inode.c 143.8 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38 39
#include <linux/uio.h>
#include <linux/bio.h>
40
#include "ext4_jbd2.h"
41 42
#include "xattr.h"
#include "acl.h"
43
#include "ext4_extents.h"
44

45 46
#define MPAGE_DA_EXTENT_TAIL 0x01

47 48 49 50 51 52 53
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
	return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
						   new_size);
}

54 55
static void ext4_invalidatepage(struct page *page, unsigned long offset);

56 57 58
/*
 * Test whether an inode is a fast symlink.
 */
59
static int ext4_inode_is_fast_symlink(struct inode *inode)
60
{
61
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
62 63 64 65 66 67
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
68
 * The ext4 forget function must perform a revoke if we are freeing data
69 70 71 72 73 74 75
 * which has been journaled.  Metadata (eg. indirect blocks) must be
 * revoked in all cases.
 *
 * "bh" may be NULL: a metadata block may have been freed from memory
 * but there may still be a record of it in the journal, and that record
 * still needs to be revoked.
 */
76 77
int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
			struct buffer_head *bh, ext4_fsblk_t blocknr)
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
{
	int err;

	might_sleep();

	BUFFER_TRACE(bh, "enter");

	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
		  "data mode %lx\n",
		  bh, is_metadata, inode->i_mode,
		  test_opt(inode->i_sb, DATA_FLAGS));

	/* Never use the revoke function if we are doing full data
	 * journaling: there is no need to, and a V1 superblock won't
	 * support it.  Otherwise, only skip the revoke on un-journaled
	 * data blocks. */

95 96
	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
	    (!is_metadata && !ext4_should_journal_data(inode))) {
97
		if (bh) {
98
			BUFFER_TRACE(bh, "call jbd2_journal_forget");
99
			return ext4_journal_forget(handle, bh);
100 101 102 103 104 105 106
		}
		return 0;
	}

	/*
	 * data!=journal && (is_metadata || should_journal_data(inode))
	 */
107 108
	BUFFER_TRACE(bh, "call ext4_journal_revoke");
	err = ext4_journal_revoke(handle, blocknr, bh);
109
	if (err)
110
		ext4_abort(inode->i_sb, __func__,
111 112 113 114 115 116 117 118 119 120 121
			   "error %d when attempting revoke", err);
	BUFFER_TRACE(bh, "exit");
	return err;
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
122
	ext4_lblk_t needed;
123 124 125 126 127 128

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
129
	 * like a regular file for ext4 to try to delete it.  Things
130 131 132 133 134 135 136
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
137 138
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
139

140
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

157
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
158 159 160
	if (!IS_ERR(result))
		return result;

161
	ext4_std_error(inode->i_sb, PTR_ERR(result));
162 163 164 165 166 167 168 169 170 171 172
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
173
	if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
174
		return 0;
175
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
176 177 178 179 180 181 182 183 184
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
185
static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
186 187
{
	jbd_debug(2, "restarting handle %p\n", handle);
188
	return ext4_journal_restart(handle, blocks_for_truncate(inode));
189 190 191 192 193
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
194
void ext4_delete_inode(struct inode *inode)
195 196
{
	handle_t *handle;
197
	int err;
198

199 200
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
201 202 203 204 205
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

206
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
207
	if (IS_ERR(handle)) {
208
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
209 210 211 212 213
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
214
		ext4_orphan_del(NULL, inode);
215 216 217 218 219 220
		goto no_delete;
	}

	if (IS_SYNC(inode))
		handle->h_sync = 1;
	inode->i_size = 0;
221 222 223 224 225 226
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
		ext4_warning(inode->i_sb, __func__,
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
227
	if (inode->i_blocks)
228
		ext4_truncate(inode);
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
	if (handle->h_buffer_credits < 3) {
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
			ext4_warning(inode->i_sb, __func__,
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
			goto no_delete;
		}
	}

249
	/*
250
	 * Kill off the orphan record which ext4_truncate created.
251
	 * AKPM: I think this can be inside the above `if'.
252
	 * Note that ext4_orphan_del() has to be able to cope with the
253
	 * deletion of a non-existent orphan - this is because we don't
254
	 * know if ext4_truncate() actually created an orphan record.
255 256
	 * (Well, we could do this if we need to, but heck - it works)
	 */
257 258
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
259 260 261 262 263 264 265 266

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
267
	if (ext4_mark_inode_dirty(handle, inode))
268 269 270
		/* If that failed, just do the required in-core inode clear. */
		clear_inode(inode);
	else
271 272
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	return;
no_delete:
	clear_inode(inode);	/* We must guarantee clearing of inode... */
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
291
 *	ext4_block_to_path - parse the block number into array of offsets
292 293 294
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
295 296
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
297
 *
298
 *	To store the locations of file's data ext4 uses a data structure common
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

321
static int ext4_block_to_path(struct inode *inode,
A
Aneesh Kumar K.V 已提交
322 323
			ext4_lblk_t i_block,
			ext4_lblk_t offsets[4], int *boundary)
324
{
325 326 327
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
328 329 330 331 332 333
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

	if (i_block < 0) {
334
		ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
335 336 337
	} else if (i_block < direct_blocks) {
		offsets[n++] = i_block;
		final = direct_blocks;
338
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
339
		offsets[n++] = EXT4_IND_BLOCK;
340 341 342
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
343
		offsets[n++] = EXT4_DIND_BLOCK;
344 345 346 347
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
348
		offsets[n++] = EXT4_TIND_BLOCK;
349 350 351 352 353
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
354
		ext4_warning(inode->i_sb, "ext4_block_to_path",
355
				"block %lu > max",
356 357
				i_block + direct_blocks +
				indirect_blocks + double_blocks);
358 359 360 361 362 363 364
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

/**
365
 *	ext4_get_branch - read the chain of indirect blocks leading to data
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
390 391
 *
 *      Need to be called with
392
 *      down_read(&EXT4_I(inode)->i_data_sem)
393
 */
A
Aneesh Kumar K.V 已提交
394 395
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
396 397 398 399 400 401 402 403
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
404
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
405 406 407 408 409 410
	if (!p->key)
		goto no_block;
	while (--depth) {
		bh = sb_bread(sb, le32_to_cpu(p->key));
		if (!bh)
			goto failure;
411
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
412 413 414 415 416 417 418 419 420 421 422 423 424
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
425
 *	ext4_find_near - find a place for allocation with sufficient locality
426 427 428
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
429
 *	This function returns the preferred place for block allocation.
430 431 432 433 434 435 436 437 438 439 440 441 442 443
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
444
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
445
{
446
	struct ext4_inode_info *ei = EXT4_I(inode);
447
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
448
	__le32 *p;
449
	ext4_fsblk_t bg_start;
450
	ext4_fsblk_t last_block;
451
	ext4_grpblk_t colour;
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
467
	bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
468 469 470 471
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
472
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
473 474
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
475 476 477 478
	return bg_start + colour;
}

/**
479
 *	ext4_find_goal - find a preferred place for allocation.
480 481 482 483
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
484
 *	Normally this function find the preferred place for block allocation,
485
 *	returns it.
486
 */
A
Aneesh Kumar K.V 已提交
487
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
488
		Indirect *partial)
489 490
{
	/*
491
	 * XXX need to get goal block from mballoc's data structures
492 493
	 */

494
	return ext4_find_near(inode, partial);
495 496 497
}

/**
498
 *	ext4_blks_to_allocate: Look up the block map and count the number
499 500 501 502 503 504 505 506 507 508
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
509
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
		int blocks_to_boundary)
{
	unsigned long count = 0;

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
536
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
537 538 539 540 541 542 543 544
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
545
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
546 547 548
				ext4_lblk_t iblock, ext4_fsblk_t goal,
				int indirect_blks, int blks,
				ext4_fsblk_t new_blocks[4], int *err)
549
{
550
	struct ext4_allocation_request ar;
551
	int target, i;
552
	unsigned long count = 0, blk_allocated = 0;
553
	int index = 0;
554
	ext4_fsblk_t current_block = 0;
555 556 557 558 559 560 561 562 563 564
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
565 566 567
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
568 569
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
570 571
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
572 573 574 575 576 577 578 579 580
		if (*err)
			goto failed_out;

		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
581 582 583 584 585 586 587 588 589
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
590
			break;
591
		}
592 593
	}

594 595 596 597 598
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
599 600 601 602 603 604 605 606 607 608 609
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);

610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
		/*
		 * save the new block number
		 * for the first direct block
		 */
			new_blocks[index] = current_block;
		}
625
		blk_allocated += ar.len;
626 627
	}
allocated:
628
	/* total number of blocks allocated for direct blocks */
629
	ret = blk_allocated;
630 631 632
	*err = 0;
	return ret;
failed_out:
633
	for (i = 0; i < index; i++)
634
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
635 636 637 638
	return ret;
}

/**
639
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
640 641 642 643 644 645 646 647 648 649
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
650
 *	the same format as ext4_get_branch() would do. We are calling it after
651 652
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
653
 *	picture as after the successful ext4_get_block(), except that in one
654 655 656 657 658 659
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
660
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
661 662
 *	as described above and return 0.
 */
663
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
664 665 666
				ext4_lblk_t iblock, int indirect_blks,
				int *blks, ext4_fsblk_t goal,
				ext4_lblk_t *offsets, Indirect *branch)
667 668 669 670 671 672
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
673 674
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
675

676
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
695
		err = ext4_journal_get_create_access(handle, bh);
696 697 698 699 700 701 702 703 704 705
		if (err) {
			unlock_buffer(bh);
			brelse(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
706
		if (n == indirect_blks) {
707 708 709 710 711 712 713 714 715 716 717 718 719
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
			for (i=1; i < num; i++)
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

720 721
		BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
		err = ext4_journal_dirty_metadata(handle, bh);
722 723 724 725 726 727 728 729
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
	for (i = 1; i <= n ; i++) {
730
		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
731
		ext4_journal_forget(handle, branch[i].bh);
732
	}
733
	for (i = 0; i < indirect_blks; i++)
734
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
735

736
	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
737 738 739 740 741

	return err;
}

/**
742
 * ext4_splice_branch - splice the allocated branch onto inode.
743 744 745
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
746
 *	ext4_alloc_branch)
747 748 749 750 751 752 753 754
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
755
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
756
			ext4_lblk_t block, Indirect *where, int num, int blks)
757 758 759
{
	int i;
	int err = 0;
760
	ext4_fsblk_t current_block;
761 762 763 764 765 766 767 768

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
769
		err = ext4_journal_get_write_access(handle, where->bh);
770 771 772 773 774 775 776 777 778 779 780 781 782 783
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
784
			*(where->p + i) = cpu_to_le32(current_block++);
785 786 787 788
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */

K
Kalpak Shah 已提交
789
	inode->i_ctime = ext4_current_time(inode);
790
	ext4_mark_inode_dirty(handle, inode);
791 792 793 794 795 796 797 798 799

	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
800
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
801 802
		 */
		jbd_debug(5, "splicing indirect only\n");
803 804
		BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
		err = ext4_journal_dirty_metadata(handle, where->bh);
805 806 807 808 809 810 811 812 813 814 815 816 817
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 * Inode was dirtied above.
		 */
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
818
		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
819
		ext4_journal_forget(handle, where[i].bh);
820 821
		ext4_free_blocks(handle, inode,
					le32_to_cpu(where[i-1].key), 1, 0);
822
	}
823
	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844

	return err;
}

/*
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
845 846 847
 *
 *
 * Need to be called with
848 849
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
850
 */
851
int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
852
		ext4_lblk_t iblock, unsigned long maxblocks,
853 854 855 856
		struct buffer_head *bh_result,
		int create, int extend_disksize)
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
857
	ext4_lblk_t offsets[4];
858 859
	Indirect chain[4];
	Indirect *partial;
860
	ext4_fsblk_t goal;
861 862 863
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
864
	struct ext4_inode_info *ei = EXT4_I(inode);
865
	int count = 0;
866
	ext4_fsblk_t first_block = 0;
867
	loff_t disksize;
868 869


A
Alex Tomas 已提交
870
	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
871
	J_ASSERT(handle != NULL || create == 0);
A
Aneesh Kumar K.V 已提交
872 873
	depth = ext4_block_to_path(inode, iblock, offsets,
					&blocks_to_boundary);
874 875 876 877

	if (depth == 0)
		goto out;

878
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
879 880 881 882 883 884 885 886

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		clear_buffer_new(bh_result);
		count++;
		/*map more blocks*/
		while (count < maxblocks && count <= blocks_to_boundary) {
887
			ext4_fsblk_t blk;
888 889 890 891 892 893 894 895

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
896
		goto got_it;
897 898 899 900 901 902 903
	}

	/* Next simple case - plain lookup or failed read of indirect block */
	if (!create || err == -EIO)
		goto cleanup;

	/*
904
	 * Okay, we need to do block allocation.
905
	*/
906
	goal = ext4_find_goal(inode, iblock, partial);
907 908 909 910 911 912 913 914

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
915
	count = ext4_blks_to_allocate(partial, indirect_blks,
916 917
					maxblocks, blocks_to_boundary);
	/*
918
	 * Block out ext4_truncate while we alter the tree
919
	 */
920 921 922
	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
					&count, goal,
					offsets + (partial - chain), partial);
923 924

	/*
925
	 * The ext4_splice_branch call will free and forget any buffers
926 927 928 929 930 931
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
932
		err = ext4_splice_branch(handle, inode, iblock,
933 934
					partial, indirect_blks, count);
	/*
935
	 * i_disksize growing is protected by i_data_sem.  Don't forget to
936
	 * protect it if you're about to implement concurrent
937
	 * ext4_get_block() -bzzz
938
	*/
939 940 941 942 943 944 945
	if (!err && extend_disksize) {
		disksize = ((loff_t) iblock + count) << inode->i_blkbits;
		if (disksize > i_size_read(inode))
			disksize = i_size_read(inode);
		if (disksize > ei->i_disksize)
			ei->i_disksize = disksize;
	}
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
	if (err)
		goto cleanup;

	set_buffer_new(bh_result);
got_it:
	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
	if (count > blocks_to_boundary)
		set_buffer_boundary(bh_result);
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
	BUFFER_TRACE(bh_result, "returned");
out:
	return err;
}

968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
/*
 * Calculate the number of metadata blocks need to reserve
 * to allocate @blocks for non extent file based file
 */
static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
{
	int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ind_blks, dind_blks, tind_blks;

	/* number of new indirect blocks needed */
	ind_blks = (blocks + icap - 1) / icap;

	dind_blks = (ind_blks + icap - 1) / icap;

	tind_blks = 1;

	return ind_blks + dind_blks + tind_blks;
}

/*
 * Calculate the number of metadata blocks need to reserve
 * to allocate given number of blocks
 */
static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
{
993 994 995
	if (!blocks)
		return 0;

996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
		return ext4_ext_calc_metadata_amount(inode, blocks);

	return ext4_indirect_calc_metadata_amount(inode, blocks);
}

static void ext4_da_update_reserve_space(struct inode *inode, int used)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int total, mdb, mdb_free;

	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	/* recalculate the number of metablocks still need to be reserved */
	total = EXT4_I(inode)->i_reserved_data_blocks - used;
	mdb = ext4_calc_metadata_amount(inode, total);

	/* figure out how many metablocks to release */
	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;

1016 1017 1018 1019 1020 1021 1022 1023 1024
	if (mdb_free) {
		/* Account for allocated meta_blocks */
		mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;

		/* update fs dirty blocks counter */
		percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
		EXT4_I(inode)->i_allocated_meta_blocks = 0;
		EXT4_I(inode)->i_reserved_meta_blocks = mdb;
	}
1025 1026 1027 1028 1029 1030 1031 1032

	/* update per-inode reservations */
	BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
	EXT4_I(inode)->i_reserved_data_blocks -= used;

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
}

1033
/*
1034 1035
 * The ext4_get_blocks_wrap() function try to look up the requested blocks,
 * and returns if the blocks are already mapped.
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
 * If file type is extents based, it will call ext4_ext_get_blocks(),
 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
1055 1056
int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
			unsigned long max_blocks, struct buffer_head *bh,
1057
			int create, int extend_disksize, int flag)
1058 1059
{
	int retval;
1060 1061 1062

	clear_buffer_mapped(bh);

1063 1064 1065 1066 1067 1068 1069 1070
	/*
	 * Try to see if we can get  the block without requesting
	 * for new file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
				bh, 0, 0);
1071
	} else {
1072 1073
		retval = ext4_get_blocks_handle(handle,
				inode, block, max_blocks, bh, 0, 0);
1074
	}
1075
	up_read((&EXT4_I(inode)->i_data_sem));
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088

	/* If it is only a block(s) look up */
	if (!create)
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
	if (retval > 0 && buffer_mapped(bh))
1089 1090 1091
		return retval;

	/*
1092 1093 1094 1095
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1096 1097
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
1098 1099 1100 1101 1102 1103 1104 1105 1106

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
	if (flag)
		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1107 1108 1109 1110
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1111 1112 1113 1114 1115 1116
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
				bh, create, extend_disksize);
	} else {
		retval = ext4_get_blocks_handle(handle, inode, block,
				max_blocks, bh, create, extend_disksize);
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126

		if (retval > 0 && buffer_new(bh)) {
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
			EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
							~EXT4_EXT_MIGRATE;
		}
1127
	}
1128 1129 1130 1131 1132 1133 1134 1135 1136

	if (flag) {
		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
		/*
		 * Update reserved blocks/metadata blocks
		 * after successful block allocation
		 * which were deferred till now
		 */
		if ((retval > 0) && buffer_delay(bh))
1137
			ext4_da_update_reserve_space(inode, retval);
1138 1139
	}

1140
	up_write((&EXT4_I(inode)->i_data_sem));
1141 1142 1143
	return retval;
}

1144 1145 1146
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

1147 1148
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create)
1149
{
1150
	handle_t *handle = ext4_journal_current_handle();
J
Jan Kara 已提交
1151
	int ret = 0, started = 0;
1152
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1153
	int dio_credits;
1154

J
Jan Kara 已提交
1155 1156 1157 1158
	if (create && !handle) {
		/* Direct IO write... */
		if (max_blocks > DIO_MAX_BLOCKS)
			max_blocks = DIO_MAX_BLOCKS;
1159 1160
		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
1161
		if (IS_ERR(handle)) {
1162
			ret = PTR_ERR(handle);
J
Jan Kara 已提交
1163
			goto out;
1164
		}
J
Jan Kara 已提交
1165
		started = 1;
1166 1167
	}

J
Jan Kara 已提交
1168
	ret = ext4_get_blocks_wrap(handle, inode, iblock,
1169
					max_blocks, bh_result, create, 0, 0);
J
Jan Kara 已提交
1170 1171 1172
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
1173
	}
J
Jan Kara 已提交
1174 1175 1176
	if (started)
		ext4_journal_stop(handle);
out:
1177 1178 1179 1180 1181 1182
	return ret;
}

/*
 * `handle' can be NULL if create is zero
 */
1183
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1184
				ext4_lblk_t block, int create, int *errp)
1185 1186 1187 1188 1189 1190 1191 1192 1193
{
	struct buffer_head dummy;
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

	dummy.b_state = 0;
	dummy.b_blocknr = -1000;
	buffer_trace_init(&dummy.b_history);
A
Alex Tomas 已提交
1194
	err = ext4_get_blocks_wrap(handle, inode, block, 1,
1195
					&dummy, create, 1, 0);
1196
	/*
1197
	 * ext4_get_blocks_handle() returns number of blocks
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
	 * mapped. 0 in case of a HOLE.
	 */
	if (err > 0) {
		if (err > 1)
			WARN_ON(1);
		err = 0;
	}
	*errp = err;
	if (!err && buffer_mapped(&dummy)) {
		struct buffer_head *bh;
		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
		if (!bh) {
			*errp = -EIO;
			goto err;
		}
		if (buffer_new(&dummy)) {
			J_ASSERT(create != 0);
A
Aneesh Kumar K.V 已提交
1215
			J_ASSERT(handle != NULL);
1216 1217 1218 1219 1220

			/*
			 * Now that we do not always journal data, we should
			 * keep in mind whether this should always journal the
			 * new buffer as metadata.  For now, regular file
1221
			 * writes use ext4_get_block instead, so it's not a
1222 1223 1224 1225
			 * problem.
			 */
			lock_buffer(bh);
			BUFFER_TRACE(bh, "call get_create_access");
1226
			fatal = ext4_journal_get_create_access(handle, bh);
1227
			if (!fatal && !buffer_uptodate(bh)) {
1228
				memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1229 1230 1231
				set_buffer_uptodate(bh);
			}
			unlock_buffer(bh);
1232 1233
			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
			err = ext4_journal_dirty_metadata(handle, bh);
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
			if (!fatal)
				fatal = err;
		} else {
			BUFFER_TRACE(bh, "not a new buffer");
		}
		if (fatal) {
			*errp = fatal;
			brelse(bh);
			bh = NULL;
		}
		return bh;
	}
err:
	return NULL;
}

1250
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1251
			       ext4_lblk_t block, int create, int *err)
1252
{
1253
	struct buffer_head *bh;
1254

1255
	bh = ext4_getblk(handle, inode, block, create, err);
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

1269 1270 1271 1272 1273 1274 1275
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
1276 1277 1278 1279 1280 1281 1282
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

1283 1284 1285
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
	     block_start = block_end, bh = next)
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
	{
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1304
 * close off a transaction and start a new one between the ext4_get_block()
1305
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1306 1307
 * prepare_write() is the right place.
 *
1308 1309
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1310 1311 1312 1313
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1314
 * By accident, ext4 can be reentered when a transaction is open via
1315 1316 1317 1318 1319 1320
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1321
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1322 1323 1324 1325 1326 1327 1328 1329 1330
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
					struct buffer_head *bh)
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1331
	return ext4_journal_get_write_access(handle, bh);
1332 1333
}

N
Nick Piggin 已提交
1334 1335 1336
static int ext4_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
1337
{
1338
	struct inode *inode = mapping->host;
1339
	int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1340 1341
	handle_t *handle;
	int retries = 0;
1342
	struct page *page;
N
Nick Piggin 已提交
1343
 	pgoff_t index;
1344
	unsigned from, to;
N
Nick Piggin 已提交
1345 1346

 	index = pos >> PAGE_CACHE_SHIFT;
1347 1348
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
1349 1350

retry:
1351 1352 1353 1354
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
1355
	}
1356

1357
	page = grab_cache_page_write_begin(mapping, index, flags);
1358 1359 1360 1361 1362 1363 1364
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

N
Nick Piggin 已提交
1365 1366 1367 1368
	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
							ext4_get_block);

	if (!ret && ext4_should_journal_data(inode)) {
1369 1370 1371
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1372 1373

	if (ret) {
1374
		unlock_page(page);
1375
		ext4_journal_stop(handle);
1376
		page_cache_release(page);
1377 1378 1379 1380 1381 1382 1383
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
			vmtruncate(inode, inode->i_size);
N
Nick Piggin 已提交
1384 1385
	}

1386
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1387
		goto retry;
1388
out:
1389 1390 1391
	return ret;
}

N
Nick Piggin 已提交
1392 1393
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1394 1395 1396 1397
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1398
	return ext4_journal_dirty_metadata(handle, bh);
1399 1400 1401 1402 1403 1404
}

/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1405
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1406 1407
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1408 1409 1410 1411
static int ext4_ordered_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1412
{
1413
	handle_t *handle = ext4_journal_current_handle();
1414
	struct inode *inode = mapping->host;
1415 1416
	int ret = 0, ret2;

1417
	ret = ext4_jbd2_file_inode(handle, inode);
1418 1419 1420 1421

	if (ret == 0) {
		loff_t new_i_size;

N
Nick Piggin 已提交
1422
		new_i_size = pos + copied;
1423 1424 1425 1426 1427 1428 1429 1430 1431
		if (new_i_size > EXT4_I(inode)->i_disksize) {
			ext4_update_i_disksize(inode, new_i_size);
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
		}

1432
		ret2 = generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1433
							page, fsdata);
1434 1435 1436
		copied = ret2;
		if (ret2 < 0)
			ret = ret2;
1437
	}
1438
	ret2 = ext4_journal_stop(handle);
1439 1440
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1441 1442

	return ret ? ret : copied;
1443 1444
}

N
Nick Piggin 已提交
1445 1446 1447 1448
static int ext4_writeback_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1449
{
1450
	handle_t *handle = ext4_journal_current_handle();
1451
	struct inode *inode = mapping->host;
1452 1453 1454
	int ret = 0, ret2;
	loff_t new_i_size;

N
Nick Piggin 已提交
1455
	new_i_size = pos + copied;
1456 1457 1458 1459 1460 1461 1462 1463
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_mark_inode_dirty(handle, inode);
	}
1464

1465
	ret2 = generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1466
							page, fsdata);
1467 1468 1469
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
1470

1471
	ret2 = ext4_journal_stop(handle);
1472 1473
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1474 1475

	return ret ? ret : copied;
1476 1477
}

N
Nick Piggin 已提交
1478 1479 1480 1481
static int ext4_journalled_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1482
{
1483
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1484
	struct inode *inode = mapping->host;
1485 1486
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1487
	unsigned from, to;
1488
	loff_t new_i_size;
1489

N
Nick Piggin 已提交
1490 1491 1492 1493 1494 1495 1496 1497
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1498 1499

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1500
				to, &partial, write_end_fn);
1501 1502
	if (!partial)
		SetPageUptodate(page);
1503 1504
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1505
		i_size_write(inode, pos+copied);
1506
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1507 1508
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1509
		ret2 = ext4_mark_inode_dirty(handle, inode);
1510 1511 1512
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1513

1514
	unlock_page(page);
1515
	ret2 = ext4_journal_stop(handle);
1516 1517
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1518 1519 1520
	page_cache_release(page);

	return ret ? ret : copied;
1521
}
1522 1523 1524

static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
{
A
Aneesh Kumar K.V 已提交
1525
	int retries = 0;
1526 1527 1528 1529 1530 1531 1532 1533
       struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
       unsigned long md_needed, mdblocks, total = 0;

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1534
repeat:
1535 1536 1537 1538 1539 1540 1541 1542
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
	mdblocks = ext4_calc_metadata_amount(inode, total);
	BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);

	md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
	total = md_needed + nrblocks;

1543
	if (ext4_claim_free_blocks(sbi, total)) {
1544
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
A
Aneesh Kumar K.V 已提交
1545 1546 1547 1548
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1549 1550 1551 1552 1553 1554 1555 1556 1557
		return -ENOSPC;
	}
	EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
	EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
	return 0;       /* success */
}

1558
static void ext4_da_release_space(struct inode *inode, int to_free)
1559 1560 1561 1562
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int total, mdb, mdb_free, release;

1563 1564 1565
	if (!to_free)
		return;		/* Nothing to release, exit */

1566
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581

	if (!EXT4_I(inode)->i_reserved_data_blocks) {
		/*
		 * if there is no reserved blocks, but we try to free some
		 * then the counter is messed up somewhere.
		 * but since this function is called from invalidate
		 * page, it's harmless to return without any action
		 */
		printk(KERN_INFO "ext4 delalloc try to release %d reserved "
			    "blocks for inode %lu, but there is no reserved "
			    "data blocks\n", to_free, inode->i_ino);
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
		return;
	}

1582
	/* recalculate the number of metablocks still need to be reserved */
1583
	total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1584 1585 1586 1587 1588 1589 1590 1591
	mdb = ext4_calc_metadata_amount(inode, total);

	/* figure out how many metablocks to release */
	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;

	release = to_free + mdb_free;

1592 1593
	/* update fs dirty blocks counter for truncate case */
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1594 1595

	/* update per-inode reservations */
1596 1597
	BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
	EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621

	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	EXT4_I(inode)->i_reserved_meta_blocks = mdb;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
}

static void ext4_da_page_release_reservation(struct page *page,
						unsigned long offset)
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1622
	ext4_da_release_space(page->mapping->host, to_release);
1623
}
1624

1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
/*
 * Delayed allocation stuff
 */

struct mpage_da_data {
	struct inode *inode;
	struct buffer_head lbh;			/* extent of blocks */
	unsigned long first_page, next_page;	/* extent of pages */
	get_block_t *get_block;
	struct writeback_control *wbc;
1635 1636
	int io_done;
	long pages_written;
1637
	int retval;
1638 1639 1640 1641
};

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1642
 * them with writepage() call back
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 * @mpd->get_block: the filesystem's block mapper function
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
static int mpage_da_submit_io(struct mpage_da_data *mpd)
{
	struct address_space *mapping = mpd->inode->i_mapping;
	int ret = 0, err, nr_pages, i;
	unsigned long index, end;
	struct pagevec pvec;
1660
	long pages_skipped;
1661 1662 1663 1664 1665 1666 1667

	BUG_ON(mpd->next_page <= mpd->first_page);
	pagevec_init(&pvec, 0);
	index = mpd->first_page;
	end = mpd->next_page - 1;

	while (index <= end) {
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
		/*
		 * We can use PAGECACHE_TAG_DIRTY lookup here because
		 * even though we have cleared the dirty flag on the page
		 * We still keep the page in the radix tree with tag
		 * PAGECACHE_TAG_DIRTY. See clear_page_dirty_for_io.
		 * The PAGECACHE_TAG_DIRTY is cleared in set_page_writeback
		 * which is called via the below writepage callback.
		 */
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					PAGECACHE_TAG_DIRTY,
					min(end - index,
					(pgoff_t)PAGEVEC_SIZE-1) + 1);
1680 1681 1682 1683 1684
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

1685
			pages_skipped = mpd->wbc->pages_skipped;
1686
			err = mapping->a_ops->writepage(page, mpd->wbc);
1687 1688 1689 1690 1691
			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
				/*
				 * have successfully written the page
				 * without skipping the same
				 */
1692
				mpd->pages_written++;
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 * XXX: unlock and re-dirty them?
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
	return ret;
}

/*
 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
 *
 * @mpd->inode - inode to walk through
 * @exbh->b_blocknr - first block on a disk
 * @exbh->b_size - amount of space in bytes
 * @logical - first logical block to start assignment with
 *
 * the function goes through all passed space and put actual disk
 * block numbers into buffer heads, dropping BH_Delay
 */
static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
				 struct buffer_head *exbh)
{
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
	int blocks = exbh->b_size >> inode->i_blkbits;
	sector_t pblock = exbh->b_blocknr, cur_logical;
	struct buffer_head *head, *bh;
1725
	pgoff_t index, end;
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
	struct pagevec pvec;
	int nr_pages, i;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);

	while (index <= end) {
		/* XXX: optimize tail */
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			BUG_ON(!page_has_buffers(page));

			bh = page_buffers(page);
			head = bh;

			/* skip blocks out of the range */
			do {
				if (cur_logical >= logical)
					break;
				cur_logical++;
			} while ((bh = bh->b_this_page) != head);

			do {
				if (cur_logical >= logical + blocks)
					break;
				if (buffer_delay(bh)) {
					bh->b_blocknr = pblock;
					clear_buffer_delay(bh);
1768 1769 1770 1771 1772 1773 1774
					bh->b_bdev = inode->i_sb->s_bdev;
				} else if (buffer_unwritten(bh)) {
					bh->b_blocknr = pblock;
					clear_buffer_unwritten(bh);
					set_buffer_mapped(bh);
					set_buffer_new(bh);
					bh->b_bdev = inode->i_sb->s_bdev;
1775
				} else if (buffer_mapped(bh))
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
					BUG_ON(bh->b_blocknr != pblock);

				cur_logical++;
				pblock++;
			} while ((bh = bh->b_this_page) != head);
		}
		pagevec_release(&pvec);
	}
}


/*
 * __unmap_underlying_blocks - just a helper function to unmap
 * set of blocks described by @bh
 */
static inline void __unmap_underlying_blocks(struct inode *inode,
					     struct buffer_head *bh)
{
	struct block_device *bdev = inode->i_sb->s_bdev;
	int blocks, i;

	blocks = bh->b_size >> inode->i_blkbits;
	for (i = 0; i < blocks; i++)
		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
}

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
					sector_t logical, long blk_cnt)
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end   = (logical + blk_cnt - 1) >>
				(PAGE_CACHE_SHIFT - inode->i_blkbits);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
	}
	return;
}

1835 1836 1837 1838 1839 1840 1841
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	printk(KERN_EMERG "Total free blocks count %lld\n",
			ext4_count_free_blocks(inode->i_sb));
	printk(KERN_EMERG "Free/Dirty block details\n");
	printk(KERN_EMERG "free_blocks=%lld\n",
1842
			(long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
1843
	printk(KERN_EMERG "dirty_blocks=%lld\n",
1844
			(long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1845 1846 1847 1848 1849 1850 1851 1852
	printk(KERN_EMERG "Block reservation details\n");
	printk(KERN_EMERG "i_reserved_data_blocks=%lu\n",
			EXT4_I(inode)->i_reserved_data_blocks);
	printk(KERN_EMERG "i_reserved_meta_blocks=%lu\n",
			EXT4_I(inode)->i_reserved_meta_blocks);
	return;
}

1853 1854 1855 1856 1857 1858 1859 1860 1861
/*
 * mpage_da_map_blocks - go through given space
 *
 * @mpd->lbh - bh describing space
 * @mpd->get_block - the filesystem's block mapper function
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1862
static int  mpage_da_map_blocks(struct mpage_da_data *mpd)
1863
{
1864
	int err = 0;
A
Aneesh Kumar K.V 已提交
1865
	struct buffer_head new;
1866
	struct buffer_head *lbh = &mpd->lbh;
1867
	sector_t next;
1868 1869 1870 1871 1872

	/*
	 * We consider only non-mapped and non-allocated blocks
	 */
	if (buffer_mapped(lbh) && !buffer_delay(lbh))
1873
		return 0;
1874 1875 1876
	new.b_state = lbh->b_state;
	new.b_blocknr = 0;
	new.b_size = lbh->b_size;
1877
	next = lbh->b_blocknr;
1878 1879 1880 1881 1882
	/*
	 * If we didn't accumulate anything
	 * to write simply return
	 */
	if (!new.b_size)
1883
		return 0;
1884
	err = mpd->get_block(mpd->inode, next, &new, 1);
1885 1886 1887 1888 1889 1890 1891 1892 1893
	if (err) {

		/* If get block returns with error
		 * we simply return. Later writepage
		 * will redirty the page and writepages
		 * will find the dirty page again
		 */
		if (err == -EAGAIN)
			return 0;
1894 1895 1896 1897 1898 1899 1900

		if (err == -ENOSPC &&
				ext4_count_free_blocks(mpd->inode->i_sb)) {
			mpd->retval = err;
			return 0;
		}

1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
		/*
		 * get block failure will cause us
		 * to loop in writepages. Because
		 * a_ops->writepage won't be able to
		 * make progress. The page will be redirtied
		 * by writepage and writepages will again
		 * try to write the same.
		 */
		printk(KERN_EMERG "%s block allocation failed for inode %lu "
				  "at logical offset %llu with max blocks "
				  "%zd with error %d\n",
				  __func__, mpd->inode->i_ino,
				  (unsigned long long)next,
				  lbh->b_size >> mpd->inode->i_blkbits, err);
		printk(KERN_EMERG "This should not happen.!! "
					"Data will be lost\n");
A
Aneesh Kumar K.V 已提交
1917
		if (err == -ENOSPC) {
1918
			ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
1919
		}
1920 1921 1922 1923 1924
		/* invlaidate all the pages */
		ext4_da_block_invalidatepages(mpd, next,
				lbh->b_size >> mpd->inode->i_blkbits);
		return err;
	}
1925
	BUG_ON(new.b_size == 0);
1926

1927 1928
	if (buffer_new(&new))
		__unmap_underlying_blocks(mpd->inode, &new);
1929

1930 1931 1932 1933 1934 1935
	/*
	 * If blocks are delayed marked, we need to
	 * put actual blocknr and drop delayed bit
	 */
	if (buffer_delay(lbh) || buffer_unwritten(lbh))
		mpage_put_bnr_to_bhs(mpd, next, &new);
1936

1937
	return 0;
1938 1939
}

1940 1941
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
				   sector_t logical, struct buffer_head *bh)
{
	sector_t next;
1956 1957 1958
	size_t b_size = bh->b_size;
	struct buffer_head *lbh = &mpd->lbh;
	int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
1959

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
	/* check if thereserved journal credits might overflow */
	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
1982 1983 1984 1985 1986
	/*
	 * First block in the extent
	 */
	if (lbh->b_size == 0) {
		lbh->b_blocknr = logical;
1987
		lbh->b_size = b_size;
1988 1989 1990 1991
		lbh->b_state = bh->b_state & BH_FLAGS;
		return;
	}

1992
	next = lbh->b_blocknr + nrblocks;
1993 1994 1995 1996
	/*
	 * Can we merge the block to our big extent?
	 */
	if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1997
		lbh->b_size += b_size;
1998 1999 2000
		return;
	}

2001
flush_it:
2002 2003 2004 2005
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
2006 2007
	if (mpage_da_map_blocks(mpd) == 0)
		mpage_da_submit_io(mpd);
2008 2009
	mpd->io_done = 1;
	return;
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
}

/*
 * __mpage_da_writepage - finds extent of pages and blocks
 *
 * @page: page to consider
 * @wbc: not used, we just follow rules
 * @data: context
 *
 * The function finds extents of pages and scan them for all blocks.
 */
static int __mpage_da_writepage(struct page *page,
				struct writeback_control *wbc, void *data)
{
	struct mpage_da_data *mpd = data;
	struct inode *inode = mpd->inode;
	struct buffer_head *bh, *head, fake;
	sector_t logical;

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
	if (mpd->io_done) {
		/*
		 * Rest of the page in the page_vec
		 * redirty then and skip then. We will
		 * try to to write them again after
		 * starting a new transaction
		 */
		redirty_page_for_writepage(wbc, page);
		unlock_page(page);
		return MPAGE_DA_EXTENT_TAIL;
	}
2040 2041 2042 2043 2044 2045
	/*
	 * Can we merge this page to current extent?
	 */
	if (mpd->next_page != page->index) {
		/*
		 * Nope, we can't. So, we map non-allocated blocks
2046
		 * and start IO on them using writepage()
2047 2048
		 */
		if (mpd->next_page != mpd->first_page) {
2049 2050
			if (mpage_da_map_blocks(mpd) == 0)
				mpage_da_submit_io(mpd);
2051 2052 2053 2054 2055 2056 2057
			/*
			 * skip rest of the page in the page_vec
			 */
			mpd->io_done = 1;
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return MPAGE_DA_EXTENT_TAIL;
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
		}

		/*
		 * Start next extent of pages ...
		 */
		mpd->first_page = page->index;

		/*
		 * ... and blocks
		 */
		mpd->lbh.b_size = 0;
		mpd->lbh.b_state = 0;
		mpd->lbh.b_blocknr = 0;
	}

	mpd->next_page = page->index + 1;
	logical = (sector_t) page->index <<
		  (PAGE_CACHE_SHIFT - inode->i_blkbits);

	if (!page_has_buffers(page)) {
		/*
		 * There is no attached buffer heads yet (mmap?)
		 * we treat the page asfull of dirty blocks
		 */
		bh = &fake;
		bh->b_size = PAGE_CACHE_SIZE;
		bh->b_state = 0;
		set_buffer_dirty(bh);
		set_buffer_uptodate(bh);
		mpage_add_bh_to_extent(mpd, logical, bh);
2088 2089
		if (mpd->io_done)
			return MPAGE_DA_EXTENT_TAIL;
2090 2091 2092 2093 2094 2095 2096 2097
	} else {
		/*
		 * Page with regular buffer heads, just add all dirty ones
		 */
		head = page_buffers(page);
		bh = head;
		do {
			BUG_ON(buffer_locked(bh));
2098 2099
			if (buffer_dirty(bh) &&
				(!buffer_mapped(bh) || buffer_delay(bh))) {
2100
				mpage_add_bh_to_extent(mpd, logical, bh);
2101 2102 2103
				if (mpd->io_done)
					return MPAGE_DA_EXTENT_TAIL;
			}
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
			logical++;
		} while ((bh = bh->b_this_page) != head);
	}

	return 0;
}

/*
 * mpage_da_writepages - walk the list of dirty pages of the given
 * address space, allocates non-allocated blocks, maps newly-allocated
 * blocks to existing bhs and issue IO them
 *
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 * @get_block: the filesystem's block mapper function.
 *
 * This is a library function, which implements the writepages()
 * address_space_operation.
 */
static int mpage_da_writepages(struct address_space *mapping,
			       struct writeback_control *wbc,
2125
			       struct mpage_da_data *mpd)
2126 2127 2128
{
	int ret;

2129
	if (!mpd->get_block)
2130 2131
		return generic_writepages(mapping, wbc);

2132 2133 2134 2135 2136 2137 2138 2139
	mpd->lbh.b_size = 0;
	mpd->lbh.b_state = 0;
	mpd->lbh.b_blocknr = 0;
	mpd->first_page = 0;
	mpd->next_page = 0;
	mpd->io_done = 0;
	mpd->pages_written = 0;
	mpd->retval = 0;
2140

2141
	ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd);
2142 2143 2144
	/*
	 * Handle last extent of pages
	 */
2145 2146 2147
	if (!mpd->io_done && mpd->next_page != mpd->first_page) {
		if (mpage_da_map_blocks(mpd) == 0)
			mpage_da_submit_io(mpd);
2148

2149 2150 2151 2152
		mpd->io_done = 1;
		ret = MPAGE_DA_EXTENT_TAIL;
	}
	wbc->nr_to_write -= mpd->pages_written;
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
	return ret;
}

/*
 * this is a special callback for ->write_begin() only
 * it's intention is to return mapped block or reserve space
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
				  struct buffer_head *bh_result, int create)
{
	int ret = 0;

	BUG_ON(create == 0);
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2173 2174 2175
	ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
	if ((ret == 0) && !buffer_delay(bh_result)) {
		/* the block isn't (pre)allocated yet, let's reserve space */
2176 2177 2178 2179
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
2180 2181 2182 2183 2184
		ret = ext4_da_reserve_space(inode, 1);
		if (ret)
			/* not enough space to reserve */
			return ret;

2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
		map_bh(bh_result, inode->i_sb, 0);
		set_buffer_new(bh_result);
		set_buffer_delay(bh_result);
	} else if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
	}

	return ret;
}
2195
#define		EXT4_DELALLOC_RSVED	1
2196 2197 2198
static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create)
{
2199
	int ret;
2200 2201 2202 2203
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
	loff_t disksize = EXT4_I(inode)->i_disksize;
	handle_t *handle = NULL;

2204
	handle = ext4_journal_current_handle();
2205 2206 2207
	BUG_ON(!handle);
	ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
			bh_result, create, 0, EXT4_DELALLOC_RSVED);
2208
	if (ret > 0) {
2209

2210 2211
		bh_result->b_size = (ret << inode->i_blkbits);

2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
		if (ext4_should_order_data(inode)) {
			int retval;
			retval = ext4_jbd2_file_inode(handle, inode);
			if (retval)
				/*
				 * Failed to add inode for ordered
				 * mode. Don't update file size
				 */
				return retval;
		}

2223 2224 2225 2226 2227 2228 2229 2230 2231
		/*
		 * Update on-disk size along with block allocation
		 * we don't use 'extend_disksize' as size may change
		 * within already allocated block -bzzz
		 */
		disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
		if (disksize > i_size_read(inode))
			disksize = i_size_read(inode);
		if (disksize > EXT4_I(inode)->i_disksize) {
2232 2233 2234
			ext4_update_i_disksize(inode, disksize);
			ret = ext4_mark_inode_dirty(handle, inode);
			return ret;
2235 2236 2237 2238 2239
		}
		ret = 0;
	}
	return ret;
}
2240 2241 2242

static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
{
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
	/*
	 * unmapped buffer is possible for holes.
	 * delay buffer is possible with delayed allocation
	 */
	return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
}

static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create)
{
	int ret = 0;
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;

	/*
	 * we don't want to do block allocation in writepage
	 * so call get_block_wrap with create = 0
	 */
	ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
				   bh_result, 0, 0, 0);
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
	}
	return ret;
2267 2268 2269
}

/*
2270 2271 2272 2273
 * get called vi ext4_da_writepages after taking page lock (have journal handle)
 * get called via journal_submit_inode_data_buffers (no journal handle)
 * get called via shrink_page_list via pdflush (no journal handle)
 * or grab_page_cache when doing write_begin (have journal handle)
2274
 */
2275 2276 2277 2278
static int ext4_da_writepage(struct page *page,
				struct writeback_control *wbc)
{
	int ret = 0;
2279 2280 2281 2282 2283
	loff_t size;
	unsigned long len;
	struct buffer_head *page_bufs;
	struct inode *inode = page->mapping->host;

2284 2285 2286 2287 2288
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2289

2290
	if (page_has_buffers(page)) {
2291
		page_bufs = page_buffers(page);
2292 2293
		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
					ext4_bh_unmapped_or_delay)) {
2294
			/*
2295 2296
			 * We don't want to do  block allocation
			 * So redirty the page and return
2297 2298 2299
			 * We may reach here when we do a journal commit
			 * via journal_submit_inode_data_buffers.
			 * If we don't have mapping block we just ignore
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
			 * them. We can also reach here via shrink_page_list
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
	} else {
		/*
		 * The test for page_has_buffers() is subtle:
		 * We know the page is dirty but it lost buffers. That means
		 * that at some moment in time after write_begin()/write_end()
		 * has been called all buffers have been clean and thus they
		 * must have been written at least once. So they are all
		 * mapped and we can happily proceed with mapping them
		 * and writing the page.
		 *
		 * Try to initialize the buffer_heads and check whether
		 * all are mapped and non delay. We don't want to
		 * do block allocation here.
		 */
		ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
						ext4_normal_get_block_write);
		if (!ret) {
			page_bufs = page_buffers(page);
			/* check whether all are mapped and non delay */
			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
						ext4_bh_unmapped_or_delay)) {
				redirty_page_for_writepage(wbc, page);
				unlock_page(page);
				return 0;
			}
		} else {
			/*
			 * We can't do block allocation here
			 * so just redity the page and unlock
			 * and return
2336 2337 2338 2339 2340
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
2341 2342
		/* now mark the buffer_heads as dirty and uptodate */
		block_commit_write(page, 0, PAGE_CACHE_SIZE);
2343 2344 2345
	}

	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2346
		ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2347
	else
2348 2349 2350
		ret = block_write_full_page(page,
						ext4_normal_get_block_write,
						wbc);
2351 2352 2353 2354

	return ret;
}

2355
/*
2356 2357 2358 2359 2360
 * This is called via ext4_da_writepages() to
 * calulate the total number of credits to reserve to fit
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2361
 */
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
	if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2379

2380
static int ext4_da_writepages(struct address_space *mapping,
2381
			      struct writeback_control *wbc)
2382
{
2383 2384
	pgoff_t	index;
	int range_whole = 0;
2385
	handle_t *handle = NULL;
2386
	struct mpage_da_data mpd;
2387
	struct inode *inode = mapping->host;
2388 2389
	int no_nrwrite_index_update;
	long pages_written = 0, pages_skipped;
2390 2391
	int needed_blocks, ret = 0, nr_to_writebump = 0;
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2392 2393 2394 2395 2396 2397

	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2398
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2399
		return 0;
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
	 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
	if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
		return -EROFS;

2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
	/*
	 * Make sure nr_to_write is >= sbi->s_mb_stream_request
	 * This make sure small files blocks are allocated in
	 * single attempt. This ensure that small files
	 * get less fragmented.
	 */
	if (wbc->nr_to_write < sbi->s_mb_stream_request) {
		nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
		wbc->nr_to_write = sbi->s_mb_stream_request;
	}
2424 2425
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2426

2427 2428 2429 2430
	if (wbc->range_cyclic)
		index = mapping->writeback_index;
	else
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2431

2432 2433 2434
	mpd.wbc = wbc;
	mpd.inode = mapping->host;

2435 2436 2437 2438 2439 2440 2441 2442 2443
	/*
	 * we don't want write_cache_pages to update
	 * nr_to_write and writeback_index
	 */
	no_nrwrite_index_update = wbc->no_nrwrite_index_update;
	wbc->no_nrwrite_index_update = 1;
	pages_skipped = wbc->pages_skipped;

	while (!ret && wbc->nr_to_write > 0) {
2444 2445 2446 2447 2448 2449 2450 2451

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2452
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2453

2454 2455 2456 2457
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2458
			printk(KERN_CRIT "%s: jbd2_start: "
2459 2460 2461
			       "%ld pages, ino %lu; err %d\n", __func__,
				wbc->nr_to_write, inode->i_ino, ret);
			dump_stack();
2462 2463
			goto out_writepages;
		}
2464 2465 2466
		mpd.get_block = ext4_da_get_block_write;
		ret = mpage_da_writepages(mapping, wbc, &mpd);

2467
		ext4_journal_stop(handle);
2468

2469 2470 2471 2472 2473
		if (mpd.retval == -ENOSPC) {
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2474
			jbd2_journal_force_commit_nested(sbi->s_journal);
2475 2476 2477
			wbc->pages_skipped = pages_skipped;
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2478 2479 2480 2481
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
2482 2483
			pages_written += mpd.pages_written;
			wbc->pages_skipped = pages_skipped;
2484
			ret = 0;
2485
		} else if (wbc->nr_to_write)
2486 2487 2488 2489 2490 2491
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2492
	}
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
	if (pages_skipped != wbc->pages_skipped)
		printk(KERN_EMERG "This should not happen leaving %s "
				"with nr_to_write = %ld ret = %d\n",
				__func__, wbc->nr_to_write, ret);

	/* Update index */
	index += pages_written;
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
		mapping->writeback_index = index;
2506

2507
out_writepages:
2508 2509 2510
	if (!no_nrwrite_index_update)
		wbc->no_nrwrite_index_update = 0;
	wbc->nr_to_write -= nr_to_writebump;
2511
	return ret;
2512 2513
}

2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
	 * counters can get slightly wrong with FBC_BATCH getting
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
		 * free block count is less that 150% of dirty blocks
		 * or free blocks is less that watermark
		 */
		return 1;
	}
	return 0;
}

2541 2542 2543 2544
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
{
2545
	int ret, retries = 0;
2546 2547 2548 2549 2550 2551 2552 2553 2554
	struct page *page;
	pgoff_t index;
	unsigned from, to;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
2555 2556 2557 2558 2559 2560 2561

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2562
retry:
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

2575
	page = grab_cache_page_write_begin(mapping, index, flags);
2576 2577 2578 2579 2580
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
2581 2582 2583 2584 2585 2586 2587 2588
	*pagep = page;

	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
							ext4_da_get_block_prep);
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
2589 2590 2591 2592 2593 2594 2595
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
			vmtruncate(inode, inode->i_size);
2596 2597
	}

2598 2599
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
2600 2601 2602 2603
out:
	return ret;
}

2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
					 unsigned long offset)
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2619
	for (i = 0; i < idx; i++)
2620 2621 2622 2623 2624 2625 2626
		bh = bh->b_this_page;

	if (!buffer_mapped(bh) || (buffer_delay(bh)))
		return 0;
	return 1;
}

2627 2628 2629 2630 2631 2632 2633 2634 2635
static int ext4_da_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2636
	unsigned long start, end;
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
2650 2651

	start = pos & (PAGE_CACHE_SIZE - 1);
2652
	end = start + copied - 1;
2653 2654 2655 2656 2657 2658 2659 2660

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
2672

2673 2674 2675
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
2676 2677 2678 2679 2680
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2681
		}
2682
	}
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2704
	ext4_da_page_release_reservation(page, offset);
2705 2706 2707 2708 2709 2710 2711 2712

out:
	ext4_invalidatepage(page, offset);

	return;
}


2713 2714 2715 2716 2717
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2718
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2719 2720 2721 2722 2723 2724 2725 2726
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2727
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2728 2729 2730 2731 2732
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2743
	if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2755
		 * NB. EXT4_STATE_JDATA is not set on files other than
2756 2757 2758 2759 2760 2761
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2762 2763
		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
		journal = EXT4_JOURNAL(inode);
2764 2765 2766
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2767 2768 2769 2770 2771

		if (err)
			return 0;
	}

2772
	return generic_block_bmap(mapping, block, ext4_get_block);
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
}

static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

/*
2788 2789 2790 2791 2792 2793 2794 2795
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
 * we are writing back data modified via mmap(), noone guarantees in which
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
2796
 *
2797
 * In all journaling modes block_write_full_page() will start the I/O.
2798 2799 2800
 *
 * Problem:
 *
2801 2802
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
2803 2804 2805
 *
 * Similar for:
 *
2806
 *	ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2807
 *
2808
 * Same applies to ext4_get_block().  We will deadlock on various things like
2809
 * lock_journal and i_data_sem
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
 *
 * Setting PF_MEMALLOC here doesn't work - too many internal memory
 * allocations fail.
 *
 * 16May01: If we're reentered then journal_current_handle() will be
 *	    non-zero. We simply *return*.
 *
 * 1 July 2001: @@@ FIXME:
 *   In journalled data mode, a data buffer may be metadata against the
 *   current transaction.  But the same file is part of a shared mapping
 *   and someone does a writepage() on it.
 *
 *   We will move the buffer onto the async_data list, but *after* it has
 *   been dirtied. So there's a small window where we have dirty data on
 *   BJ_Metadata.
 *
 *   Note that this only applies to the last partial page in the file.  The
 *   bit which block_write_full_page() uses prepare/commit for.  (That's
 *   broken code anyway: it's wrong for msync()).
 *
 *   It's a rare case: affects the final partial page, for journalled data
 *   where the file is subject to bith write() and writepage() in the same
 *   transction.  To fix it we'll need a custom block_write_full_page().
 *   We'll probably need that anyway for journalling writepage() output.
 *
 * We don't honour synchronous mounts for writepage().  That would be
 * disastrous.  Any write() or metadata operation will sync the fs for
 * us.
 *
 */
2840
static int __ext4_normal_writepage(struct page *page,
2841 2842 2843 2844 2845
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;

	if (test_opt(inode->i_sb, NOBH))
2846 2847
		return nobh_writepage(page,
					ext4_normal_get_block_write, wbc);
2848
	else
2849 2850 2851
		return block_write_full_page(page,
						ext4_normal_get_block_write,
						wbc);
2852 2853
}

2854
static int ext4_normal_writepage(struct page *page,
2855 2856 2857
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
2858 2859 2860 2861 2862 2863 2864 2865
	loff_t size = i_size_read(inode);
	loff_t len;

	J_ASSERT(PageLocked(page));
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879

	if (page_has_buffers(page)) {
		/* if page has buffers it should all be mapped
		 * and allocated. If there are not buffers attached
		 * to the page we know the page is dirty but it lost
		 * buffers. That means that at some moment in time
		 * after write_begin() / write_end() has been called
		 * all buffers have been clean and thus they must have been
		 * written at least once. So they are all mapped and we can
		 * happily proceed with mapping them and writing the page.
		 */
		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
					ext4_bh_unmapped_or_delay));
	}
2880 2881

	if (!ext4_journal_current_handle())
2882
		return __ext4_normal_writepage(page, wbc);
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894

	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				struct writeback_control *wbc)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
2895 2896 2897 2898
	handle_t *handle = NULL;
	int ret = 0;
	int err;

2899 2900
	ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
					ext4_normal_get_block_write);
2901 2902 2903 2904 2905 2906 2907 2908 2909
	if (ret != 0)
		goto out_unlock;

	page_bufs = page_buffers(page);
	walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
								bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);
2910

2911
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2912 2913
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
2914
		goto out;
2915 2916
	}

2917 2918
	ret = walk_page_buffers(handle, page_bufs, 0,
			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2919

2920 2921 2922 2923
	err = walk_page_buffers(handle, page_bufs, 0,
				PAGE_CACHE_SIZE, NULL, write_end_fn);
	if (ret == 0)
		ret = err;
2924
	err = ext4_journal_stop(handle);
2925 2926 2927
	if (!ret)
		ret = err;

2928 2929 2930 2931 2932 2933
	walk_page_buffers(handle, page_bufs, 0,
				PAGE_CACHE_SIZE, NULL, bput_one);
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
	goto out;

out_unlock:
2934
	unlock_page(page);
2935
out:
2936 2937 2938
	return ret;
}

2939
static int ext4_journalled_writepage(struct page *page,
2940 2941 2942
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
2943 2944
	loff_t size = i_size_read(inode);
	loff_t len;
2945

2946 2947 2948 2949 2950
	J_ASSERT(PageLocked(page));
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964

	if (page_has_buffers(page)) {
		/* if page has buffers it should all be mapped
		 * and allocated. If there are not buffers attached
		 * to the page we know the page is dirty but it lost
		 * buffers. That means that at some moment in time
		 * after write_begin() / write_end() has been called
		 * all buffers have been clean and thus they must have been
		 * written at least once. So they are all mapped and we can
		 * happily proceed with mapping them and writing the page.
		 */
		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
					ext4_bh_unmapped_or_delay));
	}
2965

2966
	if (ext4_journal_current_handle())
2967 2968
		goto no_write;

2969
	if (PageChecked(page)) {
2970 2971 2972 2973 2974
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
		ClearPageChecked(page);
2975
		return __ext4_journalled_writepage(page, wbc);
2976 2977 2978 2979 2980 2981
	} else {
		/*
		 * It may be a page full of checkpoint-mode buffers.  We don't
		 * really know unless we go poke around in the buffer_heads.
		 * But block_write_full_page will do the right thing.
		 */
2982 2983 2984
		return block_write_full_page(page,
						ext4_normal_get_block_write,
						wbc);
2985 2986 2987 2988
	}
no_write:
	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
2989
	return 0;
2990 2991
}

2992
static int ext4_readpage(struct file *file, struct page *page)
2993
{
2994
	return mpage_readpage(page, ext4_get_block);
2995 2996 2997
}

static int
2998
ext4_readpages(struct file *file, struct address_space *mapping,
2999 3000
		struct list_head *pages, unsigned nr_pages)
{
3001
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3002 3003
}

3004
static void ext4_invalidatepage(struct page *page, unsigned long offset)
3005
{
3006
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3007 3008 3009 3010 3011 3012 3013

	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3014
	jbd2_journal_invalidatepage(journal, page, offset);
3015 3016
}

3017
static int ext4_releasepage(struct page *page, gfp_t wait)
3018
{
3019
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3020 3021 3022 3023

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
3024
	return jbd2_journal_try_to_free_buffers(journal, page, wait);
3025 3026 3027 3028 3029 3030 3031 3032
}

/*
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
3033 3034
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
3035
 */
3036
static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3037 3038 3039 3040 3041
			const struct iovec *iov, loff_t offset,
			unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3042
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
3043
	handle_t *handle;
3044 3045 3046 3047 3048 3049 3050 3051
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
3052 3053 3054 3055 3056 3057
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
3058
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
3059 3060 3061 3062
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
3063 3064
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
3065
			ext4_journal_stop(handle);
3066 3067 3068 3069 3070
		}
	}

	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
3071
				 ext4_get_block, NULL);
3072

J
Jan Kara 已提交
3073
	if (orphan) {
3074 3075
		int err;

J
Jan Kara 已提交
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
			goto out;
		}
		if (inode->i_nlink)
3086
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
3087
		if (ret > 0) {
3088 3089 3090 3091 3092 3093 3094 3095
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
3096
				 * ext4_mark_inode_dirty() to userspace.  So
3097 3098
				 * ignore it.
				 */
3099
				ext4_mark_inode_dirty(handle, inode);
3100 3101
			}
		}
3102
		err = ext4_journal_stop(handle);
3103 3104 3105 3106 3107 3108 3109 3110
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

/*
3111
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3123
static int ext4_journalled_set_page_dirty(struct page *page)
3124 3125 3126 3127 3128
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3129
static const struct address_space_operations ext4_ordered_aops = {
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_normal_writepage,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3142 3143
};

3144
static const struct address_space_operations ext4_writeback_aops = {
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_normal_writepage,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3157 3158
};

3159
static const struct address_space_operations ext4_journalled_aops = {
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_journalled_writepage,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
3171 3172
};

3173
static const struct address_space_operations ext4_da_aops = {
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_da_writepage,
	.writepages		= ext4_da_writepages,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3187 3188
};

3189
void ext4_set_aops(struct inode *inode)
3190
{
3191 3192 3193 3194
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
3195
		inode->i_mapping->a_ops = &ext4_ordered_aops;
3196 3197 3198
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
3199 3200
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
3201
	else
3202
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3203 3204 3205
}

/*
3206
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3207 3208 3209 3210
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
3211
int ext4_block_truncate_page(handle_t *handle,
3212 3213
		struct address_space *mapping, loff_t from)
{
3214
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3215
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
3216 3217
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
3218 3219
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
3220
	struct page *page;
3221 3222
	int err = 0;

3223 3224 3225 3226
	page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
	if (!page)
		return -EINVAL;

3227 3228 3229 3230 3231 3232 3233 3234 3235
	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	/*
	 * For "nobh" option,  we can only work if we don't need to
	 * read-in the page - otherwise we create buffers to do the IO.
	 */
	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3236
	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
3237
		zero_user(page, offset, length);
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261
		set_page_dirty(page);
		goto unlock;
	}

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
3262
		ext4_get_block(inode, iblock, bh, 0);
3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

3283
	if (ext4_should_journal_data(inode)) {
3284
		BUFFER_TRACE(bh, "get write access");
3285
		err = ext4_journal_get_write_access(handle, bh);
3286 3287 3288 3289
		if (err)
			goto unlock;
	}

3290
	zero_user(page, offset, length);
3291 3292 3293 3294

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
3295 3296
	if (ext4_should_journal_data(inode)) {
		err = ext4_journal_dirty_metadata(handle, bh);
3297
	} else {
3298
		if (ext4_should_order_data(inode))
3299
			err = ext4_jbd2_file_inode(handle, inode);
3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
3323
 *	ext4_find_shared - find the indirect blocks for partial truncation.
3324 3325
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
3326
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
3327 3328 3329
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
3330
 *	This is a helper function used by ext4_truncate().
3331 3332 3333 3334 3335 3336 3337
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
3338
 *	past the truncation point is possible until ext4_truncate()
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

3357
static Indirect *ext4_find_shared(struct inode *inode, int depth,
A
Aneesh Kumar K.V 已提交
3358
			ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3359 3360 3361 3362 3363 3364 3365 3366
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
	/* Make k index the deepest non-null offest + 1 */
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
3367
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
3378
	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
3390
		/* Nope, don't do this in ext4.  Must leave the tree intact */
3391 3392 3393 3394 3395 3396
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

3397
	while (partial > p) {
3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
3413 3414
static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
		struct buffer_head *bh, ext4_fsblk_t block_to_free,
3415 3416 3417 3418 3419
		unsigned long count, __le32 *first, __le32 *last)
{
	__le32 *p;
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
3420 3421
			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
			ext4_journal_dirty_metadata(handle, bh);
3422
		}
3423 3424
		ext4_mark_inode_dirty(handle, inode);
		ext4_journal_test_restart(handle, inode);
3425 3426
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
3427
			ext4_journal_get_write_access(handle, bh);
3428 3429 3430 3431 3432
		}
	}

	/*
	 * Any buffers which are on the journal will be in memory. We find
3433
	 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3434
	 * on them.  We've already detached each block from the file, so
3435
	 * bforget() in jbd2_journal_forget() should be safe.
3436
	 *
3437
	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3438 3439 3440 3441
	 */
	for (p = first; p < last; p++) {
		u32 nr = le32_to_cpu(*p);
		if (nr) {
A
Aneesh Kumar K.V 已提交
3442
			struct buffer_head *tbh;
3443 3444

			*p = 0;
A
Aneesh Kumar K.V 已提交
3445 3446
			tbh = sb_find_get_block(inode->i_sb, nr);
			ext4_forget(handle, 0, inode, tbh, nr);
3447 3448 3449
		}
	}

3450
	ext4_free_blocks(handle, inode, block_to_free, count, 0);
3451 3452 3453
}

/**
3454
 * ext4_free_data - free a list of data blocks
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
3472
static void ext4_free_data(handle_t *handle, struct inode *inode,
3473 3474 3475
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
3476
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3477 3478 3479 3480
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
3481
	ext4_fsblk_t nr;		    /* Current block # */
3482 3483 3484 3485 3486 3487
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
3488
		err = ext4_journal_get_write_access(handle, this_bh);
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
3506
				ext4_clear_blocks(handle, inode, this_bh,
3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
						  block_to_free,
						  count, block_to_free_p, p);
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
3517
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3518 3519 3520
				  count, block_to_free_p, p);

	if (this_bh) {
3521
		BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
		if (bh2jh(this_bh))
			ext4_journal_dirty_metadata(handle, this_bh);
		else
			ext4_error(inode->i_sb, __func__,
				   "circular indirect block detected, "
				   "inode=%lu, block=%llu",
				   inode->i_ino,
				   (unsigned long long) this_bh->b_blocknr);
3537 3538 3539 3540
	}
}

/**
3541
 *	ext4_free_branches - free an array of branches
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
3553
static void ext4_free_branches(handle_t *handle, struct inode *inode,
3554 3555 3556
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
3557
	ext4_fsblk_t nr;
3558 3559 3560 3561 3562 3563 3564
	__le32 *p;

	if (is_handle_aborted(handle))
		return;

	if (depth--) {
		struct buffer_head *bh;
3565
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
3580
				ext4_error(inode->i_sb, "ext4_free_branches",
3581
					   "Read failure, inode=%lu, block=%llu",
3582 3583 3584 3585 3586 3587
					   inode->i_ino, nr);
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
3588
			ext4_free_branches(handle, inode, bh,
3589 3590 3591
					(__le32 *) bh->b_data,
					(__le32 *) bh->b_data + addr_per_block,
					depth);
3592 3593 3594 3595 3596

			/*
			 * We've probably journalled the indirect block several
			 * times during the truncate.  But it's no longer
			 * needed and we now drop it from the transaction via
3597
			 * jbd2_journal_revoke().
3598 3599 3600
			 *
			 * That's easy if it's exclusively part of this
			 * transaction.  But if it's part of the committing
3601
			 * transaction then jbd2_journal_forget() will simply
3602
			 * brelse() it.  That means that if the underlying
3603
			 * block is reallocated in ext4_get_block(),
3604 3605 3606 3607 3608 3609 3610 3611
			 * unmap_underlying_metadata() will find this block
			 * and will try to get rid of it.  damn, damn.
			 *
			 * If this block has already been committed to the
			 * journal, a revoke record will be written.  And
			 * revoke records must be emitted *before* clearing
			 * this block's bit in the bitmaps.
			 */
3612
			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
			if (is_handle_aborted(handle))
				return;
			if (try_to_extend_transaction(handle, inode)) {
3633 3634
				ext4_mark_inode_dirty(handle, inode);
				ext4_journal_test_restart(handle, inode);
3635 3636
			}

3637
			ext4_free_blocks(handle, inode, nr, 1, 1);
3638 3639 3640 3641 3642 3643 3644

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
3645
				if (!ext4_journal_get_write_access(handle,
3646 3647 3648
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
3649 3650
					"call ext4_journal_dirty_metadata");
					ext4_journal_dirty_metadata(handle,
3651 3652 3653 3654 3655 3656 3657
								    parent_bh);
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
3658
		ext4_free_data(handle, inode, parent_bh, first, last);
3659 3660 3661
	}
}

3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
int ext4_can_truncate(struct inode *inode)
{
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return 0;
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3675
/*
3676
 * ext4_truncate()
3677
 *
3678 3679
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3696
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3697
 * that this inode's truncate did not complete and it will again call
3698 3699
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3700
 * that's fine - as long as they are linked from the inode, the post-crash
3701
 * ext4_truncate() run will find them and release them.
3702
 */
3703
void ext4_truncate(struct inode *inode)
3704 3705
{
	handle_t *handle;
3706
	struct ext4_inode_info *ei = EXT4_I(inode);
3707
	__le32 *i_data = ei->i_data;
3708
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3709
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
3710
	ext4_lblk_t offsets[4];
3711 3712 3713 3714
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
3715
	ext4_lblk_t last_block;
3716 3717
	unsigned blocksize = inode->i_sb->s_blocksize;

3718
	if (!ext4_can_truncate(inode))
3719 3720
		return;

A
Aneesh Kumar K.V 已提交
3721
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3722
		ext4_ext_truncate(inode);
A
Aneesh Kumar K.V 已提交
3723 3724
		return;
	}
A
Alex Tomas 已提交
3725

3726
	handle = start_transaction(inode);
3727
	if (IS_ERR(handle))
3728 3729 3730
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
3731
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3732

3733 3734 3735
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
3736

3737
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
3750
	if (ext4_orphan_add(handle, inode))
3751 3752
		goto out_stop;

3753 3754 3755 3756 3757
	/*
	 * From here we block out all ext4_get_block() callers who want to
	 * modify the block allocation tree.
	 */
	down_write(&ei->i_data_sem);
3758

3759
	ext4_discard_preallocations(inode);
3760

3761 3762 3763 3764 3765
	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
3766
	 * ext4 *really* writes onto the disk inode.
3767 3768 3769 3770
	 */
	ei->i_disksize = inode->i_size;

	if (n == 1) {		/* direct blocks */
3771 3772
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
3773 3774 3775
		goto do_indirects;
	}

3776
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3777 3778 3779 3780
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
3781
			ext4_free_branches(handle, inode, NULL,
3782 3783 3784 3785 3786 3787 3788 3789 3790
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
3791
			ext4_free_branches(handle, inode, partial->bh,
3792 3793 3794 3795 3796 3797
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
3798
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3799 3800 3801 3802 3803 3804 3805 3806 3807 3808
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse (partial->bh);
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
3809
		nr = i_data[EXT4_IND_BLOCK];
3810
		if (nr) {
3811 3812
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
3813
		}
3814 3815
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
3816
		if (nr) {
3817 3818
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
3819
		}
3820 3821
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
3822
		if (nr) {
3823 3824
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
3825
		}
3826
	case EXT4_TIND_BLOCK:
3827 3828 3829
		;
	}

3830
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
3831
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3832
	ext4_mark_inode_dirty(handle, inode);
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
		handle->h_sync = 1;
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
3845
	 * ext4_delete_inode(), and we allow that function to clean up the
3846 3847 3848
	 * orphan info for us.
	 */
	if (inode->i_nlink)
3849
		ext4_orphan_del(handle, inode);
3850

3851
	ext4_journal_stop(handle);
3852 3853 3854
}

/*
3855
 * ext4_get_inode_loc returns with an extra refcount against the inode's
3856 3857 3858 3859
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
3860 3861
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
3862
{
3863 3864 3865 3866 3867 3868 3869 3870 3871
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

	iloc->bh = 0;
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
3872

3873 3874 3875
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
3876 3877
		return -EIO;

3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
	/*
	 * Figure out the offset within the block group inode table
	 */
	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
3888
	if (!bh) {
3889 3890 3891
		ext4_error(sb, "ext4_get_inode_loc", "unable to read "
			   "inode block - inode=%lu, block=%llu",
			   inode->i_ino, block);
3892 3893 3894 3895
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
3896 3897 3898 3899 3900 3901 3902 3903 3904 3905

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
3919
			int i, start;
3920

3921
			start = inode_offset & ~(inodes_per_block - 1);
3922

3923 3924
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
3937
			for (i = start; i < start + inodes_per_block; i++) {
3938 3939
				if (i == inode_offset)
					continue;
3940
				if (ext4_test_bit(i, bitmap_bh->b_data))
3941 3942 3943
					break;
			}
			brelse(bitmap_bh);
3944
			if (i == start + inodes_per_block) {
3945 3946 3947 3948 3949 3950 3951 3952 3953
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
			/* Make sure s_inode_readahead_blks is a power of 2 */
			while (EXT4_SB(sb)->s_inode_readahead_blks &
			       (EXT4_SB(sb)->s_inode_readahead_blks-1))
				EXT4_SB(sb)->s_inode_readahead_blks = 
				   (EXT4_SB(sb)->s_inode_readahead_blks &
				    (EXT4_SB(sb)->s_inode_readahead_blks-1));
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
				num -= le16_to_cpu(gdp->bg_itable_unused);
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

3984 3985 3986 3987 3988 3989 3990 3991 3992 3993
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
3994 3995 3996
			ext4_error(sb, __func__,
				   "unable to read inode block - inode=%lu, "
				   "block=%llu", inode->i_ino, block);
3997 3998 3999 4000 4001 4002 4003 4004 4005
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

4006
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4007 4008
{
	/* We have all inode data except xattrs in memory here. */
4009 4010
	return __ext4_get_inode_loc(inode, iloc,
		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4011 4012
}

4013
void ext4_set_inode_flags(struct inode *inode)
4014
{
4015
	unsigned int flags = EXT4_I(inode)->i_flags;
4016 4017

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4018
	if (flags & EXT4_SYNC_FL)
4019
		inode->i_flags |= S_SYNC;
4020
	if (flags & EXT4_APPEND_FL)
4021
		inode->i_flags |= S_APPEND;
4022
	if (flags & EXT4_IMMUTABLE_FL)
4023
		inode->i_flags |= S_IMMUTABLE;
4024
	if (flags & EXT4_NOATIME_FL)
4025
		inode->i_flags |= S_NOATIME;
4026
	if (flags & EXT4_DIRSYNC_FL)
4027 4028 4029
		inode->i_flags |= S_DIRSYNC;
}

4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
	unsigned int flags = ei->vfs_inode.i_flags;

	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
	if (flags & S_SYNC)
		ei->i_flags |= EXT4_SYNC_FL;
	if (flags & S_APPEND)
		ei->i_flags |= EXT4_APPEND_FL;
	if (flags & S_IMMUTABLE)
		ei->i_flags |= EXT4_IMMUTABLE_FL;
	if (flags & S_NOATIME)
		ei->i_flags |= EXT4_NOATIME_FL;
	if (flags & S_DIRSYNC)
		ei->i_flags |= EXT4_DIRSYNC_FL;
}
4048 4049 4050 4051
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
					struct ext4_inode_info *ei)
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
4052 4053
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
4054 4055 4056 4057 4058 4059

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
A
Aneesh Kumar K.V 已提交
4060 4061 4062 4063 4064 4065
		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
4066 4067 4068 4069
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
4070

4071
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4072
{
4073 4074
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
4075
	struct ext4_inode_info *ei;
4076
	struct buffer_head *bh;
4077 4078
	struct inode *inode;
	long ret;
4079 4080
	int block;

4081 4082 4083 4084 4085 4086 4087
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
T
Theodore Ts'o 已提交
4088
#ifdef CONFIG_EXT4_FS_POSIX_ACL
4089 4090
	ei->i_acl = EXT4_ACL_NOT_CACHED;
	ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4091 4092
#endif

4093 4094
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
4095 4096
		goto bad_inode;
	bh = iloc.bh;
4097
	raw_inode = ext4_raw_inode(&iloc);
4098 4099 4100
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4101
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

	ei->i_state = 0;
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
4117
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4118
			/* this inode is deleted */
4119
			brelse(bh);
4120
			ret = -ESTALE;
4121 4122 4123 4124 4125 4126 4127 4128
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4129
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4130
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4131
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4132
	    cpu_to_le32(EXT4_OS_HURD)) {
B
Badari Pulavarty 已提交
4133 4134
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4135
	}
4136
	inode->i_size = ext4_isize(raw_inode);
4137 4138 4139 4140 4141 4142 4143
	ei->i_disksize = inode->i_size;
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
4144
	for (block = 0; block < EXT4_N_BLOCKS; block++)
4145 4146 4147
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

4148
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4149
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4150
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4151
		    EXT4_INODE_SIZE(inode->i_sb)) {
4152
			brelse(bh);
4153
			ret = -EIO;
4154
			goto bad_inode;
4155
		}
4156 4157
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
4158 4159
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
4160 4161
		} else {
			__le32 *magic = (void *)raw_inode +
4162
					EXT4_GOOD_OLD_INODE_SIZE +
4163
					ei->i_extra_isize;
4164 4165
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
				 ei->i_state |= EXT4_STATE_XATTR;
4166 4167 4168 4169
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
4170 4171 4172 4173 4174
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

4175 4176 4177 4178 4179 4180 4181
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

4182
	if (S_ISREG(inode->i_mode)) {
4183 4184 4185
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
4186
	} else if (S_ISDIR(inode->i_mode)) {
4187 4188
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
4189
	} else if (S_ISLNK(inode->i_mode)) {
4190
		if (ext4_inode_is_fast_symlink(inode)) {
4191
			inode->i_op = &ext4_fast_symlink_inode_operations;
4192 4193 4194
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
4195 4196
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
4197 4198
		}
	} else {
4199
		inode->i_op = &ext4_special_inode_operations;
4200 4201 4202 4203 4204 4205 4206
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
	}
4207
	brelse(iloc.bh);
4208
	ext4_set_inode_flags(inode);
4209 4210
	unlock_new_inode(inode);
	return inode;
4211 4212

bad_inode:
4213 4214
	iget_failed(inode);
	return ERR_PTR(ret);
4215 4216
}

4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4230
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4231
		raw_inode->i_blocks_high = 0;
A
Aneesh Kumar K.V 已提交
4232
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4233 4234 4235 4236 4237 4238
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
4239 4240 4241 4242
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4243
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4244
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
A
Aneesh Kumar K.V 已提交
4245
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4246
	} else {
A
Aneesh Kumar K.V 已提交
4247 4248 4249 4250 4251
		ei->i_flags |= EXT4_HUGE_FILE_FL;
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4252
	}
4253
	return 0;
4254 4255
}

4256 4257 4258 4259 4260 4261 4262
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
4263
static int ext4_do_update_inode(handle_t *handle,
4264
				struct inode *inode,
4265
				struct ext4_iloc *iloc)
4266
{
4267 4268
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
4269 4270 4271 4272 4273
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
4274 4275
	if (ei->i_state & EXT4_STATE_NEW)
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4276

4277
	ext4_get_inode_flags(ei);
4278
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4279
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4280 4281 4282 4283 4284 4285
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
4286
		if (!ei->i_dtime) {
4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4304 4305 4306 4307 4308 4309

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4310 4311
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4312
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4313 4314
	/* clear the migrate flag in the raw_inode */
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4315 4316
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4317 4318
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4319
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4336
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4337 4338 4339 4340
			sb->s_dirt = 1;
			handle->h_sync = 1;
			err = ext4_journal_dirty_metadata(handle,
					EXT4_SB(sb)->s_sbh);
4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4355
	} else for (block = 0; block < EXT4_N_BLOCKS; block++)
4356 4357
		raw_inode->i_block[block] = ei->i_data[block];

4358 4359 4360 4361 4362
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4363
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4364 4365
	}

4366

4367 4368
	BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
	rc = ext4_journal_dirty_metadata(handle, bh);
4369 4370
	if (!err)
		err = rc;
4371
	ei->i_state &= ~EXT4_STATE_NEW;
4372 4373

out_brelse:
4374
	brelse(bh);
4375
	ext4_std_error(inode->i_sb, err);
4376 4377 4378 4379
	return err;
}

/*
4380
 * ext4_write_inode()
4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4397
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4414
int ext4_write_inode(struct inode *inode, int wait)
4415 4416 4417 4418
{
	if (current->flags & PF_MEMALLOC)
		return 0;

4419
	if (ext4_journal_current_handle()) {
M
Mingming Cao 已提交
4420
		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4421 4422 4423 4424 4425 4426 4427
		dump_stack();
		return -EIO;
	}

	if (!wait)
		return 0;

4428
	return ext4_force_commit(inode->i_sb);
4429 4430 4431
}

/*
4432
 * ext4_setattr()
4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4446 4447 4448 4449 4450 4451 4452 4453
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4454
 */
4455
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
4471 4472
		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4473 4474 4475 4476 4477 4478
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
		error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
		if (error) {
4479
			ext4_journal_stop(handle);
4480 4481 4482 4483 4484 4485 4486 4487
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4488 4489
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4490 4491
	}

4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502
	if (attr->ia_valid & ATTR_SIZE) {
		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
				error = -EFBIG;
				goto err_out;
			}
		}
	}

4503 4504 4505 4506
	if (S_ISREG(inode->i_mode) &&
	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
		handle_t *handle;

4507
		handle = ext4_journal_start(inode, 3);
4508 4509 4510 4511 4512
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}

4513 4514 4515
		error = ext4_orphan_add(handle, inode);
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4516 4517
		if (!error)
			error = rc;
4518
		ext4_journal_stop(handle);
4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4535 4536 4537 4538
	}

	rc = inode_setattr(inode, attr);

4539
	/* If inode_setattr's call to ext4_truncate failed to get a
4540 4541 4542
	 * transaction handle at all, we need to clean up the in-core
	 * orphan list manually. */
	if (inode->i_nlink)
4543
		ext4_orphan_del(NULL, inode);
4544 4545

	if (!rc && (ia_valid & ATTR_MODE))
4546
		rc = ext4_acl_chmod(inode);
4547 4548

err_out:
4549
	ext4_std_error(inode->i_sb, error);
4550 4551 4552 4553 4554
	if (!error)
		error = rc;
	return error;
}

4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4581

4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609
static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
				      int chunk)
{
	int indirects;

	/* if nrblocks are contiguous */
	if (chunk) {
		/*
		 * With N contiguous data blocks, it need at most
		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
		 * 2 dindirect blocks
		 * 1 tindirect block
		 */
		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
		return indirects + 3;
	}
	/*
	 * if nrblocks are not contiguous, worse case, each block touch
	 * a indirect block, and each indirect block touch a double indirect
	 * block, plus a triple indirect block
	 */
	indirects = nrblocks * 2 + 1;
	return indirects;
}

static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4610 4611
		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4612
}
4613

4614
/*
4615 4616 4617
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4618
 *
4619 4620 4621
 * If datablocks are discontiguous, they are possible to spread over
 * different block groups too. If they are contiugous, with flexbg,
 * they could still across block group boundary.
4622
 *
4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669
 * Also account for superblock, inode, quota and xattr blocks
 */
int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
	int groups, gdpblocks;
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
	if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
		groups = EXT4_SB(inode->i_sb)->s_groups_count;
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
 * Calulate the total number of credits to reserve to fit
4670 4671
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4672
 *
4673
 * This could be called via ext4_write_begin()
4674
 *
4675
 * We need to consider the worse case, when
4676
 * one new block per extent.
4677
 */
A
Alex Tomas 已提交
4678
int ext4_writepage_trans_blocks(struct inode *inode)
4679
{
4680
	int bpp = ext4_journal_blocks_per_page(inode);
4681 4682
	int ret;

4683
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4684

4685
	/* Account for data blocks for journalled mode */
4686
	if (ext4_should_journal_data(inode))
4687
		ret += bpp;
4688 4689
	return ret;
}
4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4705
/*
4706
 * The caller must have previously called ext4_reserve_inode_write().
4707 4708
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4709 4710
int ext4_mark_iloc_dirty(handle_t *handle,
		struct inode *inode, struct ext4_iloc *iloc)
4711 4712 4713
{
	int err = 0;

4714 4715 4716
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

4717 4718 4719
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4720
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4721
	err = ext4_do_update_inode(handle, inode, iloc);
4722 4723 4724 4725 4726 4727 4728 4729 4730 4731
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4732 4733
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4734 4735 4736
{
	int err = 0;
	if (handle) {
4737
		err = ext4_get_inode_loc(inode, iloc);
4738 4739
		if (!err) {
			BUFFER_TRACE(iloc->bh, "get_write_access");
4740
			err = ext4_journal_get_write_access(handle, iloc->bh);
4741 4742 4743 4744 4745 4746
			if (err) {
				brelse(iloc->bh);
				iloc->bh = NULL;
			}
		}
	}
4747
	ext4_std_error(inode->i_sb, err);
4748 4749 4750
	return err;
}

4751 4752 4753 4754
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
4755 4756 4757 4758
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;
	struct ext4_xattr_entry *entry;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);
	entry = IFIRST(header);

	/* No extended attributes present */
	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
4807
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4808
{
4809
	struct ext4_iloc iloc;
4810 4811 4812
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
4813 4814

	might_sleep();
4815
	err = ext4_reserve_inode_write(handle, inode, &iloc);
4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831
	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
A
Aneesh Kumar K.V 已提交
4832 4833
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4834
					ext4_warning(inode->i_sb, __func__,
4835 4836 4837
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
4838 4839
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
4840 4841 4842 4843
				}
			}
		}
	}
4844
	if (!err)
4845
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4846 4847 4848 4849
	return err;
}

/*
4850
 * ext4_dirty_inode() is called from __mark_inode_dirty()
4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
4863
void ext4_dirty_inode(struct inode *inode)
4864
{
4865
	handle_t *current_handle = ext4_journal_current_handle();
4866 4867
	handle_t *handle;

4868
	handle = ext4_journal_start(inode, 2);
4869 4870 4871 4872 4873 4874
	if (IS_ERR(handle))
		goto out;
	if (current_handle &&
		current_handle->h_transaction != handle->h_transaction) {
		/* This task has a transaction open against a different fs */
		printk(KERN_EMERG "%s: transactions do not match!\n",
4875
		       __func__);
4876 4877 4878
	} else {
		jbd_debug(5, "marking dirty.  outer handle=%p\n",
				current_handle);
4879
		ext4_mark_inode_dirty(handle, inode);
4880
	}
4881
	ext4_journal_stop(handle);
4882 4883 4884 4885 4886 4887 4888 4889
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
4890
 * ext4_reserve_inode_write, this leaves behind no bh reference and
4891 4892 4893
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
4894
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4895
{
4896
	struct ext4_iloc iloc;
4897 4898 4899

	int err = 0;
	if (handle) {
4900
		err = ext4_get_inode_loc(inode, &iloc);
4901 4902
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
4903
			err = jbd2_journal_get_write_access(handle, iloc.bh);
4904
			if (!err)
4905
				err = ext4_journal_dirty_metadata(handle,
4906 4907 4908 4909
								  iloc.bh);
			brelse(iloc.bh);
		}
	}
4910
	ext4_std_error(inode->i_sb, err);
4911 4912 4913 4914
	return err;
}
#endif

4915
int ext4_change_inode_journal_flag(struct inode *inode, int val)
4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

4931
	journal = EXT4_JOURNAL(inode);
4932
	if (is_journal_aborted(journal))
4933 4934
		return -EROFS;

4935 4936
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
4937 4938 4939 4940 4941 4942 4943 4944 4945 4946

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
4947
		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4948
	else
4949 4950
		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
	ext4_set_aops(inode);
4951

4952
	jbd2_journal_unlock_updates(journal);
4953 4954 4955

	/* Finally we can mark the inode as dirty. */

4956
	handle = ext4_journal_start(inode, 1);
4957 4958 4959
	if (IS_ERR(handle))
		return PTR_ERR(handle);

4960
	err = ext4_mark_inode_dirty(handle, inode);
4961
	handle->h_sync = 1;
4962 4963
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
4964 4965 4966

	return err;
}
4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
{
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
4978
	void *fsdata;
4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
	if (PageMappedToDisk(page))
		goto out_unlock;

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

	if (page_has_buffers(page)) {
		/* return if we have all the buffers mapped */
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
				       ext4_bh_unmapped))
			goto out_unlock;
	}
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5017
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5018 5019 5020
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5021
			len, len, page, fsdata);
5022 5023 5024 5025 5026 5027 5028
	if (ret < 0)
		goto out_unlock;
	ret = 0;
out_unlock:
	up_read(&inode->i_alloc_sem);
	return ret;
}