inode.c 138.7 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
18
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 20 21 22
 */

#include <linux/fs.h>
#include <linux/time.h>
23
#include <linux/jbd2.h>
24 25 26 27 28 29
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
30
#include <linux/pagevec.h>
31
#include <linux/mpage.h>
32
#include <linux/namei.h>
33 34
#include <linux/uio.h>
#include <linux/bio.h>
35
#include <linux/workqueue.h>
36
#include <linux/kernel.h>
37
#include <linux/printk.h>
38
#include <linux/slab.h>
39
#include <linux/ratelimit.h>
40

41
#include "ext4_jbd2.h"
42 43
#include "xattr.h"
#include "acl.h"
44
#include "truncate.h"
45

46 47
#include <trace/events/ext4.h>

48 49
#define MPAGE_DA_EXTENT_TAIL 0x01

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
			      struct ext4_inode_info *ei)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	__u16 csum_lo;
	__u16 csum_hi = 0;
	__u32 csum;

	csum_lo = raw->i_checksum_lo;
	raw->i_checksum_lo = 0;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
		csum_hi = raw->i_checksum_hi;
		raw->i_checksum_hi = 0;
	}

	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
			   EXT4_INODE_SIZE(inode->i_sb));

	raw->i_checksum_lo = csum_lo;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = csum_hi;

	return csum;
}

static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
				  struct ext4_inode_info *ei)
{
	__u32 provided, calculated;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return 1;

	provided = le16_to_cpu(raw->i_checksum_lo);
	calculated = ext4_inode_csum(inode, raw, ei);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
	else
		calculated &= 0xFFFF;

	return provided == calculated;
}

static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
				struct ext4_inode_info *ei)
{
	__u32 csum;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return;

	csum = ext4_inode_csum(inode, raw, ei);
	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
}

117 118 119
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
120
	trace_ext4_begin_ordered_truncate(inode, new_size);
121 122 123 124 125 126 127 128 129 130 131
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
132 133
}

134
static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 136
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
E
Eric Sandeen 已提交
137 138 139
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags);
140

141 142 143
/*
 * Test whether an inode is a fast symlink.
 */
144
static int ext4_inode_is_fast_symlink(struct inode *inode)
145
{
146
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
147 148 149 150 151 152 153 154 155 156
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
157
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158
				 int nblocks)
159
{
160 161 162
	int ret;

	/*
163
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164 165 166 167
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
168
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
169
	jbd_debug(2, "restarting handle %p\n", handle);
170
	up_write(&EXT4_I(inode)->i_data_sem);
171
	ret = ext4_journal_restart(handle, nblocks);
172
	down_write(&EXT4_I(inode)->i_data_sem);
173
	ext4_discard_preallocations(inode);
174 175

	return ret;
176 177 178 179 180
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
181
void ext4_evict_inode(struct inode *inode)
182 183
{
	handle_t *handle;
184
	int err;
185

186
	trace_ext4_evict_inode(inode);
187 188 189

	ext4_ioend_wait(inode);

A
Al Viro 已提交
190
	if (inode->i_nlink) {
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
		/*
		 * When journalling data dirty buffers are tracked only in the
		 * journal. So although mm thinks everything is clean and
		 * ready for reaping the inode might still have some pages to
		 * write in the running transaction or waiting to be
		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
		 * (via truncate_inode_pages()) to discard these buffers can
		 * cause data loss. Also even if we did not discard these
		 * buffers, we would have no way to find them after the inode
		 * is reaped and thus user could see stale data if he tries to
		 * read them before the transaction is checkpointed. So be
		 * careful and force everything to disk here... We use
		 * ei->i_datasync_tid to store the newest transaction
		 * containing inode's data.
		 *
		 * Note that directories do not have this problem because they
		 * don't use page cache.
		 */
		if (ext4_should_journal_data(inode) &&
		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;

			jbd2_log_start_commit(journal, commit_tid);
			jbd2_log_wait_commit(journal, commit_tid);
			filemap_write_and_wait(&inode->i_data);
		}
A
Al Viro 已提交
218 219 220 221
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

222
	if (!is_bad_inode(inode))
223
		dquot_initialize(inode);
224

225 226
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
227 228 229 230 231
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

232 233 234 235 236
	/*
	 * Protect us against freezing - iput() caller didn't have to have any
	 * protection against it
	 */
	sb_start_intwrite(inode->i_sb);
237 238
	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
				    ext4_blocks_for_truncate(inode)+3);
239
	if (IS_ERR(handle)) {
240
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
241 242 243 244 245
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
246
		ext4_orphan_del(NULL, inode);
247
		sb_end_intwrite(inode->i_sb);
248 249 250 251
		goto no_delete;
	}

	if (IS_SYNC(inode))
252
		ext4_handle_sync(handle);
253
	inode->i_size = 0;
254 255
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
256
		ext4_warning(inode->i_sb,
257 258 259
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
260
	if (inode->i_blocks)
261
		ext4_truncate(inode);
262 263 264 265 266 267 268

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
269
	if (!ext4_handle_has_enough_credits(handle, 3)) {
270 271 272 273
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
274
			ext4_warning(inode->i_sb,
275 276 277
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
278
			ext4_orphan_del(NULL, inode);
279
			sb_end_intwrite(inode->i_sb);
280 281 282 283
			goto no_delete;
		}
	}

284
	/*
285
	 * Kill off the orphan record which ext4_truncate created.
286
	 * AKPM: I think this can be inside the above `if'.
287
	 * Note that ext4_orphan_del() has to be able to cope with the
288
	 * deletion of a non-existent orphan - this is because we don't
289
	 * know if ext4_truncate() actually created an orphan record.
290 291
	 * (Well, we could do this if we need to, but heck - it works)
	 */
292 293
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
294 295 296 297 298 299 300 301

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
302
	if (ext4_mark_inode_dirty(handle, inode))
303
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
304
		ext4_clear_inode(inode);
305
	else
306 307
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
308
	sb_end_intwrite(inode->i_sb);
309 310
	return;
no_delete:
A
Al Viro 已提交
311
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
312 313
}

314 315
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
316
{
317
	return &EXT4_I(inode)->i_reserved_quota;
318
}
319
#endif
320

321 322
/*
 * Calculate the number of metadata blocks need to reserve
323
 * to allocate a block located at @lblock
324
 */
325
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
326
{
327
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
328
		return ext4_ext_calc_metadata_amount(inode, lblock);
329

330
	return ext4_ind_calc_metadata_amount(inode, lblock);
331 332
}

333 334 335 336
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
337 338
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
339 340
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
341 342 343
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
344
	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
345 346
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
347
			 "with only %d reserved data blocks",
348 349 350 351 352
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
353

354 355 356 357 358 359 360 361 362
	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
			 "with only %d reserved metadata blocks\n", __func__,
			 inode->i_ino, ei->i_allocated_meta_blocks,
			 ei->i_reserved_meta_blocks);
		WARN_ON(1);
		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
	}

363 364 365
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
366
	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
367
			   used + ei->i_allocated_meta_blocks);
368
	ei->i_allocated_meta_blocks = 0;
369

370 371 372 373 374 375
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
376
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
377
				   ei->i_reserved_meta_blocks);
378
		ei->i_reserved_meta_blocks = 0;
379
		ei->i_da_metadata_calc_len = 0;
380
	}
381
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
382

383 384
	/* Update quota subsystem for data blocks */
	if (quota_claim)
385
		dquot_claim_block(inode, EXT4_C2B(sbi, used));
386
	else {
387 388 389
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
390
		 * not re-claim the quota for fallocated blocks.
391
		 */
392
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
393
	}
394 395 396 397 398 399

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
400 401
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
402
		ext4_discard_preallocations(inode);
403 404
}

405
static int __check_block_validity(struct inode *inode, const char *func,
406 407
				unsigned int line,
				struct ext4_map_blocks *map)
408
{
409 410
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
411 412 413 414
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
415 416 417 418 419
		return -EIO;
	}
	return 0;
}

420
#define check_block_validity(inode, map)	\
421
	__check_block_validity((inode), __func__, __LINE__, (map))
422

423
/*
424 425
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
459 460 461 462 463 464 465 466 467
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
468 469 470 471 472
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
473 474
			if (num >= max_pages) {
				done = 1;
475
				break;
476
			}
477 478 479 480 481 482
		}
		pagevec_release(&pvec);
	}
	return num;
}

483
/*
484
 * The ext4_map_blocks() function tries to look up the requested blocks,
485
 * and returns if the blocks are already mapped.
486 487 488 489 490
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
491 492
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
493 494 495 496 497 498 499 500
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
501
 * that case, buffer head is unmapped
502 503 504
 *
 * It returns the error in case of allocation failure.
 */
505 506
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
507 508
{
	int retval;
509

510 511 512 513
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
514
	/*
515 516
	 * Try to see if we can get the block without requesting a new
	 * file system block.
517
	 */
518 519
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		down_read((&EXT4_I(inode)->i_data_sem));
520
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
521 522
		retval = ext4_ext_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
523
	} else {
524 525
		retval = ext4_ind_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
526
	}
527 528
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		up_read((&EXT4_I(inode)->i_data_sem));
529

530
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
531 532 533 534 535 536 537 538 539 540
		int ret;
		if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
			/* delayed alloc may be allocated by fallocate and
			 * coverted to initialized by directIO.
			 * we need to handle delayed extent here.
			 */
			down_write((&EXT4_I(inode)->i_data_sem));
			goto delayed_mapped;
		}
		ret = check_block_validity(inode, map);
541 542 543 544
		if (ret != 0)
			return ret;
	}

545
	/* If it is only a block(s) look up */
546
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
547 548 549 550 551 552
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
553
	 * ext4_ext_get_block() returns the create = 0
554 555
	 * with buffer head unmapped.
	 */
556
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
557 558
		return retval;

559 560 561 562 563 564 565 566 567 568
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
569
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
570

571
	/*
572 573 574 575
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
576 577
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
578 579 580 581 582 583 584

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
585
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
586
		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
587 588 589 590
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
591
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
592
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
593
	} else {
594
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
595

596
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
597 598 599 600 601
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
602
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
603
		}
604

605 606 607 608 609 610 611
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
612
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
613 614
			ext4_da_update_reserve_space(inode, retval, 1);
	}
615
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
616
		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
617

618 619 620 621 622 623 624 625 626
		if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
			int ret;
delayed_mapped:
			/* delayed allocation blocks has been allocated */
			ret = ext4_es_remove_extent(inode, map->m_lblk,
						    map->m_len);
			if (ret < 0)
				retval = ret;
		}
627 628
	}

629
	up_write((&EXT4_I(inode)->i_data_sem));
630
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
631
		int ret = check_block_validity(inode, map);
632 633 634
		if (ret != 0)
			return ret;
	}
635 636 637
	return retval;
}

638 639 640
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

641 642
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
643
{
644
	handle_t *handle = ext4_journal_current_handle();
645
	struct ext4_map_blocks map;
J
Jan Kara 已提交
646
	int ret = 0, started = 0;
647
	int dio_credits;
648

T
Tao Ma 已提交
649 650 651
	if (ext4_has_inline_data(inode))
		return -ERANGE;

652 653 654
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

655
	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
J
Jan Kara 已提交
656
		/* Direct IO write... */
657 658 659
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
660 661
		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
					    dio_credits);
J
Jan Kara 已提交
662
		if (IS_ERR(handle)) {
663
			ret = PTR_ERR(handle);
664
			return ret;
665
		}
J
Jan Kara 已提交
666
		started = 1;
667 668
	}

669
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
670
	if (ret > 0) {
671 672 673
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
674
		ret = 0;
675
	}
J
Jan Kara 已提交
676 677
	if (started)
		ext4_journal_stop(handle);
678 679 680
	return ret;
}

681 682 683 684 685 686 687
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

688 689 690
/*
 * `handle' can be NULL if create is zero
 */
691
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
692
				ext4_lblk_t block, int create, int *errp)
693
{
694 695
	struct ext4_map_blocks map;
	struct buffer_head *bh;
696 697 698 699
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

700 701 702 703
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
704

705 706 707
	/* ensure we send some value back into *errp */
	*errp = 0;

708 709 710 711 712 713
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
714
	if (unlikely(!bh)) {
715
		*errp = -ENOMEM;
716
		return NULL;
717
	}
718 719 720
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
721

722 723 724 725 726 727 728 729 730 731 732 733 734
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
735
		}
736 737 738 739 740 741 742
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
743
	}
744 745 746 747 748 749
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
750 751
}

752
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
753
			       ext4_lblk_t block, int create, int *err)
754
{
755
	struct buffer_head *bh;
756

757
	bh = ext4_getblk(handle, inode, block, create, err);
758 759 760 761
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
762
	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
763 764 765 766 767 768 769 770
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

771 772 773 774 775 776 777
int ext4_walk_page_buffers(handle_t *handle,
			   struct buffer_head *head,
			   unsigned from,
			   unsigned to,
			   int *partial,
			   int (*fn)(handle_t *handle,
				     struct buffer_head *bh))
778 779 780 781 782 783 784
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

785 786
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
787
	     block_start = block_end, bh = next) {
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
805
 * close off a transaction and start a new one between the ext4_get_block()
806
 * and the commit_write().  So doing the jbd2_journal_start at the start of
807 808
 * prepare_write() is the right place.
 *
809 810 811 812
 * Also, this function can nest inside ext4_writepage().  In that case, we
 * *know* that ext4_writepage() has generated enough buffer credits to do the
 * whole page.  So we won't block on the journal in that case, which is good,
 * because the caller may be PF_MEMALLOC.
813
 *
814
 * By accident, ext4 can be reentered when a transaction is open via
815 816 817 818 819 820
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
821
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
822 823 824 825
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
826 827
int do_journal_get_write_access(handle_t *handle,
				struct buffer_head *bh)
828
{
829 830 831
	int dirty = buffer_dirty(bh);
	int ret;

832 833
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
834
	/*
C
Christoph Hellwig 已提交
835
	 * __block_write_begin() could have dirtied some buffers. Clean
836 837
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
838
	 * by __block_write_begin() isn't a real problem here as we clear
839 840 841 842 843 844 845 846 847
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
848 849
}

850 851
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
852
static int ext4_write_begin(struct file *file, struct address_space *mapping,
853 854
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
855
{
856
	struct inode *inode = mapping->host;
857
	int ret, needed_blocks;
858 859
	handle_t *handle;
	int retries = 0;
860
	struct page *page;
861
	pgoff_t index;
862
	unsigned from, to;
N
Nick Piggin 已提交
863

864
	trace_ext4_write_begin(inode, pos, len, flags);
865 866 867 868 869
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
870
	index = pos >> PAGE_CACHE_SHIFT;
871 872
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
873

874 875 876 877 878 879 880 881 882 883 884
	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
						    flags, pagep);
		if (ret < 0)
			goto out;
		if (ret == 1) {
			ret = 0;
			goto out;
		}
	}

885
retry:
886
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
887 888 889
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
890
	}
891

892 893 894 895
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

896
	page = grab_cache_page_write_begin(mapping, index, flags);
897 898 899 900 901
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
902

903 904
	*pagep = page;

905
	if (ext4_should_dioread_nolock(inode))
906
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
907
	else
908
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
909 910

	if (!ret && ext4_should_journal_data(inode)) {
911 912 913
		ret = ext4_walk_page_buffers(handle, page_buffers(page),
					     from, to, NULL,
					     do_journal_get_write_access);
914
	}
N
Nick Piggin 已提交
915 916

	if (ret) {
917 918
		unlock_page(page);
		page_cache_release(page);
919
		/*
920
		 * __block_write_begin may have instantiated a few blocks
921 922
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
923 924 925
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
926
		 */
927
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
928 929 930 931
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
932
			ext4_truncate_failed_write(inode);
933
			/*
934
			 * If truncate failed early the inode might
935 936 937 938 939 940 941
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
942 943
	}

944
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
945
		goto retry;
946
out:
947 948 949
	return ret;
}

N
Nick Piggin 已提交
950 951
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
952 953 954 955
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
956
	return ext4_handle_dirty_metadata(handle, NULL, bh);
957 958
}

959
static int ext4_generic_write_end(struct file *file,
960 961 962
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
963 964 965 966 967
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

968 969 970 971 972 973
	if (ext4_has_inline_data(inode))
		copied = ext4_write_inline_data_end(inode, pos, len,
						    copied, page);
	else
		copied = block_write_end(file, mapping, pos,
					 len, copied, page, fsdata);
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1010 1011 1012 1013
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1014
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1015 1016
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1017
static int ext4_ordered_write_end(struct file *file,
1018 1019 1020
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1021
{
1022
	handle_t *handle = ext4_journal_current_handle();
1023
	struct inode *inode = mapping->host;
1024 1025
	int ret = 0, ret2;

1026
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1027
	ret = ext4_jbd2_file_inode(handle, inode);
1028 1029

	if (ret == 0) {
1030
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1031
							page, fsdata);
1032
		copied = ret2;
1033
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1034 1035 1036 1037 1038
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1039 1040
		if (ret2 < 0)
			ret = ret2;
1041 1042 1043
	} else {
		unlock_page(page);
		page_cache_release(page);
1044
	}
1045

1046
	ret2 = ext4_journal_stop(handle);
1047 1048
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1049

1050
	if (pos + len > inode->i_size) {
1051
		ext4_truncate_failed_write(inode);
1052
		/*
1053
		 * If truncate failed early the inode might still be
1054 1055 1056 1057 1058 1059 1060 1061
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1062
	return ret ? ret : copied;
1063 1064
}

N
Nick Piggin 已提交
1065
static int ext4_writeback_write_end(struct file *file,
1066 1067 1068
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1069
{
1070
	handle_t *handle = ext4_journal_current_handle();
1071
	struct inode *inode = mapping->host;
1072 1073
	int ret = 0, ret2;

1074
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1075
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1076
							page, fsdata);
1077
	copied = ret2;
1078
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1079 1080 1081 1082 1083 1084
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1085 1086
	if (ret2 < 0)
		ret = ret2;
1087

1088
	ret2 = ext4_journal_stop(handle);
1089 1090
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1091

1092
	if (pos + len > inode->i_size) {
1093
		ext4_truncate_failed_write(inode);
1094
		/*
1095
		 * If truncate failed early the inode might still be
1096 1097 1098 1099 1100 1101 1102
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1103
	return ret ? ret : copied;
1104 1105
}

N
Nick Piggin 已提交
1106
static int ext4_journalled_write_end(struct file *file,
1107 1108 1109
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1110
{
1111
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1112
	struct inode *inode = mapping->host;
1113 1114
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1115
	unsigned from, to;
1116
	loff_t new_i_size;
1117

1118
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1119 1120 1121
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

1122 1123
	BUG_ON(!ext4_handle_valid(handle));

1124 1125 1126 1127 1128 1129 1130 1131 1132
	if (ext4_has_inline_data(inode))
		copied = ext4_write_inline_data_end(inode, pos, len,
						    copied, page);
	else {
		if (copied < len) {
			if (!PageUptodate(page))
				copied = 0;
			page_zero_new_buffers(page, from+copied, to);
		}
1133

1134 1135 1136 1137 1138
		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
					     to, &partial, write_end_fn);
		if (!partial)
			SetPageUptodate(page);
	}
1139 1140
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1141
		i_size_write(inode, pos+copied);
1142
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1143
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1144 1145
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1146
		ret2 = ext4_mark_inode_dirty(handle, inode);
1147 1148 1149
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1150

1151
	unlock_page(page);
1152
	page_cache_release(page);
1153
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1154 1155 1156 1157 1158 1159
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1160
	ret2 = ext4_journal_stop(handle);
1161 1162
	if (!ret)
		ret = ret2;
1163
	if (pos + len > inode->i_size) {
1164
		ext4_truncate_failed_write(inode);
1165
		/*
1166
		 * If truncate failed early the inode might still be
1167 1168 1169 1170 1171 1172
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1173 1174

	return ret ? ret : copied;
1175
}
1176

1177
/*
1178
 * Reserve a single cluster located at lblock
1179
 */
1180
static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1181
{
A
Aneesh Kumar K.V 已提交
1182
	int retries = 0;
1183
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1184
	struct ext4_inode_info *ei = EXT4_I(inode);
1185
	unsigned int md_needed;
1186
	int ret;
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
	ext4_lblk_t save_last_lblock;
	int save_len;

	/*
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
	 */
	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
	if (ret)
		return ret;
1198 1199 1200 1201 1202 1203

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1204
repeat:
1205
	spin_lock(&ei->i_block_reservation_lock);
1206 1207 1208 1209 1210 1211
	/*
	 * ext4_calc_metadata_amount() has side effects, which we have
	 * to be prepared undo if we fail to claim space.
	 */
	save_len = ei->i_da_metadata_calc_len;
	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1212 1213
	md_needed = EXT4_NUM_B2C(sbi,
				 ext4_calc_metadata_amount(inode, lblock));
1214
	trace_ext4_da_reserve_space(inode, md_needed);
1215

1216 1217 1218 1219
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1220
	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1221 1222 1223
		ei->i_da_metadata_calc_len = save_len;
		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
		spin_unlock(&ei->i_block_reservation_lock);
A
Aneesh Kumar K.V 已提交
1224 1225 1226 1227
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1228
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1229 1230
		return -ENOSPC;
	}
1231
	ei->i_reserved_data_blocks++;
1232 1233
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1234

1235 1236 1237
	return 0;       /* success */
}

1238
static void ext4_da_release_space(struct inode *inode, int to_free)
1239 1240
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1241
	struct ext4_inode_info *ei = EXT4_I(inode);
1242

1243 1244 1245
	if (!to_free)
		return;		/* Nothing to release, exit */

1246
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1247

L
Li Zefan 已提交
1248
	trace_ext4_da_release_space(inode, to_free);
1249
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1250
		/*
1251 1252 1253 1254
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1255
		 */
1256 1257
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
1258
			 "data blocks", inode->i_ino, to_free,
1259 1260 1261
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1262
	}
1263
	ei->i_reserved_data_blocks -= to_free;
1264

1265 1266 1267 1268 1269
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
1270 1271
		 * Note that in case of bigalloc, i_reserved_meta_blocks,
		 * i_reserved_data_blocks, etc. refer to number of clusters.
1272
		 */
1273
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1274
				   ei->i_reserved_meta_blocks);
1275
		ei->i_reserved_meta_blocks = 0;
1276
		ei->i_da_metadata_calc_len = 0;
1277
	}
1278

1279
	/* update fs dirty data blocks counter */
1280
	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1281 1282

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1283

1284
	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1285 1286 1287
}

static void ext4_da_page_release_reservation(struct page *page,
1288
					     unsigned long offset)
1289 1290 1291 1292
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;
1293 1294 1295
	struct inode *inode = page->mapping->host;
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int num_clusters;
1296
	ext4_fsblk_t lblk;
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1309

1310 1311 1312 1313 1314
	if (to_release) {
		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
		ext4_es_remove_extent(inode, lblk, to_release);
	}

1315 1316 1317 1318 1319 1320 1321
	/* If we have released all the blocks belonging to a cluster, then we
	 * need to release the reserved space for that cluster. */
	num_clusters = EXT4_NUM_B2C(sbi, to_release);
	while (num_clusters > 0) {
		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
			((num_clusters - 1) << sbi->s_cluster_bits);
		if (sbi->s_cluster_ratio == 1 ||
1322
		    !ext4_find_delalloc_cluster(inode, lblk))
1323 1324 1325 1326
			ext4_da_release_space(inode, 1);

		num_clusters--;
	}
1327
}
1328

1329 1330 1331 1332 1333 1334
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1335
 * them with writepage() call back
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
1346 1347
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
1348
{
1349 1350 1351 1352 1353
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1354
	loff_t size = i_size_read(inode);
1355 1356
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
1357
	sector_t pblock = 0, cur_logical = 0;
1358
	struct ext4_io_submit io_submit;
1359 1360

	BUG_ON(mpd->next_page <= mpd->first_page);
1361
	memset(&io_submit, 0, sizeof(io_submit));
1362 1363 1364
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1365
	 * If we look at mpd->b_blocknr we would only be looking
1366 1367
	 * at the currently mapped buffer_heads.
	 */
1368 1369 1370
	index = mpd->first_page;
	end = mpd->next_page - 1;

1371
	pagevec_init(&pvec, 0);
1372
	while (index <= end) {
1373
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1374 1375 1376
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
1377
			int skip_page = 0;
1378 1379
			struct page *page = pvec.pages[i];

1380 1381 1382
			index = page->index;
			if (index > end)
				break;
1383 1384 1385 1386 1387

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
1388 1389 1390 1391 1392 1393
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
1394 1395 1396 1397 1398
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1399 1400
			bh = page_bufs = page_buffers(page);
			block_start = 0;
1401
			do {
1402 1403 1404
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
1405 1406 1407 1408
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
1409 1410 1411 1412 1413 1414 1415
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
1416

1417 1418 1419 1420 1421
				/*
				 * skip page if block allocation undone and
				 * block is dirty
				 */
				if (ext4_bh_delay_or_unwritten(NULL, bh))
1422
					skip_page = 1;
1423 1424
				bh = bh->b_this_page;
				block_start += bh->b_size;
1425 1426
				cur_logical++;
				pblock++;
1427 1428
			} while (bh != page_bufs);

1429 1430 1431 1432
			if (skip_page) {
				unlock_page(page);
				continue;
			}
1433

1434
			clear_page_dirty_for_io(page);
1435 1436
			err = ext4_bio_write_page(&io_submit, page, len,
						  mpd->wbc);
1437
			if (!err)
1438
				mpd->pages_written++;
1439 1440 1441 1442 1443 1444 1445 1446 1447
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
1448
	ext4_io_submit(&io_submit);
1449 1450 1451
	return ret;
}

1452
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1453 1454 1455 1456 1457 1458
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1459
	ext4_lblk_t start, last;
1460

1461 1462
	index = mpd->first_page;
	end   = mpd->next_page - 1;
1463 1464 1465 1466 1467

	start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	ext4_es_remove_extent(inode, start, last - start + 1);

1468
	pagevec_init(&pvec, 0);
1469 1470 1471 1472 1473 1474
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
1475
			if (page->index > end)
1476 1477 1478 1479 1480 1481 1482
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
1483 1484
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
1485 1486 1487 1488
	}
	return;
}

1489 1490 1491
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1492 1493 1494
	struct super_block *sb = inode->i_sb;

	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1495 1496
	       EXT4_C2B(EXT4_SB(inode->i_sb),
			ext4_count_free_clusters(inode->i_sb)));
1497 1498
	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1499 1500
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1501
	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1502 1503
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1504 1505 1506 1507
	ext4_msg(sb, KERN_CRIT, "Block reservation details");
	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
		 EXT4_I(inode)->i_reserved_data_blocks);
	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1508
	       EXT4_I(inode)->i_reserved_meta_blocks);
1509 1510 1511
	return;
}

1512
/*
1513 1514
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
1515
 *
1516
 * @mpd - bh describing space
1517 1518 1519 1520
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1521
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1522
{
1523
	int err, blks, get_blocks_flags;
1524
	struct ext4_map_blocks map, *mapp = NULL;
1525 1526 1527 1528
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
1529 1530

	/*
1531 1532
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
1533
	 */
1534 1535 1536 1537 1538
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
1539 1540 1541 1542

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

1543
	/*
1544
	 * Call ext4_map_blocks() to allocate any delayed allocation
1545 1546 1547 1548 1549 1550 1551 1552
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
1553
	 * want to change *many* call functions, so ext4_map_blocks()
1554
	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1555 1556 1557 1558 1559
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
1560
	 */
1561 1562
	map.m_lblk = next;
	map.m_len = max_blocks;
1563
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1564 1565
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1566
	if (mpd->b_state & (1 << BH_Delay))
1567 1568
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

1569
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1570
	if (blks < 0) {
1571 1572
		struct super_block *sb = mpd->inode->i_sb;

1573
		err = blks;
1574
		/*
1575
		 * If get block returns EAGAIN or ENOSPC and there
1576 1577
		 * appears to be free blocks we will just let
		 * mpage_da_submit_io() unlock all of the pages.
1578 1579
		 */
		if (err == -EAGAIN)
1580
			goto submit_io;
1581

1582
		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1583
			mpd->retval = err;
1584
			goto submit_io;
1585 1586
		}

1587
		/*
1588 1589 1590 1591 1592
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
1593
		 */
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
				"This should not happen!! Data will be lost\n");
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
1605
		}
1606
		/* invalidate all the pages */
1607
		ext4_da_block_invalidatepages(mpd);
1608 1609 1610

		/* Mark this page range as having been completed */
		mpd->io_done = 1;
1611
		return;
1612
	}
1613 1614
	BUG_ON(blks == 0);

1615
	mapp = &map;
1616 1617 1618
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
1619

1620 1621
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
1622 1623 1624
	}

	/*
1625
	 * Update on-disk size along with block allocation.
1626 1627 1628 1629 1630 1631
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
1632 1633 1634 1635 1636
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
1637 1638
	}

1639
submit_io:
1640
	mpage_da_submit_io(mpd, mapp);
1641
	mpd->io_done = 1;
1642 1643
}

1644 1645
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
1646 1647 1648 1649 1650 1651

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
1652
 * @b_state - b_state of the buffer head added
1653 1654 1655
 *
 * the function is used to collect contig. blocks in same state
 */
1656
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1657
				   unsigned long b_state)
1658 1659
{
	sector_t next;
1660 1661
	int blkbits = mpd->inode->i_blkbits;
	int nrblocks = mpd->b_size >> blkbits;
1662

1663 1664 1665 1666
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
1667
	 * ext4_map_blocks() multiple times in a loop
1668
	 */
1669
	if (nrblocks >= (8*1024*1024 >> blkbits))
1670 1671
		goto flush_it;

1672 1673
	/* check if the reserved journal credits might overflow */
	if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		}
	}
1684 1685 1686
	/*
	 * First block in the extent
	 */
1687 1688
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
1689
		mpd->b_size = 1 << blkbits;
1690
		mpd->b_state = b_state & BH_FLAGS;
1691 1692 1693
		return;
	}

1694
	next = mpd->b_blocknr + nrblocks;
1695 1696 1697
	/*
	 * Can we merge the block to our big extent?
	 */
1698
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1699
		mpd->b_size += 1 << blkbits;
1700 1701 1702
		return;
	}

1703
flush_it:
1704 1705 1706 1707
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
1708
	mpage_da_map_and_submit(mpd);
1709
	return;
1710 1711
}

1712
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1713
{
1714
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1715 1716
}

1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
/*
 * This function is grabs code from the very beginning of
 * ext4_map_blocks, but assumes that the caller is from delayed write
 * time. This function looks up the requested blocks and sets the
 * buffer delay bit under the protection of i_data_sem.
 */
static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
			      struct ext4_map_blocks *map,
			      struct buffer_head *bh)
{
	int retval;
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;

	map->m_flags = 0;
	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, map->m_len,
		  (unsigned long) map->m_lblk);
	/*
	 * Try to see if we can get the block without requesting a new
	 * file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
	if (ext4_has_inline_data(inode)) {
		/*
		 * We will soon create blocks for this page, and let
		 * us pretend as if the blocks aren't allocated yet.
		 * In case of clusters, we have to handle the work
		 * of mapping from cluster so that the reserved space
		 * is calculated properly.
		 */
		if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
		    ext4_find_delalloc_cluster(inode, map->m_lblk))
			map->m_flags |= EXT4_MAP_FROM_CLUSTER;
		retval = 0;
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
	else
		retval = ext4_ind_map_blocks(NULL, inode, map, 0);

	if (retval == 0) {
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
		/* If the block was allocated from previously allocated cluster,
		 * then we dont need to reserve it again. */
		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
			retval = ext4_da_reserve_space(inode, iblock);
			if (retval)
				/* not enough space to reserve */
				goto out_unlock;
		}

1773 1774 1775 1776
		retval = ext4_es_insert_extent(inode, map->m_lblk, map->m_len);
		if (retval)
			goto out_unlock;

1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
		 * and it should not appear on the bh->b_state.
		 */
		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;

		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
	}

out_unlock:
	up_read((&EXT4_I(inode)->i_data_sem));

	return retval;
}

1793
/*
1794 1795 1796
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
1797 1798 1799 1800 1801 1802 1803
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
1804
 */
1805 1806
int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int create)
1807
{
1808
	struct ext4_map_blocks map;
1809 1810 1811
	int ret = 0;

	BUG_ON(create == 0);
1812 1813 1814 1815
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
1816 1817 1818 1819 1820 1821

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
1822 1823
	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
	if (ret <= 0)
1824
		return ret;
1825

1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
1837
		set_buffer_mapped(bh);
1838 1839
	}
	return 0;
1840
}
1841

1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
1859
	struct buffer_head *page_bufs = NULL;
1860
	handle_t *handle = NULL;
1861 1862 1863
	int ret = 0, err = 0;
	int inline_data = ext4_has_inline_data(inode);
	struct buffer_head *inode_bh = NULL;
1864

1865
	ClearPageChecked(page);
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881

	if (inline_data) {
		BUG_ON(page->index != 0);
		BUG_ON(len > ext4_get_max_inline_size(inode));
		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
		if (inode_bh == NULL)
			goto out;
	} else {
		page_bufs = page_buffers(page);
		if (!page_bufs) {
			BUG();
			goto out;
		}
		ext4_walk_page_buffers(handle, page_bufs, 0, len,
				       NULL, bget_one);
	}
1882 1883 1884 1885
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

1886 1887
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
				    ext4_writepage_trans_blocks(inode));
1888 1889 1890 1891 1892
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

1893 1894
	BUG_ON(!ext4_handle_valid(handle));

1895 1896
	if (inline_data) {
		ret = ext4_journal_get_write_access(handle, inode_bh);
1897

1898 1899 1900 1901 1902 1903 1904 1905 1906
		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);

	} else {
		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
					     do_journal_get_write_access);

		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
					     write_end_fn);
	}
1907 1908
	if (ret == 0)
		ret = err;
1909
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1910 1911 1912 1913
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

1914 1915 1916
	if (!ext4_has_inline_data(inode))
		ext4_walk_page_buffers(handle, page_bufs, 0, len,
				       NULL, bput_one);
1917
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1918
out:
1919
	brelse(inode_bh);
1920 1921 1922
	return ret;
}

1923
/*
1924 1925 1926 1927
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
L
Lucas De Marchi 已提交
1928
 * we are writing back data modified via mmap(), no one guarantees in which
1929 1930 1931 1932
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
1933 1934 1935
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
1936
 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1937
 *   - grab_page_cache when doing write_begin (have journal handle)
1938 1939 1940 1941 1942 1943 1944 1945 1946
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
1947
 * but other buffer_heads would be unmapped but dirty (dirty done via the
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1963
 */
1964
static int ext4_writepage(struct page *page,
1965
			  struct writeback_control *wbc)
1966
{
1967
	int ret = 0;
1968
	loff_t size;
1969
	unsigned int len;
1970
	struct buffer_head *page_bufs = NULL;
1971
	struct inode *inode = page->mapping->host;
1972
	struct ext4_io_submit io_submit;
1973

L
Lukas Czerner 已提交
1974
	trace_ext4_writepage(page);
1975 1976 1977 1978 1979
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
1980

T
Theodore Ts'o 已提交
1981
	page_bufs = page_buffers(page);
1982 1983 1984 1985 1986 1987 1988
	/*
	 * We cannot do block allocation or other extent handling in this
	 * function. If there are buffers needing that, we have to redirty
	 * the page. But we may reach here when we do a journal commit via
	 * journal_submit_inode_data_buffers() and in that case we must write
	 * allocated buffers to achieve data=ordered mode guarantees.
	 */
1989 1990
	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
				   ext4_bh_delay_or_unwritten)) {
1991
		redirty_page_for_writepage(wbc, page);
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
		if (current->flags & PF_MEMALLOC) {
			/*
			 * For memory cleaning there's no point in writing only
			 * some buffers. So just bail out. Warn if we came here
			 * from direct reclaim.
			 */
			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
							== PF_MEMALLOC);
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
2003
	}
2004

2005
	if (PageChecked(page) && ext4_should_journal_data(inode))
2006 2007 2008 2009
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
2010
		return __ext4_journalled_writepage(page, len);
2011

2012 2013 2014
	memset(&io_submit, 0, sizeof(io_submit));
	ret = ext4_bio_write_page(&io_submit, page, len, wbc);
	ext4_io_submit(&io_submit);
2015 2016 2017
	return ret;
}

2018
/*
2019
 * This is called via ext4_da_writepages() to
L
Lucas De Marchi 已提交
2020
 * calculate the total number of credits to reserve to fit
2021 2022 2023
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2024
 */
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2036
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2037 2038 2039 2040 2041
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2042

2043 2044
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
2045
 * address space and accumulate pages that need writing, and call
2046 2047
 * mpage_da_map_and_submit to map a single contiguous memory region
 * and then write them.
2048
 */
2049 2050
static int write_cache_pages_da(handle_t *handle,
				struct address_space *mapping,
2051
				struct writeback_control *wbc,
2052 2053
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
2054
{
2055
	struct buffer_head	*bh, *head;
2056
	struct inode		*inode = mapping->host;
2057 2058 2059 2060 2061 2062
	struct pagevec		pvec;
	unsigned int		nr_pages;
	sector_t		logical;
	pgoff_t			index, end;
	long			nr_to_write = wbc->nr_to_write;
	int			i, tag, ret = 0;
2063

2064 2065 2066
	memset(mpd, 0, sizeof(struct mpage_da_data));
	mpd->wbc = wbc;
	mpd->inode = inode;
2067 2068 2069 2070
	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

2071
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2072 2073 2074 2075
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

2076
	*done_index = index;
2077
	while (index <= end) {
2078
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2079 2080
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
2081
			return 0;
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
2093 2094
			if (page->index > end)
				goto out;
2095

2096 2097
			*done_index = page->index + 1;

2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
			/*
			 * If we can't merge this page, and we have
			 * accumulated an contiguous region, write it
			 */
			if ((mpd->next_page != page->index) &&
			    (mpd->next_page != mpd->first_page)) {
				mpage_da_map_and_submit(mpd);
				goto ret_extent_tail;
			}

2108 2109 2110
			lock_page(page);

			/*
2111 2112 2113 2114 2115 2116
			 * If the page is no longer dirty, or its
			 * mapping no longer corresponds to inode we
			 * are writing (which means it has been
			 * truncated or invalidated), or the page is
			 * already under writeback and we are not
			 * doing a data integrity writeback, skip the page
2117
			 */
2118 2119 2120 2121
			if (!PageDirty(page) ||
			    (PageWriteback(page) &&
			     (wbc->sync_mode == WB_SYNC_NONE)) ||
			    unlikely(page->mapping != mapping)) {
2122 2123 2124 2125
				unlock_page(page);
				continue;
			}

2126
			wait_on_page_writeback(page);
2127 2128
			BUG_ON(PageWriteback(page));

2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
			/*
			 * If we have inline data and arrive here, it means that
			 * we will soon create the block for the 1st page, so
			 * we'd better clear the inline data here.
			 */
			if (ext4_has_inline_data(inode)) {
				BUG_ON(ext4_test_inode_state(inode,
						EXT4_STATE_MAY_INLINE_DATA));
				ext4_destroy_inline_data(handle, inode);
			}

2140
			if (mpd->next_page != page->index)
2141 2142 2143 2144 2145
				mpd->first_page = page->index;
			mpd->next_page = page->index + 1;
			logical = (sector_t) page->index <<
				(PAGE_CACHE_SHIFT - inode->i_blkbits);

2146 2147 2148 2149 2150
			/* Add all dirty buffers to mpd */
			head = page_buffers(page);
			bh = head;
			do {
				BUG_ON(buffer_locked(bh));
2151
				/*
2152 2153 2154
				 * We need to try to allocate unmapped blocks
				 * in the same page.  Otherwise we won't make
				 * progress with the page in ext4_writepage
2155
				 */
2156 2157 2158 2159 2160 2161 2162
				if (ext4_bh_delay_or_unwritten(NULL, bh)) {
					mpage_add_bh_to_extent(mpd, logical,
							       bh->b_state);
					if (mpd->io_done)
						goto ret_extent_tail;
				} else if (buffer_dirty(bh) &&
					   buffer_mapped(bh)) {
2163
					/*
2164 2165 2166 2167 2168 2169 2170
					 * mapped dirty buffer. We need to
					 * update the b_state because we look
					 * at b_state in mpage_da_map_blocks.
					 * We don't update b_size because if we
					 * find an unmapped buffer_head later
					 * we need to use the b_state flag of
					 * that buffer_head.
2171
					 */
2172 2173 2174 2175 2176 2177
					if (mpd->b_size == 0)
						mpd->b_state =
							bh->b_state & BH_FLAGS;
				}
				logical++;
			} while ((bh = bh->b_this_page) != head);
2178 2179 2180 2181

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
2182
				    wbc->sync_mode == WB_SYNC_NONE)
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
2193
					goto out;
2194 2195 2196 2197 2198
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2199 2200 2201
	return 0;
ret_extent_tail:
	ret = MPAGE_DA_EXTENT_TAIL;
2202 2203 2204
out:
	pagevec_release(&pvec);
	cond_resched();
2205 2206 2207 2208
	return ret;
}


2209
static int ext4_da_writepages(struct address_space *mapping,
2210
			      struct writeback_control *wbc)
2211
{
2212 2213
	pgoff_t	index;
	int range_whole = 0;
2214
	handle_t *handle = NULL;
2215
	struct mpage_da_data mpd;
2216
	struct inode *inode = mapping->host;
2217
	int pages_written = 0;
2218
	unsigned int max_pages;
2219
	int range_cyclic, cycled = 1, io_done = 0;
2220 2221
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2222
	loff_t range_start = wbc->range_start;
2223
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2224
	pgoff_t done_index = 0;
2225
	pgoff_t end;
S
Shaohua Li 已提交
2226
	struct blk_plug plug;
2227

2228
	trace_ext4_da_writepages(inode, wbc);
2229

2230 2231 2232 2233 2234
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2235
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2236
		return 0;
2237 2238 2239 2240 2241

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2242
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2243 2244 2245 2246 2247
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2248
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2249 2250
		return -EROFS;

2251 2252
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2253

2254 2255
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2256
		index = mapping->writeback_index;
2257 2258 2259 2260 2261
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2262 2263
		end = -1;
	} else {
2264
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2265 2266
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2267

2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2285 2286 2287 2288 2289 2290
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2301
retry:
2302
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2303 2304
		tag_pages_for_writeback(mapping, index, end);

S
Shaohua Li 已提交
2305
	blk_start_plug(&plug);
2306
	while (!ret && wbc->nr_to_write > 0) {
2307 2308 2309 2310 2311 2312 2313 2314

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2315
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2316

2317
		/* start a new transaction*/
2318 2319
		handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
					    needed_blocks);
2320 2321
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2322
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2323
			       "%ld pages, ino %lu; err %d", __func__,
2324
				wbc->nr_to_write, inode->i_ino, ret);
2325
			blk_finish_plug(&plug);
2326 2327
			goto out_writepages;
		}
2328 2329

		/*
2330
		 * Now call write_cache_pages_da() to find the next
2331
		 * contiguous region of logical blocks that need
2332
		 * blocks to be allocated by ext4 and submit them.
2333
		 */
2334 2335
		ret = write_cache_pages_da(handle, mapping,
					   wbc, &mpd, &done_index);
2336
		/*
2337
		 * If we have a contiguous extent of pages and we
2338 2339 2340 2341
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2342
			mpage_da_map_and_submit(&mpd);
2343 2344
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2345
		trace_ext4_da_write_pages(inode, &mpd);
2346
		wbc->nr_to_write -= mpd.pages_written;
2347

2348
		ext4_journal_stop(handle);
2349

2350
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2351 2352 2353 2354
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2355
			jbd2_journal_force_commit_nested(sbi->s_journal);
2356 2357
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2358
			/*
2359 2360 2361
			 * Got one extent now try with rest of the pages.
			 * If mpd.retval is set -EIO, journal is aborted.
			 * So we don't need to write any more.
2362
			 */
2363
			pages_written += mpd.pages_written;
2364
			ret = mpd.retval;
2365
			io_done = 1;
2366
		} else if (wbc->nr_to_write)
2367 2368 2369 2370 2371 2372
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2373
	}
S
Shaohua Li 已提交
2374
	blk_finish_plug(&plug);
2375 2376 2377 2378 2379 2380 2381
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2382 2383

	/* Update index */
2384
	wbc->range_cyclic = range_cyclic;
2385 2386 2387 2388 2389
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
2390
		mapping->writeback_index = done_index;
2391

2392
out_writepages:
2393
	wbc->nr_to_write -= nr_to_writebump;
2394
	wbc->range_start = range_start;
2395
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2396
	return ret;
2397 2398
}

2399 2400 2401 2402 2403 2404 2405 2406
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2407
	 * counters can get slightly wrong with percpu_counter_batch getting
2408 2409 2410 2411
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
2412 2413 2414
	free_blocks  = EXT4_C2B(sbi,
		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
	/*
	 * Start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
	    !writeback_in_progress(sb->s_bdi) &&
	    down_read_trylock(&sb->s_umount)) {
		writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
		up_read(&sb->s_umount);
	}

2425
	if (2 * free_blocks < 3 * dirty_blocks ||
2426
		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2427
		/*
2428 2429
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
2430 2431 2432 2433 2434 2435
		 */
		return 1;
	}
	return 0;
}

2436
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2437 2438
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
2439
{
2440
	int ret, retries = 0;
2441 2442 2443 2444 2445 2446
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
2447 2448 2449 2450 2451 2452 2453

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2454
	trace_ext4_da_write_begin(inode, pos, len, flags);
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467

	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
		ret = ext4_da_write_inline_data_begin(mapping, inode,
						      pos, len, flags,
						      pagep, fsdata);
		if (ret < 0)
			goto out;
		if (ret == 1) {
			ret = 0;
			goto out;
		}
	}

2468
retry:
2469 2470 2471 2472 2473 2474
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
2475
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2476 2477 2478 2479
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
2480 2481 2482
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
2483

2484
	page = grab_cache_page_write_begin(mapping, index, flags);
2485 2486 2487 2488 2489
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
2490 2491
	*pagep = page;

2492
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2493 2494 2495 2496
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
2497 2498 2499 2500 2501 2502
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
2503
			ext4_truncate_failed_write(inode);
2504 2505
	}

2506 2507
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
2508 2509 2510 2511
out:
	return ret;
}

2512 2513 2514 2515 2516
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
2517
					    unsigned long offset)
2518 2519 2520 2521 2522 2523 2524 2525 2526
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2527
	for (i = 0; i < idx; i++)
2528 2529
		bh = bh->b_this_page;

2530
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2531 2532 2533 2534
		return 0;
	return 1;
}

2535
static int ext4_da_write_end(struct file *file,
2536 2537 2538
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
2539 2540 2541 2542 2543
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2544
	unsigned long start, end;
2545 2546 2547
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2548 2549
		switch (ext4_inode_journal_mode(inode)) {
		case EXT4_INODE_ORDERED_DATA_MODE:
2550 2551
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2552
		case EXT4_INODE_WRITEBACK_DATA_MODE:
2553 2554
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2555
		default:
2556 2557 2558
			BUG();
		}
	}
2559

2560
	trace_ext4_da_write_end(inode, pos, len, copied);
2561
	start = pos & (PAGE_CACHE_SIZE - 1);
2562
	end = start + copied - 1;
2563 2564 2565 2566 2567 2568 2569

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */
	new_i_size = pos + copied;
2570
	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2571 2572
		if (ext4_has_inline_data(inode) ||
		    ext4_da_should_update_i_disksize(page, end)) {
2573
			down_write(&EXT4_I(inode)->i_data_sem);
2574
			if (new_i_size > EXT4_I(inode)->i_disksize)
2575 2576
				EXT4_I(inode)->i_disksize = new_i_size;
			up_write(&EXT4_I(inode)->i_data_sem);
2577 2578 2579 2580 2581
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2582
		}
2583
	}
2584 2585 2586 2587 2588 2589 2590 2591

	if (write_mode != CONVERT_INLINE_DATA &&
	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
	    ext4_has_inline_data(inode))
		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
						     page);
	else
		ret2 = generic_write_end(file, mapping, pos, len, copied,
2592
							page, fsdata);
2593

2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2613
	ext4_da_page_release_reservation(page, offset);
2614 2615 2616 2617 2618 2619 2620

out:
	ext4_invalidatepage(page, offset);

	return;
}

2621 2622 2623 2624 2625
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
2626 2627
	trace_ext4_alloc_da_blocks(inode);

2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
2638
	 *
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
2651
	 * the pages by calling redirty_page_for_writepage() but that
2652 2653
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
L
Lucas De Marchi 已提交
2654
	 * simplifying them because we wouldn't actually intend to
2655 2656 2657
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
2658
	 *
2659 2660 2661 2662 2663 2664
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
2665

2666 2667 2668 2669 2670
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2671
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2672 2673 2674 2675 2676 2677 2678 2679
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2680
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2681 2682 2683 2684 2685
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

T
Tao Ma 已提交
2686 2687 2688 2689 2690 2691
	/*
	 * We can get here for an inline file via the FIBMAP ioctl
	 */
	if (ext4_has_inline_data(inode))
		return 0;

2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2702 2703
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2715
		 * NB. EXT4_STATE_JDATA is not set on files other than
2716 2717 2718 2719 2720 2721
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2722
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2723
		journal = EXT4_JOURNAL(inode);
2724 2725 2726
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2727 2728 2729 2730 2731

		if (err)
			return 0;
	}

2732
	return generic_block_bmap(mapping, block, ext4_get_block);
2733 2734
}

2735
static int ext4_readpage(struct file *file, struct page *page)
2736
{
T
Tao Ma 已提交
2737 2738 2739
	int ret = -EAGAIN;
	struct inode *inode = page->mapping->host;

2740
	trace_ext4_readpage(page);
T
Tao Ma 已提交
2741 2742 2743 2744 2745 2746 2747 2748

	if (ext4_has_inline_data(inode))
		ret = ext4_readpage_inline(inode, page);

	if (ret == -EAGAIN)
		return mpage_readpage(page, ext4_get_block);

	return ret;
2749 2750 2751
}

static int
2752
ext4_readpages(struct file *file, struct address_space *mapping,
2753 2754
		struct list_head *pages, unsigned nr_pages)
{
T
Tao Ma 已提交
2755 2756 2757 2758 2759 2760
	struct inode *inode = mapping->host;

	/* If the file has inline data, no need to do readpages. */
	if (ext4_has_inline_data(inode))
		return 0;

2761
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2762 2763
}

2764
static void ext4_invalidatepage(struct page *page, unsigned long offset)
2765
{
2766 2767
	trace_ext4_invalidatepage(page, offset);

2768 2769 2770 2771 2772 2773
	/* No journalling happens on data buffers when this function is used */
	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));

	block_invalidatepage(page, offset);
}

2774 2775
static int __ext4_journalled_invalidatepage(struct page *page,
					    unsigned long offset)
2776 2777 2778 2779 2780
{
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);

	trace_ext4_journalled_invalidatepage(page, offset);

2781 2782 2783 2784 2785 2786
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

2787 2788 2789 2790 2791 2792 2793 2794
	return jbd2_journal_invalidatepage(journal, page, offset);
}

/* Wrapper for aops... */
static void ext4_journalled_invalidatepage(struct page *page,
					   unsigned long offset)
{
	WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
2795 2796
}

2797
static int ext4_releasepage(struct page *page, gfp_t wait)
2798
{
2799
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2800

2801 2802
	trace_ext4_releasepage(page);

2803 2804 2805
	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
2806 2807 2808 2809
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
2810 2811
}

2812 2813 2814 2815 2816
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
2817
int ext4_get_block_write(struct inode *inode, sector_t iblock,
2818 2819
		   struct buffer_head *bh_result, int create)
{
2820
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2821
		   inode->i_ino, create);
2822 2823
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2824 2825
}

2826
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2827
		   struct buffer_head *bh_result, int create)
2828
{
2829 2830 2831 2832
	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
		   inode->i_ino, create);
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_NO_LOCK);
2833 2834
}

2835
static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2836 2837
			    ssize_t size, void *private, int ret,
			    bool is_async)
2838
{
2839
	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2840 2841
        ext4_io_end_t *io_end = iocb->private;

2842 2843
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
2844
		goto out;
2845

2846
	ext_debug("ext4_end_io_dio(): io_end 0x%p "
2847
		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2848 2849 2850
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

2851 2852
	iocb->private = NULL;

2853
	/* if not aio dio with unwritten extents, just free io and return */
2854
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2855
		ext4_free_io_end(io_end);
2856
out:
2857
		inode_dio_done(inode);
2858 2859 2860
		if (is_async)
			aio_complete(iocb, ret, 0);
		return;
2861 2862
	}

2863 2864
	io_end->offset = offset;
	io_end->size = size;
2865 2866 2867 2868
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
2869

2870
	ext4_add_complete_io(io_end);
2871
}
2872

2873 2874 2875 2876 2877
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
2878
 * For holes, we fallocate those blocks, mark them as uninitialized
2879
 * If those blocks were preallocated, we mark sure they are split, but
2880
 * still keep the range to write as uninitialized.
2881
 *
2882
 * The unwritten extents will be converted to written when DIO is completed.
2883
 * For async direct IO, since the IO may still pending when return, we
L
Lucas De Marchi 已提交
2884
 * set up an end_io call back function, which will do the conversion
2885
 * when async direct IO completed.
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);
2900 2901 2902
	int overwrite = 0;
	get_block_t *get_block_func = NULL;
	int dio_flags = 0;
2903
	loff_t final_size = offset + count;
2904

2905 2906 2907
	/* Use the old path for reads and writes beyond i_size. */
	if (rw != WRITE || final_size > inode->i_size)
		return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2908

2909
	BUG_ON(iocb->private == NULL);
2910

2911 2912
	/* If we do a overwrite dio, i_mutex locking can be released */
	overwrite = *((int *)iocb->private);
2913

2914 2915 2916 2917 2918
	if (overwrite) {
		atomic_inc(&inode->i_dio_count);
		down_read(&EXT4_I(inode)->i_data_sem);
		mutex_unlock(&inode->i_mutex);
	}
2919

2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
	/*
	 * We could direct write to holes and fallocate.
	 *
	 * Allocated blocks to fill the hole are marked as
	 * uninitialized to prevent parallel buffered read to expose
	 * the stale data before DIO complete the data IO.
	 *
	 * As to previously fallocated extents, ext4 get_block will
	 * just simply mark the buffer mapped but still keep the
	 * extents uninitialized.
	 *
	 * For non AIO case, we will convert those unwritten extents
	 * to written after return back from blockdev_direct_IO.
	 *
	 * For async DIO, the conversion needs to be deferred when the
	 * IO is completed. The ext4 end_io callback function will be
	 * called to take care of the conversion work.  Here for async
	 * case, we allocate an io_end structure to hook to the iocb.
	 */
	iocb->private = NULL;
	ext4_inode_aio_set(inode, NULL);
	if (!is_sync_kiocb(iocb)) {
		ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
		if (!io_end) {
			ret = -ENOMEM;
			goto retake_lock;
2946
		}
2947 2948
		io_end->flag |= EXT4_IO_END_DIRECT;
		iocb->private = io_end;
2949
		/*
2950 2951 2952 2953
		 * we save the io structure for current async direct
		 * IO, so that later ext4_map_blocks() could flag the
		 * io structure whether there is a unwritten extents
		 * needs to be converted when IO is completed.
2954
		 */
2955 2956
		ext4_inode_aio_set(inode, io_end);
	}
2957

2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
	if (overwrite) {
		get_block_func = ext4_get_block_write_nolock;
	} else {
		get_block_func = ext4_get_block_write;
		dio_flags = DIO_LOCKING;
	}
	ret = __blockdev_direct_IO(rw, iocb, inode,
				   inode->i_sb->s_bdev, iov,
				   offset, nr_segs,
				   get_block_func,
				   ext4_end_io_dio,
				   NULL,
				   dio_flags);

	if (iocb->private)
		ext4_inode_aio_set(inode, NULL);
	/*
	 * The io_end structure takes a reference to the inode, that
	 * structure needs to be destroyed and the reference to the
	 * inode need to be dropped, when IO is complete, even with 0
	 * byte write, or failed.
	 *
	 * In the successful AIO DIO case, the io_end structure will
	 * be destroyed and the reference to the inode will be dropped
	 * after the end_io call back function is called.
	 *
	 * In the case there is 0 byte write, or error case, since VFS
	 * direct IO won't invoke the end_io call back function, we
	 * need to free the end_io structure here.
	 */
	if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
		ext4_free_io_end(iocb->private);
		iocb->private = NULL;
	} else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
		int err;
		/*
		 * for non AIO case, since the IO is already
		 * completed, we could do the conversion right here
		 */
		err = ext4_convert_unwritten_extents(inode,
						     offset, ret);
		if (err < 0)
			ret = err;
		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
	}
3004

3005 3006 3007 3008 3009 3010
retake_lock:
	/* take i_mutex locking again if we do a ovewrite dio */
	if (overwrite) {
		inode_dio_done(inode);
		up_read(&EXT4_I(inode)->i_data_sem);
		mutex_lock(&inode->i_mutex);
3011
	}
3012

3013
	return ret;
3014 3015 3016 3017 3018 3019 3020 3021
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3022
	ssize_t ret;
3023

3024 3025 3026 3027 3028 3029
	/*
	 * If we are doing data journalling we don't support O_DIRECT
	 */
	if (ext4_should_journal_data(inode))
		return 0;

T
Tao Ma 已提交
3030 3031 3032 3033
	/* Let buffer I/O handle the inline data case. */
	if (ext4_has_inline_data(inode))
		return 0;

3034
	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3035
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3036 3037 3038 3039 3040 3041
		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
	else
		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
	trace_ext4_direct_IO_exit(inode, offset,
				iov_length(iov, nr_segs), rw, ret);
	return ret;
3042 3043
}

3044
/*
3045
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3057
static int ext4_journalled_set_page_dirty(struct page *page)
3058 3059 3060 3061 3062
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3063
static const struct address_space_operations ext4_ordered_aops = {
3064 3065
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3066
	.writepage		= ext4_writepage,
3067 3068 3069 3070 3071 3072 3073 3074
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3075
	.error_remove_page	= generic_error_remove_page,
3076 3077
};

3078
static const struct address_space_operations ext4_writeback_aops = {
3079 3080
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3081
	.writepage		= ext4_writepage,
3082 3083 3084 3085 3086 3087 3088 3089
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3090
	.error_remove_page	= generic_error_remove_page,
3091 3092
};

3093
static const struct address_space_operations ext4_journalled_aops = {
3094 3095
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3096
	.writepage		= ext4_writepage,
3097 3098 3099 3100
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
3101
	.invalidatepage		= ext4_journalled_invalidatepage,
3102
	.releasepage		= ext4_releasepage,
3103
	.direct_IO		= ext4_direct_IO,
3104
	.is_partially_uptodate  = block_is_partially_uptodate,
3105
	.error_remove_page	= generic_error_remove_page,
3106 3107
};

3108
static const struct address_space_operations ext4_da_aops = {
3109 3110
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3111
	.writepage		= ext4_writepage,
3112 3113 3114 3115 3116 3117 3118 3119 3120
	.writepages		= ext4_da_writepages,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3121
	.error_remove_page	= generic_error_remove_page,
3122 3123
};

3124
void ext4_set_aops(struct inode *inode)
3125
{
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
	switch (ext4_inode_journal_mode(inode)) {
	case EXT4_INODE_ORDERED_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_ordered_aops;
		break;
	case EXT4_INODE_WRITEBACK_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_writeback_aops;
		break;
	case EXT4_INODE_JOURNAL_DATA_MODE:
3140
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3141 3142 3143 3144
		break;
	default:
		BUG();
	}
3145 3146
}

3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166

/*
 * ext4_discard_partial_page_buffers()
 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
 * This function finds and locks the page containing the offset
 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
 * Calling functions that already have the page locked should call
 * ext4_discard_partial_page_buffers_no_lock directly.
 */
int ext4_discard_partial_page_buffers(handle_t *handle,
		struct address_space *mapping, loff_t from,
		loff_t length, int flags)
{
	struct inode *inode = mapping->host;
	struct page *page;
	int err = 0;

	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
	if (!page)
3167
		return -ENOMEM;
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195

	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
		from, length, flags);

	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * ext4_discard_partial_page_buffers_no_lock()
 * Zeros a page range of length 'length' starting from offset 'from'.
 * Buffer heads that correspond to the block aligned regions of the
 * zeroed range will be unmapped.  Unblock aligned regions
 * will have the corresponding buffer head mapped if needed so that
 * that region of the page can be updated with the partial zero out.
 *
 * This function assumes that the page has already been  locked.  The
 * The range to be discarded must be contained with in the given page.
 * If the specified range exceeds the end of the page it will be shortened
 * to the end of the page that corresponds to 'from'.  This function is
 * appropriate for updating a page and it buffer heads to be unmapped and
 * zeroed for blocks that have been either released, or are going to be
 * released.
 *
 * handle: The journal handle
 * inode:  The files inode
 * page:   A locked page that contains the offset "from"
3196
 * from:   The starting byte offset (from the beginning of the file)
3197 3198 3199 3200 3201 3202 3203
 *         to begin discarding
 * len:    The length of bytes to discard
 * flags:  Optional flags that may be used:
 *
 *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
 *         Only zero the regions of the page whose buffer heads
 *         have already been unmapped.  This flag is appropriate
3204
 *         for updating the contents of a page whose blocks may
3205 3206 3207
 *         have already been released, and we only want to zero
 *         out the regions that correspond to those released blocks.
 *
3208
 * Returns zero on success or negative on failure.
3209
 */
E
Eric Sandeen 已提交
3210
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags)
{
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
	unsigned int blocksize, max, pos;
	ext4_lblk_t iblock;
	struct buffer_head *bh;
	int err = 0;

	blocksize = inode->i_sb->s_blocksize;
	max = PAGE_CACHE_SIZE - offset;

	if (index != page->index)
		return -EINVAL;

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the page
	 */
	if (length > max || length < 0)
		length = max;

	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

3236 3237
	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	pos = offset;
	while (pos < offset + length) {
3250 3251
		unsigned int end_of_block, range_to_discard;

3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
		err = 0;

		/* The length of space left to zero and unmap */
		range_to_discard = offset + length - pos;

		/* The length of space until the end of the block */
		end_of_block = blocksize - (pos & (blocksize-1));

		/*
		 * Do not unmap or zero past end of block
		 * for this buffer head
		 */
		if (range_to_discard > end_of_block)
			range_to_discard = end_of_block;


		/*
		 * Skip this buffer head if we are only zeroing unampped
		 * regions of the page
		 */
		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
			buffer_mapped(bh))
				goto next;

		/* If the range is block aligned, unmap */
		if (range_to_discard == blocksize) {
			clear_buffer_dirty(bh);
			bh->b_bdev = NULL;
			clear_buffer_mapped(bh);
			clear_buffer_req(bh);
			clear_buffer_new(bh);
			clear_buffer_delay(bh);
			clear_buffer_unwritten(bh);
			clear_buffer_uptodate(bh);
			zero_user(page, pos, range_to_discard);
			BUFFER_TRACE(bh, "Buffer discarded");
			goto next;
		}

		/*
		 * If this block is not completely contained in the range
		 * to be discarded, then it is not going to be released. Because
		 * we need to keep this block, we need to make sure this part
		 * of the page is uptodate before we modify it by writeing
		 * partial zeros on it.
		 */
		if (!buffer_mapped(bh)) {
			/*
			 * Buffer head must be mapped before we can read
			 * from the block
			 */
			BUFFER_TRACE(bh, "unmapped");
			ext4_get_block(inode, iblock, bh, 0);
			/* unmapped? It's a hole - nothing to do */
			if (!buffer_mapped(bh)) {
				BUFFER_TRACE(bh, "still unmapped");
				goto next;
			}
		}

		/* Ok, it's mapped. Make sure it's up-to-date */
		if (PageUptodate(page))
			set_buffer_uptodate(bh);

		if (!buffer_uptodate(bh)) {
			err = -EIO;
			ll_rw_block(READ, 1, &bh);
			wait_on_buffer(bh);
			/* Uhhuh. Read error. Complain and punt.*/
			if (!buffer_uptodate(bh))
				goto next;
		}

		if (ext4_should_journal_data(inode)) {
			BUFFER_TRACE(bh, "get write access");
			err = ext4_journal_get_write_access(handle, bh);
			if (err)
				goto next;
		}

		zero_user(page, pos, range_to_discard);

		err = 0;
		if (ext4_should_journal_data(inode)) {
			err = ext4_handle_dirty_metadata(handle, inode, bh);
3337
		} else
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
			mark_buffer_dirty(bh);

		BUFFER_TRACE(bh, "Partial buffer zeroed");
next:
		bh = bh->b_this_page;
		iblock++;
		pos += range_to_discard;
	}

	return err;
}

3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
int ext4_can_truncate(struct inode *inode)
{
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3361 3362 3363 3364 3365 3366 3367 3368
/*
 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 * associated with the given offset and length
 *
 * @inode:  File inode
 * @offset: The offset where the hole will begin
 * @len:    The length of the hole
 *
3369
 * Returns: 0 on success or negative on failure
3370 3371 3372 3373 3374 3375
 */

int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	if (!S_ISREG(inode->i_mode))
3376
		return -EOPNOTSUPP;
3377

3378 3379
	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
		return ext4_ind_punch_hole(file, offset, length);
3380

3381 3382
	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
		/* TODO: Add support for bigalloc file systems */
3383
		return -EOPNOTSUPP;
3384 3385
	}

3386 3387
	trace_ext4_punch_hole(inode, offset, length);

3388 3389 3390
	return ext4_ext_punch_hole(file, offset, length);
}

3391
/*
3392
 * ext4_truncate()
3393
 *
3394 3395
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3396 3397
 * simultaneously on behalf of the same inode.
 *
3398
 * As we work through the truncate and commit bits of it to the journal there
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3412
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3413
 * that this inode's truncate did not complete and it will again call
3414 3415
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3416
 * that's fine - as long as they are linked from the inode, the post-crash
3417
 * ext4_truncate() run will find them and release them.
3418
 */
3419
void ext4_truncate(struct inode *inode)
3420
{
3421 3422
	trace_ext4_truncate_enter(inode);

3423
	if (!ext4_can_truncate(inode))
3424 3425
		return;

3426
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3427

3428
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3429
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3430

3431 3432 3433 3434 3435 3436 3437 3438
	if (ext4_has_inline_data(inode)) {
		int has_inline = 1;

		ext4_inline_data_truncate(inode, &has_inline);
		if (has_inline)
			return;
	}

3439
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3440
		ext4_ext_truncate(inode);
3441 3442
	else
		ext4_ind_truncate(inode);
3443

3444
	trace_ext4_truncate_exit(inode);
3445 3446 3447
}

/*
3448
 * ext4_get_inode_loc returns with an extra refcount against the inode's
3449 3450 3451 3452
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
3453 3454
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
3455
{
3456 3457 3458 3459 3460 3461
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
3462
	iloc->bh = NULL;
3463 3464
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
3465

3466 3467 3468
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
3469 3470
		return -EIO;

3471 3472 3473
	/*
	 * Figure out the offset within the block group inode table
	 */
3474
	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3475 3476 3477 3478 3479 3480
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
3481
	if (unlikely(!bh))
3482
		return -ENOMEM;
3483 3484
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
3485 3486 3487 3488 3489 3490 3491 3492 3493 3494

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
3508
			int i, start;
3509

3510
			start = inode_offset & ~(inodes_per_block - 1);
3511

3512 3513
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3514
			if (unlikely(!bitmap_bh))
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
3526
			for (i = start; i < start + inodes_per_block; i++) {
3527 3528
				if (i == inode_offset)
					continue;
3529
				if (ext4_test_bit(i, bitmap_bh->b_data))
3530 3531 3532
					break;
			}
			brelse(bitmap_bh);
3533
			if (i == start + inodes_per_block) {
3534 3535 3536 3537 3538 3539 3540 3541 3542
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
3543 3544 3545 3546 3547 3548 3549 3550 3551
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
3552
			/* s_inode_readahead_blks is always a power of 2 */
3553 3554 3555 3556 3557
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
3558
			if (ext4_has_group_desc_csum(sb))
3559
				num -= ext4_itable_unused_count(sb, gdp);
3560 3561 3562 3563 3564 3565 3566
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

3567 3568 3569 3570 3571
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
3572
		trace_ext4_load_inode(inode);
3573 3574
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
3575
		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3576 3577
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
3578 3579
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
3580 3581 3582 3583 3584 3585 3586 3587 3588
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

3589
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3590 3591
{
	/* We have all inode data except xattrs in memory here. */
3592
	return __ext4_get_inode_loc(inode, iloc,
3593
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3594 3595
}

3596
void ext4_set_inode_flags(struct inode *inode)
3597
{
3598
	unsigned int flags = EXT4_I(inode)->i_flags;
3599 3600

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3601
	if (flags & EXT4_SYNC_FL)
3602
		inode->i_flags |= S_SYNC;
3603
	if (flags & EXT4_APPEND_FL)
3604
		inode->i_flags |= S_APPEND;
3605
	if (flags & EXT4_IMMUTABLE_FL)
3606
		inode->i_flags |= S_IMMUTABLE;
3607
	if (flags & EXT4_NOATIME_FL)
3608
		inode->i_flags |= S_NOATIME;
3609
	if (flags & EXT4_DIRSYNC_FL)
3610 3611 3612
		inode->i_flags |= S_DIRSYNC;
}

3613 3614 3615
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3636
}
3637

3638
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3639
				  struct ext4_inode_info *ei)
3640 3641
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
3642 3643
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
3644 3645 3646 3647 3648 3649

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
3650
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
3651 3652 3653 3654 3655
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
3656 3657 3658 3659
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
3660

3661 3662 3663 3664 3665 3666
static inline void ext4_iget_extra_inode(struct inode *inode,
					 struct ext4_inode *raw_inode,
					 struct ext4_inode_info *ei)
{
	__le32 *magic = (void *)raw_inode +
			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3667
	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3668
		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3669
		ext4_find_inline_data_nolock(inode);
3670 3671
	} else
		EXT4_I(inode)->i_inline_off = 0;
3672 3673
}

3674
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3675
{
3676 3677
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
3678 3679
	struct ext4_inode_info *ei;
	struct inode *inode;
3680
	journal_t *journal = EXT4_SB(sb)->s_journal;
3681
	long ret;
3682
	int block;
3683 3684
	uid_t i_uid;
	gid_t i_gid;
3685

3686 3687 3688 3689 3690 3691 3692
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
3693
	iloc.bh = NULL;
3694

3695 3696
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
3697
		goto bad_inode;
3698
	raw_inode = ext4_raw_inode(&iloc);
3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731

	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
		    EXT4_INODE_SIZE(inode->i_sb)) {
			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
				EXT4_INODE_SIZE(inode->i_sb));
			ret = -EIO;
			goto bad_inode;
		}
	} else
		ei->i_extra_isize = 0;

	/* Precompute checksum seed for inode metadata */
	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
		__u32 csum;
		__le32 inum = cpu_to_le32(inode->i_ino);
		__le32 gen = raw_inode->i_generation;
		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
				   sizeof(inum));
		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
					      sizeof(gen));
	}

	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
		EXT4_ERROR_INODE(inode, "checksum invalid");
		ret = -EIO;
		goto bad_inode;
	}

3732
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3733 3734
	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3735
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3736 3737
		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3738
	}
3739 3740
	i_uid_write(inode, i_uid);
	i_gid_write(inode, i_gid);
M
Miklos Szeredi 已提交
3741
	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3742

3743
	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3744
	ei->i_inline_off = 0;
3745 3746 3747 3748 3749 3750 3751 3752 3753
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
3754
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3755
			/* this inode is deleted */
3756
			ret = -ESTALE;
3757 3758 3759 3760 3761 3762 3763 3764
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3765
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3766
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3767
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
3768 3769
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3770
	inode->i_size = ext4_isize(raw_inode);
3771
	ei->i_disksize = inode->i_size;
3772 3773 3774
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
3775 3776
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
3777
	ei->i_last_alloc_group = ~0;
3778 3779 3780 3781
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
3782
	for (block = 0; block < EXT4_N_BLOCKS; block++)
3783 3784 3785
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

3797
		read_lock(&journal->j_state_lock);
3798 3799 3800 3801 3802 3803 3804 3805
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
3806
		read_unlock(&journal->j_state_lock);
3807 3808 3809 3810
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

3811
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3812 3813
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
3814 3815
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
3816
		} else {
3817
			ext4_iget_extra_inode(inode, raw_inode, ei);
3818
		}
3819
	}
3820

K
Kalpak Shah 已提交
3821 3822 3823 3824 3825
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

3826 3827 3828 3829 3830 3831 3832
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

3833
	ret = 0;
3834
	if (ei->i_file_acl &&
3835
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3836 3837
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
3838 3839
		ret = -EIO;
		goto bad_inode;
3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852
	} else if (!ext4_has_inline_data(inode)) {
		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
			    (S_ISLNK(inode->i_mode) &&
			     !ext4_inode_is_fast_symlink(inode))))
				/* Validate extent which is part of inode */
				ret = ext4_ext_check_inode(inode);
		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
			   (S_ISLNK(inode->i_mode) &&
			    !ext4_inode_is_fast_symlink(inode))) {
			/* Validate block references which are part of inode */
			ret = ext4_ind_check_inode(inode);
		}
3853
	}
3854
	if (ret)
3855
		goto bad_inode;
3856

3857
	if (S_ISREG(inode->i_mode)) {
3858 3859 3860
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
3861
	} else if (S_ISDIR(inode->i_mode)) {
3862 3863
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
3864
	} else if (S_ISLNK(inode->i_mode)) {
3865
		if (ext4_inode_is_fast_symlink(inode)) {
3866
			inode->i_op = &ext4_fast_symlink_inode_operations;
3867 3868 3869
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
3870 3871
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
3872
		}
3873 3874
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3875
		inode->i_op = &ext4_special_inode_operations;
3876 3877 3878 3879 3880 3881
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3882 3883
	} else {
		ret = -EIO;
3884
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3885
		goto bad_inode;
3886
	}
3887
	brelse(iloc.bh);
3888
	ext4_set_inode_flags(inode);
3889 3890
	unlock_new_inode(inode);
	return inode;
3891 3892

bad_inode:
3893
	brelse(iloc.bh);
3894 3895
	iget_failed(inode);
	return ERR_PTR(ret);
3896 3897
}

3898 3899 3900 3901 3902 3903 3904 3905 3906 3907
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
3908
		 * i_blocks can be represented in a 32 bit variable
3909 3910
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3911
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3912
		raw_inode->i_blocks_high = 0;
3913
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3914 3915 3916 3917 3918 3919
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
3920 3921 3922 3923
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3924
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3925
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3926
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3927
	} else {
3928
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
3929 3930 3931 3932
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3933
	}
3934
	return 0;
3935 3936
}

3937 3938 3939 3940 3941 3942 3943
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
3944
static int ext4_do_update_inode(handle_t *handle,
3945
				struct inode *inode,
3946
				struct ext4_iloc *iloc)
3947
{
3948 3949
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
3950 3951
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;
3952
	int need_datasync = 0;
3953 3954
	uid_t i_uid;
	gid_t i_gid;
3955 3956 3957

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
3958
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3959
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3960

3961
	ext4_get_inode_flags(ei);
3962
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3963 3964
	i_uid = i_uid_read(inode);
	i_gid = i_gid_read(inode);
3965
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3966 3967
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
3968 3969 3970 3971
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
3972
		if (!ei->i_dtime) {
3973
			raw_inode->i_uid_high =
3974
				cpu_to_le16(high_16_bits(i_uid));
3975
			raw_inode->i_gid_high =
3976
				cpu_to_le16(high_16_bits(i_gid));
3977 3978 3979 3980 3981
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
3982 3983
		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
3984 3985 3986 3987
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
3988 3989 3990 3991 3992 3993

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

3994 3995
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
3996
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3997
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
3998 3999
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4000 4001
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4002
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4003 4004 4005 4006
	if (ei->i_disksize != ext4_isize(raw_inode)) {
		ext4_isize_set(raw_inode, ei->i_disksize);
		need_datasync = 1;
	}
4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4022
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4023
			ext4_handle_sync(handle);
4024
			err = ext4_handle_dirty_super(handle, sb);
4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4039
	} else if (!ext4_has_inline_data(inode)) {
4040 4041
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
4042
	}
4043

4044 4045 4046 4047 4048
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4049
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4050 4051
	}

4052 4053
	ext4_inode_csum_set(inode, raw_inode, ei);

4054
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4055
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4056 4057
	if (!err)
		err = rc;
4058
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4059

4060
	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4061
out_brelse:
4062
	brelse(bh);
4063
	ext4_std_error(inode->i_sb, err);
4064 4065 4066 4067
	return err;
}

/*
4068
 * ext4_write_inode()
4069 4070 4071 4072 4073
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
4074
 *   transaction to commit.
4075 4076 4077 4078 4079 4080 4081 4082 4083 4084
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4085
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4102
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4103
{
4104 4105
	int err;

4106 4107 4108
	if (current->flags & PF_MEMALLOC)
		return 0;

4109 4110 4111 4112 4113 4114
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
4115

4116
		if (wbc->sync_mode != WB_SYNC_ALL)
4117 4118 4119 4120 4121
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
4122

4123
		err = __ext4_get_inode_loc(inode, &iloc, 0);
4124 4125
		if (err)
			return err;
4126
		if (wbc->sync_mode == WB_SYNC_ALL)
4127 4128
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4129 4130
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
4131 4132
			err = -EIO;
		}
4133
		brelse(iloc.bh);
4134 4135
	}
	return err;
4136 4137
}

4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178
/*
 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
 * buffers that are attached to a page stradding i_size and are undergoing
 * commit. In that case we have to wait for commit to finish and try again.
 */
static void ext4_wait_for_tail_page_commit(struct inode *inode)
{
	struct page *page;
	unsigned offset;
	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
	tid_t commit_tid = 0;
	int ret;

	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
	/*
	 * All buffers in the last page remain valid? Then there's nothing to
	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
	 * blocksize case
	 */
	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
		return;
	while (1) {
		page = find_lock_page(inode->i_mapping,
				      inode->i_size >> PAGE_CACHE_SHIFT);
		if (!page)
			return;
		ret = __ext4_journalled_invalidatepage(page, offset);
		unlock_page(page);
		page_cache_release(page);
		if (ret != -EBUSY)
			return;
		commit_tid = 0;
		read_lock(&journal->j_state_lock);
		if (journal->j_committing_transaction)
			commit_tid = journal->j_committing_transaction->t_tid;
		read_unlock(&journal->j_state_lock);
		if (commit_tid)
			jbd2_log_wait_commit(journal, commit_tid);
	}
}

4179
/*
4180
 * ext4_setattr()
4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4194 4195 4196 4197 4198 4199 4200 4201
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4202
 */
4203
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4204 4205 4206
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
4207
	int orphan = 0;
4208 4209 4210 4211 4212 4213
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

4214
	if (is_quota_modification(inode, attr))
4215
		dquot_initialize(inode);
4216 4217
	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4218 4219 4220 4221
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
4222 4223 4224
		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4225 4226 4227 4228
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4229
		error = dquot_transfer(inode, attr);
4230
		if (error) {
4231
			ext4_journal_stop(handle);
4232 4233 4234 4235 4236 4237 4238 4239
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4240 4241
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4242 4243
	}

4244
	if (attr->ia_valid & ATTR_SIZE) {
4245

4246
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4247 4248
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

4249 4250
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
4251 4252 4253
		}
	}

4254
	if (S_ISREG(inode->i_mode) &&
4255
	    attr->ia_valid & ATTR_SIZE &&
4256
	    (attr->ia_size < inode->i_size)) {
4257 4258
		handle_t *handle;

4259
		handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4260 4261 4262 4263
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4264 4265 4266 4267
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
4268 4269
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4270 4271
		if (!error)
			error = rc;
4272
		ext4_journal_stop(handle);
4273 4274 4275 4276 4277 4278

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
4279 4280
				handle = ext4_journal_start(inode,
							    EXT4_HT_INODE, 3);
4281 4282 4283 4284 4285
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
4286
				orphan = 0;
4287 4288 4289 4290
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4291 4292
	}

4293
	if (attr->ia_valid & ATTR_SIZE) {
4294 4295 4296 4297 4298 4299 4300 4301 4302
		if (attr->ia_size != inode->i_size) {
			loff_t oldsize = inode->i_size;

			i_size_write(inode, attr->ia_size);
			/*
			 * Blocks are going to be removed from the inode. Wait
			 * for dio in flight.  Temporarily disable
			 * dioread_nolock to prevent livelock.
			 */
4303
			if (orphan) {
4304 4305 4306 4307 4308 4309
				if (!ext4_should_journal_data(inode)) {
					ext4_inode_block_unlocked_dio(inode);
					inode_dio_wait(inode);
					ext4_inode_resume_unlocked_dio(inode);
				} else
					ext4_wait_for_tail_page_commit(inode);
4310
			}
4311 4312 4313 4314 4315
			/*
			 * Truncate pagecache after we've waited for commit
			 * in data=journal mode to make pages freeable.
			 */
			truncate_pagecache(inode, oldsize, inode->i_size);
4316
		}
4317
		ext4_truncate(inode);
4318
	}
4319

C
Christoph Hellwig 已提交
4320 4321 4322 4323 4324 4325 4326 4327 4328
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
4329
	if (orphan && inode->i_nlink)
4330
		ext4_orphan_del(NULL, inode);
4331 4332

	if (!rc && (ia_valid & ATTR_MODE))
4333
		rc = ext4_acl_chmod(inode);
4334 4335

err_out:
4336
	ext4_std_error(inode->i_sb, error);
4337 4338 4339 4340 4341
	if (!error)
		error = rc;
	return error;
}

4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
4361 4362
	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
				EXT4_I(inode)->i_reserved_data_blocks);
4363 4364 4365 4366

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4367

4368 4369
static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
4370
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4371
		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4372
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4373
}
4374

4375
/*
4376 4377 4378
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4379
 *
4380
 * If datablocks are discontiguous, they are possible to spread over
4381
 * different block groups too. If they are contiguous, with flexbg,
4382
 * they could still across block group boundary.
4383
 *
4384 4385
 * Also account for superblock, inode, quota and xattr blocks
 */
4386
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4387
{
4388 4389
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
4416 4417
	if (groups > ngroups)
		groups = ngroups;
4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
L
Lucas De Marchi 已提交
4431
 * Calculate the total number of credits to reserve to fit
4432 4433
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4434
 *
4435
 * This could be called via ext4_write_begin()
4436
 *
4437
 * We need to consider the worse case, when
4438
 * one new block per extent.
4439
 */
A
Alex Tomas 已提交
4440
int ext4_writepage_trans_blocks(struct inode *inode)
4441
{
4442
	int bpp = ext4_journal_blocks_per_page(inode);
4443 4444
	int ret;

4445
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4446

4447
	/* Account for data blocks for journalled mode */
4448
	if (ext4_should_journal_data(inode))
4449
		ret += bpp;
4450 4451
	return ret;
}
4452 4453 4454 4455 4456

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
4457
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4458 4459 4460 4461 4462 4463 4464 4465 4466
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4467
/*
4468
 * The caller must have previously called ext4_reserve_inode_write().
4469 4470
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4471
int ext4_mark_iloc_dirty(handle_t *handle,
4472
			 struct inode *inode, struct ext4_iloc *iloc)
4473 4474 4475
{
	int err = 0;

4476
	if (IS_I_VERSION(inode))
4477 4478
		inode_inc_iversion(inode);

4479 4480 4481
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4482
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4483
	err = ext4_do_update_inode(handle, inode, iloc);
4484 4485 4486 4487 4488 4489 4490 4491 4492 4493
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4494 4495
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4496
{
4497 4498 4499 4500 4501 4502 4503 4504 4505
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
4506 4507
		}
	}
4508
	ext4_std_error(inode->i_sb, err);
4509 4510 4511
	return err;
}

4512 4513 4514 4515
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
4516 4517 4518 4519
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
4532 4533
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 */
4558
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4559
{
4560
	struct ext4_iloc iloc;
4561 4562 4563
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
4564 4565

	might_sleep();
4566
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4567
	err = ext4_reserve_inode_write(handle, inode, &iloc);
4568 4569
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4570
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
4584 4585
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
4586 4587
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4588
					ext4_warning(inode->i_sb,
4589 4590 4591
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
4592 4593
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
4594 4595 4596 4597
				}
			}
		}
	}
4598
	if (!err)
4599
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4600 4601 4602 4603
	return err;
}

/*
4604
 * ext4_dirty_inode() is called from __mark_inode_dirty()
4605 4606 4607 4608 4609
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
4610
 * Also, dquot_alloc_block() will always dirty the inode when blocks
4611 4612 4613 4614 4615 4616
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
4617
void ext4_dirty_inode(struct inode *inode, int flags)
4618 4619 4620
{
	handle_t *handle;

4621
	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4622 4623
	if (IS_ERR(handle))
		goto out;
4624 4625 4626

	ext4_mark_inode_dirty(handle, inode);

4627
	ext4_journal_stop(handle);
4628 4629 4630 4631 4632 4633 4634 4635
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
4636
 * ext4_reserve_inode_write, this leaves behind no bh reference and
4637 4638 4639
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
4640
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4641
{
4642
	struct ext4_iloc iloc;
4643 4644 4645

	int err = 0;
	if (handle) {
4646
		err = ext4_get_inode_loc(inode, &iloc);
4647 4648
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
4649
			err = jbd2_journal_get_write_access(handle, iloc.bh);
4650
			if (!err)
4651
				err = ext4_handle_dirty_metadata(handle,
4652
								 NULL,
4653
								 iloc.bh);
4654 4655 4656
			brelse(iloc.bh);
		}
	}
4657
	ext4_std_error(inode->i_sb, err);
4658 4659 4660 4661
	return err;
}
#endif

4662
int ext4_change_inode_journal_flag(struct inode *inode, int val)
4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

4678
	journal = EXT4_JOURNAL(inode);
4679 4680
	if (!journal)
		return 0;
4681
	if (is_journal_aborted(journal))
4682
		return -EROFS;
4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
	/* We have to allocate physical blocks for delalloc blocks
	 * before flushing journal. otherwise delalloc blocks can not
	 * be allocated any more. even more truncate on delalloc blocks
	 * could trigger BUG by flushing delalloc blocks in journal.
	 * There is no delalloc block in non-journal data mode.
	 */
	if (val && test_opt(inode->i_sb, DELALLOC)) {
		err = ext4_alloc_da_blocks(inode);
		if (err < 0)
			return err;
	}
4694

4695 4696 4697 4698
	/* Wait for all existing dio workers */
	ext4_inode_block_unlocked_dio(inode);
	inode_dio_wait(inode);

4699
	jbd2_journal_lock_updates(journal);
4700 4701 4702 4703 4704 4705 4706 4707 4708 4709

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
4710
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4711 4712
	else {
		jbd2_journal_flush(journal);
4713
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4714
	}
4715
	ext4_set_aops(inode);
4716

4717
	jbd2_journal_unlock_updates(journal);
4718
	ext4_inode_resume_unlocked_dio(inode);
4719 4720 4721

	/* Finally we can mark the inode as dirty. */

4722
	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4723 4724 4725
	if (IS_ERR(handle))
		return PTR_ERR(handle);

4726
	err = ext4_mark_inode_dirty(handle, inode);
4727
	ext4_handle_sync(handle);
4728 4729
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
4730 4731 4732

	return err;
}
4733 4734 4735 4736 4737 4738

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

4739
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4740
{
4741
	struct page *page = vmf->page;
4742 4743
	loff_t size;
	unsigned long len;
4744
	int ret;
4745 4746 4747
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;
4748 4749 4750
	handle_t *handle;
	get_block_t *get_block;
	int retries = 0;
4751

4752
	sb_start_pagefault(inode->i_sb);
4753
	file_update_time(vma->vm_file);
4754 4755 4756 4757 4758 4759 4760 4761 4762 4763
	/* Delalloc case is easy... */
	if (test_opt(inode->i_sb, DELALLOC) &&
	    !ext4_should_journal_data(inode) &&
	    !ext4_nonda_switch(inode->i_sb)) {
		do {
			ret = __block_page_mkwrite(vma, vmf,
						   ext4_da_get_block_prep);
		} while (ret == -ENOSPC &&
		       ext4_should_retry_alloc(inode->i_sb, &retries));
		goto out_ret;
4764
	}
4765 4766

	lock_page(page);
4767 4768 4769 4770 4771 4772
	size = i_size_read(inode);
	/* Page got truncated from under us? */
	if (page->mapping != mapping || page_offset(page) > size) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
4773
	}
4774 4775 4776 4777 4778

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
4779
	/*
4780 4781
	 * Return if we have all the buffers mapped. This avoids the need to do
	 * journal_start/journal_stop which can block and take a long time
4782
	 */
4783
	if (page_has_buffers(page)) {
4784 4785 4786
		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
					    0, len, NULL,
					    ext4_bh_unmapped)) {
4787 4788 4789 4790
			/* Wait so that we don't change page under IO */
			wait_on_page_writeback(page);
			ret = VM_FAULT_LOCKED;
			goto out;
4791
		}
4792
	}
4793
	unlock_page(page);
4794 4795 4796 4797 4798 4799
	/* OK, we need to fill the hole... */
	if (ext4_should_dioread_nolock(inode))
		get_block = ext4_get_block_write;
	else
		get_block = ext4_get_block;
retry_alloc:
4800 4801
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
				    ext4_writepage_trans_blocks(inode));
4802
	if (IS_ERR(handle)) {
4803
		ret = VM_FAULT_SIGBUS;
4804 4805 4806 4807
		goto out;
	}
	ret = __block_page_mkwrite(vma, vmf, get_block);
	if (!ret && ext4_should_journal_data(inode)) {
4808
		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
4809 4810 4811
			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
			unlock_page(page);
			ret = VM_FAULT_SIGBUS;
4812
			ext4_journal_stop(handle);
4813 4814 4815 4816 4817 4818 4819 4820 4821 4822
			goto out;
		}
		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
	}
	ext4_journal_stop(handle);
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry_alloc;
out_ret:
	ret = block_page_mkwrite_return(ret);
out:
4823
	sb_end_pagefault(inode->i_sb);
4824 4825
	return ret;
}