inode.c 127.6 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
18
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 20 21 22 23
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
24
#include <linux/jbd2.h>
25 26 27 28 29 30
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
31
#include <linux/pagevec.h>
32
#include <linux/mpage.h>
33
#include <linux/namei.h>
34 35
#include <linux/uio.h>
#include <linux/bio.h>
36
#include <linux/workqueue.h>
37
#include <linux/kernel.h>
38
#include <linux/printk.h>
39
#include <linux/slab.h>
40
#include <linux/ratelimit.h>
41

42
#include "ext4_jbd2.h"
43 44
#include "xattr.h"
#include "acl.h"
45
#include "ext4_extents.h"
46
#include "truncate.h"
47

48 49
#include <trace/events/ext4.h>

50 51
#define MPAGE_DA_EXTENT_TAIL 0x01

52 53 54
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
55
	trace_ext4_begin_ordered_truncate(inode, new_size);
56 57 58 59 60 61 62 63 64 65 66
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
67 68
}

69
static void ext4_invalidatepage(struct page *page, unsigned long offset);
70 71 72 73 74 75
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create);
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
76

77 78 79
/*
 * Test whether an inode is a fast symlink.
 */
80
static int ext4_inode_is_fast_symlink(struct inode *inode)
81
{
82
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
83 84 85 86 87 88 89 90 91 92
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
93
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
94
				 int nblocks)
95
{
96 97 98
	int ret;

	/*
99
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
100 101 102 103
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
104
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
105
	jbd_debug(2, "restarting handle %p\n", handle);
106
	up_write(&EXT4_I(inode)->i_data_sem);
107
	ret = ext4_journal_restart(handle, nblocks);
108
	down_write(&EXT4_I(inode)->i_data_sem);
109
	ext4_discard_preallocations(inode);
110 111

	return ret;
112 113 114 115 116
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
117
void ext4_evict_inode(struct inode *inode)
118 119
{
	handle_t *handle;
120
	int err;
121

122
	trace_ext4_evict_inode(inode);
A
Al Viro 已提交
123
	if (inode->i_nlink) {
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
		/*
		 * When journalling data dirty buffers are tracked only in the
		 * journal. So although mm thinks everything is clean and
		 * ready for reaping the inode might still have some pages to
		 * write in the running transaction or waiting to be
		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
		 * (via truncate_inode_pages()) to discard these buffers can
		 * cause data loss. Also even if we did not discard these
		 * buffers, we would have no way to find them after the inode
		 * is reaped and thus user could see stale data if he tries to
		 * read them before the transaction is checkpointed. So be
		 * careful and force everything to disk here... We use
		 * ei->i_datasync_tid to store the newest transaction
		 * containing inode's data.
		 *
		 * Note that directories do not have this problem because they
		 * don't use page cache.
		 */
		if (ext4_should_journal_data(inode) &&
		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;

			jbd2_log_start_commit(journal, commit_tid);
			jbd2_log_wait_commit(journal, commit_tid);
			filemap_write_and_wait(&inode->i_data);
		}
A
Al Viro 已提交
151 152 153 154
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

155
	if (!is_bad_inode(inode))
156
		dquot_initialize(inode);
157

158 159
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
160 161 162 163 164
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

165
	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
166
	if (IS_ERR(handle)) {
167
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
168 169 170 171 172
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
173
		ext4_orphan_del(NULL, inode);
174 175 176 177
		goto no_delete;
	}

	if (IS_SYNC(inode))
178
		ext4_handle_sync(handle);
179
	inode->i_size = 0;
180 181
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
182
		ext4_warning(inode->i_sb,
183 184 185
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
186
	if (inode->i_blocks)
187
		ext4_truncate(inode);
188 189 190 191 192 193 194

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
195
	if (!ext4_handle_has_enough_credits(handle, 3)) {
196 197 198 199
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
200
			ext4_warning(inode->i_sb,
201 202 203
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
204
			ext4_orphan_del(NULL, inode);
205 206 207 208
			goto no_delete;
		}
	}

209
	/*
210
	 * Kill off the orphan record which ext4_truncate created.
211
	 * AKPM: I think this can be inside the above `if'.
212
	 * Note that ext4_orphan_del() has to be able to cope with the
213
	 * deletion of a non-existent orphan - this is because we don't
214
	 * know if ext4_truncate() actually created an orphan record.
215 216
	 * (Well, we could do this if we need to, but heck - it works)
	 */
217 218
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
219 220 221 222 223 224 225 226

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
227
	if (ext4_mark_inode_dirty(handle, inode))
228
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
229
		ext4_clear_inode(inode);
230
	else
231 232
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
233 234
	return;
no_delete:
A
Al Viro 已提交
235
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
236 237
}

238 239
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
240
{
241
	return &EXT4_I(inode)->i_reserved_quota;
242
}
243
#endif
244

245 246
/*
 * Calculate the number of metadata blocks need to reserve
247
 * to allocate a block located at @lblock
248
 */
249
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
250
{
251
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
252
		return ext4_ext_calc_metadata_amount(inode, lblock);
253

254
	return ext4_ind_calc_metadata_amount(inode, lblock);
255 256
}

257 258 259 260
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
261 262
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
263 264
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
265 266 267
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
268
	trace_ext4_da_update_reserve_space(inode, used);
269 270 271 272 273 274 275 276
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
			 "with only %d reserved data blocks\n",
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
277

278 279 280
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
281 282
	percpu_counter_sub(&sbi->s_dirtyblocks_counter,
			   used + ei->i_allocated_meta_blocks);
283
	ei->i_allocated_meta_blocks = 0;
284

285 286 287 288 289 290
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
291 292
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
293
		ei->i_reserved_meta_blocks = 0;
294
		ei->i_da_metadata_calc_len = 0;
295
	}
296
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
297

298 299
	/* Update quota subsystem for data blocks */
	if (quota_claim)
300
		dquot_claim_block(inode, used);
301
	else {
302 303 304
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
305
		 * not re-claim the quota for fallocated blocks.
306
		 */
307
		dquot_release_reservation_block(inode, used);
308
	}
309 310 311 312 313 314

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
315 316
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
317
		ext4_discard_preallocations(inode);
318 319
}

320
static int __check_block_validity(struct inode *inode, const char *func,
321 322
				unsigned int line,
				struct ext4_map_blocks *map)
323
{
324 325
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
326 327 328 329
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
330 331 332 333 334
		return -EIO;
	}
	return 0;
}

335
#define check_block_validity(inode, map)	\
336
	__check_block_validity((inode), __func__, __LINE__, (map))
337

338
/*
339 340
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
374 375 376 377 378 379 380 381 382
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
383 384 385 386 387
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
388 389
			if (num >= max_pages) {
				done = 1;
390
				break;
391
			}
392 393 394 395 396 397
		}
		pagevec_release(&pvec);
	}
	return num;
}

398
/*
399
 * The ext4_map_blocks() function tries to look up the requested blocks,
400
 * and returns if the blocks are already mapped.
401 402 403 404 405
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
406 407
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
408 409 410 411 412 413 414 415 416 417 418 419
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
420 421
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
422 423
{
	int retval;
424

425 426 427 428
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
429
	/*
430 431
	 * Try to see if we can get the block without requesting a new
	 * file system block.
432 433
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
434
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
435
		retval = ext4_ext_map_blocks(handle, inode, map, 0);
436
	} else {
437
		retval = ext4_ind_map_blocks(handle, inode, map, 0);
438
	}
439
	up_read((&EXT4_I(inode)->i_data_sem));
440

441
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
442
		int ret = check_block_validity(inode, map);
443 444 445 446
		if (ret != 0)
			return ret;
	}

447
	/* If it is only a block(s) look up */
448
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
449 450 451 452 453 454 455 456 457
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
458
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
459 460
		return retval;

461 462 463 464 465 466 467 468 469 470
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
471
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
472

473
	/*
474 475 476 477
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
478 479
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
480 481 482 483 484 485 486

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
487
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
488
		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
489 490 491 492
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
493
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
494
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
495
	} else {
496
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
497

498
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
499 500 501 502 503
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
504
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
505
		}
506

507 508 509 510 511 512 513
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
514
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
515 516
			ext4_da_update_reserve_space(inode, retval, 1);
	}
517
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
518
		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
519

520
	up_write((&EXT4_I(inode)->i_data_sem));
521
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
522
		int ret = check_block_validity(inode, map);
523 524 525
		if (ret != 0)
			return ret;
	}
526 527 528
	return retval;
}

529 530 531
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

532 533
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
534
{
535
	handle_t *handle = ext4_journal_current_handle();
536
	struct ext4_map_blocks map;
J
Jan Kara 已提交
537
	int ret = 0, started = 0;
538
	int dio_credits;
539

540 541 542 543
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

	if (flags && !handle) {
J
Jan Kara 已提交
544
		/* Direct IO write... */
545 546 547
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
548
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
549
		if (IS_ERR(handle)) {
550
			ret = PTR_ERR(handle);
551
			return ret;
552
		}
J
Jan Kara 已提交
553
		started = 1;
554 555
	}

556
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
557
	if (ret > 0) {
558 559 560
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
561
		ret = 0;
562
	}
J
Jan Kara 已提交
563 564
	if (started)
		ext4_journal_stop(handle);
565 566 567
	return ret;
}

568 569 570 571 572 573 574
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

575 576 577
/*
 * `handle' can be NULL if create is zero
 */
578
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
579
				ext4_lblk_t block, int create, int *errp)
580
{
581 582
	struct ext4_map_blocks map;
	struct buffer_head *bh;
583 584 585 586
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

587 588 589 590
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
591

592 593 594 595 596 597 598 599 600 601
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;
	*errp = 0;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
	if (!bh) {
		*errp = -EIO;
		return NULL;
602
	}
603 604 605
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
606

607 608 609 610 611 612 613 614 615 616 617 618 619
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
620
		}
621 622 623 624 625 626 627
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
628
	}
629 630 631 632 633 634
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
635 636
}

637
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
638
			       ext4_lblk_t block, int create, int *err)
639
{
640
	struct buffer_head *bh;
641

642
	bh = ext4_getblk(handle, inode, block, create, err);
643 644 645 646 647 648 649 650 651 652 653 654 655
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

656 657 658 659 660 661 662
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
663 664 665 666 667 668 669
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

670 671
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
672
	     block_start = block_end, bh = next) {
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
690
 * close off a transaction and start a new one between the ext4_get_block()
691
 * and the commit_write().  So doing the jbd2_journal_start at the start of
692 693
 * prepare_write() is the right place.
 *
694 695
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
696 697 698 699
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
700
 * By accident, ext4 can be reentered when a transaction is open via
701 702 703 704 705 706
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
707
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
708 709 710 711 712
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
713
				       struct buffer_head *bh)
714
{
715 716 717
	int dirty = buffer_dirty(bh);
	int ret;

718 719
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
720
	/*
C
Christoph Hellwig 已提交
721
	 * __block_write_begin() could have dirtied some buffers. Clean
722 723
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
724
	 * by __block_write_begin() isn't a real problem here as we clear
725 726 727 728 729 730 731 732 733
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
734 735
}

736 737
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
738
static int ext4_write_begin(struct file *file, struct address_space *mapping,
739 740
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
741
{
742
	struct inode *inode = mapping->host;
743
	int ret, needed_blocks;
744 745
	handle_t *handle;
	int retries = 0;
746
	struct page *page;
747
	pgoff_t index;
748
	unsigned from, to;
N
Nick Piggin 已提交
749

750
	trace_ext4_write_begin(inode, pos, len, flags);
751 752 753 754 755
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
756
	index = pos >> PAGE_CACHE_SHIFT;
757 758
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
759 760

retry:
761 762 763 764
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
765
	}
766

767 768 769 770
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

771
	page = grab_cache_page_write_begin(mapping, index, flags);
772 773 774 775 776 777 778
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

779
	if (ext4_should_dioread_nolock(inode))
780
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
781
	else
782
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
783 784

	if (!ret && ext4_should_journal_data(inode)) {
785 786 787
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
788 789

	if (ret) {
790 791
		unlock_page(page);
		page_cache_release(page);
792
		/*
793
		 * __block_write_begin may have instantiated a few blocks
794 795
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
796 797 798
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
799
		 */
800
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
801 802 803 804
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
805
			ext4_truncate_failed_write(inode);
806
			/*
807
			 * If truncate failed early the inode might
808 809 810 811 812 813 814
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
815 816
	}

817
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
818
		goto retry;
819
out:
820 821 822
	return ret;
}

N
Nick Piggin 已提交
823 824
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
825 826 827 828
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
829
	return ext4_handle_dirty_metadata(handle, NULL, bh);
830 831
}

832
static int ext4_generic_write_end(struct file *file,
833 834 835
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

878 879 880 881
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
882
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
883 884
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
885
static int ext4_ordered_write_end(struct file *file,
886 887 888
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
889
{
890
	handle_t *handle = ext4_journal_current_handle();
891
	struct inode *inode = mapping->host;
892 893
	int ret = 0, ret2;

894
	trace_ext4_ordered_write_end(inode, pos, len, copied);
895
	ret = ext4_jbd2_file_inode(handle, inode);
896 897

	if (ret == 0) {
898
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
899
							page, fsdata);
900
		copied = ret2;
901
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
902 903 904 905 906
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
907 908
		if (ret2 < 0)
			ret = ret2;
909
	}
910
	ret2 = ext4_journal_stop(handle);
911 912
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
913

914
	if (pos + len > inode->i_size) {
915
		ext4_truncate_failed_write(inode);
916
		/*
917
		 * If truncate failed early the inode might still be
918 919 920 921 922 923 924 925
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
926
	return ret ? ret : copied;
927 928
}

N
Nick Piggin 已提交
929
static int ext4_writeback_write_end(struct file *file,
930 931 932
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
933
{
934
	handle_t *handle = ext4_journal_current_handle();
935
	struct inode *inode = mapping->host;
936 937
	int ret = 0, ret2;

938
	trace_ext4_writeback_write_end(inode, pos, len, copied);
939
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
940
							page, fsdata);
941
	copied = ret2;
942
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
943 944 945 946 947 948
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

949 950
	if (ret2 < 0)
		ret = ret2;
951

952
	ret2 = ext4_journal_stop(handle);
953 954
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
955

956
	if (pos + len > inode->i_size) {
957
		ext4_truncate_failed_write(inode);
958
		/*
959
		 * If truncate failed early the inode might still be
960 961 962 963 964 965 966
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
967
	return ret ? ret : copied;
968 969
}

N
Nick Piggin 已提交
970
static int ext4_journalled_write_end(struct file *file,
971 972 973
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
974
{
975
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
976
	struct inode *inode = mapping->host;
977 978
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
979
	unsigned from, to;
980
	loff_t new_i_size;
981

982
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
983 984 985
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

986 987
	BUG_ON(!ext4_handle_valid(handle));

N
Nick Piggin 已提交
988 989 990 991 992
	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
993 994

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
995
				to, &partial, write_end_fn);
996 997
	if (!partial)
		SetPageUptodate(page);
998 999
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1000
		i_size_write(inode, pos+copied);
1001
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1002
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1003 1004
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1005
		ret2 = ext4_mark_inode_dirty(handle, inode);
1006 1007 1008
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1009

1010
	unlock_page(page);
1011
	page_cache_release(page);
1012
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1013 1014 1015 1016 1017 1018
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1019
	ret2 = ext4_journal_stop(handle);
1020 1021
	if (!ret)
		ret = ret2;
1022
	if (pos + len > inode->i_size) {
1023
		ext4_truncate_failed_write(inode);
1024
		/*
1025
		 * If truncate failed early the inode might still be
1026 1027 1028 1029 1030 1031
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1032 1033

	return ret ? ret : copied;
1034
}
1035

1036 1037 1038
/*
 * Reserve a single block located at lblock
 */
1039
static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1040
{
A
Aneesh Kumar K.V 已提交
1041
	int retries = 0;
1042
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1043
	struct ext4_inode_info *ei = EXT4_I(inode);
1044
	unsigned long md_needed;
1045
	int ret;
1046 1047 1048 1049 1050 1051

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1052
repeat:
1053
	spin_lock(&ei->i_block_reservation_lock);
1054
	md_needed = ext4_calc_metadata_amount(inode, lblock);
1055
	trace_ext4_da_reserve_space(inode, md_needed);
1056
	spin_unlock(&ei->i_block_reservation_lock);
1057

1058
	/*
1059 1060 1061
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
1062
	 */
1063
	ret = dquot_reserve_block(inode, 1);
1064 1065
	if (ret)
		return ret;
1066 1067 1068 1069
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1070
	if (ext4_claim_free_blocks(sbi, md_needed + 1, 0)) {
1071
		dquot_release_reservation_block(inode, 1);
A
Aneesh Kumar K.V 已提交
1072 1073 1074 1075
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1076 1077
		return -ENOSPC;
	}
1078
	spin_lock(&ei->i_block_reservation_lock);
1079
	ei->i_reserved_data_blocks++;
1080 1081
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1082

1083 1084 1085
	return 0;       /* success */
}

1086
static void ext4_da_release_space(struct inode *inode, int to_free)
1087 1088
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1089
	struct ext4_inode_info *ei = EXT4_I(inode);
1090

1091 1092 1093
	if (!to_free)
		return;		/* Nothing to release, exit */

1094
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1095

L
Li Zefan 已提交
1096
	trace_ext4_da_release_space(inode, to_free);
1097
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1098
		/*
1099 1100 1101 1102
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1103
		 */
1104 1105 1106 1107 1108 1109
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
			 "data blocks\n", inode->i_ino, to_free,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1110
	}
1111
	ei->i_reserved_data_blocks -= to_free;
1112

1113 1114 1115 1116 1117 1118
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1119 1120
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
1121
		ei->i_reserved_meta_blocks = 0;
1122
		ei->i_da_metadata_calc_len = 0;
1123
	}
1124

1125
	/* update fs dirty data blocks counter */
1126
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1127 1128

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1129

1130
	dquot_release_reservation_block(inode, to_free);
1131 1132 1133
}

static void ext4_da_page_release_reservation(struct page *page,
1134
					     unsigned long offset)
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1151
	ext4_da_release_space(page->mapping->host, to_release);
1152
}
1153

1154 1155 1156 1157 1158 1159
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1160
 * them with writepage() call back
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
1171 1172
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
1173
{
1174 1175 1176 1177 1178
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1179
	loff_t size = i_size_read(inode);
1180 1181
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
1182
	int journal_data = ext4_should_journal_data(inode);
1183
	sector_t pblock = 0, cur_logical = 0;
1184
	struct ext4_io_submit io_submit;
1185 1186

	BUG_ON(mpd->next_page <= mpd->first_page);
1187
	memset(&io_submit, 0, sizeof(io_submit));
1188 1189 1190
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1191
	 * If we look at mpd->b_blocknr we would only be looking
1192 1193
	 * at the currently mapped buffer_heads.
	 */
1194 1195 1196
	index = mpd->first_page;
	end = mpd->next_page - 1;

1197
	pagevec_init(&pvec, 0);
1198
	while (index <= end) {
1199
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1200 1201 1202
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
1203
			int commit_write = 0, skip_page = 0;
1204 1205
			struct page *page = pvec.pages[i];

1206 1207 1208
			index = page->index;
			if (index > end)
				break;
1209 1210 1211 1212 1213

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
1214 1215 1216 1217 1218 1219
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
1220 1221 1222 1223 1224
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1225
			/*
1226 1227
			 * If the page does not have buffers (for
			 * whatever reason), try to create them using
1228
			 * __block_write_begin.  If this fails,
1229
			 * skip the page and move on.
1230
			 */
1231
			if (!page_has_buffers(page)) {
1232
				if (__block_write_begin(page, 0, len,
1233
						noalloc_get_block_write)) {
1234
				skip_page:
1235 1236 1237 1238 1239
					unlock_page(page);
					continue;
				}
				commit_write = 1;
			}
1240

1241 1242
			bh = page_bufs = page_buffers(page);
			block_start = 0;
1243
			do {
1244
				if (!bh)
1245
					goto skip_page;
1246 1247 1248
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
1249 1250 1251 1252
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
1253 1254 1255 1256 1257 1258 1259
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
1260

1261
				/* skip page if block allocation undone */
1262
				if (buffer_delay(bh) || buffer_unwritten(bh))
1263
					skip_page = 1;
1264 1265
				bh = bh->b_this_page;
				block_start += bh->b_size;
1266 1267
				cur_logical++;
				pblock++;
1268 1269
			} while (bh != page_bufs);

1270 1271
			if (skip_page)
				goto skip_page;
1272 1273 1274 1275 1276

			if (commit_write)
				/* mark the buffer_heads as dirty & uptodate */
				block_commit_write(page, 0, len);

1277
			clear_page_dirty_for_io(page);
1278 1279 1280 1281 1282 1283
			/*
			 * Delalloc doesn't support data journalling,
			 * but eventually maybe we'll lift this
			 * restriction.
			 */
			if (unlikely(journal_data && PageChecked(page)))
1284
				err = __ext4_journalled_writepage(page, len);
1285
			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1286 1287
				err = ext4_bio_write_page(&io_submit, page,
							  len, mpd->wbc);
1288 1289 1290
			else
				err = block_write_full_page(page,
					noalloc_get_block_write, mpd->wbc);
1291 1292

			if (!err)
1293
				mpd->pages_written++;
1294 1295 1296 1297 1298 1299 1300 1301 1302
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
1303
	ext4_io_submit(&io_submit);
1304 1305 1306
	return ret;
}

1307
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1308 1309 1310 1311 1312 1313 1314
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

1315 1316
	index = mpd->first_page;
	end   = mpd->next_page - 1;
1317 1318 1319 1320 1321 1322
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
1323
			if (page->index > end)
1324 1325 1326 1327 1328 1329 1330
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
1331 1332
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
1333 1334 1335 1336
	}
	return;
}

1337 1338 1339
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
	printk(KERN_CRIT "Total free blocks count %lld\n",
	       ext4_count_free_blocks(inode->i_sb));
	printk(KERN_CRIT "Free/Dirty block details\n");
	printk(KERN_CRIT "free_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
	printk(KERN_CRIT "dirty_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
	printk(KERN_CRIT "Block reservation details\n");
	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_data_blocks);
	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_meta_blocks);
1352 1353 1354
	return;
}

1355
/*
1356 1357
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
1358
 *
1359
 * @mpd - bh describing space
1360 1361 1362 1363
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1364
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1365
{
1366
	int err, blks, get_blocks_flags;
1367
	struct ext4_map_blocks map, *mapp = NULL;
1368 1369 1370 1371
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
1372 1373

	/*
1374 1375
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
1376
	 */
1377 1378 1379 1380 1381
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
1382 1383 1384 1385

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

1386
	/*
1387
	 * Call ext4_map_blocks() to allocate any delayed allocation
1388 1389 1390 1391 1392 1393 1394 1395
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
1396
	 * want to change *many* call functions, so ext4_map_blocks()
1397
	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1398 1399 1400 1401 1402
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
1403
	 */
1404 1405
	map.m_lblk = next;
	map.m_len = max_blocks;
1406
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1407 1408
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1409
	if (mpd->b_state & (1 << BH_Delay))
1410 1411
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

1412
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1413
	if (blks < 0) {
1414 1415
		struct super_block *sb = mpd->inode->i_sb;

1416
		err = blks;
1417
		/*
1418
		 * If get block returns EAGAIN or ENOSPC and there
1419 1420
		 * appears to be free blocks we will just let
		 * mpage_da_submit_io() unlock all of the pages.
1421 1422
		 */
		if (err == -EAGAIN)
1423
			goto submit_io;
1424 1425

		if (err == -ENOSPC &&
1426
		    ext4_count_free_blocks(sb)) {
1427
			mpd->retval = err;
1428
			goto submit_io;
1429 1430
		}

1431
		/*
1432 1433 1434 1435 1436
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
1437
		 */
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
				"This should not happen!! Data will be lost\n");
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
1449
		}
1450
		/* invalidate all the pages */
1451
		ext4_da_block_invalidatepages(mpd);
1452 1453 1454

		/* Mark this page range as having been completed */
		mpd->io_done = 1;
1455
		return;
1456
	}
1457 1458
	BUG_ON(blks == 0);

1459
	mapp = &map;
1460 1461 1462
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
1463

1464 1465 1466
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
	}
1467

1468 1469 1470
	if (ext4_should_order_data(mpd->inode)) {
		err = ext4_jbd2_file_inode(handle, mpd->inode);
		if (err)
1471 1472
			/* This only happens if the journal is aborted */
			return;
1473 1474 1475
	}

	/*
1476
	 * Update on-disk size along with block allocation.
1477 1478 1479 1480 1481 1482
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
1483 1484 1485 1486 1487
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
1488 1489
	}

1490
submit_io:
1491
	mpage_da_submit_io(mpd, mapp);
1492
	mpd->io_done = 1;
1493 1494
}

1495 1496
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1508 1509
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
1510 1511
{
	sector_t next;
1512
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1513

1514 1515 1516 1517
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
1518
	 * ext4_map_blocks() multiple times in a loop
1519 1520 1521 1522
	 */
	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
		goto flush_it;

1523
	/* check if thereserved journal credits might overflow */
1524
	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
1545 1546 1547
	/*
	 * First block in the extent
	 */
1548 1549 1550 1551
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
1552 1553 1554
		return;
	}

1555
	next = mpd->b_blocknr + nrblocks;
1556 1557 1558
	/*
	 * Can we merge the block to our big extent?
	 */
1559 1560
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
1561 1562 1563
		return;
	}

1564
flush_it:
1565 1566 1567 1568
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
1569
	mpage_da_map_and_submit(mpd);
1570
	return;
1571 1572
}

1573
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1574
{
1575
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1576 1577
}

1578
/*
1579 1580 1581
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
1582 1583 1584 1585 1586 1587 1588
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
1589 1590
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1591
				  struct buffer_head *bh, int create)
1592
{
1593
	struct ext4_map_blocks map;
1594
	int ret = 0;
1595 1596 1597 1598
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;
1599 1600

	BUG_ON(create == 0);
1601 1602 1603 1604
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
1605 1606 1607 1608 1609 1610

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
1611 1612 1613 1614 1615 1616
	ret = ext4_map_blocks(NULL, inode, &map, 0);
	if (ret < 0)
		return ret;
	if (ret == 0) {
		if (buffer_delay(bh))
			return 0; /* Not sure this could or should happen */
1617
		/*
C
Christoph Hellwig 已提交
1618
		 * XXX: __block_write_begin() unmaps passed block, is it OK?
1619
		 */
1620
		ret = ext4_da_reserve_space(inode, iblock);
1621 1622 1623 1624
		if (ret)
			/* not enough space to reserve */
			return ret;

1625 1626 1627 1628
		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
		return 0;
1629 1630
	}

1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
1642
		set_buffer_mapped(bh);
1643 1644
	}
	return 0;
1645
}
1646

1647 1648 1649
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
C
Christoph Hellwig 已提交
1650
 * callback function for block_write_begin() and block_write_full_page().
1651
 * These functions should only try to map a single block at a time.
1652 1653 1654 1655 1656
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
1657 1658 1659
 * delayed allocation before calling  block_write_full_page().  Otherwise,
 * b_blocknr could be left unitialized, and the page write functions will
 * be taken by surprise.
1660 1661
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1662 1663
				   struct buffer_head *bh_result, int create)
{
1664
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1665
	return _ext4_get_block(inode, iblock, bh_result, 0);
1666 1667
}

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

1690
	ClearPageChecked(page);
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

1704 1705
	BUG_ON(!ext4_handle_valid(handle));

1706 1707 1708 1709 1710 1711 1712
	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
1713
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1714 1715 1716 1717 1718
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1719
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1720 1721 1722 1723
out:
	return ret;
}

1724 1725 1726
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);

1727
/*
1728 1729 1730 1731
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
L
Lucas De Marchi 已提交
1732
 * we are writing back data modified via mmap(), no one guarantees in which
1733 1734 1735 1736
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
1737 1738 1739 1740 1741
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
 * but other bufer_heads would be unmapped but dirty(dirty done via the
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1767
 */
1768
static int ext4_writepage(struct page *page,
1769
			  struct writeback_control *wbc)
1770
{
T
Theodore Ts'o 已提交
1771
	int ret = 0, commit_write = 0;
1772
	loff_t size;
1773
	unsigned int len;
1774
	struct buffer_head *page_bufs = NULL;
1775 1776
	struct inode *inode = page->mapping->host;

L
Lukas Czerner 已提交
1777
	trace_ext4_writepage(page);
1778 1779 1780 1781 1782
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
1783

T
Theodore Ts'o 已提交
1784 1785
	/*
	 * If the page does not have buffers (for whatever reason),
1786
	 * try to create them using __block_write_begin.  If this
T
Theodore Ts'o 已提交
1787 1788
	 * fails, redirty the page and move on.
	 */
1789
	if (!page_has_buffers(page)) {
1790
		if (__block_write_begin(page, 0, len,
T
Theodore Ts'o 已提交
1791 1792
					noalloc_get_block_write)) {
		redirty_page:
1793 1794 1795 1796
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
1797 1798 1799 1800 1801
		commit_write = 1;
	}
	page_bufs = page_buffers(page);
	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
			      ext4_bh_delay_or_unwritten)) {
1802
		/*
1803 1804 1805 1806
		 * We don't want to do block allocation, so redirty
		 * the page and return.  We may reach here when we do
		 * a journal commit via journal_submit_inode_data_buffers.
		 * We can also reach here via shrink_page_list
1807
		 */
T
Theodore Ts'o 已提交
1808 1809 1810
		goto redirty_page;
	}
	if (commit_write)
1811
		/* now mark the buffer_heads as dirty and uptodate */
1812
		block_commit_write(page, 0, len);
1813

1814
	if (PageChecked(page) && ext4_should_journal_data(inode))
1815 1816 1817 1818
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
1819
		return __ext4_journalled_writepage(page, len);
1820

T
Theodore Ts'o 已提交
1821
	if (buffer_uninit(page_bufs)) {
1822 1823 1824 1825
		ext4_set_bh_endio(page_bufs, inode);
		ret = block_write_full_page_endio(page, noalloc_get_block_write,
					    wbc, ext4_end_io_buffer_write);
	} else
1826 1827
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
1828 1829 1830 1831

	return ret;
}

1832
/*
1833
 * This is called via ext4_da_writepages() to
L
Lucas De Marchi 已提交
1834
 * calculate the total number of credits to reserve to fit
1835 1836 1837
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
1838
 */
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
1850
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1851 1852 1853 1854 1855
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
1856

1857 1858
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
1859
 * address space and accumulate pages that need writing, and call
1860 1861
 * mpage_da_map_and_submit to map a single contiguous memory region
 * and then write them.
1862 1863 1864
 */
static int write_cache_pages_da(struct address_space *mapping,
				struct writeback_control *wbc,
1865 1866
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
1867
{
1868
	struct buffer_head	*bh, *head;
1869
	struct inode		*inode = mapping->host;
1870 1871 1872 1873 1874 1875
	struct pagevec		pvec;
	unsigned int		nr_pages;
	sector_t		logical;
	pgoff_t			index, end;
	long			nr_to_write = wbc->nr_to_write;
	int			i, tag, ret = 0;
1876

1877 1878 1879
	memset(mpd, 0, sizeof(struct mpage_da_data));
	mpd->wbc = wbc;
	mpd->inode = inode;
1880 1881 1882 1883
	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

1884
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1885 1886 1887 1888
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

1889
	*done_index = index;
1890
	while (index <= end) {
1891
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1892 1893
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
1894
			return 0;
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
1906 1907
			if (page->index > end)
				goto out;
1908

1909 1910
			*done_index = page->index + 1;

1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
			/*
			 * If we can't merge this page, and we have
			 * accumulated an contiguous region, write it
			 */
			if ((mpd->next_page != page->index) &&
			    (mpd->next_page != mpd->first_page)) {
				mpage_da_map_and_submit(mpd);
				goto ret_extent_tail;
			}

1921 1922 1923
			lock_page(page);

			/*
1924 1925 1926 1927 1928 1929
			 * If the page is no longer dirty, or its
			 * mapping no longer corresponds to inode we
			 * are writing (which means it has been
			 * truncated or invalidated), or the page is
			 * already under writeback and we are not
			 * doing a data integrity writeback, skip the page
1930
			 */
1931 1932 1933 1934
			if (!PageDirty(page) ||
			    (PageWriteback(page) &&
			     (wbc->sync_mode == WB_SYNC_NONE)) ||
			    unlikely(page->mapping != mapping)) {
1935 1936 1937 1938
				unlock_page(page);
				continue;
			}

1939
			wait_on_page_writeback(page);
1940 1941
			BUG_ON(PageWriteback(page));

1942
			if (mpd->next_page != page->index)
1943 1944 1945 1946 1947 1948
				mpd->first_page = page->index;
			mpd->next_page = page->index + 1;
			logical = (sector_t) page->index <<
				(PAGE_CACHE_SHIFT - inode->i_blkbits);

			if (!page_has_buffers(page)) {
1949 1950
				mpage_add_bh_to_extent(mpd, logical,
						       PAGE_CACHE_SIZE,
1951
						       (1 << BH_Dirty) | (1 << BH_Uptodate));
1952 1953
				if (mpd->io_done)
					goto ret_extent_tail;
1954 1955
			} else {
				/*
1956 1957
				 * Page with regular buffer heads,
				 * just add all dirty ones
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
				 */
				head = page_buffers(page);
				bh = head;
				do {
					BUG_ON(buffer_locked(bh));
					/*
					 * We need to try to allocate
					 * unmapped blocks in the same page.
					 * Otherwise we won't make progress
					 * with the page in ext4_writepage
					 */
					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
						mpage_add_bh_to_extent(mpd, logical,
								       bh->b_size,
								       bh->b_state);
1973 1974
						if (mpd->io_done)
							goto ret_extent_tail;
1975 1976
					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
						/*
1977 1978 1979 1980 1981 1982 1983 1984 1985
						 * mapped dirty buffer. We need
						 * to update the b_state
						 * because we look at b_state
						 * in mpage_da_map_blocks.  We
						 * don't update b_size because
						 * if we find an unmapped
						 * buffer_head later we need to
						 * use the b_state flag of that
						 * buffer_head.
1986 1987 1988 1989 1990 1991
						 */
						if (mpd->b_size == 0)
							mpd->b_state = bh->b_state & BH_FLAGS;
					}
					logical++;
				} while ((bh = bh->b_this_page) != head);
1992 1993 1994 1995 1996
			}

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
1997
				    wbc->sync_mode == WB_SYNC_NONE)
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
2008
					goto out;
2009 2010 2011 2012 2013
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2014 2015 2016
	return 0;
ret_extent_tail:
	ret = MPAGE_DA_EXTENT_TAIL;
2017 2018 2019
out:
	pagevec_release(&pvec);
	cond_resched();
2020 2021 2022 2023
	return ret;
}


2024
static int ext4_da_writepages(struct address_space *mapping,
2025
			      struct writeback_control *wbc)
2026
{
2027 2028
	pgoff_t	index;
	int range_whole = 0;
2029
	handle_t *handle = NULL;
2030
	struct mpage_da_data mpd;
2031
	struct inode *inode = mapping->host;
2032
	int pages_written = 0;
2033
	unsigned int max_pages;
2034
	int range_cyclic, cycled = 1, io_done = 0;
2035 2036
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2037
	loff_t range_start = wbc->range_start;
2038
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2039
	pgoff_t done_index = 0;
2040
	pgoff_t end;
2041

2042
	trace_ext4_da_writepages(inode, wbc);
2043

2044 2045 2046 2047 2048
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2049
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2050
		return 0;
2051 2052 2053 2054 2055

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2056
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2057 2058 2059 2060 2061
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2062
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2063 2064
		return -EROFS;

2065 2066
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2067

2068 2069
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2070
		index = mapping->writeback_index;
2071 2072 2073 2074 2075
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2076 2077
		end = -1;
	} else {
2078
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2079 2080
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2081

2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2099 2100 2101 2102 2103 2104
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2115
retry:
2116
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2117 2118
		tag_pages_for_writeback(mapping, index, end);

2119
	while (!ret && wbc->nr_to_write > 0) {
2120 2121 2122 2123 2124 2125 2126 2127

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2128
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2129

2130 2131 2132 2133
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2134
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2135
			       "%ld pages, ino %lu; err %d", __func__,
2136
				wbc->nr_to_write, inode->i_ino, ret);
2137 2138
			goto out_writepages;
		}
2139 2140

		/*
2141
		 * Now call write_cache_pages_da() to find the next
2142
		 * contiguous region of logical blocks that need
2143
		 * blocks to be allocated by ext4 and submit them.
2144
		 */
2145
		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2146
		/*
2147
		 * If we have a contiguous extent of pages and we
2148 2149 2150 2151
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2152
			mpage_da_map_and_submit(&mpd);
2153 2154
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2155
		trace_ext4_da_write_pages(inode, &mpd);
2156
		wbc->nr_to_write -= mpd.pages_written;
2157

2158
		ext4_journal_stop(handle);
2159

2160
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2161 2162 2163 2164
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2165
			jbd2_journal_force_commit_nested(sbi->s_journal);
2166 2167
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2168 2169 2170 2171
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
2172
			pages_written += mpd.pages_written;
2173
			ret = 0;
2174
			io_done = 1;
2175
		} else if (wbc->nr_to_write)
2176 2177 2178 2179 2180 2181
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2182
	}
2183 2184 2185 2186 2187 2188 2189
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2190 2191

	/* Update index */
2192
	wbc->range_cyclic = range_cyclic;
2193 2194 2195 2196 2197
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
2198
		mapping->writeback_index = done_index;
2199

2200
out_writepages:
2201
	wbc->nr_to_write -= nr_to_writebump;
2202
	wbc->range_start = range_start;
2203
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2204
	return ret;
2205 2206
}

2207 2208 2209 2210 2211 2212 2213 2214 2215
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2216
	 * counters can get slightly wrong with percpu_counter_batch getting
2217 2218 2219 2220 2221 2222 2223 2224 2225
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
2226 2227
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
2228 2229 2230
		 */
		return 1;
	}
2231 2232 2233 2234 2235 2236 2237
	/*
	 * Even if we don't switch but are nearing capacity,
	 * start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (free_blocks < 2 * dirty_blocks)
		writeback_inodes_sb_if_idle(sb);

2238 2239 2240
	return 0;
}

2241
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2242 2243
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
2244
{
2245
	int ret, retries = 0;
2246 2247 2248 2249 2250 2251
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
2252 2253 2254 2255 2256 2257 2258

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2259
	trace_ext4_da_write_begin(inode, pos, len, flags);
2260
retry:
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
2272 2273 2274
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
2275

2276
	page = grab_cache_page_write_begin(mapping, index, flags);
2277 2278 2279 2280 2281
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
2282 2283
	*pagep = page;

2284
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2285 2286 2287 2288
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
2289 2290 2291 2292 2293 2294
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
2295
			ext4_truncate_failed_write(inode);
2296 2297
	}

2298 2299
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
2300 2301 2302 2303
out:
	return ret;
}

2304 2305 2306 2307 2308
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
2309
					    unsigned long offset)
2310 2311 2312 2313 2314 2315 2316 2317 2318
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2319
	for (i = 0; i < idx; i++)
2320 2321
		bh = bh->b_this_page;

2322
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2323 2324 2325 2326
		return 0;
	return 1;
}

2327
static int ext4_da_write_end(struct file *file,
2328 2329 2330
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
2331 2332 2333 2334 2335
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2336
	unsigned long start, end;
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
2350

2351
	trace_ext4_da_write_end(inode, pos, len, copied);
2352
	start = pos & (PAGE_CACHE_SIZE - 1);
2353
	end = start + copied - 1;
2354 2355 2356 2357 2358 2359 2360 2361

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
2373

2374 2375 2376
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
2377 2378 2379 2380 2381
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2382
		}
2383
	}
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2405
	ext4_da_page_release_reservation(page, offset);
2406 2407 2408 2409 2410 2411 2412

out:
	ext4_invalidatepage(page, offset);

	return;
}

2413 2414 2415 2416 2417
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
2418 2419
	trace_ext4_alloc_da_blocks(inode);

2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
2430
	 *
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
2443
	 * the pages by calling redirty_page_for_writepage() but that
2444 2445
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
L
Lucas De Marchi 已提交
2446
	 * simplifying them because we wouldn't actually intend to
2447 2448 2449
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
2450
	 *
2451 2452 2453 2454 2455 2456
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
2457

2458 2459 2460 2461 2462
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2463
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2464 2465 2466 2467 2468 2469 2470 2471
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2472
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2473 2474 2475 2476 2477
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2488 2489
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2501
		 * NB. EXT4_STATE_JDATA is not set on files other than
2502 2503 2504 2505 2506 2507
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2508
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2509
		journal = EXT4_JOURNAL(inode);
2510 2511 2512
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2513 2514 2515 2516 2517

		if (err)
			return 0;
	}

2518
	return generic_block_bmap(mapping, block, ext4_get_block);
2519 2520
}

2521
static int ext4_readpage(struct file *file, struct page *page)
2522
{
2523
	trace_ext4_readpage(page);
2524
	return mpage_readpage(page, ext4_get_block);
2525 2526 2527
}

static int
2528
ext4_readpages(struct file *file, struct address_space *mapping,
2529 2530
		struct list_head *pages, unsigned nr_pages)
{
2531
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2532 2533
}

2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
{
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	if (!page_has_buffers(page))
		return;
	head = bh = page_buffers(page);
	do {
		if (offset <= curr_off && test_clear_buffer_uninit(bh)
					&& bh->b_private) {
			ext4_free_io_end(bh->b_private);
			bh->b_private = NULL;
			bh->b_end_io = NULL;
		}
		curr_off = curr_off + bh->b_size;
		bh = bh->b_this_page;
	} while (bh != head);
}

2554
static void ext4_invalidatepage(struct page *page, unsigned long offset)
2555
{
2556
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2557

2558 2559
	trace_ext4_invalidatepage(page, offset);

2560 2561 2562 2563 2564
	/*
	 * free any io_end structure allocated for buffers to be discarded
	 */
	if (ext4_should_dioread_nolock(page->mapping->host))
		ext4_invalidatepage_free_endio(page, offset);
2565 2566 2567 2568 2569 2570
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

2571 2572 2573 2574
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
2575 2576
}

2577
static int ext4_releasepage(struct page *page, gfp_t wait)
2578
{
2579
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2580

2581 2582
	trace_ext4_releasepage(page);

2583 2584 2585
	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
2586 2587 2588 2589
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
2590 2591
}

2592 2593 2594 2595 2596
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
2597
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2598 2599
		   struct buffer_head *bh_result, int create)
{
2600
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2601
		   inode->i_ino, create);
2602 2603
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2604 2605 2606
}

static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2607 2608
			    ssize_t size, void *private, int ret,
			    bool is_async)
2609
{
2610
	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2611 2612
        ext4_io_end_t *io_end = iocb->private;
	struct workqueue_struct *wq;
2613 2614
	unsigned long flags;
	struct ext4_inode_info *ei;
2615

2616 2617
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
2618
		goto out;
2619

2620 2621 2622 2623 2624 2625
	ext_debug("ext4_end_io_dio(): io_end 0x%p"
		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

	/* if not aio dio with unwritten extents, just free io and return */
2626
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2627 2628
		ext4_free_io_end(io_end);
		iocb->private = NULL;
2629 2630 2631
out:
		if (is_async)
			aio_complete(iocb, ret, 0);
2632
		inode_dio_done(inode);
2633
		return;
2634 2635
	}

2636 2637
	io_end->offset = offset;
	io_end->size = size;
2638 2639 2640 2641
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
2642 2643
	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;

2644
	/* Add the io_end to per-inode completed aio dio list*/
2645 2646 2647 2648
	ei = EXT4_I(io_end->inode);
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &ei->i_completed_io_list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2649 2650 2651

	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
2652
	iocb->private = NULL;
2653 2654 2655

	/* XXX: probably should move into the real I/O completion handler */
	inode_dio_done(inode);
2656
}
2657

2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
{
	ext4_io_end_t *io_end = bh->b_private;
	struct workqueue_struct *wq;
	struct inode *inode;
	unsigned long flags;

	if (!test_clear_buffer_uninit(bh) || !io_end)
		goto out;

	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
		printk("sb umounted, discard end_io request for inode %lu\n",
			io_end->inode->i_ino);
		ext4_free_io_end(io_end);
		goto out;
	}

2675
	io_end->flag = EXT4_IO_END_UNWRITTEN;
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
	inode = io_end->inode;

	/* Add the io_end to per-inode completed io list*/
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);

	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
out:
	bh->b_private = NULL;
	bh->b_end_io = NULL;
	clear_buffer_uninit(bh);
	end_buffer_async_write(bh, uptodate);
}

static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
{
	ext4_io_end_t *io_end;
	struct page *page = bh->b_page;
	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
	size_t size = bh->b_size;

retry:
	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
	if (!io_end) {
2703
		pr_warn_ratelimited("%s: allocation fail\n", __func__);
2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
		schedule();
		goto retry;
	}
	io_end->offset = offset;
	io_end->size = size;
	/*
	 * We need to hold a reference to the page to make sure it
	 * doesn't get evicted before ext4_end_io_work() has a chance
	 * to convert the extent from written to unwritten.
	 */
	io_end->page = page;
	get_page(io_end->page);

	bh->b_private = io_end;
	bh->b_end_io = ext4_end_io_buffer_write;
	return 0;
}

2722 2723 2724 2725 2726
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
2727
 * For holes, we fallocate those blocks, mark them as uninitialized
2728
 * If those blocks were preallocated, we mark sure they are splited, but
2729
 * still keep the range to write as uninitialized.
2730
 *
2731 2732
 * The unwrritten extents will be converted to written when DIO is completed.
 * For async direct IO, since the IO may still pending when return, we
L
Lucas De Marchi 已提交
2733
 * set up an end_io call back function, which will do the conversion
2734
 * when async direct IO completed.
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);

	loff_t final_size = offset + count;
	if (rw == WRITE && final_size <= inode->i_size) {
		/*
2753 2754 2755
 		 * We could direct write to holes and fallocate.
		 *
 		 * Allocated blocks to fill the hole are marked as uninitialized
L
Lucas De Marchi 已提交
2756
 		 * to prevent parallel buffered read to expose the stale data
2757
 		 * before DIO complete the data IO.
2758 2759
		 *
 		 * As to previously fallocated extents, ext4 get_block
2760 2761 2762
 		 * will just simply mark the buffer mapped but still
 		 * keep the extents uninitialized.
 		 *
2763 2764 2765 2766 2767 2768 2769 2770
		 * for non AIO case, we will convert those unwritten extents
		 * to written after return back from blockdev_direct_IO.
		 *
		 * for async DIO, the conversion needs to be defered when
		 * the IO is completed. The ext4 end_io callback function
		 * will be called to take care of the conversion work.
		 * Here for async case, we allocate an io_end structure to
		 * hook to the iocb.
2771
 		 */
2772 2773 2774
		iocb->private = NULL;
		EXT4_I(inode)->cur_aio_dio = NULL;
		if (!is_sync_kiocb(iocb)) {
2775
			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
2776 2777 2778 2779
			if (!iocb->private)
				return -ENOMEM;
			/*
			 * we save the io structure for current async
2780
			 * direct IO, so that later ext4_map_blocks()
2781 2782 2783 2784 2785 2786 2787
			 * could flag the io structure whether there
			 * is a unwritten extents needs to be converted
			 * when IO is completed.
			 */
			EXT4_I(inode)->cur_aio_dio = iocb->private;
		}

2788
		ret = __blockdev_direct_IO(rw, iocb, inode,
2789 2790
					 inode->i_sb->s_bdev, iov,
					 offset, nr_segs,
2791
					 ext4_get_block_write,
2792 2793 2794
					 ext4_end_io_dio,
					 NULL,
					 DIO_LOCKING | DIO_SKIP_HOLES);
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
		if (iocb->private)
			EXT4_I(inode)->cur_aio_dio = NULL;
		/*
		 * The io_end structure takes a reference to the inode,
		 * that structure needs to be destroyed and the
		 * reference to the inode need to be dropped, when IO is
		 * complete, even with 0 byte write, or failed.
		 *
		 * In the successful AIO DIO case, the io_end structure will be
		 * desctroyed and the reference to the inode will be dropped
		 * after the end_io call back function is called.
		 *
		 * In the case there is 0 byte write, or error case, since
		 * VFS direct IO won't invoke the end_io call back function,
		 * we need to free the end_io structure here.
		 */
		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
			ext4_free_io_end(iocb->private);
			iocb->private = NULL;
2814 2815
		} else if (ret > 0 && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
2816
			int err;
2817 2818
			/*
			 * for non AIO case, since the IO is already
L
Lucas De Marchi 已提交
2819
			 * completed, we could do the conversion right here
2820
			 */
2821 2822 2823 2824
			err = ext4_convert_unwritten_extents(inode,
							     offset, ret);
			if (err < 0)
				ret = err;
2825
			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2826
		}
2827 2828
		return ret;
	}
2829 2830

	/* for write the the end of file case, we fall back to old way */
2831 2832 2833 2834 2835 2836 2837 2838 2839
	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
2840
	ssize_t ret;
2841

2842
	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
2843
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2844 2845 2846 2847 2848 2849
		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
	else
		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
	trace_ext4_direct_IO_exit(inode, offset,
				iov_length(iov, nr_segs), rw, ret);
	return ret;
2850 2851
}

2852
/*
2853
 * Pages can be marked dirty completely asynchronously from ext4's journalling
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
2865
static int ext4_journalled_set_page_dirty(struct page *page)
2866 2867 2868 2869 2870
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

2871
static const struct address_space_operations ext4_ordered_aops = {
2872 2873
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
2874
	.writepage		= ext4_writepage,
2875 2876 2877 2878 2879 2880 2881 2882
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
2883
	.error_remove_page	= generic_error_remove_page,
2884 2885
};

2886
static const struct address_space_operations ext4_writeback_aops = {
2887 2888
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
2889
	.writepage		= ext4_writepage,
2890 2891 2892 2893 2894 2895 2896 2897
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
2898
	.error_remove_page	= generic_error_remove_page,
2899 2900
};

2901
static const struct address_space_operations ext4_journalled_aops = {
2902 2903
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
2904
	.writepage		= ext4_writepage,
2905 2906 2907 2908 2909 2910 2911
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
2912
	.error_remove_page	= generic_error_remove_page,
2913 2914
};

2915
static const struct address_space_operations ext4_da_aops = {
2916 2917
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
2918
	.writepage		= ext4_writepage,
2919 2920 2921 2922 2923 2924 2925 2926 2927
	.writepages		= ext4_da_writepages,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
2928
	.error_remove_page	= generic_error_remove_page,
2929 2930
};

2931
void ext4_set_aops(struct inode *inode)
2932
{
2933 2934 2935 2936
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
2937
		inode->i_mapping->a_ops = &ext4_ordered_aops;
2938 2939 2940
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
2941 2942
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
2943
	else
2944
		inode->i_mapping->a_ops = &ext4_journalled_aops;
2945 2946 2947
}

/*
2948
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
2949 2950 2951 2952
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
2953
int ext4_block_truncate_page(handle_t *handle,
2954
		struct address_space *mapping, loff_t from)
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
{
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
	unsigned length;
	unsigned blocksize;
	struct inode *inode = mapping->host;

	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));

	return ext4_block_zero_page_range(handle, mapping, from, length);
}

/*
 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
 * starting from file offset 'from'.  The range to be zero'd must
 * be contained with in one block.  If the specified range exceeds
 * the end of the block it will be shortened to end of the block
 * that cooresponds to 'from'
 */
int ext4_block_zero_page_range(handle_t *handle,
		struct address_space *mapping, loff_t from, loff_t length)
2976
{
2977
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2978
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2979
	unsigned blocksize, max, pos;
A
Aneesh Kumar K.V 已提交
2980
	ext4_lblk_t iblock;
2981 2982
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
2983
	struct page *page;
2984 2985
	int err = 0;

2986 2987
	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
2988 2989 2990
	if (!page)
		return -EINVAL;

2991
	blocksize = inode->i_sb->s_blocksize;
2992 2993 2994 2995 2996 2997 2998 2999 3000
	max = blocksize - (offset & (blocksize - 1));

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the block
	 */
	if (length > max || length < 0)
		length = max;

3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
3023
		ext4_get_block(inode, iblock, bh, 0);
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

3044
	if (ext4_should_journal_data(inode)) {
3045
		BUFFER_TRACE(bh, "get write access");
3046
		err = ext4_journal_get_write_access(handle, bh);
3047 3048 3049 3050
		if (err)
			goto unlock;
	}

3051
	zero_user(page, offset, length);
3052 3053 3054 3055

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
3056
	if (ext4_should_journal_data(inode)) {
3057
		err = ext4_handle_dirty_metadata(handle, inode, bh);
3058
	} else {
3059
		if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
3060
			err = ext4_jbd2_file_inode(handle, inode);
3061 3062 3063 3064 3065 3066 3067 3068 3069
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
int ext4_can_truncate(struct inode *inode)
{
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
/*
 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 * associated with the given offset and length
 *
 * @inode:  File inode
 * @offset: The offset where the hole will begin
 * @len:    The length of the hole
 *
 * Returns: 0 on sucess or negative on failure
 */

int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	if (!S_ISREG(inode->i_mode))
		return -ENOTSUPP;

	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
		/* TODO: Add support for non extent hole punching */
		return -ENOTSUPP;
	}

	return ext4_ext_punch_hole(file, offset, length);
}

3106
/*
3107
 * ext4_truncate()
3108
 *
3109 3110
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3127
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3128
 * that this inode's truncate did not complete and it will again call
3129 3130
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3131
 * that's fine - as long as they are linked from the inode, the post-crash
3132
 * ext4_truncate() run will find them and release them.
3133
 */
3134
void ext4_truncate(struct inode *inode)
3135
{
3136 3137
	trace_ext4_truncate_enter(inode);

3138
	if (!ext4_can_truncate(inode))
3139 3140
		return;

3141
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3142

3143
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3144
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3145

3146
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3147
		ext4_ext_truncate(inode);
3148 3149
	else
		ext4_ind_truncate(inode);
3150

3151
	trace_ext4_truncate_exit(inode);
3152 3153 3154
}

/*
3155
 * ext4_get_inode_loc returns with an extra refcount against the inode's
3156 3157 3158 3159
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
3160 3161
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
3162
{
3163 3164 3165 3166 3167 3168
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
3169
	iloc->bh = NULL;
3170 3171
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
3172

3173 3174 3175
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
3176 3177
		return -EIO;

3178 3179 3180
	/*
	 * Figure out the offset within the block group inode table
	 */
3181
	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3182 3183 3184 3185 3186 3187
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
3188
	if (!bh) {
3189 3190
		EXT4_ERROR_INODE_BLOCK(inode, block,
				       "unable to read itable block");
3191 3192 3193 3194
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
3218
			int i, start;
3219

3220
			start = inode_offset & ~(inodes_per_block - 1);
3221

3222 3223
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
3236
			for (i = start; i < start + inodes_per_block; i++) {
3237 3238
				if (i == inode_offset)
					continue;
3239
				if (ext4_test_bit(i, bitmap_bh->b_data))
3240 3241 3242
					break;
			}
			brelse(bitmap_bh);
3243
			if (i == start + inodes_per_block) {
3244 3245 3246 3247 3248 3249 3250 3251 3252
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
3253 3254 3255 3256 3257 3258 3259 3260 3261
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
3262
			/* s_inode_readahead_blks is always a power of 2 */
3263 3264 3265 3266 3267 3268 3269
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3270
				num -= ext4_itable_unused_count(sb, gdp);
3271 3272 3273 3274 3275 3276 3277
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

3278 3279 3280 3281 3282
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
3283
		trace_ext4_load_inode(inode);
3284 3285 3286 3287 3288
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
3289 3290
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
3291 3292 3293 3294 3295 3296 3297 3298 3299
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

3300
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3301 3302
{
	/* We have all inode data except xattrs in memory here. */
3303
	return __ext4_get_inode_loc(inode, iloc,
3304
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3305 3306
}

3307
void ext4_set_inode_flags(struct inode *inode)
3308
{
3309
	unsigned int flags = EXT4_I(inode)->i_flags;
3310 3311

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3312
	if (flags & EXT4_SYNC_FL)
3313
		inode->i_flags |= S_SYNC;
3314
	if (flags & EXT4_APPEND_FL)
3315
		inode->i_flags |= S_APPEND;
3316
	if (flags & EXT4_IMMUTABLE_FL)
3317
		inode->i_flags |= S_IMMUTABLE;
3318
	if (flags & EXT4_NOATIME_FL)
3319
		inode->i_flags |= S_NOATIME;
3320
	if (flags & EXT4_DIRSYNC_FL)
3321 3322 3323
		inode->i_flags |= S_DIRSYNC;
}

3324 3325 3326
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3347
}
3348

3349
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3350
				  struct ext4_inode_info *ei)
3351 3352
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
3353 3354
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
3355 3356 3357 3358 3359 3360

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
3361
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
3362 3363 3364 3365 3366
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
3367 3368 3369 3370
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
3371

3372
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3373
{
3374 3375
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
3376 3377
	struct ext4_inode_info *ei;
	struct inode *inode;
3378
	journal_t *journal = EXT4_SB(sb)->s_journal;
3379
	long ret;
3380 3381
	int block;

3382 3383 3384 3385 3386 3387 3388
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
3389
	iloc.bh = NULL;
3390

3391 3392
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
3393
		goto bad_inode;
3394
	raw_inode = ext4_raw_inode(&iloc);
3395 3396 3397
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3398
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3399 3400 3401 3402 3403
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

3404
	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3405 3406 3407 3408 3409 3410 3411 3412 3413
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
3414
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3415
			/* this inode is deleted */
3416
			ret = -ESTALE;
3417 3418 3419 3420 3421 3422 3423 3424
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3425
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3426
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3427
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
3428 3429
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3430
	inode->i_size = ext4_isize(raw_inode);
3431
	ei->i_disksize = inode->i_size;
3432 3433 3434
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
3435 3436
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
3437
	ei->i_last_alloc_group = ~0;
3438 3439 3440 3441
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
3442
	for (block = 0; block < EXT4_N_BLOCKS; block++)
3443 3444 3445
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

3457
		read_lock(&journal->j_state_lock);
3458 3459 3460 3461 3462 3463 3464 3465
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
3466
		read_unlock(&journal->j_state_lock);
3467 3468 3469 3470
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

3471
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3472
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3473
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3474
		    EXT4_INODE_SIZE(inode->i_sb)) {
3475
			ret = -EIO;
3476
			goto bad_inode;
3477
		}
3478 3479
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
3480 3481
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
3482 3483
		} else {
			__le32 *magic = (void *)raw_inode +
3484
					EXT4_GOOD_OLD_INODE_SIZE +
3485
					ei->i_extra_isize;
3486
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3487
				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3488 3489 3490 3491
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
3492 3493 3494 3495 3496
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

3497 3498 3499 3500 3501 3502 3503
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

3504
	ret = 0;
3505
	if (ei->i_file_acl &&
3506
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3507 3508
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
3509 3510
		ret = -EIO;
		goto bad_inode;
3511
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3512 3513 3514 3515 3516
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
3517
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3518 3519
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
3520
		/* Validate block references which are part of inode */
3521
		ret = ext4_ind_check_inode(inode);
3522
	}
3523
	if (ret)
3524
		goto bad_inode;
3525

3526
	if (S_ISREG(inode->i_mode)) {
3527 3528 3529
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
3530
	} else if (S_ISDIR(inode->i_mode)) {
3531 3532
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
3533
	} else if (S_ISLNK(inode->i_mode)) {
3534
		if (ext4_inode_is_fast_symlink(inode)) {
3535
			inode->i_op = &ext4_fast_symlink_inode_operations;
3536 3537 3538
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
3539 3540
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
3541
		}
3542 3543
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3544
		inode->i_op = &ext4_special_inode_operations;
3545 3546 3547 3548 3549 3550
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3551 3552
	} else {
		ret = -EIO;
3553
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3554
		goto bad_inode;
3555
	}
3556
	brelse(iloc.bh);
3557
	ext4_set_inode_flags(inode);
3558 3559
	unlock_new_inode(inode);
	return inode;
3560 3561

bad_inode:
3562
	brelse(iloc.bh);
3563 3564
	iget_failed(inode);
	return ERR_PTR(ret);
3565 3566
}

3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3580
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3581
		raw_inode->i_blocks_high = 0;
3582
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3583 3584 3585 3586 3587 3588
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
3589 3590 3591 3592
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3593
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3594
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3595
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3596
	} else {
3597
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
3598 3599 3600 3601
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3602
	}
3603
	return 0;
3604 3605
}

3606 3607 3608 3609 3610 3611 3612
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
3613
static int ext4_do_update_inode(handle_t *handle,
3614
				struct inode *inode,
3615
				struct ext4_iloc *iloc)
3616
{
3617 3618
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
3619 3620 3621 3622 3623
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
3624
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3625
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3626

3627
	ext4_get_inode_flags(ei);
3628
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3629
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3630 3631 3632 3633 3634 3635
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
3636
		if (!ei->i_dtime) {
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
3654 3655 3656 3657 3658 3659

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

3660 3661
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
3662
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3663
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
3664 3665
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
3666 3667
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
3668
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
3685
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
3686
			sb->s_dirt = 1;
3687
			ext4_handle_sync(handle);
3688
			err = ext4_handle_dirty_metadata(handle, NULL,
3689
					EXT4_SB(sb)->s_sbh);
3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
3704 3705 3706
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
3707

3708 3709 3710 3711 3712
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
3713
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3714 3715
	}

3716
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3717
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
3718 3719
	if (!err)
		err = rc;
3720
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
3721

3722
	ext4_update_inode_fsync_trans(handle, inode, 0);
3723
out_brelse:
3724
	brelse(bh);
3725
	ext4_std_error(inode->i_sb, err);
3726 3727 3728 3729
	return err;
}

/*
3730
 * ext4_write_inode()
3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
3747
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
3764
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
3765
{
3766 3767
	int err;

3768 3769 3770
	if (current->flags & PF_MEMALLOC)
		return 0;

3771 3772 3773 3774 3775 3776
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
3777

3778
		if (wbc->sync_mode != WB_SYNC_ALL)
3779 3780 3781 3782 3783
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
3784

3785
		err = __ext4_get_inode_loc(inode, &iloc, 0);
3786 3787
		if (err)
			return err;
3788
		if (wbc->sync_mode == WB_SYNC_ALL)
3789 3790
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
3791 3792
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
3793 3794
			err = -EIO;
		}
3795
		brelse(iloc.bh);
3796 3797
	}
	return err;
3798 3799 3800
}

/*
3801
 * ext4_setattr()
3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
3815 3816 3817 3818 3819 3820 3821 3822
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
3823
 */
3824
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3825 3826 3827
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
3828
	int orphan = 0;
3829 3830 3831 3832 3833 3834
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

3835
	if (is_quota_modification(inode, attr))
3836
		dquot_initialize(inode);
3837 3838 3839 3840 3841 3842
	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
D
Dmitry Monakhov 已提交
3843
		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3844
					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
3845 3846 3847 3848
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
3849
		error = dquot_transfer(inode, attr);
3850
		if (error) {
3851
			ext4_journal_stop(handle);
3852 3853 3854 3855 3856 3857 3858 3859
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
3860 3861
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
3862 3863
	}

3864
	if (attr->ia_valid & ATTR_SIZE) {
3865 3866
		inode_dio_wait(inode);

3867
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3868 3869
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

3870 3871
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
3872 3873 3874
		}
	}

3875
	if (S_ISREG(inode->i_mode) &&
3876
	    attr->ia_valid & ATTR_SIZE &&
3877
	    (attr->ia_size < inode->i_size)) {
3878 3879
		handle_t *handle;

3880
		handle = ext4_journal_start(inode, 3);
3881 3882 3883 3884
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
3885 3886 3887 3888
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
3889 3890
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
3891 3892
		if (!error)
			error = rc;
3893
		ext4_journal_stop(handle);
3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
3906
				orphan = 0;
3907 3908 3909 3910
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
3911 3912
	}

3913 3914 3915 3916 3917 3918 3919
	if (attr->ia_valid & ATTR_SIZE) {
		if (attr->ia_size != i_size_read(inode)) {
			truncate_setsize(inode, attr->ia_size);
			ext4_truncate(inode);
		} else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
			ext4_truncate(inode);
	}
3920

C
Christoph Hellwig 已提交
3921 3922 3923 3924 3925 3926 3927 3928 3929
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
3930
	if (orphan && inode->i_nlink)
3931
		ext4_orphan_del(NULL, inode);
3932 3933

	if (!rc && (ia_valid & ATTR_MODE))
3934
		rc = ext4_acl_chmod(inode);
3935 3936

err_out:
3937
	ext4_std_error(inode->i_sb, error);
3938 3939 3940 3941 3942
	if (!error)
		error = rc;
	return error;
}

3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
3967

3968 3969
static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
3970
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
3971
		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
3972
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
3973
}
3974

3975
/*
3976 3977 3978
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
3979
 *
3980
 * If datablocks are discontiguous, they are possible to spread over
3981
 * different block groups too. If they are contiuguous, with flexbg,
3982
 * they could still across block group boundary.
3983
 *
3984 3985
 * Also account for superblock, inode, quota and xattr blocks
 */
3986
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
3987
{
3988 3989
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
4016 4017
	if (groups > ngroups)
		groups = ngroups;
4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
L
Lucas De Marchi 已提交
4031
 * Calculate the total number of credits to reserve to fit
4032 4033
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4034
 *
4035
 * This could be called via ext4_write_begin()
4036
 *
4037
 * We need to consider the worse case, when
4038
 * one new block per extent.
4039
 */
A
Alex Tomas 已提交
4040
int ext4_writepage_trans_blocks(struct inode *inode)
4041
{
4042
	int bpp = ext4_journal_blocks_per_page(inode);
4043 4044
	int ret;

4045
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4046

4047
	/* Account for data blocks for journalled mode */
4048
	if (ext4_should_journal_data(inode))
4049
		ret += bpp;
4050 4051
	return ret;
}
4052 4053 4054 4055 4056

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
4057
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4058 4059 4060 4061 4062 4063 4064 4065 4066
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4067
/*
4068
 * The caller must have previously called ext4_reserve_inode_write().
4069 4070
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4071
int ext4_mark_iloc_dirty(handle_t *handle,
4072
			 struct inode *inode, struct ext4_iloc *iloc)
4073 4074 4075
{
	int err = 0;

4076 4077 4078
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

4079 4080 4081
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4082
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4083
	err = ext4_do_update_inode(handle, inode, iloc);
4084 4085 4086 4087 4088 4089 4090 4091 4092 4093
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4094 4095
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4096
{
4097 4098 4099 4100 4101 4102 4103 4104 4105
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
4106 4107
		}
	}
4108
	ext4_std_error(inode->i_sb, err);
4109 4110 4111
	return err;
}

4112 4113 4114 4115
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
4116 4117 4118 4119
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
4132 4133
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
4166
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4167
{
4168
	struct ext4_iloc iloc;
4169 4170 4171
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
4172 4173

	might_sleep();
4174
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4175
	err = ext4_reserve_inode_write(handle, inode, &iloc);
4176 4177
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4178
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
4192 4193
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
4194 4195
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4196
					ext4_warning(inode->i_sb,
4197 4198 4199
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
4200 4201
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
4202 4203 4204 4205
				}
			}
		}
	}
4206
	if (!err)
4207
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4208 4209 4210 4211
	return err;
}

/*
4212
 * ext4_dirty_inode() is called from __mark_inode_dirty()
4213 4214 4215 4216 4217
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
4218
 * Also, dquot_alloc_block() will always dirty the inode when blocks
4219 4220 4221 4222 4223 4224
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
4225
void ext4_dirty_inode(struct inode *inode, int flags)
4226 4227 4228
{
	handle_t *handle;

4229
	handle = ext4_journal_start(inode, 2);
4230 4231
	if (IS_ERR(handle))
		goto out;
4232 4233 4234

	ext4_mark_inode_dirty(handle, inode);

4235
	ext4_journal_stop(handle);
4236 4237 4238 4239 4240 4241 4242 4243
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
4244
 * ext4_reserve_inode_write, this leaves behind no bh reference and
4245 4246 4247
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
4248
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4249
{
4250
	struct ext4_iloc iloc;
4251 4252 4253

	int err = 0;
	if (handle) {
4254
		err = ext4_get_inode_loc(inode, &iloc);
4255 4256
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
4257
			err = jbd2_journal_get_write_access(handle, iloc.bh);
4258
			if (!err)
4259
				err = ext4_handle_dirty_metadata(handle,
4260
								 NULL,
4261
								 iloc.bh);
4262 4263 4264
			brelse(iloc.bh);
		}
	}
4265
	ext4_std_error(inode->i_sb, err);
4266 4267 4268 4269
	return err;
}
#endif

4270
int ext4_change_inode_journal_flag(struct inode *inode, int val)
4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

4286
	journal = EXT4_JOURNAL(inode);
4287 4288
	if (!journal)
		return 0;
4289
	if (is_journal_aborted(journal))
4290 4291
		return -EROFS;

4292 4293
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
4294 4295 4296 4297 4298 4299 4300 4301 4302 4303

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
4304
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4305
	else
4306
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4307
	ext4_set_aops(inode);
4308

4309
	jbd2_journal_unlock_updates(journal);
4310 4311 4312

	/* Finally we can mark the inode as dirty. */

4313
	handle = ext4_journal_start(inode, 1);
4314 4315 4316
	if (IS_ERR(handle))
		return PTR_ERR(handle);

4317
	err = ext4_mark_inode_dirty(handle, inode);
4318
	ext4_handle_sync(handle);
4319 4320
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
4321 4322 4323

	return err;
}
4324 4325 4326 4327 4328 4329

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

4330
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4331
{
4332
	struct page *page = vmf->page;
4333 4334
	loff_t size;
	unsigned long len;
4335
	int ret;
4336 4337 4338
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;
4339 4340 4341
	handle_t *handle;
	get_block_t *get_block;
	int retries = 0;
4342 4343

	/*
4344 4345
	 * This check is racy but catches the common case. We rely on
	 * __block_page_mkwrite() to do a reliable check.
4346
	 */
4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357
	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
	/* Delalloc case is easy... */
	if (test_opt(inode->i_sb, DELALLOC) &&
	    !ext4_should_journal_data(inode) &&
	    !ext4_nonda_switch(inode->i_sb)) {
		do {
			ret = __block_page_mkwrite(vma, vmf,
						   ext4_da_get_block_prep);
		} while (ret == -ENOSPC &&
		       ext4_should_retry_alloc(inode->i_sb, &retries));
		goto out_ret;
4358
	}
4359 4360

	lock_page(page);
4361 4362 4363 4364 4365 4366
	size = i_size_read(inode);
	/* Page got truncated from under us? */
	if (page->mapping != mapping || page_offset(page) > size) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
4367
	}
4368 4369 4370 4371 4372

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
4373
	/*
4374 4375
	 * Return if we have all the buffers mapped. This avoids the need to do
	 * journal_start/journal_stop which can block and take a long time
4376
	 */
4377 4378
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4379
					ext4_bh_unmapped)) {
4380 4381 4382 4383
			/* Wait so that we don't change page under IO */
			wait_on_page_writeback(page);
			ret = VM_FAULT_LOCKED;
			goto out;
4384
		}
4385
	}
4386
	unlock_page(page);
4387 4388 4389 4390 4391 4392 4393 4394
	/* OK, we need to fill the hole... */
	if (ext4_should_dioread_nolock(inode))
		get_block = ext4_get_block_write;
	else
		get_block = ext4_get_block;
retry_alloc:
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
4395
		ret = VM_FAULT_SIGBUS;
4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413
		goto out;
	}
	ret = __block_page_mkwrite(vma, vmf, get_block);
	if (!ret && ext4_should_journal_data(inode)) {
		if (walk_page_buffers(handle, page_buffers(page), 0,
			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
			unlock_page(page);
			ret = VM_FAULT_SIGBUS;
			goto out;
		}
		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
	}
	ext4_journal_stop(handle);
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry_alloc;
out_ret:
	ret = block_page_mkwrite_return(ret);
out:
4414 4415
	return ret;
}