	trace_mark(ext4_da_writepages,
		   "dev %s ino %lu nr_t_write %ld "
		   "pages_skipped %ld range_start %llu "
		   "range_end %llu nonblocking %d "
		   "for_kupdate %d for_reclaim %d "
		   "for_writepages %d range_cyclic %d",
		   inode->i_sb->s_id, inode->i_ino,
		   wbc->nr_to_write, wbc->pages_skipped,
		   (unsigned long long) wbc->range_start,
		   (unsigned long long) wbc->range_end,
		   wbc->nonblocking, wbc->for_kupdate,
		   wbc->for_reclaim, wbc->for_writepages,
		   wbc->range_cyclic);

2455 2456 2457 2458 2459
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2460
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2461
		return 0;
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
	 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
	if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
		return -EROFS;

2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
	/*
	 * Make sure nr_to_write is >= sbi->s_mb_stream_request
	 * This make sure small files blocks are allocated in
	 * single attempt. This ensure that small files
	 * get less fragmented.
	 */
	if (wbc->nr_to_write < sbi->s_mb_stream_request) {
		nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
		wbc->nr_to_write = sbi->s_mb_stream_request;
	}
2486 2487
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2488

2489 2490
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2491
		index = mapping->writeback_index;
2492 2493 2494 2495 2496 2497
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
	} else
2498
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2499

2500 2501 2502
	mpd.wbc = wbc;
	mpd.inode = mapping->host;

2503 2504 2505 2506 2507 2508 2509 2510
	/*
	 * we don't want write_cache_pages to update
	 * nr_to_write and writeback_index
	 */
	no_nrwrite_index_update = wbc->no_nrwrite_index_update;
	wbc->no_nrwrite_index_update = 1;
	pages_skipped = wbc->pages_skipped;

2511
retry:
2512
	while (!ret && wbc->nr_to_write > 0) {
2513 2514 2515 2516 2517 2518 2519 2520

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2521
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2522

2523 2524 2525 2526
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2527
			printk(KERN_CRIT "%s: jbd2_start: "
2528 2529 2530
			       "%ld pages, ino %lu; err %d\n", __func__,
				wbc->nr_to_write, inode->i_ino, ret);
			dump_stack();
2531 2532
			goto out_writepages;
		}
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564

		/*
		 * Now call __mpage_da_writepage to find the next
		 * contiguous region of logical blocks that need
		 * blocks to be allocated by ext4.  We don't actually
		 * submit the blocks for I/O here, even though
		 * write_cache_pages thinks it will, and will set the
		 * pages as clean for write before calling
		 * __mpage_da_writepage().
		 */
		mpd.b_size = 0;
		mpd.b_state = 0;
		mpd.b_blocknr = 0;
		mpd.first_page = 0;
		mpd.next_page = 0;
		mpd.io_done = 0;
		mpd.pages_written = 0;
		mpd.retval = 0;
		ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
					&mpd);
		/*
		 * If we have a contigous extent of pages and we
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
			if (mpage_da_map_blocks(&mpd) == 0)
				mpage_da_submit_io(&mpd);
			mpd.io_done = 1;
			ret = MPAGE_DA_EXTENT_TAIL;
		}
		wbc->nr_to_write -= mpd.pages_written;
2565

2566
		ext4_journal_stop(handle);
2567

2568
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2569 2570 2571 2572
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2573
			jbd2_journal_force_commit_nested(sbi->s_journal);
2574 2575 2576
			wbc->pages_skipped = pages_skipped;
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2577 2578 2579 2580
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
2581 2582
			pages_written += mpd.pages_written;
			wbc->pages_skipped = pages_skipped;
2583
			ret = 0;
2584
			io_done = 1;
2585
		} else if (wbc->nr_to_write)
2586 2587 2588 2589 2590 2591
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2592
	}
2593 2594 2595 2596 2597 2598 2599
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2600 2601 2602 2603 2604 2605 2606
	if (pages_skipped != wbc->pages_skipped)
		printk(KERN_EMERG "This should not happen leaving %s "
				"with nr_to_write = %ld ret = %d\n",
				__func__, wbc->nr_to_write, ret);

	/* Update index */
	index += pages_written;
2607
	wbc->range_cyclic = range_cyclic;
2608 2609 2610 2611 2612 2613
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
		mapping->writeback_index = index;
2614

2615
out_writepages:
2616 2617 2618
	if (!no_nrwrite_index_update)
		wbc->no_nrwrite_index_update = 0;
	wbc->nr_to_write -= nr_to_writebump;
2619 2620 2621 2622 2623 2624 2625 2626
	trace_mark(ext4_da_writepage_result,
		   "dev %s ino %lu ret %d pages_written %d "
		   "pages_skipped %ld congestion %d "
		   "more_io %d no_nrwrite_index_update %d",
		   inode->i_sb->s_id, inode->i_ino, ret,
		   pages_written, wbc->pages_skipped,
		   wbc->encountered_congestion, wbc->more_io,
		   wbc->no_nrwrite_index_update);
2627
	return ret;
2628 2629
}

2630 2631 2632 2633 2634 2635 2636 2637 2638
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2639
	 * counters can get slightly wrong with percpu_counter_batch getting
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
		 * free block count is less that 150% of dirty blocks
		 * or free blocks is less that watermark
		 */
		return 1;
	}
	return 0;
}

2657 2658 2659 2660
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
{
2661
	int ret, retries = 0;
2662 2663 2664 2665 2666 2667 2668 2669 2670
	struct page *page;
	pgoff_t index;
	unsigned from, to;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
2671 2672 2673 2674 2675 2676 2677

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2678 2679 2680 2681 2682

	trace_mark(ext4_da_write_begin,
		   "dev %s ino %lu pos %llu len %u flags %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, flags);
2683
retry:
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
2695 2696 2697
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
2698

2699
	page = grab_cache_page_write_begin(mapping, index, flags);
2700 2701 2702 2703 2704
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
2705 2706 2707 2708 2709 2710 2711 2712
	*pagep = page;

	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
							ext4_da_get_block_prep);
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
2713 2714 2715 2716 2717 2718 2719
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
			vmtruncate(inode, inode->i_size);
2720 2721
	}

2722 2723
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
2724 2725 2726 2727
out:
	return ret;
}

2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
					 unsigned long offset)
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2743
	for (i = 0; i < idx; i++)
2744 2745 2746 2747 2748 2749 2750
		bh = bh->b_this_page;

	if (!buffer_mapped(bh) || (buffer_delay(bh)))
		return 0;
	return 1;
}

2751 2752 2753 2754 2755 2756 2757 2758 2759
static int ext4_da_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2760
	unsigned long start, end;
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
2774

2775 2776 2777 2778
	trace_mark(ext4_da_write_end,
		   "dev %s ino %lu pos %llu len %u copied %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, copied);
2779
	start = pos & (PAGE_CACHE_SIZE - 1);
2780
	end = start + copied - 1;
2781 2782 2783 2784 2785 2786 2787 2788

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
2800

2801 2802 2803
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
2804 2805 2806 2807 2808
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2809
		}
2810
	}
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2832
	ext4_da_page_release_reservation(page, offset);
2833 2834 2835 2836 2837 2838 2839

out:
	ext4_invalidatepage(page, offset);

	return;
}

2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
	 * 
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
	 * the pages by calling redirty_page_for_writeback() but that
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
	 * simplifying them becuase we wouldn't actually intend to
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
	 * 
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
2882

2883 2884 2885 2886 2887
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2888
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2889 2890 2891 2892 2893 2894 2895 2896
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2897
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2898 2899 2900 2901 2902
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2913
	if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2925
		 * NB. EXT4_STATE_JDATA is not set on files other than
2926 2927 2928 2929 2930 2931
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2932 2933
		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
		journal = EXT4_JOURNAL(inode);
2934 2935 2936
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2937 2938 2939 2940 2941

		if (err)
			return 0;
	}

2942
	return generic_block_bmap(mapping, block, ext4_get_block);
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
}

static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

/*
2958 2959 2960 2961 2962 2963 2964 2965
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
 * we are writing back data modified via mmap(), noone guarantees in which
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
2966
 *
2967
 * In all journaling modes block_write_full_page() will start the I/O.
2968 2969 2970
 *
 * Problem:
 *
2971 2972
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
2973 2974 2975
 *
 * Similar for:
 *
2976
 *	ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2977
 *
2978
 * Same applies to ext4_get_block().  We will deadlock on various things like
2979
 * lock_journal and i_data_sem
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
 *
 * Setting PF_MEMALLOC here doesn't work - too many internal memory
 * allocations fail.
 *
 * 16May01: If we're reentered then journal_current_handle() will be
 *	    non-zero. We simply *return*.
 *
 * 1 July 2001: @@@ FIXME:
 *   In journalled data mode, a data buffer may be metadata against the
 *   current transaction.  But the same file is part of a shared mapping
 *   and someone does a writepage() on it.
 *
 *   We will move the buffer onto the async_data list, but *after* it has
 *   been dirtied. So there's a small window where we have dirty data on
 *   BJ_Metadata.
 *
 *   Note that this only applies to the last partial page in the file.  The
 *   bit which block_write_full_page() uses prepare/commit for.  (That's
 *   broken code anyway: it's wrong for msync()).
 *
 *   It's a rare case: affects the final partial page, for journalled data
 *   where the file is subject to bith write() and writepage() in the same
 *   transction.  To fix it we'll need a custom block_write_full_page().
 *   We'll probably need that anyway for journalling writepage() output.
 *
 * We don't honour synchronous mounts for writepage().  That would be
 * disastrous.  Any write() or metadata operation will sync the fs for
 * us.
 *
 */
3010
static int __ext4_normal_writepage(struct page *page,
3011 3012 3013 3014 3015
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;

	if (test_opt(inode->i_sb, NOBH))
3016 3017
		return nobh_writepage(page,
					ext4_normal_get_block_write, wbc);
3018
	else
3019 3020 3021
		return block_write_full_page(page,
						ext4_normal_get_block_write,
						wbc);
3022 3023
}

3024
static int ext4_normal_writepage(struct page *page,
3025 3026 3027
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
3028 3029 3030
	loff_t size = i_size_read(inode);
	loff_t len;

3031 3032 3033
	trace_mark(ext4_normal_writepage,
		   "dev %s ino %lu page_index %lu",
		   inode->i_sb->s_id, inode->i_ino, page->index);
3034 3035 3036 3037 3038
	J_ASSERT(PageLocked(page));
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052

	if (page_has_buffers(page)) {
		/* if page has buffers it should all be mapped
		 * and allocated. If there are not buffers attached
		 * to the page we know the page is dirty but it lost
		 * buffers. That means that at some moment in time
		 * after write_begin() / write_end() has been called
		 * all buffers have been clean and thus they must have been
		 * written at least once. So they are all mapped and we can
		 * happily proceed with mapping them and writing the page.
		 */
		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
					ext4_bh_unmapped_or_delay));
	}
3053 3054

	if (!ext4_journal_current_handle())
3055
		return __ext4_normal_writepage(page, wbc);
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067

	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				struct writeback_control *wbc)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
3068 3069 3070 3071
	handle_t *handle = NULL;
	int ret = 0;
	int err;

3072 3073
	ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
					ext4_normal_get_block_write);
3074 3075 3076 3077 3078 3079 3080 3081 3082
	if (ret != 0)
		goto out_unlock;

	page_bufs = page_buffers(page);
	walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
								bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);
3083

3084
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
3085 3086
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
3087
		goto out;
3088 3089
	}

3090 3091
	ret = walk_page_buffers(handle, page_bufs, 0,
			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
3092

3093 3094 3095 3096
	err = walk_page_buffers(handle, page_bufs, 0,
				PAGE_CACHE_SIZE, NULL, write_end_fn);
	if (ret == 0)
		ret = err;
3097
	err = ext4_journal_stop(handle);
3098 3099 3100
	if (!ret)
		ret = err;

3101 3102 3103 3104 3105 3106
	walk_page_buffers(handle, page_bufs, 0,
				PAGE_CACHE_SIZE, NULL, bput_one);
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
	goto out;

out_unlock:
3107
	unlock_page(page);
3108
out:
3109 3110 3111
	return ret;
}

3112
static int ext4_journalled_writepage(struct page *page,
3113 3114 3115
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
3116 3117
	loff_t size = i_size_read(inode);
	loff_t len;
3118

3119 3120 3121
	trace_mark(ext4_journalled_writepage,
		   "dev %s ino %lu page_index %lu",
		   inode->i_sb->s_id, inode->i_ino, page->index);
3122 3123 3124 3125 3126
	J_ASSERT(PageLocked(page));
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140

	if (page_has_buffers(page)) {
		/* if page has buffers it should all be mapped
		 * and allocated. If there are not buffers attached
		 * to the page we know the page is dirty but it lost
		 * buffers. That means that at some moment in time
		 * after write_begin() / write_end() has been called
		 * all buffers have been clean and thus they must have been
		 * written at least once. So they are all mapped and we can
		 * happily proceed with mapping them and writing the page.
		 */
		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
					ext4_bh_unmapped_or_delay));
	}
3141

3142
	if (ext4_journal_current_handle())
3143 3144
		goto no_write;

3145
	if (PageChecked(page)) {
3146 3147 3148 3149 3150
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
		ClearPageChecked(page);
3151
		return __ext4_journalled_writepage(page, wbc);
3152 3153 3154 3155 3156 3157
	} else {
		/*
		 * It may be a page full of checkpoint-mode buffers.  We don't
		 * really know unless we go poke around in the buffer_heads.
		 * But block_write_full_page will do the right thing.
		 */
3158 3159 3160
		return block_write_full_page(page,
						ext4_normal_get_block_write,
						wbc);
3161 3162 3163 3164
	}
no_write:
	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
3165
	return 0;
3166 3167
}

3168
static int ext4_readpage(struct file *file, struct page *page)
3169
{
3170
	return mpage_readpage(page, ext4_get_block);
3171 3172 3173
}

static int
3174
ext4_readpages(struct file *file, struct address_space *mapping,
3175 3176
		struct list_head *pages, unsigned nr_pages)
{
3177
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3178 3179
}

3180
static void ext4_invalidatepage(struct page *page, unsigned long offset)
3181
{
3182
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3183 3184 3185 3186 3187 3188 3189

	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3190 3191 3192 3193
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
3194 3195
}

3196
static int ext4_releasepage(struct page *page, gfp_t wait)
3197
{
3198
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3199 3200 3201 3202

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
3203 3204 3205 3206
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3207 3208 3209 3210 3211 3212 3213 3214
}

/*
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
3215 3216
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
3217
 */
3218
static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3219 3220 3221 3222 3223
			const struct iovec *iov, loff_t offset,
			unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3224
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
3225
	handle_t *handle;
3226 3227 3228 3229 3230 3231 3232 3233
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
3234 3235 3236 3237 3238 3239
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
3240
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
3241 3242 3243 3244
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
3245 3246
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
3247
			ext4_journal_stop(handle);
3248 3249 3250 3251 3252
		}
	}

	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
3253
				 ext4_get_block, NULL);
3254

J
Jan Kara 已提交
3255
	if (orphan) {
3256 3257
		int err;

J
Jan Kara 已提交
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
			goto out;
		}
		if (inode->i_nlink)
3268
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
3269
		if (ret > 0) {
3270 3271 3272 3273 3274 3275 3276 3277
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
3278
				 * ext4_mark_inode_dirty() to userspace.  So
3279 3280
				 * ignore it.
				 */
3281
				ext4_mark_inode_dirty(handle, inode);
3282 3283
			}
		}
3284
		err = ext4_journal_stop(handle);
3285 3286 3287 3288 3289 3290 3291 3292
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

/*
3293
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3305
static int ext4_journalled_set_page_dirty(struct page *page)
3306 3307 3308 3309 3310
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3311
static const struct address_space_operations ext4_ordered_aops = {
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_normal_writepage,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3324 3325
};

3326
static const struct address_space_operations ext4_writeback_aops = {
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_normal_writepage,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3339 3340
};

3341
static const struct address_space_operations ext4_journalled_aops = {
3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_journalled_writepage,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
3353 3354
};

3355
static const struct address_space_operations ext4_da_aops = {
3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_da_writepage,
	.writepages		= ext4_da_writepages,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3369 3370
};

3371
void ext4_set_aops(struct inode *inode)
3372
{
3373 3374 3375 3376
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
3377
		inode->i_mapping->a_ops = &ext4_ordered_aops;
3378 3379 3380
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
3381 3382
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
3383
	else
3384
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3385 3386 3387
}

/*
3388
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3389 3390 3391 3392
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
3393
int ext4_block_truncate_page(handle_t *handle,
3394 3395
		struct address_space *mapping, loff_t from)
{
3396
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3397
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
3398 3399
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
3400 3401
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
3402
	struct page *page;
3403 3404
	int err = 0;

3405 3406 3407 3408
	page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
	if (!page)
		return -EINVAL;

3409 3410 3411 3412 3413 3414 3415 3416 3417
	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	/*
	 * For "nobh" option,  we can only work if we don't need to
	 * read-in the page - otherwise we create buffers to do the IO.
	 */
	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3418
	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
3419
		zero_user(page, offset, length);
3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
		set_page_dirty(page);
		goto unlock;
	}

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
3444
		ext4_get_block(inode, iblock, bh, 0);
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

3465
	if (ext4_should_journal_data(inode)) {
3466
		BUFFER_TRACE(bh, "get write access");
3467
		err = ext4_journal_get_write_access(handle, bh);
3468 3469 3470 3471
		if (err)
			goto unlock;
	}

3472
	zero_user(page, offset, length);
3473 3474 3475 3476

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
3477
	if (ext4_should_journal_data(inode)) {
3478
		err = ext4_handle_dirty_metadata(handle, inode, bh);
3479
	} else {
3480
		if (ext4_should_order_data(inode))
3481
			err = ext4_jbd2_file_inode(handle, inode);
3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
3505
 *	ext4_find_shared - find the indirect blocks for partial truncation.
3506 3507
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
3508
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
3509 3510 3511
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
3512
 *	This is a helper function used by ext4_truncate().
3513 3514 3515 3516 3517 3518 3519
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
3520
 *	past the truncation point is possible until ext4_truncate()
3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

3539
static Indirect *ext4_find_shared(struct inode *inode, int depth,
A
Aneesh Kumar K.V 已提交
3540
			ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3541 3542 3543 3544 3545 3546 3547 3548
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
	/* Make k index the deepest non-null offest + 1 */
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
3549
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
3560
	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
3572
		/* Nope, don't do this in ext4.  Must leave the tree intact */
3573 3574 3575 3576 3577 3578
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

3579
	while (partial > p) {
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
3595 3596
static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
		struct buffer_head *bh, ext4_fsblk_t block_to_free,
3597 3598 3599 3600 3601
		unsigned long count, __le32 *first, __le32 *last)
{
	__le32 *p;
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
3602 3603
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			ext4_handle_dirty_metadata(handle, inode, bh);
3604
		}
3605 3606
		ext4_mark_inode_dirty(handle, inode);
		ext4_journal_test_restart(handle, inode);
3607 3608
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
3609
			ext4_journal_get_write_access(handle, bh);
3610 3611 3612 3613 3614
		}
	}

	/*
	 * Any buffers which are on the journal will be in memory. We find
3615
	 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3616
	 * on them.  We've already detached each block from the file, so
3617
	 * bforget() in jbd2_journal_forget() should be safe.
3618
	 *
3619
	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3620 3621 3622 3623
	 */
	for (p = first; p < last; p++) {
		u32 nr = le32_to_cpu(*p);
		if (nr) {
A
Aneesh Kumar K.V 已提交
3624
			struct buffer_head *tbh;
3625 3626

			*p = 0;
A
Aneesh Kumar K.V 已提交
3627 3628
			tbh = sb_find_get_block(inode->i_sb, nr);
			ext4_forget(handle, 0, inode, tbh, nr);
3629 3630 3631
		}
	}

3632
	ext4_free_blocks(handle, inode, block_to_free, count, 0);
3633 3634 3635
}

/**
3636
 * ext4_free_data - free a list of data blocks
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
3654
static void ext4_free_data(handle_t *handle, struct inode *inode,
3655 3656 3657
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
3658
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3659 3660 3661 3662
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
3663
	ext4_fsblk_t nr;		    /* Current block # */
3664 3665 3666 3667 3668 3669
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
3670
		err = ext4_journal_get_write_access(handle, this_bh);
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
3688
				ext4_clear_blocks(handle, inode, this_bh,
3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
						  block_to_free,
						  count, block_to_free_p, p);
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
3699
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3700 3701 3702
				  count, block_to_free_p, p);

	if (this_bh) {
3703
		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3704 3705 3706 3707 3708 3709 3710

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
3711
		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3712
			ext4_handle_dirty_metadata(handle, inode, this_bh);
3713 3714 3715 3716 3717 3718
		else
			ext4_error(inode->i_sb, __func__,
				   "circular indirect block detected, "
				   "inode=%lu, block=%llu",
				   inode->i_ino,
				   (unsigned long long) this_bh->b_blocknr);
3719 3720 3721 3722
	}
}

/**
3723
 *	ext4_free_branches - free an array of branches
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
3735
static void ext4_free_branches(handle_t *handle, struct inode *inode,
3736 3737 3738
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
3739
	ext4_fsblk_t nr;
3740 3741
	__le32 *p;

3742
	if (ext4_handle_is_aborted(handle))
3743 3744 3745 3746
		return;

	if (depth--) {
		struct buffer_head *bh;
3747
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
3762
				ext4_error(inode->i_sb, "ext4_free_branches",
3763
					   "Read failure, inode=%lu, block=%llu",
3764 3765 3766 3767 3768 3769
					   inode->i_ino, nr);
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
3770
			ext4_free_branches(handle, inode, bh,
3771 3772 3773
					(__le32 *) bh->b_data,
					(__le32 *) bh->b_data + addr_per_block,
					depth);
3774 3775 3776 3777 3778

			/*
			 * We've probably journalled the indirect block several
			 * times during the truncate.  But it's no longer
			 * needed and we now drop it from the transaction via
3779
			 * jbd2_journal_revoke().
3780 3781 3782
			 *
			 * That's easy if it's exclusively part of this
			 * transaction.  But if it's part of the committing
3783
			 * transaction then jbd2_journal_forget() will simply
3784
			 * brelse() it.  That means that if the underlying
3785
			 * block is reallocated in ext4_get_block(),
3786 3787 3788 3789 3790 3791 3792 3793
			 * unmap_underlying_metadata() will find this block
			 * and will try to get rid of it.  damn, damn.
			 *
			 * If this block has already been committed to the
			 * journal, a revoke record will be written.  And
			 * revoke records must be emitted *before* clearing
			 * this block's bit in the bitmaps.
			 */
3794
			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
3812
			if (ext4_handle_is_aborted(handle))
3813 3814
				return;
			if (try_to_extend_transaction(handle, inode)) {
3815 3816
				ext4_mark_inode_dirty(handle, inode);
				ext4_journal_test_restart(handle, inode);
3817 3818
			}

3819
			ext4_free_blocks(handle, inode, nr, 1, 1);
3820 3821 3822 3823 3824 3825 3826

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
3827
				if (!ext4_journal_get_write_access(handle,
3828 3829 3830
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
3831 3832 3833 3834
					"call ext4_handle_dirty_metadata");
					ext4_handle_dirty_metadata(handle,
								   inode,
								   parent_bh);
3835 3836 3837 3838 3839 3840
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
3841
		ext4_free_data(handle, inode, parent_bh, first, last);
3842 3843 3844
	}
}

3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
int ext4_can_truncate(struct inode *inode)
{
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return 0;
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3858
/*
3859
 * ext4_truncate()
3860
 *
3861 3862
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3879
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3880
 * that this inode's truncate did not complete and it will again call
3881 3882
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3883
 * that's fine - as long as they are linked from the inode, the post-crash
3884
 * ext4_truncate() run will find them and release them.
3885
 */
3886
void ext4_truncate(struct inode *inode)
3887 3888
{
	handle_t *handle;
3889
	struct ext4_inode_info *ei = EXT4_I(inode);
3890
	__le32 *i_data = ei->i_data;
3891
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3892
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
3893
	ext4_lblk_t offsets[4];
3894 3895 3896 3897
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
3898
	ext4_lblk_t last_block;
3899 3900
	unsigned blocksize = inode->i_sb->s_blocksize;

3901
	if (!ext4_can_truncate(inode))
3902 3903
		return;

3904 3905 3906
	if (inode->i_size == 0)
		ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;

A
Aneesh Kumar K.V 已提交
3907
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3908
		ext4_ext_truncate(inode);
A
Aneesh Kumar K.V 已提交
3909 3910
		return;
	}
A
Alex Tomas 已提交
3911

3912
	handle = start_transaction(inode);
3913
	if (IS_ERR(handle))
3914 3915 3916
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
3917
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3918

3919 3920 3921
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
3922

3923
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
3936
	if (ext4_orphan_add(handle, inode))
3937 3938
		goto out_stop;

3939 3940 3941 3942 3943
	/*
	 * From here we block out all ext4_get_block() callers who want to
	 * modify the block allocation tree.
	 */
	down_write(&ei->i_data_sem);
3944

3945
	ext4_discard_preallocations(inode);
3946

3947 3948 3949 3950 3951
	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
3952
	 * ext4 *really* writes onto the disk inode.
3953 3954 3955 3956
	 */
	ei->i_disksize = inode->i_size;

	if (n == 1) {		/* direct blocks */
3957 3958
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
3959 3960 3961
		goto do_indirects;
	}

3962
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3963 3964 3965 3966
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
3967
			ext4_free_branches(handle, inode, NULL,
3968 3969 3970 3971 3972 3973 3974 3975 3976
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
3977
			ext4_free_branches(handle, inode, partial->bh,
3978 3979 3980 3981 3982 3983
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
3984
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse (partial->bh);
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
3995
		nr = i_data[EXT4_IND_BLOCK];
3996
		if (nr) {
3997 3998
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
3999
		}
4000 4001
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
4002
		if (nr) {
4003 4004
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
4005
		}
4006 4007
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
4008
		if (nr) {
4009 4010
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
4011
		}
4012
	case EXT4_TIND_BLOCK:
4013 4014 4015
		;
	}

4016
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
4017
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4018
	ext4_mark_inode_dirty(handle, inode);
4019 4020 4021 4022 4023 4024

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
4025
		ext4_handle_sync(handle);
4026 4027 4028 4029 4030
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
4031
	 * ext4_delete_inode(), and we allow that function to clean up the
4032 4033 4034
	 * orphan info for us.
	 */
	if (inode->i_nlink)
4035
		ext4_orphan_del(handle, inode);
4036

4037
	ext4_journal_stop(handle);
4038 4039 4040
}

/*
4041
 * ext4_get_inode_loc returns with an extra refcount against the inode's
4042 4043 4044 4045
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
4046 4047
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
4048
{
4049 4050 4051 4052 4053 4054
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
4055
	iloc->bh = NULL;
4056 4057
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
4058

4059 4060 4061
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
4062 4063
		return -EIO;

4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
	/*
	 * Figure out the offset within the block group inode table
	 */
	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
4074
	if (!bh) {
4075 4076 4077
		ext4_error(sb, "ext4_get_inode_loc", "unable to read "
			   "inode block - inode=%lu, block=%llu",
			   inode->i_ino, block);
4078 4079 4080 4081
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
4082 4083 4084 4085 4086 4087 4088 4089 4090 4091

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
4105
			int i, start;
4106

4107
			start = inode_offset & ~(inodes_per_block - 1);
4108

4109 4110
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
4123
			for (i = start; i < start + inodes_per_block; i++) {
4124 4125
				if (i == inode_offset)
					continue;
4126
				if (ext4_test_bit(i, bitmap_bh->b_data))
4127 4128 4129
					break;
			}
			brelse(bitmap_bh);
4130
			if (i == start + inodes_per_block) {
4131 4132 4133 4134 4135 4136 4137 4138 4139
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
			/* Make sure s_inode_readahead_blks is a power of 2 */
			while (EXT4_SB(sb)->s_inode_readahead_blks &
			       (EXT4_SB(sb)->s_inode_readahead_blks-1))
				EXT4_SB(sb)->s_inode_readahead_blks = 
				   (EXT4_SB(sb)->s_inode_readahead_blks &
				    (EXT4_SB(sb)->s_inode_readahead_blks-1));
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4162
				num -= ext4_itable_unused_count(sb, gdp);
4163 4164 4165 4166 4167 4168 4169
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

4170 4171 4172 4173 4174 4175 4176 4177 4178 4179
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
4180 4181 4182
			ext4_error(sb, __func__,
				   "unable to read inode block - inode=%lu, "
				   "block=%llu", inode->i_ino, block);
4183 4184 4185 4186 4187 4188 4189 4190 4191
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

4192
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4193 4194
{
	/* We have all inode data except xattrs in memory here. */
4195 4196
	return __ext4_get_inode_loc(inode, iloc,
		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4197 4198
}

4199
void ext4_set_inode_flags(struct inode *inode)
4200
{
4201
	unsigned int flags = EXT4_I(inode)->i_flags;
4202 4203

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4204
	if (flags & EXT4_SYNC_FL)
4205
		inode->i_flags |= S_SYNC;
4206
	if (flags & EXT4_APPEND_FL)
4207
		inode->i_flags |= S_APPEND;
4208
	if (flags & EXT4_IMMUTABLE_FL)
4209
		inode->i_flags |= S_IMMUTABLE;
4210
	if (flags & EXT4_NOATIME_FL)
4211
		inode->i_flags |= S_NOATIME;
4212
	if (flags & EXT4_DIRSYNC_FL)
4213 4214 4215
		inode->i_flags |= S_DIRSYNC;
}

4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
	unsigned int flags = ei->vfs_inode.i_flags;

	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
	if (flags & S_SYNC)
		ei->i_flags |= EXT4_SYNC_FL;
	if (flags & S_APPEND)
		ei->i_flags |= EXT4_APPEND_FL;
	if (flags & S_IMMUTABLE)
		ei->i_flags |= EXT4_IMMUTABLE_FL;
	if (flags & S_NOATIME)
		ei->i_flags |= EXT4_NOATIME_FL;
	if (flags & S_DIRSYNC)
		ei->i_flags |= EXT4_DIRSYNC_FL;
}
4234 4235 4236 4237
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
					struct ext4_inode_info *ei)
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
4238 4239
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
4240 4241 4242 4243 4244 4245

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
A
Aneesh Kumar K.V 已提交
4246 4247 4248 4249 4250 4251
		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
4252 4253 4254 4255
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
4256

4257
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4258
{
4259 4260
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
4261
	struct ext4_inode_info *ei;
4262
	struct buffer_head *bh;
4263 4264
	struct inode *inode;
	long ret;
4265 4266
	int block;

4267 4268 4269 4270 4271 4272 4273
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
T
Theodore Ts'o 已提交
4274
#ifdef CONFIG_EXT4_FS_POSIX_ACL
4275 4276
	ei->i_acl = EXT4_ACL_NOT_CACHED;
	ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4277 4278
#endif

4279 4280
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
4281 4282
		goto bad_inode;
	bh = iloc.bh;
4283
	raw_inode = ext4_raw_inode(&iloc);
4284 4285 4286
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4287
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

	ei->i_state = 0;
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
4303
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4304
			/* this inode is deleted */
4305
			brelse(bh);
4306
			ret = -ESTALE;
4307 4308 4309 4310 4311 4312 4313 4314
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4315
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4316
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4317
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4318
	    cpu_to_le32(EXT4_OS_HURD)) {
B
Badari Pulavarty 已提交
4319 4320
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4321
	}
4322
	inode->i_size = ext4_isize(raw_inode);
4323 4324 4325
	ei->i_disksize = inode->i_size;
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
4326
	ei->i_last_alloc_group = ~0;
4327 4328 4329 4330
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
4331
	for (block = 0; block < EXT4_N_BLOCKS; block++)
4332 4333 4334
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

4335
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4336
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4337
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4338
		    EXT4_INODE_SIZE(inode->i_sb)) {
4339
			brelse(bh);
4340
			ret = -EIO;
4341
			goto bad_inode;
4342
		}
4343 4344
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
4345 4346
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
4347 4348
		} else {
			__le32 *magic = (void *)raw_inode +
4349
					EXT4_GOOD_OLD_INODE_SIZE +
4350
					ei->i_extra_isize;
4351 4352
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
				 ei->i_state |= EXT4_STATE_XATTR;
4353 4354 4355 4356
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
4357 4358 4359 4360 4361
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

4362 4363 4364 4365 4366 4367 4368
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

4369 4370 4371 4372 4373 4374 4375 4376 4377 4378
	if (ei->i_flags & EXT4_EXTENTS_FL) {
		/* Validate extent which is part of inode */
		ret = ext4_ext_check_inode(inode);
		if (ret) {
			brelse(bh);
			goto bad_inode;
		}

	}

4379
	if (S_ISREG(inode->i_mode)) {
4380 4381 4382
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
4383
	} else if (S_ISDIR(inode->i_mode)) {
4384 4385
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
4386
	} else if (S_ISLNK(inode->i_mode)) {
4387
		if (ext4_inode_is_fast_symlink(inode)) {
4388
			inode->i_op = &ext4_fast_symlink_inode_operations;
4389 4390 4391
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
4392 4393
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
4394 4395
		}
	} else {
4396
		inode->i_op = &ext4_special_inode_operations;
4397 4398 4399 4400 4401 4402 4403
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
	}
4404
	brelse(iloc.bh);
4405
	ext4_set_inode_flags(inode);
4406 4407
	unlock_new_inode(inode);
	return inode;
4408 4409

bad_inode:
4410 4411
	iget_failed(inode);
	return ERR_PTR(ret);
4412 4413
}

4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4427
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4428
		raw_inode->i_blocks_high = 0;
A
Aneesh Kumar K.V 已提交
4429
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4430 4431 4432 4433 4434 4435
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
4436 4437 4438 4439
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4440
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4441
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
A
Aneesh Kumar K.V 已提交
4442
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4443
	} else {
A
Aneesh Kumar K.V 已提交
4444 4445 4446 4447 4448
		ei->i_flags |= EXT4_HUGE_FILE_FL;
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4449
	}
4450
	return 0;
4451 4452
}

4453 4454 4455 4456 4457 4458 4459
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
4460
static int ext4_do_update_inode(handle_t *handle,
4461
				struct inode *inode,
4462
				struct ext4_iloc *iloc)
4463
{
4464 4465
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
4466 4467 4468 4469 4470
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
4471 4472
	if (ei->i_state & EXT4_STATE_NEW)
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4473

4474
	ext4_get_inode_flags(ei);
4475
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4476
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4477 4478 4479 4480 4481 4482
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
4483
		if (!ei->i_dtime) {
4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4501 4502 4503 4504 4505 4506

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4507 4508
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4509
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4510 4511
	/* clear the migrate flag in the raw_inode */
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4512 4513
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4514 4515
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4516
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4533
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4534
			sb->s_dirt = 1;
4535 4536
			ext4_handle_sync(handle);
			err = ext4_handle_dirty_metadata(handle, inode,
4537
					EXT4_SB(sb)->s_sbh);
4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4552
	} else for (block = 0; block < EXT4_N_BLOCKS; block++)
4553 4554
		raw_inode->i_block[block] = ei->i_data[block];

4555 4556 4557 4558 4559
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4560
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4561 4562
	}

4563 4564
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
	rc = ext4_handle_dirty_metadata(handle, inode, bh);
4565 4566
	if (!err)
		err = rc;
4567
	ei->i_state &= ~EXT4_STATE_NEW;
4568 4569

out_brelse:
4570
	brelse(bh);
4571
	ext4_std_error(inode->i_sb, err);
4572 4573 4574 4575
	return err;
}

/*
4576
 * ext4_write_inode()
4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4593
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4610
int ext4_write_inode(struct inode *inode, int wait)
4611 4612 4613 4614
{
	if (current->flags & PF_MEMALLOC)
		return 0;

4615
	if (ext4_journal_current_handle()) {
M
Mingming Cao 已提交
4616
		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4617 4618 4619 4620 4621 4622 4623
		dump_stack();
		return -EIO;
	}

	if (!wait)
		return 0;

4624
	return ext4_force_commit(inode->i_sb);
4625 4626
}

4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645
int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
{
	int err = 0;

	mark_buffer_dirty(bh);
	if (inode && inode_needs_sync(inode)) {
		sync_dirty_buffer(bh);
		if (buffer_req(bh) && !buffer_uptodate(bh)) {
			ext4_error(inode->i_sb, __func__,
				   "IO error syncing inode, "
				   "inode=%lu, block=%llu",
				   inode->i_ino,
				   (unsigned long long)bh->b_blocknr);
			err = -EIO;
		}
	}
	return err;
}

4646
/*
4647
 * ext4_setattr()
4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4661 4662 4663 4664 4665 4666 4667 4668
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4669
 */
4670
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
4686 4687
		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4688 4689 4690 4691
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4692
		error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4693
		if (error) {
4694
			ext4_journal_stop(handle);
4695 4696 4697 4698 4699 4700 4701 4702
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4703 4704
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4705 4706
	}

4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717
	if (attr->ia_valid & ATTR_SIZE) {
		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
				error = -EFBIG;
				goto err_out;
			}
		}
	}

4718 4719 4720 4721
	if (S_ISREG(inode->i_mode) &&
	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
		handle_t *handle;

4722
		handle = ext4_journal_start(inode, 3);
4723 4724 4725 4726 4727
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}

4728 4729 4730
		error = ext4_orphan_add(handle, inode);
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4731 4732
		if (!error)
			error = rc;
4733
		ext4_journal_stop(handle);
4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4750 4751 4752 4753
	}

	rc = inode_setattr(inode, attr);

4754
	/* If inode_setattr's call to ext4_truncate failed to get a
4755 4756 4757
	 * transaction handle at all, we need to clean up the in-core
	 * orphan list manually. */
	if (inode->i_nlink)
4758
		ext4_orphan_del(NULL, inode);
4759 4760

	if (!rc && (ia_valid & ATTR_MODE))
4761
		rc = ext4_acl_chmod(inode);
4762 4763

err_out:
4764
	ext4_std_error(inode->i_sb, error);
4765 4766 4767 4768 4769
	if (!error)
		error = rc;
	return error;
}

4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4796

4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824
static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
				      int chunk)
{
	int indirects;

	/* if nrblocks are contiguous */
	if (chunk) {
		/*
		 * With N contiguous data blocks, it need at most
		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
		 * 2 dindirect blocks
		 * 1 tindirect block
		 */
		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
		return indirects + 3;
	}
	/*
	 * if nrblocks are not contiguous, worse case, each block touch
	 * a indirect block, and each indirect block touch a double indirect
	 * block, plus a triple indirect block
	 */
	indirects = nrblocks * 2 + 1;
	return indirects;
}

static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4825 4826
		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4827
}
4828

4829
/*
4830 4831 4832
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4833
 *
4834 4835 4836
 * If datablocks are discontiguous, they are possible to spread over
 * different block groups too. If they are contiugous, with flexbg,
 * they could still across block group boundary.
4837
 *
4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884
 * Also account for superblock, inode, quota and xattr blocks
 */
int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
	int groups, gdpblocks;
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
	if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
		groups = EXT4_SB(inode->i_sb)->s_groups_count;
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
 * Calulate the total number of credits to reserve to fit
4885 4886
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4887
 *
4888
 * This could be called via ext4_write_begin()
4889
 *
4890
 * We need to consider the worse case, when
4891
 * one new block per extent.
4892
 */
A
Alex Tomas 已提交
4893
int ext4_writepage_trans_blocks(struct inode *inode)
4894
{
4895
	int bpp = ext4_journal_blocks_per_page(inode);
4896 4897
	int ret;

4898
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4899

4900
	/* Account for data blocks for journalled mode */
4901
	if (ext4_should_journal_data(inode))
4902
		ret += bpp;
4903 4904
	return ret;
}
4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4920
/*
4921
 * The caller must have previously called ext4_reserve_inode_write().
4922 4923
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4924 4925
int ext4_mark_iloc_dirty(handle_t *handle,
		struct inode *inode, struct ext4_iloc *iloc)
4926 4927 4928
{
	int err = 0;

4929 4930 4931
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

4932 4933 4934
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4935
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4936
	err = ext4_do_update_inode(handle, inode, iloc);
4937 4938 4939 4940 4941 4942 4943 4944 4945 4946
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4947 4948
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4949
{
4950 4951 4952 4953 4954 4955 4956 4957 4958
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
4959 4960
		}
	}
4961
	ext4_std_error(inode->i_sb, err);
4962 4963 4964
	return err;
}

4965 4966 4967 4968
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
4969 4970 4971 4972
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;
	struct ext4_xattr_entry *entry;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);
	entry = IFIRST(header);

	/* No extended attributes present */
	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
5021
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5022
{
5023
	struct ext4_iloc iloc;
5024 5025 5026
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
5027 5028

	might_sleep();
5029
	err = ext4_reserve_inode_write(handle, inode, &iloc);
5030 5031
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046
	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
A
Aneesh Kumar K.V 已提交
5047 5048
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5049
					ext4_warning(inode->i_sb, __func__,
5050 5051 5052
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
5053 5054
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
5055 5056 5057 5058
				}
			}
		}
	}
5059
	if (!err)
5060
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5061 5062 5063 5064
	return err;
}

/*
5065
 * ext4_dirty_inode() is called from __mark_inode_dirty()
5066 5067 5068 5069 5070
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
5071
 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5072 5073 5074 5075 5076 5077
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
5078
void ext4_dirty_inode(struct inode *inode)
5079
{
5080
	handle_t *current_handle = ext4_journal_current_handle();
5081 5082
	handle_t *handle;

5083 5084 5085 5086 5087
	if (!ext4_handle_valid(current_handle)) {
		ext4_mark_inode_dirty(current_handle, inode);
		return;
	}

5088
	handle = ext4_journal_start(inode, 2);
5089 5090 5091 5092 5093 5094
	if (IS_ERR(handle))
		goto out;
	if (current_handle &&
		current_handle->h_transaction != handle->h_transaction) {
		/* This task has a transaction open against a different fs */
		printk(KERN_EMERG "%s: transactions do not match!\n",
5095
		       __func__);
5096 5097 5098
	} else {
		jbd_debug(5, "marking dirty.  outer handle=%p\n",
				current_handle);
5099
		ext4_mark_inode_dirty(handle, inode);
5100
	}
5101
	ext4_journal_stop(handle);
5102 5103 5104 5105 5106 5107 5108 5109
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
5110
 * ext4_reserve_inode_write, this leaves behind no bh reference and
5111 5112 5113
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
5114
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5115
{
5116
	struct ext4_iloc iloc;
5117 5118 5119

	int err = 0;
	if (handle) {
5120
		err = ext4_get_inode_loc(inode, &iloc);
5121 5122
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
5123
			err = jbd2_journal_get_write_access(handle, iloc.bh);
5124
			if (!err)
5125 5126 5127
				err = ext4_handle_dirty_metadata(handle,
								 inode,
								 iloc.bh);
5128 5129 5130
			brelse(iloc.bh);
		}
	}
5131
	ext4_std_error(inode->i_sb, err);
5132 5133 5134 5135
	return err;
}
#endif

5136
int ext4_change_inode_journal_flag(struct inode *inode, int val)
5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

5152
	journal = EXT4_JOURNAL(inode);
5153 5154
	if (!journal)
		return 0;
5155
	if (is_journal_aborted(journal))
5156 5157
		return -EROFS;

5158 5159
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
5160 5161 5162 5163 5164 5165 5166 5167 5168 5169

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
5170
		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5171
	else
5172 5173
		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
	ext4_set_aops(inode);
5174

5175
	jbd2_journal_unlock_updates(journal);
5176 5177 5178

	/* Finally we can mark the inode as dirty. */

5179
	handle = ext4_journal_start(inode, 1);
5180 5181 5182
	if (IS_ERR(handle))
		return PTR_ERR(handle);

5183
	err = ext4_mark_inode_dirty(handle, inode);
5184
	ext4_handle_sync(handle);
5185 5186
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
5187 5188 5189

	return err;
}
5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
{
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
5201
	void *fsdata;
5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
	if (PageMappedToDisk(page))
		goto out_unlock;

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

	if (page_has_buffers(page)) {
		/* return if we have all the buffers mapped */
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
				       ext4_bh_unmapped))
			goto out_unlock;
	}
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5240
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5241 5242 5243
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5244
			len, len, page, fsdata);
5245 5246 5247 5248 5249 5250 5251
	if (ret < 0)
		goto out_unlock;
	ret = 0;
out_unlock:
	up_read(&inode->i_alloc_sem);
	return ret;
}