inode.c 172.3 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38 39
#include <linux/uio.h>
#include <linux/bio.h>
40
#include <linux/workqueue.h>
41
#include <linux/kernel.h>
42
#include <linux/slab.h>
43

44
#include "ext4_jbd2.h"
45 46
#include "xattr.h"
#include "acl.h"
47
#include "ext4_extents.h"
48

49 50
#include <trace/events/ext4.h>

51 52
#define MPAGE_DA_EXTENT_TAIL 0x01

53 54 55
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
56 57 58 59
	return jbd2_journal_begin_ordered_truncate(
					EXT4_SB(inode->i_sb)->s_journal,
					&EXT4_I(inode)->jinode,
					new_size);
60 61
}

62
static void ext4_invalidatepage(struct page *page, unsigned long offset);
63 64 65 66 67 68
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create);
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
69

70 71 72
/*
 * Test whether an inode is a fast symlink.
 */
73
static int ext4_inode_is_fast_symlink(struct inode *inode)
74
{
75
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
76 77 78 79 80 81 82 83 84 85 86
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
87
	ext4_lblk_t needed;
88 89 90 91 92 93

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
94
	 * like a regular file for ext4 to try to delete it.  Things
95 96 97 98 99 100 101
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
102 103
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
104

105
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

122
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
123 124 125
	if (!IS_ERR(result))
		return result;

126
	ext4_std_error(inode->i_sb, PTR_ERR(result));
127 128 129 130 131 132 133 134 135 136 137
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
138 139 140
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
141
		return 0;
142
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
143 144 145 146 147 148 149 150 151
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
152
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
153
				 int nblocks)
154
{
155 156 157
	int ret;

	/*
158
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
159 160 161 162
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
163
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
164
	jbd_debug(2, "restarting handle %p\n", handle);
165 166 167
	up_write(&EXT4_I(inode)->i_data_sem);
	ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
	down_write(&EXT4_I(inode)->i_data_sem);
168
	ext4_discard_preallocations(inode);
169 170

	return ret;
171 172 173 174 175
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
176
void ext4_evict_inode(struct inode *inode)
177 178
{
	handle_t *handle;
179
	int err;
180

A
Al Viro 已提交
181 182 183 184 185
	if (inode->i_nlink) {
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

186
	if (!is_bad_inode(inode))
187
		dquot_initialize(inode);
188

189 190
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
191 192 193 194 195
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

196
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
197
	if (IS_ERR(handle)) {
198
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
199 200 201 202 203
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
204
		ext4_orphan_del(NULL, inode);
205 206 207 208
		goto no_delete;
	}

	if (IS_SYNC(inode))
209
		ext4_handle_sync(handle);
210
	inode->i_size = 0;
211 212
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
213
		ext4_warning(inode->i_sb,
214 215 216
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
217
	if (inode->i_blocks)
218
		ext4_truncate(inode);
219 220 221 222 223 224 225

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
226
	if (!ext4_handle_has_enough_credits(handle, 3)) {
227 228 229 230
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
231
			ext4_warning(inode->i_sb,
232 233 234
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
235
			ext4_orphan_del(NULL, inode);
236 237 238 239
			goto no_delete;
		}
	}

240
	/*
241
	 * Kill off the orphan record which ext4_truncate created.
242
	 * AKPM: I think this can be inside the above `if'.
243
	 * Note that ext4_orphan_del() has to be able to cope with the
244
	 * deletion of a non-existent orphan - this is because we don't
245
	 * know if ext4_truncate() actually created an orphan record.
246 247
	 * (Well, we could do this if we need to, but heck - it works)
	 */
248 249
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
250 251 252 253 254 255 256 257

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
258
	if (ext4_mark_inode_dirty(handle, inode))
259
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
260
		ext4_clear_inode(inode);
261
	else
262 263
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
264 265
	return;
no_delete:
A
Al Viro 已提交
266
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
282
 *	ext4_block_to_path - parse the block number into array of offsets
283 284 285
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
286 287
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
288
 *
289
 *	To store the locations of file's data ext4 uses a data structure common
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

312
static int ext4_block_to_path(struct inode *inode,
313 314
			      ext4_lblk_t i_block,
			      ext4_lblk_t offsets[4], int *boundary)
315
{
316 317 318
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
319 320 321 322 323
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

324
	if (i_block < direct_blocks) {
325 326
		offsets[n++] = i_block;
		final = direct_blocks;
327
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
328
		offsets[n++] = EXT4_IND_BLOCK;
329 330 331
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
332
		offsets[n++] = EXT4_DIND_BLOCK;
333 334 335 336
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
337
		offsets[n++] = EXT4_TIND_BLOCK;
338 339 340 341 342
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
343
		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
344 345
			     i_block + direct_blocks +
			     indirect_blocks + double_blocks, inode->i_ino);
346 347 348 349 350 351
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

352 353
static int __ext4_check_blockref(const char *function, unsigned int line,
				 struct inode *inode,
354 355
				 __le32 *p, unsigned int max)
{
356
	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
357
	__le32 *bref = p;
358 359
	unsigned int blk;

360
	while (bref < p+max) {
361
		blk = le32_to_cpu(*bref++);
362 363
		if (blk &&
		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
364
						    blk, 1))) {
365
			es->s_last_error_block = cpu_to_le64(blk);
366 367
			ext4_error_inode(inode, function, line, blk,
					 "invalid block");
368 369 370 371
			return -EIO;
		}
	}
	return 0;
372 373 374 375
}


#define ext4_check_indirect_blockref(inode, bh)                         \
376 377
	__ext4_check_blockref(__func__, __LINE__, inode,		\
			      (__le32 *)(bh)->b_data,			\
378 379 380
			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))

#define ext4_check_inode_blockref(inode)                                \
381 382
	__ext4_check_blockref(__func__, __LINE__, inode,		\
			      EXT4_I(inode)->i_data,			\
383 384
			      EXT4_NDIR_BLOCKS)

385
/**
386
 *	ext4_get_branch - read the chain of indirect blocks leading to data
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
411 412
 *
 *      Need to be called with
413
 *      down_read(&EXT4_I(inode)->i_data_sem)
414
 */
A
Aneesh Kumar K.V 已提交
415 416
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
417 418 419 420 421 422 423 424
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
425
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
426 427 428
	if (!p->key)
		goto no_block;
	while (--depth) {
429 430
		bh = sb_getblk(sb, le32_to_cpu(p->key));
		if (unlikely(!bh))
431
			goto failure;
432

433 434 435 436 437 438 439 440 441 442 443
		if (!bh_uptodate_or_lock(bh)) {
			if (bh_submit_read(bh) < 0) {
				put_bh(bh);
				goto failure;
			}
			/* validate block references */
			if (ext4_check_indirect_blockref(inode, bh)) {
				put_bh(bh);
				goto failure;
			}
		}
444

445
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
446 447 448 449 450 451 452 453 454 455 456 457 458
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
459
 *	ext4_find_near - find a place for allocation with sufficient locality
460 461 462
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
463
 *	This function returns the preferred place for block allocation.
464 465 466 467 468 469 470 471 472 473 474 475 476 477
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
478
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
479
{
480
	struct ext4_inode_info *ei = EXT4_I(inode);
481
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
482
	__le32 *p;
483
	ext4_fsblk_t bg_start;
484
	ext4_fsblk_t last_block;
485
	ext4_grpblk_t colour;
486 487
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
503 504 505 506 507 508 509
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
510 511
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

512 513 514 515 516 517 518
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

519 520
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
521
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
522 523
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
524 525 526 527
	return bg_start + colour;
}

/**
528
 *	ext4_find_goal - find a preferred place for allocation.
529 530 531 532
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
533
 *	Normally this function find the preferred place for block allocation,
534
 *	returns it.
535 536
 *	Because this is only used for non-extent files, we limit the block nr
 *	to 32 bits.
537
 */
A
Aneesh Kumar K.V 已提交
538
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
539
				   Indirect *partial)
540
{
541 542
	ext4_fsblk_t goal;

543
	/*
544
	 * XXX need to get goal block from mballoc's data structures
545 546
	 */

547 548 549
	goal = ext4_find_near(inode, partial);
	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
	return goal;
550 551 552
}

/**
553
 *	ext4_blks_to_allocate: Look up the block map and count the number
554 555 556 557 558 559 560 561 562 563
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
564
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
565
				 int blocks_to_boundary)
566
{
567
	unsigned int count = 0;
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
591
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
592 593 594 595 596 597 598 599
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
600
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
601 602 603
			     ext4_lblk_t iblock, ext4_fsblk_t goal,
			     int indirect_blks, int blks,
			     ext4_fsblk_t new_blocks[4], int *err)
604
{
605
	struct ext4_allocation_request ar;
606
	int target, i;
607
	unsigned long count = 0, blk_allocated = 0;
608
	int index = 0;
609
	ext4_fsblk_t current_block = 0;
610 611 612 613 614 615 616 617 618 619
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
620 621 622
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
623 624
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
625 626
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
627 628 629
		if (*err)
			goto failed_out;

630 631 632 633 634 635 636 637
		if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
			EXT4_ERROR_INODE(inode,
					 "current_block %llu + count %lu > %d!",
					 current_block, count,
					 EXT4_MAX_BLOCK_FILE_PHYS);
			*err = -EIO;
			goto failed_out;
		}
638

639 640 641 642 643 644
		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
645 646 647 648 649 650 651 652 653
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
654
			break;
655
		}
656 657
	}

658 659 660 661 662
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
663 664 665 666 667 668 669 670 671 672
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);
673 674 675 676 677 678 679 680
	if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
		EXT4_ERROR_INODE(inode,
				 "current_block %llu + ar.len %d > %d!",
				 current_block, ar.len,
				 EXT4_MAX_BLOCK_FILE_PHYS);
		*err = -EIO;
		goto failed_out;
	}
681

682 683 684 685 686 687 688 689 690
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
691 692 693 694
			/*
			 * save the new block number
			 * for the first direct block
			 */
695 696
			new_blocks[index] = current_block;
		}
697
		blk_allocated += ar.len;
698 699
	}
allocated:
700
	/* total number of blocks allocated for direct blocks */
701
	ret = blk_allocated;
702 703 704
	*err = 0;
	return ret;
failed_out:
705
	for (i = 0; i < index; i++)
706
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
707 708 709 710
	return ret;
}

/**
711
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
712 713 714 715 716 717 718 719 720 721
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
722
 *	the same format as ext4_get_branch() would do. We are calling it after
723 724
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
725
 *	picture as after the successful ext4_get_block(), except that in one
726 727 728 729 730 731
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
732
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
733 734
 *	as described above and return 0.
 */
735
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
736 737 738
			     ext4_lblk_t iblock, int indirect_blks,
			     int *blks, ext4_fsblk_t goal,
			     ext4_lblk_t *offsets, Indirect *branch)
739 740 741 742 743 744
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
745 746
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
747

748
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
764 765 766 767 768
		if (unlikely(!bh)) {
			err = -EIO;
			goto failed;
		}

769 770 771
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
772
		err = ext4_journal_get_create_access(handle, bh);
773
		if (err) {
774 775
			/* Don't brelse(bh) here; it's done in
			 * ext4_journal_forget() below */
776 777 778 779 780 781 782 783
			unlock_buffer(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
784
		if (n == indirect_blks) {
785 786 787 788 789 790
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
791
			for (i = 1; i < num; i++)
792 793 794 795 796 797
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

798 799
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
800 801 802 803 804 805 806
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
807
	ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
808
	for (i = 1; i <= n ; i++) {
809
		/*
810 811 812
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
813
		 */
814 815
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
				 EXT4_FREE_BLOCKS_FORGET);
816
	}
817 818
	for (i = n+1; i < indirect_blks; i++)
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
819

820
	ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
821 822 823 824 825

	return err;
}

/**
826
 * ext4_splice_branch - splice the allocated branch onto inode.
827 828 829
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
830
 *	ext4_alloc_branch)
831 832 833 834 835 836 837 838
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
839
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
840 841
			      ext4_lblk_t block, Indirect *where, int num,
			      int blks)
842 843 844
{
	int i;
	int err = 0;
845
	ext4_fsblk_t current_block;
846 847 848 849 850 851 852 853

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
854
		err = ext4_journal_get_write_access(handle, where->bh);
855 856 857 858 859 860 861 862 863 864 865 866 867 868
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
869
			*(where->p + i) = cpu_to_le32(current_block++);
870 871 872 873 874 875 876 877 878 879 880
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */
	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
881
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
882 883
		 */
		jbd_debug(5, "splicing indirect only\n");
884 885
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
886 887 888 889 890 891
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 */
892
		ext4_mark_inode_dirty(handle, inode);
893 894 895 896 897 898
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
899
		/*
900 901 902
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
903
		 */
904 905
		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
				 EXT4_FREE_BLOCKS_FORGET);
906
	}
907 908
	ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
			 blks, 0);
909 910 911 912 913

	return err;
}

/*
914
 * The ext4_ind_map_blocks() function handles non-extents inodes
915
 * (i.e., using the traditional indirect/double-indirect i_blocks
916
 * scheme) for ext4_map_blocks().
917
 *
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
934
 *
935 936 937 938 939
 * The ext4_ind_get_blocks() function should be called with
 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 * blocks.
940
 */
941 942
static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
			       struct ext4_map_blocks *map,
943
			       int flags)
944 945
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
946
	ext4_lblk_t offsets[4];
947 948
	Indirect chain[4];
	Indirect *partial;
949
	ext4_fsblk_t goal;
950 951 952 953
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
	int count = 0;
954
	ext4_fsblk_t first_block = 0;
955

956
	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
957
	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
958
	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
959
				   &blocks_to_boundary);
960 961 962 963

	if (depth == 0)
		goto out;

964
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
965 966 967 968 969 970

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		count++;
		/*map more blocks*/
971
		while (count < map->m_len && count <= blocks_to_boundary) {
972
			ext4_fsblk_t blk;
973 974 975 976 977 978 979 980

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
981
		goto got_it;
982 983 984
	}

	/* Next simple case - plain lookup or failed read of indirect block */
985
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
986 987 988
		goto cleanup;

	/*
989
	 * Okay, we need to do block allocation.
990
	*/
991
	goal = ext4_find_goal(inode, map->m_lblk, partial);
992 993 994 995 996 997 998 999

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
1000
	count = ext4_blks_to_allocate(partial, indirect_blks,
1001
				      map->m_len, blocks_to_boundary);
1002
	/*
1003
	 * Block out ext4_truncate while we alter the tree
1004
	 */
1005
	err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
1006 1007
				&count, goal,
				offsets + (partial - chain), partial);
1008 1009

	/*
1010
	 * The ext4_splice_branch call will free and forget any buffers
1011 1012 1013 1014 1015 1016
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
1017
		err = ext4_splice_branch(handle, inode, map->m_lblk,
1018
					 partial, indirect_blks, count);
1019
	if (err)
1020 1021
		goto cleanup;

1022
	map->m_flags |= EXT4_MAP_NEW;
1023 1024

	ext4_update_inode_fsync_trans(handle, inode, 1);
1025
got_it:
1026 1027 1028
	map->m_flags |= EXT4_MAP_MAPPED;
	map->m_pblk = le32_to_cpu(chain[depth-1].key);
	map->m_len = count;
1029
	if (count > blocks_to_boundary)
1030
		map->m_flags |= EXT4_MAP_BOUNDARY;
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
out:
	return err;
}

1044 1045
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
1046
{
1047
	return &EXT4_I(inode)->i_reserved_quota;
1048
}
1049
#endif
1050

1051 1052
/*
 * Calculate the number of metadata blocks need to reserve
1053
 * to allocate a new block at @lblocks for non extent file based file
1054
 */
1055 1056
static int ext4_indirect_calc_metadata_amount(struct inode *inode,
					      sector_t lblock)
1057
{
1058
	struct ext4_inode_info *ei = EXT4_I(inode);
1059
	sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1060
	int blk_bits;
1061

1062 1063
	if (lblock < EXT4_NDIR_BLOCKS)
		return 0;
1064

1065
	lblock -= EXT4_NDIR_BLOCKS;
1066

1067 1068 1069 1070 1071 1072 1073
	if (ei->i_da_metadata_calc_len &&
	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
		ei->i_da_metadata_calc_len++;
		return 0;
	}
	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
	ei->i_da_metadata_calc_len = 1;
1074
	blk_bits = order_base_2(lblock);
1075
	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1076 1077 1078 1079
}

/*
 * Calculate the number of metadata blocks need to reserve
1080
 * to allocate a block located at @lblock
1081
 */
1082
static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1083
{
1084
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1085
		return ext4_ext_calc_metadata_amount(inode, lblock);
1086

1087
	return ext4_indirect_calc_metadata_amount(inode, lblock);
1088 1089
}

1090 1091 1092 1093
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
1094 1095
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
1096 1097
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1098 1099 1100
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
1101
	trace_ext4_da_update_reserve_space(inode, used);
1102 1103 1104 1105 1106 1107 1108 1109
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
			 "with only %d reserved data blocks\n",
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
1110

1111 1112 1113
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1114 1115
	percpu_counter_sub(&sbi->s_dirtyblocks_counter,
			   used + ei->i_allocated_meta_blocks);
1116
	ei->i_allocated_meta_blocks = 0;
1117

1118 1119 1120 1121 1122 1123
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1124 1125
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
1126
		ei->i_reserved_meta_blocks = 0;
1127
		ei->i_da_metadata_calc_len = 0;
1128
	}
1129
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1130

1131 1132
	/* Update quota subsystem for data blocks */
	if (quota_claim)
1133
		dquot_claim_block(inode, used);
1134
	else {
1135 1136 1137
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
1138
		 * not re-claim the quota for fallocated blocks.
1139
		 */
1140
		dquot_release_reservation_block(inode, used);
1141
	}
1142 1143 1144 1145 1146 1147

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
1148 1149
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
1150
		ext4_discard_preallocations(inode);
1151 1152
}

1153
static int __check_block_validity(struct inode *inode, const char *func,
1154 1155
				unsigned int line,
				struct ext4_map_blocks *map)
1156
{
1157 1158
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
1159 1160 1161 1162
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
1163 1164 1165 1166 1167
		return -EIO;
	}
	return 0;
}

1168
#define check_block_validity(inode, map)	\
1169
	__check_block_validity((inode), __func__, __LINE__, (map))
1170

1171
/*
1172 1173
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
1207 1208 1209 1210 1211 1212 1213 1214 1215
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
1216 1217 1218 1219 1220
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
1221 1222
			if (num >= max_pages) {
				done = 1;
1223
				break;
1224
			}
1225 1226 1227 1228 1229 1230
		}
		pagevec_release(&pvec);
	}
	return num;
}

1231
/*
1232
 * The ext4_map_blocks() function tries to look up the requested blocks,
1233
 * and returns if the blocks are already mapped.
1234 1235 1236 1237 1238
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
1239 1240
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
1253 1254
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
1255 1256
{
	int retval;
1257

1258 1259 1260 1261
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
1262
	/*
1263 1264
	 * Try to see if we can get the block without requesting a new
	 * file system block.
1265 1266
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
1267
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1268
		retval = ext4_ext_map_blocks(handle, inode, map, 0);
1269
	} else {
1270
		retval = ext4_ind_map_blocks(handle, inode, map, 0);
1271
	}
1272
	up_read((&EXT4_I(inode)->i_data_sem));
1273

1274
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1275
		int ret = check_block_validity(inode, map);
1276 1277 1278 1279
		if (ret != 0)
			return ret;
	}

1280
	/* If it is only a block(s) look up */
1281
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1282 1283 1284 1285 1286 1287 1288 1289 1290
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
1291
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1292 1293
		return retval;

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
1304
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1305

1306
	/*
1307 1308 1309 1310
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1311 1312
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
1313 1314 1315 1316 1317 1318 1319

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
1320
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1321
		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1322 1323 1324 1325
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1326
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1327
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
1328
	} else {
1329
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
1330

1331
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1332 1333 1334 1335 1336
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
1337
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1338
		}
1339

1340 1341 1342 1343 1344 1345 1346
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
1347
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1348 1349
			ext4_da_update_reserve_space(inode, retval, 1);
	}
1350
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1351
		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1352

1353
	up_write((&EXT4_I(inode)->i_data_sem));
1354
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1355
		int ret = check_block_validity(inode, map);
1356 1357 1358
		if (ret != 0)
			return ret;
	}
1359 1360 1361
	return retval;
}

1362 1363 1364
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

1365 1366
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
1367
{
1368
	handle_t *handle = ext4_journal_current_handle();
1369
	struct ext4_map_blocks map;
J
Jan Kara 已提交
1370
	int ret = 0, started = 0;
1371
	int dio_credits;
1372

1373 1374 1375 1376
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

	if (flags && !handle) {
J
Jan Kara 已提交
1377
		/* Direct IO write... */
1378 1379 1380
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1381
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
1382
		if (IS_ERR(handle)) {
1383
			ret = PTR_ERR(handle);
1384
			return ret;
1385
		}
J
Jan Kara 已提交
1386
		started = 1;
1387 1388
	}

1389
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
1390
	if (ret > 0) {
1391 1392 1393
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
1394
		ret = 0;
1395
	}
J
Jan Kara 已提交
1396 1397
	if (started)
		ext4_journal_stop(handle);
1398 1399 1400
	return ret;
}

1401 1402 1403 1404 1405 1406 1407
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

1408 1409 1410
/*
 * `handle' can be NULL if create is zero
 */
1411
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1412
				ext4_lblk_t block, int create, int *errp)
1413
{
1414 1415
	struct ext4_map_blocks map;
	struct buffer_head *bh;
1416 1417 1418 1419
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

1420 1421 1422 1423
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
1424

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;
	*errp = 0;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
	if (!bh) {
		*errp = -EIO;
		return NULL;
1435
	}
1436 1437 1438
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
1439

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
1453
		}
1454 1455 1456 1457 1458 1459 1460
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
1461
	}
1462 1463 1464 1465 1466 1467
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
1468 1469
}

1470
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1471
			       ext4_lblk_t block, int create, int *err)
1472
{
1473
	struct buffer_head *bh;
1474

1475
	bh = ext4_getblk(handle, inode, block, create, err);
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

1489 1490 1491 1492 1493 1494 1495
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
1496 1497 1498 1499 1500 1501 1502
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

1503 1504
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
1505
	     block_start = block_end, bh = next) {
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1523
 * close off a transaction and start a new one between the ext4_get_block()
1524
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1525 1526
 * prepare_write() is the right place.
 *
1527 1528
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1529 1530 1531 1532
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1533
 * By accident, ext4 can be reentered when a transaction is open via
1534 1535 1536 1537 1538 1539
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1540
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1541 1542 1543 1544 1545
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
1546
				       struct buffer_head *bh)
1547
{
1548 1549 1550
	int dirty = buffer_dirty(bh);
	int ret;

1551 1552
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	/*
	 * __block_prepare_write() could have dirtied some buffers. Clean
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
	 * by __block_prepare_write() isn't a real problem here as we clear
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
1567 1568
}

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
/*
 * Truncate blocks that were not used by write. We have to truncate the
 * pagecache as well so that corresponding buffers get properly unmapped.
 */
static void ext4_truncate_failed_write(struct inode *inode)
{
	truncate_inode_pages(inode->i_mapping, inode->i_size);
	ext4_truncate(inode);
}

1579 1580
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
1581
static int ext4_write_begin(struct file *file, struct address_space *mapping,
1582 1583
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
1584
{
1585
	struct inode *inode = mapping->host;
1586
	int ret, needed_blocks;
1587 1588
	handle_t *handle;
	int retries = 0;
1589
	struct page *page;
1590
	pgoff_t index;
1591
	unsigned from, to;
N
Nick Piggin 已提交
1592

1593
	trace_ext4_write_begin(inode, pos, len, flags);
1594 1595 1596 1597 1598
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1599
	index = pos >> PAGE_CACHE_SHIFT;
1600 1601
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
1602 1603

retry:
1604 1605 1606 1607
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
1608
	}
1609

1610 1611 1612 1613
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

1614
	page = grab_cache_page_write_begin(mapping, index, flags);
1615 1616 1617 1618 1619 1620 1621
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

1622
	if (ext4_should_dioread_nolock(inode))
1623
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1624
	else
1625
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
1626 1627

	if (!ret && ext4_should_journal_data(inode)) {
1628 1629 1630
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1631 1632

	if (ret) {
1633 1634
		unlock_page(page);
		page_cache_release(page);
1635
		/*
1636
		 * __block_write_begin may have instantiated a few blocks
1637 1638
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
1639 1640 1641
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
1642
		 */
1643
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1644 1645 1646 1647
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
1648
			ext4_truncate_failed_write(inode);
1649
			/*
1650
			 * If truncate failed early the inode might
1651 1652 1653 1654 1655 1656 1657
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
1658 1659
	}

1660
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1661
		goto retry;
1662
out:
1663 1664 1665
	return ret;
}

N
Nick Piggin 已提交
1666 1667
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1668 1669 1670 1671
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1672
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1673 1674
}

1675
static int ext4_generic_write_end(struct file *file,
1676 1677 1678
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1721 1722 1723 1724
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1725
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1726 1727
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1728
static int ext4_ordered_write_end(struct file *file,
1729 1730 1731
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1732
{
1733
	handle_t *handle = ext4_journal_current_handle();
1734
	struct inode *inode = mapping->host;
1735 1736
	int ret = 0, ret2;

1737
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1738
	ret = ext4_jbd2_file_inode(handle, inode);
1739 1740

	if (ret == 0) {
1741
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1742
							page, fsdata);
1743
		copied = ret2;
1744
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1745 1746 1747 1748 1749
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1750 1751
		if (ret2 < 0)
			ret = ret2;
1752
	}
1753
	ret2 = ext4_journal_stop(handle);
1754 1755
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1756

1757
	if (pos + len > inode->i_size) {
1758
		ext4_truncate_failed_write(inode);
1759
		/*
1760
		 * If truncate failed early the inode might still be
1761 1762 1763 1764 1765 1766 1767 1768
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1769
	return ret ? ret : copied;
1770 1771
}

N
Nick Piggin 已提交
1772
static int ext4_writeback_write_end(struct file *file,
1773 1774 1775
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1776
{
1777
	handle_t *handle = ext4_journal_current_handle();
1778
	struct inode *inode = mapping->host;
1779 1780
	int ret = 0, ret2;

1781
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1782
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1783
							page, fsdata);
1784
	copied = ret2;
1785
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1786 1787 1788 1789 1790 1791
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1792 1793
	if (ret2 < 0)
		ret = ret2;
1794

1795
	ret2 = ext4_journal_stop(handle);
1796 1797
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1798

1799
	if (pos + len > inode->i_size) {
1800
		ext4_truncate_failed_write(inode);
1801
		/*
1802
		 * If truncate failed early the inode might still be
1803 1804 1805 1806 1807 1808 1809
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1810
	return ret ? ret : copied;
1811 1812
}

N
Nick Piggin 已提交
1813
static int ext4_journalled_write_end(struct file *file,
1814 1815 1816
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1817
{
1818
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1819
	struct inode *inode = mapping->host;
1820 1821
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1822
	unsigned from, to;
1823
	loff_t new_i_size;
1824

1825
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1826 1827 1828 1829 1830 1831 1832 1833
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1834 1835

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1836
				to, &partial, write_end_fn);
1837 1838
	if (!partial)
		SetPageUptodate(page);
1839 1840
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1841
		i_size_write(inode, pos+copied);
1842
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1843 1844
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1845
		ret2 = ext4_mark_inode_dirty(handle, inode);
1846 1847 1848
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1849

1850
	unlock_page(page);
1851
	page_cache_release(page);
1852
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1853 1854 1855 1856 1857 1858
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1859
	ret2 = ext4_journal_stop(handle);
1860 1861
	if (!ret)
		ret = ret2;
1862
	if (pos + len > inode->i_size) {
1863
		ext4_truncate_failed_write(inode);
1864
		/*
1865
		 * If truncate failed early the inode might still be
1866 1867 1868 1869 1870 1871
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1872 1873

	return ret ? ret : copied;
1874
}
1875

1876 1877 1878 1879
/*
 * Reserve a single block located at lblock
 */
static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1880
{
A
Aneesh Kumar K.V 已提交
1881
	int retries = 0;
1882
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1883
	struct ext4_inode_info *ei = EXT4_I(inode);
1884
	unsigned long md_needed;
1885
	int ret;
1886 1887 1888 1889 1890 1891

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1892
repeat:
1893
	spin_lock(&ei->i_block_reservation_lock);
1894
	md_needed = ext4_calc_metadata_amount(inode, lblock);
1895
	trace_ext4_da_reserve_space(inode, md_needed);
1896
	spin_unlock(&ei->i_block_reservation_lock);
1897

1898
	/*
1899 1900 1901
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
1902
	 */
1903
	ret = dquot_reserve_block(inode, 1);
1904 1905
	if (ret)
		return ret;
1906 1907 1908 1909
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1910
	if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1911
		dquot_release_reservation_block(inode, 1);
A
Aneesh Kumar K.V 已提交
1912 1913 1914 1915
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1916 1917
		return -ENOSPC;
	}
1918
	spin_lock(&ei->i_block_reservation_lock);
1919
	ei->i_reserved_data_blocks++;
1920 1921
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1922

1923 1924 1925
	return 0;       /* success */
}

1926
static void ext4_da_release_space(struct inode *inode, int to_free)
1927 1928
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1929
	struct ext4_inode_info *ei = EXT4_I(inode);
1930

1931 1932 1933
	if (!to_free)
		return;		/* Nothing to release, exit */

1934
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1935

L
Li Zefan 已提交
1936
	trace_ext4_da_release_space(inode, to_free);
1937
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1938
		/*
1939 1940 1941 1942
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1943
		 */
1944 1945 1946 1947 1948 1949
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
			 "data blocks\n", inode->i_ino, to_free,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1950
	}
1951
	ei->i_reserved_data_blocks -= to_free;
1952

1953 1954 1955 1956 1957 1958
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1959 1960
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
1961
		ei->i_reserved_meta_blocks = 0;
1962
		ei->i_da_metadata_calc_len = 0;
1963
	}
1964

1965
	/* update fs dirty data blocks counter */
1966
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1967 1968

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1969

1970
	dquot_release_reservation_block(inode, to_free);
1971 1972 1973
}

static void ext4_da_page_release_reservation(struct page *page,
1974
					     unsigned long offset)
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1991
	ext4_da_release_space(page->mapping->host, to_release);
1992
}
1993

1994 1995 1996 1997 1998 1999
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
2000
 * them with writepage() call back
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
2011 2012
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
2013
{
2014 2015 2016 2017 2018
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
2019
	loff_t size = i_size_read(inode);
2020 2021
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
2022
	int journal_data = ext4_should_journal_data(inode);
2023
	sector_t pblock = 0, cur_logical = 0;
2024
	struct ext4_io_submit io_submit;
2025 2026

	BUG_ON(mpd->next_page <= mpd->first_page);
2027
	memset(&io_submit, 0, sizeof(io_submit));
2028 2029 2030
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
2031
	 * If we look at mpd->b_blocknr we would only be looking
2032 2033
	 * at the currently mapped buffer_heads.
	 */
2034 2035 2036
	index = mpd->first_page;
	end = mpd->next_page - 1;

2037
	pagevec_init(&pvec, 0);
2038
	while (index <= end) {
2039
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2040 2041 2042
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
2043
			int commit_write = 0, redirty_page = 0;
2044 2045
			struct page *page = pvec.pages[i];

2046 2047 2048
			index = page->index;
			if (index > end)
				break;
2049 2050 2051 2052 2053

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
2054 2055 2056 2057 2058 2059
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
2060 2061 2062 2063 2064
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
			/*
			 * If the page does not have buffers (for
			 * whatever reason), try to create them using
			 * block_prepare_write.  If this fails,
			 * redirty the page and move on.
			 */
			if (!page_has_buffers(page)) {
				if (block_prepare_write(page, 0, len,
						noalloc_get_block_write)) {
				redirty_page:
					redirty_page_for_writepage(mpd->wbc,
								   page);
					unlock_page(page);
					continue;
				}
				commit_write = 1;
			}
2082 2083 2084 2085

			bh = page_bufs = page_buffers(page);
			block_start = 0;
			do {
2086
				if (!bh)
2087
					goto redirty_page;
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}

				/* redirty page if block allocation undone */
				if (buffer_delay(bh) || buffer_unwritten(bh))
					redirty_page = 1;
2106 2107
				bh = bh->b_this_page;
				block_start += bh->b_size;
2108 2109 2110 2111 2112 2113
				cur_logical++;
				pblock++;
			} while (bh != page_bufs);

			if (redirty_page)
				goto redirty_page;
2114 2115 2116 2117 2118

			if (commit_write)
				/* mark the buffer_heads as dirty & uptodate */
				block_commit_write(page, 0, len);

2119 2120 2121 2122 2123 2124
			/*
			 * Delalloc doesn't support data journalling,
			 * but eventually maybe we'll lift this
			 * restriction.
			 */
			if (unlikely(journal_data && PageChecked(page)))
2125
				err = __ext4_journalled_writepage(page, len);
2126 2127 2128
			else
				err = ext4_bio_write_page(&io_submit, page,
							  len, mpd->wbc);
2129 2130

			if (!err)
2131
				mpd->pages_written++;
2132 2133 2134 2135 2136 2137 2138 2139 2140
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
2141
	ext4_io_submit(&io_submit);
2142 2143 2144
	return ret;
}

2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
					sector_t logical, long blk_cnt)
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end   = (logical + blk_cnt - 1) >>
				(PAGE_CACHE_SHIFT - inode->i_blkbits);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
2163
			if (page->index > end)
2164 2165 2166 2167 2168 2169 2170
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
2171 2172
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
2173 2174 2175 2176
	}
	return;
}

2177 2178 2179
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
	printk(KERN_CRIT "Total free blocks count %lld\n",
	       ext4_count_free_blocks(inode->i_sb));
	printk(KERN_CRIT "Free/Dirty block details\n");
	printk(KERN_CRIT "free_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
	printk(KERN_CRIT "dirty_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
	printk(KERN_CRIT "Block reservation details\n");
	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_data_blocks);
	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_meta_blocks);
2192 2193 2194
	return;
}

2195
/*
2196 2197
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
2198
 *
2199
 * @mpd - bh describing space
2200 2201 2202 2203
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
2204
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
2205
{
2206
	int err, blks, get_blocks_flags;
2207
	struct ext4_map_blocks map, *mapp = NULL;
2208 2209 2210 2211
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
2212 2213

	/*
2214 2215
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
2216
	 */
2217 2218 2219 2220 2221
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
2222 2223 2224 2225

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

2226
	/*
2227
	 * Call ext4_map_blocks() to allocate any delayed allocation
2228 2229 2230 2231 2232 2233 2234 2235
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
2236
	 * want to change *many* call functions, so ext4_map_blocks()
2237 2238 2239 2240 2241 2242
	 * will set the magic i_delalloc_reserved_flag once the
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
2243
	 */
2244 2245
	map.m_lblk = next;
	map.m_len = max_blocks;
2246
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2247 2248
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2249
	if (mpd->b_state & (1 << BH_Delay))
2250 2251
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

2252
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2253
	if (blks < 0) {
2254 2255
		struct super_block *sb = mpd->inode->i_sb;

2256
		err = blks;
2257
		/*
2258 2259 2260 2261
		 * If get block returns EAGAIN or ENOSPC and there
		 * appears to be free blocks we will call
		 * ext4_writepage() for all of the pages which will
		 * just redirty the pages.
2262 2263
		 */
		if (err == -EAGAIN)
2264
			goto submit_io;
2265 2266

		if (err == -ENOSPC &&
2267
		    ext4_count_free_blocks(sb)) {
2268
			mpd->retval = err;
2269
			goto submit_io;
2270 2271
		}

2272
		/*
2273 2274 2275 2276 2277
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
2278
		 */
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
				"This should not happen!! Data will be lost\n");
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
2290
		}
2291
		/* invalidate all the pages */
2292
		ext4_da_block_invalidatepages(mpd, next,
2293
				mpd->b_size >> mpd->inode->i_blkbits);
2294
		return;
2295
	}
2296 2297
	BUG_ON(blks == 0);

2298
	mapp = &map;
2299 2300 2301
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
2302

2303 2304 2305
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
	}
2306

2307 2308 2309
	if (ext4_should_order_data(mpd->inode)) {
		err = ext4_jbd2_file_inode(handle, mpd->inode);
		if (err)
2310 2311
			/* This only happens if the journal is aborted */
			return;
2312 2313 2314
	}

	/*
2315
	 * Update on-disk size along with block allocation.
2316 2317 2318 2319 2320 2321
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
2322 2323 2324 2325 2326
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
2327 2328
	}

2329
submit_io:
2330
	mpage_da_submit_io(mpd, mapp);
2331
	mpd->io_done = 1;
2332 2333
}

2334 2335
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2347 2348
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
2349 2350
{
	sector_t next;
2351
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2352

2353 2354 2355 2356
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
2357
	 * ext4_map_blocks() multiple times in a loop
2358 2359 2360 2361
	 */
	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
		goto flush_it;

2362
	/* check if thereserved journal credits might overflow */
2363
	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
2384 2385 2386
	/*
	 * First block in the extent
	 */
2387 2388 2389 2390
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
2391 2392 2393
		return;
	}

2394
	next = mpd->b_blocknr + nrblocks;
2395 2396 2397
	/*
	 * Can we merge the block to our big extent?
	 */
2398 2399
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
2400 2401 2402
		return;
	}

2403
flush_it:
2404 2405 2406 2407
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
2408
	mpage_da_map_and_submit(mpd);
2409
	return;
2410 2411
}

2412
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2413
{
2414
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2415 2416
}

2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
/*
 * __mpage_da_writepage - finds extent of pages and blocks
 *
 * @page: page to consider
 * @wbc: not used, we just follow rules
 * @data: context
 *
 * The function finds extents of pages and scan them for all blocks.
 */
static int __mpage_da_writepage(struct page *page,
2427 2428
				struct writeback_control *wbc,
				struct mpage_da_data *mpd)
2429 2430
{
	struct inode *inode = mpd->inode;
2431
	struct buffer_head *bh, *head;
2432 2433 2434 2435 2436 2437 2438 2439
	sector_t logical;

	/*
	 * Can we merge this page to current extent?
	 */
	if (mpd->next_page != page->index) {
		/*
		 * Nope, we can't. So, we map non-allocated blocks
2440
		 * and start IO on them
2441 2442
		 */
		if (mpd->next_page != mpd->first_page) {
2443
			mpage_da_map_and_submit(mpd);
2444 2445 2446 2447 2448 2449
			/*
			 * skip rest of the page in the page_vec
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return MPAGE_DA_EXTENT_TAIL;
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
		}

		/*
		 * Start next extent of pages ...
		 */
		mpd->first_page = page->index;

		/*
		 * ... and blocks
		 */
2460 2461 2462
		mpd->b_size = 0;
		mpd->b_state = 0;
		mpd->b_blocknr = 0;
2463 2464 2465 2466 2467 2468 2469
	}

	mpd->next_page = page->index + 1;
	logical = (sector_t) page->index <<
		  (PAGE_CACHE_SHIFT - inode->i_blkbits);

	if (!page_has_buffers(page)) {
2470 2471
		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2472 2473
		if (mpd->io_done)
			return MPAGE_DA_EXTENT_TAIL;
2474 2475 2476 2477 2478 2479 2480 2481
	} else {
		/*
		 * Page with regular buffer heads, just add all dirty ones
		 */
		head = page_buffers(page);
		bh = head;
		do {
			BUG_ON(buffer_locked(bh));
2482 2483 2484 2485
			/*
			 * We need to try to allocate
			 * unmapped blocks in the same page.
			 * Otherwise we won't make progress
2486
			 * with the page in ext4_writepage
2487
			 */
2488
			if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2489 2490 2491
				mpage_add_bh_to_extent(mpd, logical,
						       bh->b_size,
						       bh->b_state);
2492 2493
				if (mpd->io_done)
					return MPAGE_DA_EXTENT_TAIL;
2494 2495 2496 2497 2498 2499 2500 2501 2502
			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
				/*
				 * mapped dirty buffer. We need to update
				 * the b_state because we look at
				 * b_state in mpage_da_map_blocks. We don't
				 * update b_size because if we find an
				 * unmapped buffer_head later we need to
				 * use the b_state flag of that buffer_head.
				 */
2503 2504
				if (mpd->b_size == 0)
					mpd->b_state = bh->b_state & BH_FLAGS;
2505
			}
2506 2507 2508 2509 2510 2511 2512 2513
			logical++;
		} while ((bh = bh->b_this_page) != head);
	}

	return 0;
}

/*
2514 2515 2516
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
2517 2518 2519 2520 2521 2522 2523
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
2524 2525
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2526
				  struct buffer_head *bh, int create)
2527
{
2528
	struct ext4_map_blocks map;
2529
	int ret = 0;
2530 2531 2532 2533
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;
2534 2535

	BUG_ON(create == 0);
2536 2537 2538 2539
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
2540 2541 2542 2543 2544 2545

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2546 2547 2548 2549 2550 2551
	ret = ext4_map_blocks(NULL, inode, &map, 0);
	if (ret < 0)
		return ret;
	if (ret == 0) {
		if (buffer_delay(bh))
			return 0; /* Not sure this could or should happen */
2552 2553 2554 2555
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
2556
		ret = ext4_da_reserve_space(inode, iblock);
2557 2558 2559 2560
		if (ret)
			/* not enough space to reserve */
			return ret;

2561 2562 2563 2564
		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
		return 0;
2565 2566
	}

2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
		set_buffer_mapped(bh);
	}
	return 0;
2581
}
2582

2583 2584 2585
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
2586 2587
 * callback function for block_prepare_write() and block_write_full_page().
 * These functions should only try to map a single block at a time.
2588 2589 2590 2591 2592
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
2593 2594 2595
 * delayed allocation before calling  block_write_full_page().  Otherwise,
 * b_blocknr could be left unitialized, and the page write functions will
 * be taken by surprise.
2596 2597
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2598 2599
				   struct buffer_head *bh_result, int create)
{
2600
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2601
	return _ext4_get_block(inode, iblock, bh_result, 0);
2602 2603
}

2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

2626
	ClearPageChecked(page);
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2652
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2653 2654 2655 2656
out:
	return ret;
}

2657 2658 2659
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);

2660
/*
2661 2662 2663 2664 2665 2666 2667 2668 2669
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
 * we are writing back data modified via mmap(), noone guarantees in which
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
2670 2671 2672 2673 2674
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
 * but other bufer_heads would be unmapped but dirty(dirty done via the
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2700
 */
2701
static int ext4_writepage(struct page *page,
2702
			  struct writeback_control *wbc)
2703
{
T
Theodore Ts'o 已提交
2704
	int ret = 0, commit_write = 0;
2705
	loff_t size;
2706
	unsigned int len;
2707
	struct buffer_head *page_bufs = NULL;
2708 2709
	struct inode *inode = page->mapping->host;

2710
	trace_ext4_writepage(inode, page);
2711 2712 2713 2714 2715
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2716

T
Theodore Ts'o 已提交
2717 2718 2719 2720 2721 2722 2723 2724 2725
	/*
	 * If the page does not have buffers (for whatever reason),
	 * try to create them using block_prepare_write.  If this
	 * fails, redirty the page and move on.
	 */
	if (!page_buffers(page)) {
		if (block_prepare_write(page, 0, len,
					noalloc_get_block_write)) {
		redirty_page:
2726 2727 2728 2729
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
2730 2731 2732 2733 2734
		commit_write = 1;
	}
	page_bufs = page_buffers(page);
	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
			      ext4_bh_delay_or_unwritten)) {
2735
		/*
T
Theodore Ts'o 已提交
2736 2737 2738 2739 2740 2741
		 * We don't want to do block allocation So redirty the
		 * page and return We may reach here when we do a
		 * journal commit via
		 * journal_submit_inode_data_buffers.  If we don't
		 * have mapping block we just ignore them. We can also
		 * reach here via shrink_page_list
2742
		 */
T
Theodore Ts'o 已提交
2743 2744 2745
		goto redirty_page;
	}
	if (commit_write)
2746
		/* now mark the buffer_heads as dirty and uptodate */
2747
		block_commit_write(page, 0, len);
2748

2749
	if (PageChecked(page) && ext4_should_journal_data(inode))
2750 2751 2752 2753
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
2754
		return __ext4_journalled_writepage(page, len);
2755

T
Theodore Ts'o 已提交
2756
	if (buffer_uninit(page_bufs)) {
2757 2758 2759 2760
		ext4_set_bh_endio(page_bufs, inode);
		ret = block_write_full_page_endio(page, noalloc_get_block_write,
					    wbc, ext4_end_io_buffer_write);
	} else
2761 2762
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
2763 2764 2765 2766

	return ret;
}

2767
/*
2768 2769 2770 2771 2772
 * This is called via ext4_da_writepages() to
 * calulate the total number of credits to reserve to fit
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2773
 */
2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2785
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2786 2787 2788 2789 2790
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2791

2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
 * address space and call the callback function (which usually writes
 * the pages).
 *
 * This is a forked version of write_cache_pages().  Differences:
 *	Range cyclic is ignored.
 *	no_nrwrite_index_update is always presumed true
 */
static int write_cache_pages_da(struct address_space *mapping,
				struct writeback_control *wbc,
				struct mpage_da_data *mpd)
{
	int ret = 0;
	int done = 0;
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
	long nr_to_write = wbc->nr_to_write;
2812
	int tag;
2813 2814 2815 2816 2817

	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

2818 2819 2820 2821 2822
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

2823 2824 2825
	while (!done && (index <= end)) {
		int i;

2826
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
			break;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
			if (page->index > end) {
				done = 1;
				break;
			}

			lock_page(page);

			/*
			 * Page truncated or invalidated. We can freely skip it
			 * then, even for data integrity operations: the page
			 * has disappeared concurrently, so there could be no
			 * real expectation of this data interity operation
			 * even if there is now a new, dirty page at the same
			 * pagecache address.
			 */
			if (unlikely(page->mapping != mapping)) {
continue_unlock:
				unlock_page(page);
				continue;
			}

			if (!PageDirty(page)) {
				/* someone wrote it for us */
				goto continue_unlock;
			}

			if (PageWriteback(page)) {
				if (wbc->sync_mode != WB_SYNC_NONE)
					wait_on_page_writeback(page);
				else
					goto continue_unlock;
			}

			BUG_ON(PageWriteback(page));
			if (!clear_page_dirty_for_io(page))
				goto continue_unlock;

			ret = __mpage_da_writepage(page, wbc, mpd);
			if (unlikely(ret)) {
				if (ret == AOP_WRITEPAGE_ACTIVATE) {
					unlock_page(page);
					ret = 0;
				} else {
					done = 1;
					break;
				}
			}

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
				    wbc->sync_mode == WB_SYNC_NONE) {
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
					done = 1;
					break;
				}
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
	return ret;
}


2915
static int ext4_da_writepages(struct address_space *mapping,
2916
			      struct writeback_control *wbc)
2917
{
2918 2919
	pgoff_t	index;
	int range_whole = 0;
2920
	handle_t *handle = NULL;
2921
	struct mpage_da_data mpd;
2922
	struct inode *inode = mapping->host;
2923 2924
	int pages_written = 0;
	long pages_skipped;
2925
	unsigned int max_pages;
2926
	int range_cyclic, cycled = 1, io_done = 0;
2927 2928
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2929
	loff_t range_start = wbc->range_start;
2930
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2931
	pgoff_t end;
2932

2933
	trace_ext4_da_writepages(inode, wbc);
2934

2935 2936 2937 2938 2939
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2940
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2941
		return 0;
2942 2943 2944 2945 2946

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2947
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2948 2949 2950 2951 2952
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2953
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2954 2955
		return -EROFS;

2956 2957
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2958

2959 2960
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2961
		index = mapping->writeback_index;
2962 2963 2964 2965 2966
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2967 2968
		end = -1;
	} else {
2969
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2970 2971
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2972

2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2990 2991 2992 2993 2994 2995
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

3006 3007 3008
	mpd.wbc = wbc;
	mpd.inode = mapping->host;

3009 3010
	pages_skipped = wbc->pages_skipped;

3011
retry:
3012 3013 3014
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag_pages_for_writeback(mapping, index, end);

3015
	while (!ret && wbc->nr_to_write > 0) {
3016 3017 3018 3019 3020 3021 3022 3023

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
3024
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
3025

3026 3027 3028 3029
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
3030
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
3031
			       "%ld pages, ino %lu; err %d", __func__,
3032
				wbc->nr_to_write, inode->i_ino, ret);
3033 3034
			goto out_writepages;
		}
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052

		/*
		 * Now call __mpage_da_writepage to find the next
		 * contiguous region of logical blocks that need
		 * blocks to be allocated by ext4.  We don't actually
		 * submit the blocks for I/O here, even though
		 * write_cache_pages thinks it will, and will set the
		 * pages as clean for write before calling
		 * __mpage_da_writepage().
		 */
		mpd.b_size = 0;
		mpd.b_state = 0;
		mpd.b_blocknr = 0;
		mpd.first_page = 0;
		mpd.next_page = 0;
		mpd.io_done = 0;
		mpd.pages_written = 0;
		mpd.retval = 0;
3053
		ret = write_cache_pages_da(mapping, wbc, &mpd);
3054
		/*
3055
		 * If we have a contiguous extent of pages and we
3056 3057 3058 3059
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3060
			mpage_da_map_and_submit(&mpd);
3061 3062
			ret = MPAGE_DA_EXTENT_TAIL;
		}
3063
		trace_ext4_da_write_pages(inode, &mpd);
3064
		wbc->nr_to_write -= mpd.pages_written;
3065

3066
		ext4_journal_stop(handle);
3067

3068
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3069 3070 3071 3072
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
3073
			jbd2_journal_force_commit_nested(sbi->s_journal);
3074 3075 3076
			wbc->pages_skipped = pages_skipped;
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
3077 3078 3079 3080
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
3081 3082
			pages_written += mpd.pages_written;
			wbc->pages_skipped = pages_skipped;
3083
			ret = 0;
3084
			io_done = 1;
3085
		} else if (wbc->nr_to_write)
3086 3087 3088 3089 3090 3091
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
3092
	}
3093 3094 3095 3096 3097 3098 3099
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
3100
	if (pages_skipped != wbc->pages_skipped)
3101 3102
		ext4_msg(inode->i_sb, KERN_CRIT,
			 "This should not happen leaving %s "
3103
			 "with nr_to_write = %ld ret = %d",
3104
			 __func__, wbc->nr_to_write, ret);
3105 3106 3107

	/* Update index */
	index += pages_written;
3108
	wbc->range_cyclic = range_cyclic;
3109 3110 3111 3112 3113 3114
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
		mapping->writeback_index = index;
3115

3116
out_writepages:
3117
	wbc->nr_to_write -= nr_to_writebump;
3118
	wbc->range_start = range_start;
3119
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3120
	return ret;
3121 3122
}

3123 3124 3125 3126 3127 3128 3129 3130 3131
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
3132
	 * counters can get slightly wrong with percpu_counter_batch getting
3133 3134 3135 3136 3137 3138 3139 3140 3141
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
3142 3143
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
3144 3145 3146
		 */
		return 1;
	}
3147 3148 3149 3150 3151 3152 3153
	/*
	 * Even if we don't switch but are nearing capacity,
	 * start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (free_blocks < 2 * dirty_blocks)
		writeback_inodes_sb_if_idle(sb);

3154 3155 3156
	return 0;
}

3157
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3158 3159
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
3160
{
3161
	int ret, retries = 0;
3162 3163 3164 3165 3166 3167
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
3168 3169 3170 3171 3172 3173 3174

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
3175
	trace_ext4_da_write_begin(inode, pos, len, flags);
3176
retry:
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
3188 3189 3190
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
3191

3192
	page = grab_cache_page_write_begin(mapping, index, flags);
3193 3194 3195 3196 3197
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
3198 3199
	*pagep = page;

3200
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3201 3202 3203 3204
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
3205 3206 3207 3208 3209 3210
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
3211
			ext4_truncate_failed_write(inode);
3212 3213
	}

3214 3215
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3216 3217 3218 3219
out:
	return ret;
}

3220 3221 3222 3223 3224
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
3225
					    unsigned long offset)
3226 3227 3228 3229 3230 3231 3232 3233 3234
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

3235
	for (i = 0; i < idx; i++)
3236 3237
		bh = bh->b_this_page;

3238
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3239 3240 3241 3242
		return 0;
	return 1;
}

3243
static int ext4_da_write_end(struct file *file,
3244 3245 3246
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
3247 3248 3249 3250 3251
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
3252
	unsigned long start, end;
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
3266

3267
	trace_ext4_da_write_end(inode, pos, len, copied);
3268
	start = pos & (PAGE_CACHE_SIZE - 1);
3269
	end = start + copied - 1;
3270 3271 3272 3273 3274 3275 3276 3277

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
3289

3290 3291 3292
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
3293 3294 3295 3296 3297
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
3298
		}
3299
	}
3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

3321
	ext4_da_page_release_reservation(page, offset);
3322 3323 3324 3325 3326 3327 3328

out:
	ext4_invalidatepage(page, offset);

	return;
}

3329 3330 3331 3332 3333
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
3334 3335
	trace_ext4_alloc_da_blocks(inode);

3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
3346
	 *
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
	 * the pages by calling redirty_page_for_writeback() but that
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
	 * simplifying them becuase we wouldn't actually intend to
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
3366
	 *
3367 3368 3369 3370 3371 3372
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
3373

3374 3375 3376 3377 3378
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
3379
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3380 3381 3382 3383 3384 3385 3386 3387
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
3388
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3389 3390 3391 3392 3393
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

3404 3405
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
3417
		 * NB. EXT4_STATE_JDATA is not set on files other than
3418 3419 3420 3421 3422 3423
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

3424
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3425
		journal = EXT4_JOURNAL(inode);
3426 3427 3428
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
3429 3430 3431 3432 3433

		if (err)
			return 0;
	}

3434
	return generic_block_bmap(mapping, block, ext4_get_block);
3435 3436
}

3437
static int ext4_readpage(struct file *file, struct page *page)
3438
{
3439
	return mpage_readpage(page, ext4_get_block);
3440 3441 3442
}

static int
3443
ext4_readpages(struct file *file, struct address_space *mapping,
3444 3445
		struct list_head *pages, unsigned nr_pages)
{
3446
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3447 3448
}

3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
{
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	if (!page_has_buffers(page))
		return;
	head = bh = page_buffers(page);
	do {
		if (offset <= curr_off && test_clear_buffer_uninit(bh)
					&& bh->b_private) {
			ext4_free_io_end(bh->b_private);
			bh->b_private = NULL;
			bh->b_end_io = NULL;
		}
		curr_off = curr_off + bh->b_size;
		bh = bh->b_this_page;
	} while (bh != head);
}

3469
static void ext4_invalidatepage(struct page *page, unsigned long offset)
3470
{
3471
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3472

3473 3474 3475 3476 3477
	/*
	 * free any io_end structure allocated for buffers to be discarded
	 */
	if (ext4_should_dioread_nolock(page->mapping->host))
		ext4_invalidatepage_free_endio(page, offset);
3478 3479 3480 3481 3482 3483
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3484 3485 3486 3487
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
3488 3489
}

3490
static int ext4_releasepage(struct page *page, gfp_t wait)
3491
{
3492
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3493 3494 3495 3496

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
3497 3498 3499 3500
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3501 3502 3503
}

/*
3504 3505
 * O_DIRECT for ext3 (or indirect map) based files
 *
3506 3507 3508 3509 3510
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
3511 3512
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
3513
 */
3514
static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3515 3516
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
3517 3518 3519
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3520
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
3521
	handle_t *handle;
3522 3523 3524
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);
3525
	int retries = 0;
3526 3527 3528 3529 3530

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
3531 3532 3533 3534 3535 3536
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
3537
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
3538 3539 3540 3541
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
3542 3543
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
3544
			ext4_journal_stop(handle);
3545 3546 3547
		}
	}

3548
retry:
3549
	if (rw == READ && ext4_should_dioread_nolock(inode))
3550
		ret = __blockdev_direct_IO(rw, iocb, inode,
3551 3552
				 inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
3553 3554
				 ext4_get_block, NULL, NULL, 0);
	else {
3555 3556
		ret = blockdev_direct_IO(rw, iocb, inode,
				 inode->i_sb->s_bdev, iov,
3557
				 offset, nr_segs,
3558
				 ext4_get_block, NULL);
3559 3560 3561 3562 3563 3564 3565 3566 3567

		if (unlikely((rw & WRITE) && ret < 0)) {
			loff_t isize = i_size_read(inode);
			loff_t end = offset + iov_length(iov, nr_segs);

			if (end > isize)
				vmtruncate(inode, isize);
		}
	}
3568 3569
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3570

J
Jan Kara 已提交
3571
	if (orphan) {
3572 3573
		int err;

J
Jan Kara 已提交
3574 3575 3576 3577 3578 3579 3580
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
3581 3582 3583
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);

J
Jan Kara 已提交
3584 3585 3586
			goto out;
		}
		if (inode->i_nlink)
3587
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
3588
		if (ret > 0) {
3589 3590 3591 3592 3593 3594 3595 3596
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
3597
				 * ext4_mark_inode_dirty() to userspace.  So
3598 3599
				 * ignore it.
				 */
3600
				ext4_mark_inode_dirty(handle, inode);
3601 3602
			}
		}
3603
		err = ext4_journal_stop(handle);
3604 3605 3606 3607 3608 3609 3610
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

3611 3612 3613 3614 3615
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
3616
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3617 3618
		   struct buffer_head *bh_result, int create)
{
3619
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3620
		   inode->i_ino, create);
3621 3622
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3623 3624
}

3625
static void dump_completed_IO(struct inode * inode)
3626 3627 3628 3629
{
#ifdef	EXT4_DEBUG
	struct list_head *cur, *before, *after;
	ext4_io_end_t *io, *io0, *io1;
3630
	unsigned long flags;
3631

3632 3633
	if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
		ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
3634 3635 3636
		return;
	}

3637
	ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
3638
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3639
	list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
3640 3641 3642 3643 3644 3645 3646 3647 3648
		cur = &io->list;
		before = cur->prev;
		io0 = container_of(before, ext4_io_end_t, list);
		after = cur->next;
		io1 = container_of(after, ext4_io_end_t, list);

		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
			    io, inode->i_ino, io0, io1);
	}
3649
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3650 3651
#endif
}
3652

3653 3654 3655
/*
 * This function is called from ext4_sync_file().
 *
3656 3657
 * When IO is completed, the work to convert unwritten extents to
 * written is queued on workqueue but may not get immediately
3658 3659
 * scheduled. When fsync is called, we need to ensure the
 * conversion is complete before fsync returns.
3660 3661 3662 3663 3664
 * The inode keeps track of a list of pending/completed IO that
 * might needs to do the conversion. This function walks through
 * the list and convert the related unwritten extents for completed IO
 * to written.
 * The function return the number of pending IOs on success.
3665
 */
3666
int flush_completed_IO(struct inode *inode)
3667 3668
{
	ext4_io_end_t *io;
3669 3670
	struct ext4_inode_info *ei = EXT4_I(inode);
	unsigned long flags;
3671 3672 3673
	int ret = 0;
	int ret2 = 0;

3674
	if (list_empty(&ei->i_completed_io_list))
3675 3676
		return ret;

3677
	dump_completed_IO(inode);
3678 3679 3680
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	while (!list_empty(&ei->i_completed_io_list)){
		io = list_entry(ei->i_completed_io_list.next,
3681 3682
				ext4_io_end_t, list);
		/*
3683
		 * Calling ext4_end_io_nolock() to convert completed
3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
		 * IO to written.
		 *
		 * When ext4_sync_file() is called, run_queue() may already
		 * about to flush the work corresponding to this io structure.
		 * It will be upset if it founds the io structure related
		 * to the work-to-be schedule is freed.
		 *
		 * Thus we need to keep the io structure still valid here after
		 * convertion finished. The io structure has a flag to
		 * avoid double converting from both fsync and background work
		 * queue work.
		 */
3696
		spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3697
		ret = ext4_end_io_nolock(io);
3698
		spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3699 3700 3701 3702 3703
		if (ret < 0)
			ret2 = ret;
		else
			list_del_init(&io->list);
	}
3704
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3705 3706 3707
	return (ret2 < 0) ? ret2 : 0;
}

3708
static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3709 3710
			    ssize_t size, void *private, int ret,
			    bool is_async)
3711 3712 3713
{
        ext4_io_end_t *io_end = iocb->private;
	struct workqueue_struct *wq;
3714 3715
	unsigned long flags;
	struct ext4_inode_info *ei;
3716

3717 3718
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
3719
		goto out;
3720

3721 3722 3723 3724 3725 3726
	ext_debug("ext4_end_io_dio(): io_end 0x%p"
		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

	/* if not aio dio with unwritten extents, just free io and return */
3727
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3728 3729
		ext4_free_io_end(io_end);
		iocb->private = NULL;
3730 3731 3732 3733
out:
		if (is_async)
			aio_complete(iocb, ret, 0);
		return;
3734 3735
	}

3736 3737
	io_end->offset = offset;
	io_end->size = size;
3738 3739 3740 3741
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
3742 3743
	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;

3744
	/* Add the io_end to per-inode completed aio dio list*/
3745 3746 3747 3748
	ei = EXT4_I(io_end->inode);
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &ei->i_completed_io_list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3749 3750 3751

	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
3752 3753
	iocb->private = NULL;
}
3754

3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
{
	ext4_io_end_t *io_end = bh->b_private;
	struct workqueue_struct *wq;
	struct inode *inode;
	unsigned long flags;

	if (!test_clear_buffer_uninit(bh) || !io_end)
		goto out;

	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
		printk("sb umounted, discard end_io request for inode %lu\n",
			io_end->inode->i_ino);
		ext4_free_io_end(io_end);
		goto out;
	}

3772
	io_end->flag = EXT4_IO_END_UNWRITTEN;
3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
	inode = io_end->inode;

	/* Add the io_end to per-inode completed io list*/
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);

	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
out:
	bh->b_private = NULL;
	bh->b_end_io = NULL;
	clear_buffer_uninit(bh);
	end_buffer_async_write(bh, uptodate);
}

static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
{
	ext4_io_end_t *io_end;
	struct page *page = bh->b_page;
	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
	size_t size = bh->b_size;

retry:
	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
	if (!io_end) {
		if (printk_ratelimit())
			printk(KERN_WARNING "%s: allocation fail\n", __func__);
		schedule();
		goto retry;
	}
	io_end->offset = offset;
	io_end->size = size;
	/*
	 * We need to hold a reference to the page to make sure it
	 * doesn't get evicted before ext4_end_io_work() has a chance
	 * to convert the extent from written to unwritten.
	 */
	io_end->page = page;
	get_page(io_end->page);

	bh->b_private = io_end;
	bh->b_end_io = ext4_end_io_buffer_write;
	return 0;
}

3820 3821 3822 3823 3824 3825 3826 3827 3828
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
 * For holes, we fallocate those blocks, mark them as unintialized
 * If those blocks were preallocated, we mark sure they are splited, but
 * still keep the range to write as unintialized.
 *
3829 3830 3831 3832
 * The unwrritten extents will be converted to written when DIO is completed.
 * For async direct IO, since the IO may still pending when return, we
 * set up an end_io call back function, which will do the convertion
 * when async direct IO completed.
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);

	loff_t final_size = offset + count;
	if (rw == WRITE && final_size <= inode->i_size) {
		/*
3851 3852 3853
 		 * We could direct write to holes and fallocate.
		 *
 		 * Allocated blocks to fill the hole are marked as uninitialized
3854 3855
 		 * to prevent paralel buffered read to expose the stale data
 		 * before DIO complete the data IO.
3856 3857
		 *
 		 * As to previously fallocated extents, ext4 get_block
3858 3859 3860
 		 * will just simply mark the buffer mapped but still
 		 * keep the extents uninitialized.
 		 *
3861 3862 3863 3864 3865 3866 3867 3868
		 * for non AIO case, we will convert those unwritten extents
		 * to written after return back from blockdev_direct_IO.
		 *
		 * for async DIO, the conversion needs to be defered when
		 * the IO is completed. The ext4 end_io callback function
		 * will be called to take care of the conversion work.
		 * Here for async case, we allocate an io_end structure to
		 * hook to the iocb.
3869
 		 */
3870 3871 3872
		iocb->private = NULL;
		EXT4_I(inode)->cur_aio_dio = NULL;
		if (!is_sync_kiocb(iocb)) {
3873
			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3874 3875 3876 3877
			if (!iocb->private)
				return -ENOMEM;
			/*
			 * we save the io structure for current async
3878
			 * direct IO, so that later ext4_map_blocks()
3879 3880 3881 3882 3883 3884 3885
			 * could flag the io structure whether there
			 * is a unwritten extents needs to be converted
			 * when IO is completed.
			 */
			EXT4_I(inode)->cur_aio_dio = iocb->private;
		}

3886 3887 3888
		ret = blockdev_direct_IO(rw, iocb, inode,
					 inode->i_sb->s_bdev, iov,
					 offset, nr_segs,
3889
					 ext4_get_block_write,
3890
					 ext4_end_io_dio);
3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
		if (iocb->private)
			EXT4_I(inode)->cur_aio_dio = NULL;
		/*
		 * The io_end structure takes a reference to the inode,
		 * that structure needs to be destroyed and the
		 * reference to the inode need to be dropped, when IO is
		 * complete, even with 0 byte write, or failed.
		 *
		 * In the successful AIO DIO case, the io_end structure will be
		 * desctroyed and the reference to the inode will be dropped
		 * after the end_io call back function is called.
		 *
		 * In the case there is 0 byte write, or error case, since
		 * VFS direct IO won't invoke the end_io call back function,
		 * we need to free the end_io structure here.
		 */
		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
			ext4_free_io_end(iocb->private);
			iocb->private = NULL;
3910 3911
		} else if (ret > 0 && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
3912
			int err;
3913 3914 3915 3916
			/*
			 * for non AIO case, since the IO is already
			 * completed, we could do the convertion right here
			 */
3917 3918 3919 3920
			err = ext4_convert_unwritten_extents(inode,
							     offset, ret);
			if (err < 0)
				ret = err;
3921
			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3922
		}
3923 3924
		return ret;
	}
3925 3926

	/* for write the the end of file case, we fall back to old way */
3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;

3937
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3938 3939 3940 3941 3942
		return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);

	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

3943
/*
3944
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3956
static int ext4_journalled_set_page_dirty(struct page *page)
3957 3958 3959 3960 3961
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3962
static const struct address_space_operations ext4_ordered_aops = {
3963 3964
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3965
	.writepage		= ext4_writepage,
3966 3967 3968 3969 3970 3971 3972 3973 3974
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3975
	.error_remove_page	= generic_error_remove_page,
3976 3977
};

3978
static const struct address_space_operations ext4_writeback_aops = {
3979 3980
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3981
	.writepage		= ext4_writepage,
3982 3983 3984 3985 3986 3987 3988 3989 3990
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3991
	.error_remove_page	= generic_error_remove_page,
3992 3993
};

3994
static const struct address_space_operations ext4_journalled_aops = {
3995 3996
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3997
	.writepage		= ext4_writepage,
3998 3999 4000 4001 4002 4003 4004 4005
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
4006
	.error_remove_page	= generic_error_remove_page,
4007 4008
};

4009
static const struct address_space_operations ext4_da_aops = {
4010 4011
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
4012
	.writepage		= ext4_writepage,
4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
	.writepages		= ext4_da_writepages,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
4023
	.error_remove_page	= generic_error_remove_page,
4024 4025
};

4026
void ext4_set_aops(struct inode *inode)
4027
{
4028 4029 4030 4031
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
4032
		inode->i_mapping->a_ops = &ext4_ordered_aops;
4033 4034 4035
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
4036 4037
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
4038
	else
4039
		inode->i_mapping->a_ops = &ext4_journalled_aops;
4040 4041 4042
}

/*
4043
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4044 4045 4046 4047
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
4048
int ext4_block_truncate_page(handle_t *handle,
4049 4050
		struct address_space *mapping, loff_t from)
{
4051
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
4052
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
4053 4054
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
4055 4056
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
4057
	struct page *page;
4058 4059
	int err = 0;

4060 4061
	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
4062 4063 4064
	if (!page)
		return -EINVAL;

4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
4089
		ext4_get_block(inode, iblock, bh, 0);
4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

4110
	if (ext4_should_journal_data(inode)) {
4111
		BUFFER_TRACE(bh, "get write access");
4112
		err = ext4_journal_get_write_access(handle, bh);
4113 4114 4115 4116
		if (err)
			goto unlock;
	}

4117
	zero_user(page, offset, length);
4118 4119 4120 4121

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
4122
	if (ext4_should_journal_data(inode)) {
4123
		err = ext4_handle_dirty_metadata(handle, inode, bh);
4124
	} else {
4125
		if (ext4_should_order_data(inode))
4126
			err = ext4_jbd2_file_inode(handle, inode);
4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
4150
 *	ext4_find_shared - find the indirect blocks for partial truncation.
4151 4152
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
4153
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
4154 4155 4156
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
4157
 *	This is a helper function used by ext4_truncate().
4158 4159 4160 4161 4162 4163 4164
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
4165
 *	past the truncation point is possible until ext4_truncate()
4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

4184
static Indirect *ext4_find_shared(struct inode *inode, int depth,
4185 4186
				  ext4_lblk_t offsets[4], Indirect chain[4],
				  __le32 *top)
4187 4188 4189 4190 4191
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
4192
	/* Make k index the deepest non-null offset + 1 */
4193 4194
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
4195
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
4206
	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
4218
		/* Nope, don't do this in ext4.  Must leave the tree intact */
4219 4220 4221 4222 4223 4224
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

4225
	while (partial > p) {
4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
4241 4242 4243 4244 4245
static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
			     struct buffer_head *bh,
			     ext4_fsblk_t block_to_free,
			     unsigned long count, __le32 *first,
			     __le32 *last)
4246 4247
{
	__le32 *p;
4248
	int	flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4249 4250 4251

	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
		flags |= EXT4_FREE_BLOCKS_METADATA;
4252

4253 4254
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
				   count)) {
4255 4256 4257
		EXT4_ERROR_INODE(inode, "attempt to clear invalid "
				 "blocks %llu len %lu",
				 (unsigned long long) block_to_free, count);
4258 4259 4260
		return 1;
	}

4261 4262
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
4263 4264
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			ext4_handle_dirty_metadata(handle, inode, bh);
4265
		}
4266
		ext4_mark_inode_dirty(handle, inode);
4267 4268
		ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
4269 4270
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
4271
			ext4_journal_get_write_access(handle, bh);
4272 4273 4274
		}
	}

4275 4276
	for (p = first; p < last; p++)
		*p = 0;
4277

4278
	ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4279
	return 0;
4280 4281 4282
}

/**
4283
 * ext4_free_data - free a list of data blocks
4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
4301
static void ext4_free_data(handle_t *handle, struct inode *inode,
4302 4303 4304
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
4305
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4306 4307 4308 4309
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
4310
	ext4_fsblk_t nr;		    /* Current block # */
4311 4312 4313 4314 4315 4316
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
4317
		err = ext4_journal_get_write_access(handle, this_bh);
4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
4335 4336 4337 4338
				if (ext4_clear_blocks(handle, inode, this_bh,
						      block_to_free, count,
						      block_to_free_p, p))
					break;
4339 4340 4341 4342 4343 4344 4345 4346
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
4347
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4348 4349 4350
				  count, block_to_free_p, p);

	if (this_bh) {
4351
		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4352 4353 4354 4355 4356 4357 4358

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
4359
		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4360
			ext4_handle_dirty_metadata(handle, inode, this_bh);
4361
		else
4362 4363 4364 4365
			EXT4_ERROR_INODE(inode,
					 "circular indirect block detected at "
					 "block %llu",
				(unsigned long long) this_bh->b_blocknr);
4366 4367 4368 4369
	}
}

/**
4370
 *	ext4_free_branches - free an array of branches
4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
4382
static void ext4_free_branches(handle_t *handle, struct inode *inode,
4383 4384 4385
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
4386
	ext4_fsblk_t nr;
4387 4388
	__le32 *p;

4389
	if (ext4_handle_is_aborted(handle))
4390 4391 4392 4393
		return;

	if (depth--) {
		struct buffer_head *bh;
4394
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4395 4396 4397 4398 4399 4400
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

4401 4402
			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
						   nr, 1)) {
4403 4404 4405 4406
				EXT4_ERROR_INODE(inode,
						 "invalid indirect mapped "
						 "block %lu (level %d)",
						 (unsigned long) nr, depth);
4407 4408 4409
				break;
			}

4410 4411 4412 4413 4414 4415 4416 4417
			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
4418 4419
				EXT4_ERROR_INODE_BLOCK(inode, nr,
						       "Read failure");
4420 4421 4422 4423 4424
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
4425
			ext4_free_branches(handle, inode, bh,
4426 4427 4428
					(__le32 *) bh->b_data,
					(__le32 *) bh->b_data + addr_per_block,
					depth);
4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
4446
			if (ext4_handle_is_aborted(handle))
4447 4448
				return;
			if (try_to_extend_transaction(handle, inode)) {
4449
				ext4_mark_inode_dirty(handle, inode);
4450 4451
				ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
4452 4453
			}

4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464
			/*
			 * The forget flag here is critical because if
			 * we are journaling (and not doing data
			 * journaling), we have to make sure a revoke
			 * record is written to prevent the journal
			 * replay from overwriting the (former)
			 * indirect block if it gets reallocated as a
			 * data block.  This must happen in the same
			 * transaction where the data blocks are
			 * actually freed.
			 */
4465
			ext4_free_blocks(handle, inode, 0, nr, 1,
4466 4467
					 EXT4_FREE_BLOCKS_METADATA|
					 EXT4_FREE_BLOCKS_FORGET);
4468 4469 4470 4471 4472 4473 4474

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
4475
				if (!ext4_journal_get_write_access(handle,
4476 4477 4478
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
4479 4480 4481 4482
					"call ext4_handle_dirty_metadata");
					ext4_handle_dirty_metadata(handle,
								   inode,
								   parent_bh);
4483 4484 4485 4486 4487 4488
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
4489
		ext4_free_data(handle, inode, parent_bh, first, last);
4490 4491 4492
	}
}

4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505
int ext4_can_truncate(struct inode *inode)
{
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return 0;
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

4506
/*
4507
 * ext4_truncate()
4508
 *
4509 4510
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
4527
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4528
 * that this inode's truncate did not complete and it will again call
4529 4530
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
4531
 * that's fine - as long as they are linked from the inode, the post-crash
4532
 * ext4_truncate() run will find them and release them.
4533
 */
4534
void ext4_truncate(struct inode *inode)
4535 4536
{
	handle_t *handle;
4537
	struct ext4_inode_info *ei = EXT4_I(inode);
4538
	__le32 *i_data = ei->i_data;
4539
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4540
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
4541
	ext4_lblk_t offsets[4];
4542 4543 4544 4545
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
4546
	ext4_lblk_t last_block;
4547 4548
	unsigned blocksize = inode->i_sb->s_blocksize;

4549
	if (!ext4_can_truncate(inode))
4550 4551
		return;

4552
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4553

4554
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4555
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4556

4557
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4558
		ext4_ext_truncate(inode);
A
Aneesh Kumar K.V 已提交
4559 4560
		return;
	}
A
Alex Tomas 已提交
4561

4562
	handle = start_transaction(inode);
4563
	if (IS_ERR(handle))
4564 4565 4566
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
4567
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4568

4569 4570 4571
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
4572

4573
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
4586
	if (ext4_orphan_add(handle, inode))
4587 4588
		goto out_stop;

4589 4590 4591 4592 4593
	/*
	 * From here we block out all ext4_get_block() callers who want to
	 * modify the block allocation tree.
	 */
	down_write(&ei->i_data_sem);
4594

4595
	ext4_discard_preallocations(inode);
4596

4597 4598 4599 4600 4601
	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
4602
	 * ext4 *really* writes onto the disk inode.
4603 4604 4605 4606
	 */
	ei->i_disksize = inode->i_size;

	if (n == 1) {		/* direct blocks */
4607 4608
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
4609 4610 4611
		goto do_indirects;
	}

4612
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4613 4614 4615 4616
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
4617
			ext4_free_branches(handle, inode, NULL,
4618 4619 4620 4621 4622 4623 4624 4625 4626
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
4627
			ext4_free_branches(handle, inode, partial->bh,
4628 4629 4630 4631 4632 4633
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
4634
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4635 4636 4637
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
4638
		brelse(partial->bh);
4639 4640 4641 4642 4643 4644
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
4645
		nr = i_data[EXT4_IND_BLOCK];
4646
		if (nr) {
4647 4648
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
4649
		}
4650 4651
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
4652
		if (nr) {
4653 4654
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
4655
		}
4656 4657
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
4658
		if (nr) {
4659 4660
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
4661
		}
4662
	case EXT4_TIND_BLOCK:
4663 4664 4665
		;
	}

4666
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
4667
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4668
	ext4_mark_inode_dirty(handle, inode);
4669 4670 4671 4672 4673 4674

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
4675
		ext4_handle_sync(handle);
4676 4677 4678 4679 4680
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
4681
	 * ext4_delete_inode(), and we allow that function to clean up the
4682 4683 4684
	 * orphan info for us.
	 */
	if (inode->i_nlink)
4685
		ext4_orphan_del(handle, inode);
4686

4687
	ext4_journal_stop(handle);
4688 4689 4690
}

/*
4691
 * ext4_get_inode_loc returns with an extra refcount against the inode's
4692 4693 4694 4695
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
4696 4697
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
4698
{
4699 4700 4701 4702 4703 4704
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
4705
	iloc->bh = NULL;
4706 4707
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
4708

4709 4710 4711
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
4712 4713
		return -EIO;

4714 4715 4716 4717 4718 4719 4720 4721 4722 4723
	/*
	 * Figure out the offset within the block group inode table
	 */
	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
4724
	if (!bh) {
4725 4726
		EXT4_ERROR_INODE_BLOCK(inode, block,
				       "unable to read itable block");
4727 4728 4729 4730
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
4731 4732 4733 4734 4735 4736 4737 4738 4739 4740

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
4754
			int i, start;
4755

4756
			start = inode_offset & ~(inodes_per_block - 1);
4757

4758 4759
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
4772
			for (i = start; i < start + inodes_per_block; i++) {
4773 4774
				if (i == inode_offset)
					continue;
4775
				if (ext4_test_bit(i, bitmap_bh->b_data))
4776 4777 4778
					break;
			}
			brelse(bitmap_bh);
4779
			if (i == start + inodes_per_block) {
4780 4781 4782 4783 4784 4785 4786 4787 4788
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
4789 4790 4791 4792 4793 4794 4795 4796 4797
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
4798
			/* s_inode_readahead_blks is always a power of 2 */
4799 4800 4801 4802 4803 4804 4805
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4806
				num -= ext4_itable_unused_count(sb, gdp);
4807 4808 4809 4810 4811 4812 4813
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

4814 4815 4816 4817 4818 4819 4820 4821 4822 4823
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
4824 4825
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
4826 4827 4828 4829 4830 4831 4832 4833 4834
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

4835
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4836 4837
{
	/* We have all inode data except xattrs in memory here. */
4838
	return __ext4_get_inode_loc(inode, iloc,
4839
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4840 4841
}

4842
void ext4_set_inode_flags(struct inode *inode)
4843
{
4844
	unsigned int flags = EXT4_I(inode)->i_flags;
4845 4846

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4847
	if (flags & EXT4_SYNC_FL)
4848
		inode->i_flags |= S_SYNC;
4849
	if (flags & EXT4_APPEND_FL)
4850
		inode->i_flags |= S_APPEND;
4851
	if (flags & EXT4_IMMUTABLE_FL)
4852
		inode->i_flags |= S_IMMUTABLE;
4853
	if (flags & EXT4_NOATIME_FL)
4854
		inode->i_flags |= S_NOATIME;
4855
	if (flags & EXT4_DIRSYNC_FL)
4856 4857 4858
		inode->i_flags |= S_DIRSYNC;
}

4859 4860 4861
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4882
}
4883

4884
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4885
				  struct ext4_inode_info *ei)
4886 4887
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
4888 4889
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
4890 4891 4892 4893 4894 4895

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
4896
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
4897 4898 4899 4900 4901
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
4902 4903 4904 4905
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
4906

4907
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4908
{
4909 4910
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
4911 4912
	struct ext4_inode_info *ei;
	struct inode *inode;
4913
	journal_t *journal = EXT4_SB(sb)->s_journal;
4914
	long ret;
4915 4916
	int block;

4917 4918 4919 4920 4921 4922 4923
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
4924
	iloc.bh = 0;
4925

4926 4927
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
4928
		goto bad_inode;
4929
	raw_inode = ext4_raw_inode(&iloc);
4930 4931 4932
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4933
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4934 4935 4936 4937 4938
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

4939
	ei->i_state_flags = 0;
4940 4941 4942 4943 4944 4945 4946 4947 4948
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
4949
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4950
			/* this inode is deleted */
4951
			ret = -ESTALE;
4952 4953 4954 4955 4956 4957 4958 4959
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4960
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4961
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4962
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
4963 4964
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4965
	inode->i_size = ext4_isize(raw_inode);
4966
	ei->i_disksize = inode->i_size;
4967 4968 4969
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
4970 4971
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
4972
	ei->i_last_alloc_group = ~0;
4973 4974 4975 4976
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
4977
	for (block = 0; block < EXT4_N_BLOCKS; block++)
4978 4979 4980
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

4992
		read_lock(&journal->j_state_lock);
4993 4994 4995 4996 4997 4998 4999 5000
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
5001
		read_unlock(&journal->j_state_lock);
5002 5003 5004 5005
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

5006
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5007
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
5008
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
5009
		    EXT4_INODE_SIZE(inode->i_sb)) {
5010
			ret = -EIO;
5011
			goto bad_inode;
5012
		}
5013 5014
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
5015 5016
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
5017 5018
		} else {
			__le32 *magic = (void *)raw_inode +
5019
					EXT4_GOOD_OLD_INODE_SIZE +
5020
					ei->i_extra_isize;
5021
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
5022
				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
5023 5024 5025 5026
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
5027 5028 5029 5030 5031
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

5032 5033 5034 5035 5036 5037 5038
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

5039
	ret = 0;
5040
	if (ei->i_file_acl &&
5041
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5042 5043
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
5044 5045
		ret = -EIO;
		goto bad_inode;
5046
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5047 5048 5049 5050 5051
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
5052
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5053 5054
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
5055
		/* Validate block references which are part of inode */
5056 5057
		ret = ext4_check_inode_blockref(inode);
	}
5058
	if (ret)
5059
		goto bad_inode;
5060

5061
	if (S_ISREG(inode->i_mode)) {
5062 5063 5064
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
5065
	} else if (S_ISDIR(inode->i_mode)) {
5066 5067
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
5068
	} else if (S_ISLNK(inode->i_mode)) {
5069
		if (ext4_inode_is_fast_symlink(inode)) {
5070
			inode->i_op = &ext4_fast_symlink_inode_operations;
5071 5072 5073
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
5074 5075
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
5076
		}
5077 5078
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5079
		inode->i_op = &ext4_special_inode_operations;
5080 5081 5082 5083 5084 5085
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5086 5087
	} else {
		ret = -EIO;
5088
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5089
		goto bad_inode;
5090
	}
5091
	brelse(iloc.bh);
5092
	ext4_set_inode_flags(inode);
5093 5094
	unlock_new_inode(inode);
	return inode;
5095 5096

bad_inode:
5097
	brelse(iloc.bh);
5098 5099
	iget_failed(inode);
	return ERR_PTR(ret);
5100 5101
}

5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
5115
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5116
		raw_inode->i_blocks_high = 0;
5117
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5118 5119 5120 5121 5122 5123
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
5124 5125 5126 5127
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
5128
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5129
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5130
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5131
	} else {
5132
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
5133 5134 5135 5136
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5137
	}
5138
	return 0;
5139 5140
}

5141 5142 5143 5144 5145 5146 5147
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
5148
static int ext4_do_update_inode(handle_t *handle,
5149
				struct inode *inode,
5150
				struct ext4_iloc *iloc)
5151
{
5152 5153
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
5154 5155 5156 5157 5158
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
5159
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5160
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5161

5162
	ext4_get_inode_flags(ei);
5163
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5164
	if (!(test_opt(inode->i_sb, NO_UID32))) {
5165 5166 5167 5168 5169 5170
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
5171
		if (!ei->i_dtime) {
5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
5189 5190 5191 5192 5193 5194

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

5195 5196
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
5197
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5198
	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5199 5200
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
5201 5202
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
5203
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
5220
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5221
			sb->s_dirt = 1;
5222
			ext4_handle_sync(handle);
5223
			err = ext4_handle_dirty_metadata(handle, NULL,
5224
					EXT4_SB(sb)->s_sbh);
5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
5239 5240 5241
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
5242

5243 5244 5245 5246 5247
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
5248
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5249 5250
	}

5251
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5252
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5253 5254
	if (!err)
		err = rc;
5255
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5256

5257
	ext4_update_inode_fsync_trans(handle, inode, 0);
5258
out_brelse:
5259
	brelse(bh);
5260
	ext4_std_error(inode->i_sb, err);
5261 5262 5263 5264
	return err;
}

/*
5265
 * ext4_write_inode()
5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
5282
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
5299
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5300
{
5301 5302
	int err;

5303 5304 5305
	if (current->flags & PF_MEMALLOC)
		return 0;

5306 5307 5308 5309 5310 5311
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
5312

5313
		if (wbc->sync_mode != WB_SYNC_ALL)
5314 5315 5316 5317 5318
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
5319

5320
		err = __ext4_get_inode_loc(inode, &iloc, 0);
5321 5322
		if (err)
			return err;
5323
		if (wbc->sync_mode == WB_SYNC_ALL)
5324 5325
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5326 5327
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
5328 5329
			err = -EIO;
		}
5330
		brelse(iloc.bh);
5331 5332
	}
	return err;
5333 5334 5335
}

/*
5336
 * ext4_setattr()
5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
5350 5351 5352 5353 5354 5355 5356 5357
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
5358
 */
5359
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5360 5361 5362 5363 5364 5365 5366 5367 5368
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

5369
	if (is_quota_modification(inode, attr))
5370
		dquot_initialize(inode);
5371 5372 5373 5374 5375 5376
	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
D
Dmitry Monakhov 已提交
5377
		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5378
					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5379 5380 5381 5382
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
5383
		error = dquot_transfer(inode, attr);
5384
		if (error) {
5385
			ext4_journal_stop(handle);
5386 5387 5388 5389 5390 5391 5392 5393
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
5394 5395
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
5396 5397
	}

5398
	if (attr->ia_valid & ATTR_SIZE) {
5399
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5400 5401
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

5402 5403
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
5404 5405 5406
		}
	}

5407
	if (S_ISREG(inode->i_mode) &&
5408 5409
	    attr->ia_valid & ATTR_SIZE &&
	    (attr->ia_size < inode->i_size ||
5410
	     (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
5411 5412
		handle_t *handle;

5413
		handle = ext4_journal_start(inode, 3);
5414 5415 5416 5417 5418
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}

5419 5420 5421
		error = ext4_orphan_add(handle, inode);
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
5422 5423
		if (!error)
			error = rc;
5424
		ext4_journal_stop(handle);
5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
5441
		/* ext4_truncate will clear the flag */
5442
		if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
5443
			ext4_truncate(inode);
5444 5445
	}

C
Christoph Hellwig 已提交
5446 5447 5448
	if ((attr->ia_valid & ATTR_SIZE) &&
	    attr->ia_size != i_size_read(inode))
		rc = vmtruncate(inode, attr->ia_size);
5449

C
Christoph Hellwig 已提交
5450 5451 5452 5453 5454 5455 5456 5457 5458
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
5459
	if (inode->i_nlink)
5460
		ext4_orphan_del(NULL, inode);
5461 5462

	if (!rc && (ia_valid & ATTR_MODE))
5463
		rc = ext4_acl_chmod(inode);
5464 5465

err_out:
5466
	ext4_std_error(inode->i_sb, error);
5467 5468 5469 5470 5471
	if (!error)
		error = rc;
	return error;
}

5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
5498

5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525
static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
				      int chunk)
{
	int indirects;

	/* if nrblocks are contiguous */
	if (chunk) {
		/*
		 * With N contiguous data blocks, it need at most
		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
		 * 2 dindirect blocks
		 * 1 tindirect block
		 */
		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
		return indirects + 3;
	}
	/*
	 * if nrblocks are not contiguous, worse case, each block touch
	 * a indirect block, and each indirect block touch a double indirect
	 * block, plus a triple indirect block
	 */
	indirects = nrblocks * 2 + 1;
	return indirects;
}

static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
5526
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5527 5528
		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5529
}
5530

5531
/*
5532 5533 5534
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
5535
 *
5536
 * If datablocks are discontiguous, they are possible to spread over
5537
 * different block groups too. If they are contiuguous, with flexbg,
5538
 * they could still across block group boundary.
5539
 *
5540 5541 5542 5543
 * Also account for superblock, inode, quota and xattr blocks
 */
int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
5544 5545
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
5572 5573
	if (groups > ngroups)
		groups = ngroups;
5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
 * Calulate the total number of credits to reserve to fit
5588 5589
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
5590
 *
5591
 * This could be called via ext4_write_begin()
5592
 *
5593
 * We need to consider the worse case, when
5594
 * one new block per extent.
5595
 */
A
Alex Tomas 已提交
5596
int ext4_writepage_trans_blocks(struct inode *inode)
5597
{
5598
	int bpp = ext4_journal_blocks_per_page(inode);
5599 5600
	int ret;

5601
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
5602

5603
	/* Account for data blocks for journalled mode */
5604
	if (ext4_should_journal_data(inode))
5605
		ret += bpp;
5606 5607
	return ret;
}
5608 5609 5610 5611 5612

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
5613
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5614 5615 5616 5617 5618 5619 5620 5621 5622
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

5623
/*
5624
 * The caller must have previously called ext4_reserve_inode_write().
5625 5626
 * Give this, we know that the caller already has write access to iloc->bh.
 */
5627
int ext4_mark_iloc_dirty(handle_t *handle,
5628
			 struct inode *inode, struct ext4_iloc *iloc)
5629 5630 5631
{
	int err = 0;

5632 5633 5634
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

5635 5636 5637
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

5638
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5639
	err = ext4_do_update_inode(handle, inode, iloc);
5640 5641 5642 5643 5644 5645 5646 5647 5648 5649
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
5650 5651
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
5652
{
5653 5654 5655 5656 5657 5658 5659 5660 5661
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
5662 5663
		}
	}
5664
	ext4_std_error(inode->i_sb, err);
5665 5666 5667
	return err;
}

5668 5669 5670 5671
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
5672 5673 5674 5675
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
5688 5689
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
5722
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5723
{
5724
	struct ext4_iloc iloc;
5725 5726 5727
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
5728 5729

	might_sleep();
5730
	err = ext4_reserve_inode_write(handle, inode, &iloc);
5731 5732
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5733
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
5747 5748
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
5749 5750
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5751
					ext4_warning(inode->i_sb,
5752 5753 5754
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
5755 5756
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
5757 5758 5759 5760
				}
			}
		}
	}
5761
	if (!err)
5762
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5763 5764 5765 5766
	return err;
}

/*
5767
 * ext4_dirty_inode() is called from __mark_inode_dirty()
5768 5769 5770 5771 5772
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
5773
 * Also, dquot_alloc_block() will always dirty the inode when blocks
5774 5775 5776 5777 5778 5779
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
5780
void ext4_dirty_inode(struct inode *inode)
5781 5782 5783
{
	handle_t *handle;

5784
	handle = ext4_journal_start(inode, 2);
5785 5786
	if (IS_ERR(handle))
		goto out;
5787 5788 5789

	ext4_mark_inode_dirty(handle, inode);

5790
	ext4_journal_stop(handle);
5791 5792 5793 5794 5795 5796 5797 5798
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
5799
 * ext4_reserve_inode_write, this leaves behind no bh reference and
5800 5801 5802
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
5803
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5804
{
5805
	struct ext4_iloc iloc;
5806 5807 5808

	int err = 0;
	if (handle) {
5809
		err = ext4_get_inode_loc(inode, &iloc);
5810 5811
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
5812
			err = jbd2_journal_get_write_access(handle, iloc.bh);
5813
			if (!err)
5814
				err = ext4_handle_dirty_metadata(handle,
5815
								 NULL,
5816
								 iloc.bh);
5817 5818 5819
			brelse(iloc.bh);
		}
	}
5820
	ext4_std_error(inode->i_sb, err);
5821 5822 5823 5824
	return err;
}
#endif

5825
int ext4_change_inode_journal_flag(struct inode *inode, int val)
5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

5841
	journal = EXT4_JOURNAL(inode);
5842 5843
	if (!journal)
		return 0;
5844
	if (is_journal_aborted(journal))
5845 5846
		return -EROFS;

5847 5848
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
5849 5850 5851 5852 5853 5854 5855 5856 5857 5858

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
5859
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5860
	else
5861
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5862
	ext4_set_aops(inode);
5863

5864
	jbd2_journal_unlock_updates(journal);
5865 5866 5867

	/* Finally we can mark the inode as dirty. */

5868
	handle = ext4_journal_start(inode, 1);
5869 5870 5871
	if (IS_ERR(handle))
		return PTR_ERR(handle);

5872
	err = ext4_mark_inode_dirty(handle, inode);
5873
	ext4_handle_sync(handle);
5874 5875
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
5876 5877 5878

	return err;
}
5879 5880 5881 5882 5883 5884

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

5885
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5886
{
5887
	struct page *page = vmf->page;
5888 5889 5890
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
5891
	void *fsdata;
5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
	if (PageMappedToDisk(page))
		goto out_unlock;

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

5916 5917 5918 5919 5920 5921 5922
	lock_page(page);
	/*
	 * return if we have all the buffers mapped. This avoid
	 * the need to call write_begin/write_end which does a
	 * journal_start/journal_stop which can block and take
	 * long time
	 */
5923 5924
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5925 5926
					ext4_bh_unmapped)) {
			unlock_page(page);
5927
			goto out_unlock;
5928
		}
5929
	}
5930
	unlock_page(page);
5931 5932 5933 5934 5935 5936 5937 5938
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5939
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5940 5941 5942
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5943
			len, len, page, fsdata);
5944 5945 5946 5947
	if (ret < 0)
		goto out_unlock;
	ret = 0;
out_unlock:
5948 5949
	if (ret)
		ret = VM_FAULT_SIGBUS;
5950 5951 5952
	up_read(&inode->i_alloc_sem);
	return ret;
}