inode.c 150.7 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
18
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 20 21 22
 */

#include <linux/fs.h>
#include <linux/time.h>
23
#include <linux/jbd2.h>
24 25 26 27 28 29
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
30
#include <linux/pagevec.h>
31
#include <linux/mpage.h>
32
#include <linux/namei.h>
33 34
#include <linux/uio.h>
#include <linux/bio.h>
35
#include <linux/workqueue.h>
36
#include <linux/kernel.h>
37
#include <linux/printk.h>
38
#include <linux/slab.h>
39
#include <linux/ratelimit.h>
40

41
#include "ext4_jbd2.h"
42 43
#include "xattr.h"
#include "acl.h"
44
#include "truncate.h"
45

46 47
#include <trace/events/ext4.h>

48 49
#define MPAGE_DA_EXTENT_TAIL 0x01

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
			      struct ext4_inode_info *ei)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	__u16 csum_lo;
	__u16 csum_hi = 0;
	__u32 csum;

	csum_lo = raw->i_checksum_lo;
	raw->i_checksum_lo = 0;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
		csum_hi = raw->i_checksum_hi;
		raw->i_checksum_hi = 0;
	}

	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
			   EXT4_INODE_SIZE(inode->i_sb));

	raw->i_checksum_lo = csum_lo;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = csum_hi;

	return csum;
}

static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
				  struct ext4_inode_info *ei)
{
	__u32 provided, calculated;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return 1;

	provided = le16_to_cpu(raw->i_checksum_lo);
	calculated = ext4_inode_csum(inode, raw, ei);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
	else
		calculated &= 0xFFFF;

	return provided == calculated;
}

static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
				struct ext4_inode_info *ei)
{
	__u32 csum;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return;

	csum = ext4_inode_csum(inode, raw, ei);
	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
}

117 118 119
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
120
	trace_ext4_begin_ordered_truncate(inode, new_size);
121 122 123 124 125 126 127 128 129 130 131
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
132 133
}

134
static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 136
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
E
Eric Sandeen 已提交
137 138 139
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags);
140

141 142 143
/*
 * Test whether an inode is a fast symlink.
 */
144
static int ext4_inode_is_fast_symlink(struct inode *inode)
145
{
146
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
147 148 149 150 151 152 153 154 155 156
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
157
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158
				 int nblocks)
159
{
160 161 162
	int ret;

	/*
163
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164 165 166 167
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
168
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
169
	jbd_debug(2, "restarting handle %p\n", handle);
170
	up_write(&EXT4_I(inode)->i_data_sem);
171
	ret = ext4_journal_restart(handle, nblocks);
172
	down_write(&EXT4_I(inode)->i_data_sem);
173
	ext4_discard_preallocations(inode);
174 175

	return ret;
176 177 178 179 180
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
181
void ext4_evict_inode(struct inode *inode)
182 183
{
	handle_t *handle;
184
	int err;
185

186
	trace_ext4_evict_inode(inode);
187

A
Al Viro 已提交
188
	if (inode->i_nlink) {
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
		/*
		 * When journalling data dirty buffers are tracked only in the
		 * journal. So although mm thinks everything is clean and
		 * ready for reaping the inode might still have some pages to
		 * write in the running transaction or waiting to be
		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
		 * (via truncate_inode_pages()) to discard these buffers can
		 * cause data loss. Also even if we did not discard these
		 * buffers, we would have no way to find them after the inode
		 * is reaped and thus user could see stale data if he tries to
		 * read them before the transaction is checkpointed. So be
		 * careful and force everything to disk here... We use
		 * ei->i_datasync_tid to store the newest transaction
		 * containing inode's data.
		 *
		 * Note that directories do not have this problem because they
		 * don't use page cache.
		 */
		if (ext4_should_journal_data(inode) &&
208 209
		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
		    inode->i_ino != EXT4_JOURNAL_INO) {
210 211 212
			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;

213
			jbd2_complete_transaction(journal, commit_tid);
214 215
			filemap_write_and_wait(&inode->i_data);
		}
A
Al Viro 已提交
216
		truncate_inode_pages(&inode->i_data, 0);
217
		ext4_ioend_shutdown(inode);
A
Al Viro 已提交
218 219 220
		goto no_delete;
	}

221
	if (!is_bad_inode(inode))
222
		dquot_initialize(inode);
223

224 225
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
226
	truncate_inode_pages(&inode->i_data, 0);
227
	ext4_ioend_shutdown(inode);
228 229 230 231

	if (is_bad_inode(inode))
		goto no_delete;

232 233 234 235 236
	/*
	 * Protect us against freezing - iput() caller didn't have to have any
	 * protection against it
	 */
	sb_start_intwrite(inode->i_sb);
237 238
	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
				    ext4_blocks_for_truncate(inode)+3);
239
	if (IS_ERR(handle)) {
240
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
241 242 243 244 245
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
246
		ext4_orphan_del(NULL, inode);
247
		sb_end_intwrite(inode->i_sb);
248 249 250 251
		goto no_delete;
	}

	if (IS_SYNC(inode))
252
		ext4_handle_sync(handle);
253
	inode->i_size = 0;
254 255
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
256
		ext4_warning(inode->i_sb,
257 258 259
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
260
	if (inode->i_blocks)
261
		ext4_truncate(inode);
262 263 264 265 266 267 268

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
269
	if (!ext4_handle_has_enough_credits(handle, 3)) {
270 271 272 273
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
274
			ext4_warning(inode->i_sb,
275 276 277
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
278
			ext4_orphan_del(NULL, inode);
279
			sb_end_intwrite(inode->i_sb);
280 281 282 283
			goto no_delete;
		}
	}

284
	/*
285
	 * Kill off the orphan record which ext4_truncate created.
286
	 * AKPM: I think this can be inside the above `if'.
287
	 * Note that ext4_orphan_del() has to be able to cope with the
288
	 * deletion of a non-existent orphan - this is because we don't
289
	 * know if ext4_truncate() actually created an orphan record.
290 291
	 * (Well, we could do this if we need to, but heck - it works)
	 */
292 293
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
294 295 296 297 298 299 300 301

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
302
	if (ext4_mark_inode_dirty(handle, inode))
303
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
304
		ext4_clear_inode(inode);
305
	else
306 307
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
308
	sb_end_intwrite(inode->i_sb);
309 310
	return;
no_delete:
A
Al Viro 已提交
311
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
312 313
}

314 315
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
316
{
317
	return &EXT4_I(inode)->i_reserved_quota;
318
}
319
#endif
320

321 322
/*
 * Calculate the number of metadata blocks need to reserve
323
 * to allocate a block located at @lblock
324
 */
325
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
326
{
327
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
328
		return ext4_ext_calc_metadata_amount(inode, lblock);
329

330
	return ext4_ind_calc_metadata_amount(inode, lblock);
331 332
}

333 334 335 336
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
337 338
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
339 340
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
341 342 343
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
344
	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
345
	if (unlikely(used > ei->i_reserved_data_blocks)) {
346
		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
347
			 "with only %d reserved data blocks",
348 349 350 351 352
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
353

354
	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
355 356 357 358 359 360
		ext4_warning(inode->i_sb, "ino %lu, allocated %d "
			"with only %d reserved metadata blocks "
			"(releasing %d blocks with reserved %d data blocks)",
			inode->i_ino, ei->i_allocated_meta_blocks,
			     ei->i_reserved_meta_blocks, used,
			     ei->i_reserved_data_blocks);
361 362 363 364
		WARN_ON(1);
		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
	}

365 366 367
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
368
	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
369
			   used + ei->i_allocated_meta_blocks);
370
	ei->i_allocated_meta_blocks = 0;
371

372 373 374 375 376 377
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
378
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
379
				   ei->i_reserved_meta_blocks);
380
		ei->i_reserved_meta_blocks = 0;
381
		ei->i_da_metadata_calc_len = 0;
382
	}
383
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
384

385 386
	/* Update quota subsystem for data blocks */
	if (quota_claim)
387
		dquot_claim_block(inode, EXT4_C2B(sbi, used));
388
	else {
389 390 391
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
392
		 * not re-claim the quota for fallocated blocks.
393
		 */
394
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
395
	}
396 397 398 399 400 401

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
402 403
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
404
		ext4_discard_preallocations(inode);
405 406
}

407
static int __check_block_validity(struct inode *inode, const char *func,
408 409
				unsigned int line,
				struct ext4_map_blocks *map)
410
{
411 412
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
413 414 415 416
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
417 418 419 420 421
		return -EIO;
	}
	return 0;
}

422
#define check_block_validity(inode, map)	\
423
	__check_block_validity((inode), __func__, __LINE__, (map))
424

425
/*
426 427
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
461 462 463 464 465 466 467 468 469
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
470 471 472 473 474
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
475 476
			if (num >= max_pages) {
				done = 1;
477
				break;
478
			}
479 480 481 482 483 484
		}
		pagevec_release(&pvec);
	}
	return num;
}

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
#ifdef ES_AGGRESSIVE_TEST
static void ext4_map_blocks_es_recheck(handle_t *handle,
				       struct inode *inode,
				       struct ext4_map_blocks *es_map,
				       struct ext4_map_blocks *map,
				       int flags)
{
	int retval;

	map->m_flags = 0;
	/*
	 * There is a race window that the result is not the same.
	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
	 * is that we lookup a block mapping in extent status tree with
	 * out taking i_data_sem.  So at the time the unwritten extent
	 * could be converted.
	 */
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		down_read((&EXT4_I(inode)->i_data_sem));
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
		retval = ext4_ext_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
	} else {
		retval = ext4_ind_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
	}
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		up_read((&EXT4_I(inode)->i_data_sem));
	/*
	 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
	 * because it shouldn't be marked in es_map->m_flags.
	 */
	map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);

	/*
	 * We don't check m_len because extent will be collpased in status
	 * tree.  So the m_len might not equal.
	 */
	if (es_map->m_lblk != map->m_lblk ||
	    es_map->m_flags != map->m_flags ||
	    es_map->m_pblk != map->m_pblk) {
		printk("ES cache assertation failed for inode: %lu "
		       "es_cached ex [%d/%d/%llu/%x] != "
		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
		       inode->i_ino, es_map->m_lblk, es_map->m_len,
		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
		       map->m_len, map->m_pblk, map->m_flags,
		       retval, flags);
	}
}
#endif /* ES_AGGRESSIVE_TEST */

537
/*
538
 * The ext4_map_blocks() function tries to look up the requested blocks,
539
 * and returns if the blocks are already mapped.
540 541 542 543 544
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
545 546
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
547 548 549 550 551 552 553 554
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
555
 * that case, buffer head is unmapped
556 557 558
 *
 * It returns the error in case of allocation failure.
 */
559 560
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
561
{
562
	struct extent_status es;
563
	int retval;
564 565 566 567 568
#ifdef ES_AGGRESSIVE_TEST
	struct ext4_map_blocks orig_map;

	memcpy(&orig_map, map, sizeof(*map));
#endif
569

570 571 572 573
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590

	/* Lookup extent status tree firstly */
	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
			map->m_pblk = ext4_es_pblock(&es) +
					map->m_lblk - es.es_lblk;
			map->m_flags |= ext4_es_is_written(&es) ?
					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
			retval = es.es_len - (map->m_lblk - es.es_lblk);
			if (retval > map->m_len)
				retval = map->m_len;
			map->m_len = retval;
		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
			retval = 0;
		} else {
			BUG_ON(1);
		}
591 592 593 594
#ifdef ES_AGGRESSIVE_TEST
		ext4_map_blocks_es_recheck(handle, inode, map,
					   &orig_map, flags);
#endif
595 596 597
		goto found;
	}

598
	/*
599 600
	 * Try to see if we can get the block without requesting a new
	 * file system block.
601
	 */
602 603
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		down_read((&EXT4_I(inode)->i_data_sem));
604
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
605 606
		retval = ext4_ext_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
607
	} else {
608 609
		retval = ext4_ind_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
610
	}
611 612 613 614
	if (retval > 0) {
		int ret;
		unsigned long long status;

615 616 617 618 619 620 621 622 623
#ifdef ES_AGGRESSIVE_TEST
		if (retval != map->m_len) {
			printk("ES len assertation failed for inode: %lu "
			       "retval %d != map->m_len %d "
			       "in %s (lookup)\n", inode->i_ino, retval,
			       map->m_len, __func__);
		}
#endif

624 625 626 627 628 629 630 631 632 633 634
		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
		    ext4_find_delalloc_range(inode, map->m_lblk,
					     map->m_lblk + map->m_len - 1))
			status |= EXTENT_STATUS_DELAYED;
		ret = ext4_es_insert_extent(inode, map->m_lblk,
					    map->m_len, map->m_pblk, status);
		if (ret < 0)
			retval = ret;
	}
635 636
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		up_read((&EXT4_I(inode)->i_data_sem));
637

638
found:
639
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
640
		int ret = check_block_validity(inode, map);
641 642 643 644
		if (ret != 0)
			return ret;
	}

645
	/* If it is only a block(s) look up */
646
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
647 648 649 650 651 652
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
653
	 * ext4_ext_get_block() returns the create = 0
654 655
	 * with buffer head unmapped.
	 */
656
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
657 658
		return retval;

659
	/*
660 661
	 * Here we clear m_flags because after allocating an new extent,
	 * it will be set again.
662
	 */
663
	map->m_flags &= ~EXT4_MAP_FLAGS;
664

665
	/*
666 667 668 669
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
670 671
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
672 673 674 675 676 677 678

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
679
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
680
		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
681 682 683 684
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
685
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
686
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
687
	} else {
688
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
689

690
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
691 692 693 694 695
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
696
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
697
		}
698

699 700 701 702 703 704 705
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
706
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
707 708
			ext4_da_update_reserve_space(inode, retval, 1);
	}
709
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
710
		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
711

712 713 714 715
	if (retval > 0) {
		int ret;
		unsigned long long status;

716 717 718 719 720 721 722 723 724
#ifdef ES_AGGRESSIVE_TEST
		if (retval != map->m_len) {
			printk("ES len assertation failed for inode: %lu "
			       "retval %d != map->m_len %d "
			       "in %s (allocation)\n", inode->i_ino, retval,
			       map->m_len, __func__);
		}
#endif

725 726 727 728 729 730 731 732 733
		/*
		 * If the extent has been zeroed out, we don't need to update
		 * extent status tree.
		 */
		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
			if (ext4_es_is_written(&es))
				goto has_zeroout;
		}
734 735 736 737 738 739 740 741 742 743
		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
		    ext4_find_delalloc_range(inode, map->m_lblk,
					     map->m_lblk + map->m_len - 1))
			status |= EXTENT_STATUS_DELAYED;
		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
					    map->m_pblk, status);
		if (ret < 0)
			retval = ret;
744 745
	}

746
has_zeroout:
747
	up_write((&EXT4_I(inode)->i_data_sem));
748
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
749
		int ret = check_block_validity(inode, map);
750 751 752
		if (ret != 0)
			return ret;
	}
753 754 755
	return retval;
}

756 757 758
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

759 760
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
761
{
762
	handle_t *handle = ext4_journal_current_handle();
763
	struct ext4_map_blocks map;
J
Jan Kara 已提交
764
	int ret = 0, started = 0;
765
	int dio_credits;
766

T
Tao Ma 已提交
767 768 769
	if (ext4_has_inline_data(inode))
		return -ERANGE;

770 771 772
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

773
	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
J
Jan Kara 已提交
774
		/* Direct IO write... */
775 776 777
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
778 779
		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
					    dio_credits);
J
Jan Kara 已提交
780
		if (IS_ERR(handle)) {
781
			ret = PTR_ERR(handle);
782
			return ret;
783
		}
J
Jan Kara 已提交
784
		started = 1;
785 786
	}

787
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
788
	if (ret > 0) {
789 790 791
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
792
		ret = 0;
793
	}
J
Jan Kara 已提交
794 795
	if (started)
		ext4_journal_stop(handle);
796 797 798
	return ret;
}

799 800 801 802 803 804 805
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

806 807 808
/*
 * `handle' can be NULL if create is zero
 */
809
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
810
				ext4_lblk_t block, int create, int *errp)
811
{
812 813
	struct ext4_map_blocks map;
	struct buffer_head *bh;
814 815 816 817
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

818 819 820 821
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
822

823 824 825
	/* ensure we send some value back into *errp */
	*errp = 0;

826 827
	if (create && err == 0)
		err = -ENOSPC;	/* should never happen */
828 829 830 831 832 833
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
834
	if (unlikely(!bh)) {
835
		*errp = -ENOMEM;
836
		return NULL;
837
	}
838 839 840
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
841

842 843 844 845 846 847 848 849 850 851 852 853 854
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
855
		}
856 857 858 859 860 861 862
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
863
	}
864 865 866 867 868 869
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
870 871
}

872
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
873
			       ext4_lblk_t block, int create, int *err)
874
{
875
	struct buffer_head *bh;
876

877
	bh = ext4_getblk(handle, inode, block, create, err);
878 879 880 881
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
882
	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
883 884 885 886 887 888 889 890
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

891 892 893 894 895 896 897
int ext4_walk_page_buffers(handle_t *handle,
			   struct buffer_head *head,
			   unsigned from,
			   unsigned to,
			   int *partial,
			   int (*fn)(handle_t *handle,
				     struct buffer_head *bh))
898 899 900 901 902 903 904
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

905 906
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
907
	     block_start = block_end, bh = next) {
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
925
 * close off a transaction and start a new one between the ext4_get_block()
926
 * and the commit_write().  So doing the jbd2_journal_start at the start of
927 928
 * prepare_write() is the right place.
 *
929 930 931 932
 * Also, this function can nest inside ext4_writepage().  In that case, we
 * *know* that ext4_writepage() has generated enough buffer credits to do the
 * whole page.  So we won't block on the journal in that case, which is good,
 * because the caller may be PF_MEMALLOC.
933
 *
934
 * By accident, ext4 can be reentered when a transaction is open via
935 936 937 938 939 940
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
941
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
942 943 944 945
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
946 947
int do_journal_get_write_access(handle_t *handle,
				struct buffer_head *bh)
948
{
949 950 951
	int dirty = buffer_dirty(bh);
	int ret;

952 953
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
954
	/*
C
Christoph Hellwig 已提交
955
	 * __block_write_begin() could have dirtied some buffers. Clean
956 957
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
958
	 * by __block_write_begin() isn't a real problem here as we clear
959 960 961 962 963 964 965 966 967
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
968 969
}

970 971
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
972
static int ext4_write_begin(struct file *file, struct address_space *mapping,
973 974
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
975
{
976
	struct inode *inode = mapping->host;
977
	int ret, needed_blocks;
978 979
	handle_t *handle;
	int retries = 0;
980
	struct page *page;
981
	pgoff_t index;
982
	unsigned from, to;
N
Nick Piggin 已提交
983

984
	trace_ext4_write_begin(inode, pos, len, flags);
985 986 987 988 989
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
990
	index = pos >> PAGE_CACHE_SHIFT;
991 992
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
993

994 995 996 997
	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
						    flags, pagep);
		if (ret < 0)
998 999 1000
			return ret;
		if (ret == 1)
			return 0;
1001 1002
	}

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
	/*
	 * grab_cache_page_write_begin() can take a long time if the
	 * system is thrashing due to memory pressure, or if the page
	 * is being written back.  So grab it first before we start
	 * the transaction handle.  This also allows us to allocate
	 * the page (if needed) without using GFP_NOFS.
	 */
retry_grab:
	page = grab_cache_page_write_begin(mapping, index, flags);
	if (!page)
		return -ENOMEM;
	unlock_page(page);

retry_journal:
1017
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1018
	if (IS_ERR(handle)) {
1019 1020
		page_cache_release(page);
		return PTR_ERR(handle);
1021
	}
1022

1023 1024 1025 1026 1027
	lock_page(page);
	if (page->mapping != mapping) {
		/* The page got truncated from under us */
		unlock_page(page);
		page_cache_release(page);
1028
		ext4_journal_stop(handle);
1029
		goto retry_grab;
1030
	}
1031
	wait_on_page_writeback(page);
1032

1033
	if (ext4_should_dioread_nolock(inode))
1034
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1035
	else
1036
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
1037 1038

	if (!ret && ext4_should_journal_data(inode)) {
1039 1040 1041
		ret = ext4_walk_page_buffers(handle, page_buffers(page),
					     from, to, NULL,
					     do_journal_get_write_access);
1042
	}
N
Nick Piggin 已提交
1043 1044

	if (ret) {
1045
		unlock_page(page);
1046
		/*
1047
		 * __block_write_begin may have instantiated a few blocks
1048 1049
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
1050 1051 1052
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
1053
		 */
1054
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1055 1056 1057 1058
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
1059
			ext4_truncate_failed_write(inode);
1060
			/*
1061
			 * If truncate failed early the inode might
1062 1063 1064 1065 1066 1067 1068
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
1069

1070 1071 1072 1073 1074 1075 1076
		if (ret == -ENOSPC &&
		    ext4_should_retry_alloc(inode->i_sb, &retries))
			goto retry_journal;
		page_cache_release(page);
		return ret;
	}
	*pagep = page;
1077 1078 1079
	return ret;
}

N
Nick Piggin 已提交
1080 1081
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1082 1083 1084 1085
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1086
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1087 1088
}

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
 * buffers are managed internally.
 */
static int ext4_write_end(struct file *file,
			  struct address_space *mapping,
			  loff_t pos, unsigned len, unsigned copied,
			  struct page *page, void *fsdata)
1100 1101
{
	handle_t *handle = ext4_journal_current_handle();
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	int i_size_changed = 0;

	trace_ext4_write_end(inode, pos, len, copied);
	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
		ret = ext4_jbd2_file_inode(handle, inode);
		if (ret) {
			unlock_page(page);
			page_cache_release(page);
			goto errout;
		}
	}
1115

1116 1117 1118 1119 1120 1121
	if (ext4_has_inline_data(inode))
		copied = ext4_write_inline_data_end(inode, pos, len,
						    copied, page);
	else
		copied = block_write_end(file, mapping, pos,
					 len, copied, page, fsdata);
1122 1123 1124

	/*
	 * No need to use i_size_read() here, the i_size
1125
	 * cannot change under us because we hole i_mutex.
1126 1127 1128 1129 1130 1131 1132 1133 1134
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

1135
	if (pos + copied > EXT4_I(inode)->i_disksize) {
1136 1137
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
1138
		 * but greater than i_disksize. (hint delalloc)
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

1155 1156
	if (copied < 0)
		ret = copied;
1157
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1158 1159 1160 1161 1162
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);
1163
errout:
1164
	ret2 = ext4_journal_stop(handle);
1165 1166
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1167

1168
	if (pos + len > inode->i_size) {
1169
		ext4_truncate_failed_write(inode);
1170
		/*
1171
		 * If truncate failed early the inode might still be
1172 1173 1174 1175 1176 1177 1178
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1179
	return ret ? ret : copied;
1180 1181
}

N
Nick Piggin 已提交
1182
static int ext4_journalled_write_end(struct file *file,
1183 1184 1185
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1186
{
1187
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1188
	struct inode *inode = mapping->host;
1189 1190
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1191
	unsigned from, to;
1192
	loff_t new_i_size;
1193

1194
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1195 1196 1197
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

1198 1199
	BUG_ON(!ext4_handle_valid(handle));

1200 1201 1202 1203 1204 1205 1206 1207 1208
	if (ext4_has_inline_data(inode))
		copied = ext4_write_inline_data_end(inode, pos, len,
						    copied, page);
	else {
		if (copied < len) {
			if (!PageUptodate(page))
				copied = 0;
			page_zero_new_buffers(page, from+copied, to);
		}
1209

1210 1211 1212 1213 1214
		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
					     to, &partial, write_end_fn);
		if (!partial)
			SetPageUptodate(page);
	}
1215 1216
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1217
		i_size_write(inode, pos+copied);
1218
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1219
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1220 1221
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1222
		ret2 = ext4_mark_inode_dirty(handle, inode);
1223 1224 1225
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1226

1227
	unlock_page(page);
1228
	page_cache_release(page);
1229
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1230 1231 1232 1233 1234 1235
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1236
	ret2 = ext4_journal_stop(handle);
1237 1238
	if (!ret)
		ret = ret2;
1239
	if (pos + len > inode->i_size) {
1240
		ext4_truncate_failed_write(inode);
1241
		/*
1242
		 * If truncate failed early the inode might still be
1243 1244 1245 1246 1247 1248
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1249 1250

	return ret ? ret : copied;
1251
}
1252

1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
/*
 * Reserve a metadata for a single block located at lblock
 */
static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
{
	int retries = 0;
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	struct ext4_inode_info *ei = EXT4_I(inode);
	unsigned int md_needed;
	ext4_lblk_t save_last_lblock;
	int save_len;

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
repeat:
	spin_lock(&ei->i_block_reservation_lock);
	/*
	 * ext4_calc_metadata_amount() has side effects, which we have
	 * to be prepared undo if we fail to claim space.
	 */
	save_len = ei->i_da_metadata_calc_len;
	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
	md_needed = EXT4_NUM_B2C(sbi,
				 ext4_calc_metadata_amount(inode, lblock));
	trace_ext4_da_reserve_space(inode, md_needed);

	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
	if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
		ei->i_da_metadata_calc_len = save_len;
		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
		spin_unlock(&ei->i_block_reservation_lock);
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			cond_resched();
			goto repeat;
		}
		return -ENOSPC;
	}
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);

	return 0;       /* success */
}

1302
/*
1303
 * Reserve a single cluster located at lblock
1304
 */
1305
static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1306
{
A
Aneesh Kumar K.V 已提交
1307
	int retries = 0;
1308
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1309
	struct ext4_inode_info *ei = EXT4_I(inode);
1310
	unsigned int md_needed;
1311
	int ret;
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
	ext4_lblk_t save_last_lblock;
	int save_len;

	/*
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
	 */
	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
	if (ret)
		return ret;
1323 1324 1325 1326 1327 1328

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1329
repeat:
1330
	spin_lock(&ei->i_block_reservation_lock);
1331 1332 1333 1334 1335 1336
	/*
	 * ext4_calc_metadata_amount() has side effects, which we have
	 * to be prepared undo if we fail to claim space.
	 */
	save_len = ei->i_da_metadata_calc_len;
	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1337 1338
	md_needed = EXT4_NUM_B2C(sbi,
				 ext4_calc_metadata_amount(inode, lblock));
1339
	trace_ext4_da_reserve_space(inode, md_needed);
1340

1341 1342 1343 1344
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1345
	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1346 1347 1348
		ei->i_da_metadata_calc_len = save_len;
		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
		spin_unlock(&ei->i_block_reservation_lock);
A
Aneesh Kumar K.V 已提交
1349
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
L
Lukas Czerner 已提交
1350
			cond_resched();
A
Aneesh Kumar K.V 已提交
1351 1352
			goto repeat;
		}
1353
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1354 1355
		return -ENOSPC;
	}
1356
	ei->i_reserved_data_blocks++;
1357 1358
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1359

1360 1361 1362
	return 0;       /* success */
}

1363
static void ext4_da_release_space(struct inode *inode, int to_free)
1364 1365
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1366
	struct ext4_inode_info *ei = EXT4_I(inode);
1367

1368 1369 1370
	if (!to_free)
		return;		/* Nothing to release, exit */

1371
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1372

L
Li Zefan 已提交
1373
	trace_ext4_da_release_space(inode, to_free);
1374
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1375
		/*
1376 1377 1378 1379
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1380
		 */
1381
		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1382
			 "ino %lu, to_free %d with only %d reserved "
1383
			 "data blocks", inode->i_ino, to_free,
1384 1385 1386
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1387
	}
1388
	ei->i_reserved_data_blocks -= to_free;
1389

1390 1391 1392 1393 1394
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
1395 1396
		 * Note that in case of bigalloc, i_reserved_meta_blocks,
		 * i_reserved_data_blocks, etc. refer to number of clusters.
1397
		 */
1398
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1399
				   ei->i_reserved_meta_blocks);
1400
		ei->i_reserved_meta_blocks = 0;
1401
		ei->i_da_metadata_calc_len = 0;
1402
	}
1403

1404
	/* update fs dirty data blocks counter */
1405
	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1406 1407

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1408

1409
	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1410 1411 1412
}

static void ext4_da_page_release_reservation(struct page *page,
1413
					     unsigned long offset)
1414 1415 1416 1417
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;
1418 1419 1420
	struct inode *inode = page->mapping->host;
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int num_clusters;
1421
	ext4_fsblk_t lblk;
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1434

1435 1436 1437 1438 1439
	if (to_release) {
		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
		ext4_es_remove_extent(inode, lblk, to_release);
	}

1440 1441 1442 1443 1444 1445 1446
	/* If we have released all the blocks belonging to a cluster, then we
	 * need to release the reserved space for that cluster. */
	num_clusters = EXT4_NUM_B2C(sbi, to_release);
	while (num_clusters > 0) {
		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
			((num_clusters - 1) << sbi->s_cluster_bits);
		if (sbi->s_cluster_ratio == 1 ||
1447
		    !ext4_find_delalloc_cluster(inode, lblk))
1448 1449 1450 1451
			ext4_da_release_space(inode, 1);

		num_clusters--;
	}
1452
}
1453

1454 1455 1456 1457 1458 1459
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1460
 * them with writepage() call back
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
1471 1472
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
1473
{
1474 1475 1476 1477 1478
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1479
	loff_t size = i_size_read(inode);
1480 1481
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
1482
	sector_t pblock = 0, cur_logical = 0;
1483
	struct ext4_io_submit io_submit;
1484 1485

	BUG_ON(mpd->next_page <= mpd->first_page);
1486
	memset(&io_submit, 0, sizeof(io_submit));
1487 1488 1489
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1490
	 * If we look at mpd->b_blocknr we would only be looking
1491 1492
	 * at the currently mapped buffer_heads.
	 */
1493 1494 1495
	index = mpd->first_page;
	end = mpd->next_page - 1;

1496
	pagevec_init(&pvec, 0);
1497
	while (index <= end) {
1498
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1499 1500 1501
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
1502
			int skip_page = 0;
1503 1504
			struct page *page = pvec.pages[i];

1505 1506 1507
			index = page->index;
			if (index > end)
				break;
1508 1509 1510 1511 1512

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
1513 1514 1515 1516 1517 1518
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
1519 1520 1521 1522 1523
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1524 1525
			bh = page_bufs = page_buffers(page);
			block_start = 0;
1526
			do {
1527 1528 1529
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
1530 1531 1532 1533
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
1534 1535 1536 1537 1538 1539 1540
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
1541

1542 1543 1544 1545 1546
				/*
				 * skip page if block allocation undone and
				 * block is dirty
				 */
				if (ext4_bh_delay_or_unwritten(NULL, bh))
1547
					skip_page = 1;
1548 1549
				bh = bh->b_this_page;
				block_start += bh->b_size;
1550 1551
				cur_logical++;
				pblock++;
1552 1553
			} while (bh != page_bufs);

1554 1555 1556 1557
			if (skip_page) {
				unlock_page(page);
				continue;
			}
1558

1559
			clear_page_dirty_for_io(page);
1560 1561
			err = ext4_bio_write_page(&io_submit, page, len,
						  mpd->wbc);
1562
			if (!err)
1563
				mpd->pages_written++;
1564 1565 1566 1567 1568 1569 1570 1571 1572
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
1573
	ext4_io_submit(&io_submit);
1574 1575 1576
	return ret;
}

1577
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1578 1579 1580 1581 1582 1583
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1584
	ext4_lblk_t start, last;
1585

1586 1587
	index = mpd->first_page;
	end   = mpd->next_page - 1;
1588 1589 1590 1591 1592

	start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	ext4_es_remove_extent(inode, start, last - start + 1);

1593
	pagevec_init(&pvec, 0);
1594 1595 1596 1597 1598 1599
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
1600
			if (page->index > end)
1601 1602 1603 1604 1605 1606 1607
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
1608 1609
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
1610 1611 1612 1613
	}
	return;
}

1614 1615 1616
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1617 1618 1619
	struct super_block *sb = inode->i_sb;

	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1620 1621
	       EXT4_C2B(EXT4_SB(inode->i_sb),
			ext4_count_free_clusters(inode->i_sb)));
1622 1623
	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1624 1625
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1626
	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1627 1628
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1629 1630 1631 1632
	ext4_msg(sb, KERN_CRIT, "Block reservation details");
	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
		 EXT4_I(inode)->i_reserved_data_blocks);
	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1633
	       EXT4_I(inode)->i_reserved_meta_blocks);
1634 1635 1636
	return;
}

1637
/*
1638 1639
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
1640
 *
1641
 * @mpd - bh describing space
1642 1643 1644 1645
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1646
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1647
{
1648
	int err, blks, get_blocks_flags;
1649
	struct ext4_map_blocks map, *mapp = NULL;
1650 1651 1652 1653
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
1654 1655

	/*
1656 1657
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
1658
	 */
1659 1660 1661 1662 1663
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
1664 1665 1666 1667

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

1668
	/*
1669
	 * Call ext4_map_blocks() to allocate any delayed allocation
1670 1671 1672 1673 1674 1675 1676 1677
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
1678
	 * want to change *many* call functions, so ext4_map_blocks()
1679
	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1680 1681 1682 1683 1684
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
1685
	 */
1686 1687
	map.m_lblk = next;
	map.m_len = max_blocks;
1688
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1689 1690
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1691
	if (mpd->b_state & (1 << BH_Delay))
1692 1693
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

1694
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1695
	if (blks < 0) {
1696 1697
		struct super_block *sb = mpd->inode->i_sb;

1698
		err = blks;
1699
		/*
1700
		 * If get block returns EAGAIN or ENOSPC and there
1701 1702
		 * appears to be free blocks we will just let
		 * mpage_da_submit_io() unlock all of the pages.
1703 1704
		 */
		if (err == -EAGAIN)
1705
			goto submit_io;
1706

1707
		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1708
			mpd->retval = err;
1709
			goto submit_io;
1710 1711
		}

1712
		/*
1713 1714 1715 1716 1717
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
1718
		 */
1719 1720 1721 1722 1723 1724 1725 1726
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
1727
				"This should not happen!! Data will be lost");
1728 1729
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
1730
		}
1731
		/* invalidate all the pages */
1732
		ext4_da_block_invalidatepages(mpd);
1733 1734 1735

		/* Mark this page range as having been completed */
		mpd->io_done = 1;
1736
		return;
1737
	}
1738 1739
	BUG_ON(blks == 0);

1740
	mapp = &map;
1741 1742 1743
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
1744

1745 1746
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
1747 1748 1749
	}

	/*
1750
	 * Update on-disk size along with block allocation.
1751 1752 1753 1754 1755 1756
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
1757 1758 1759 1760 1761
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
1762 1763
	}

1764
submit_io:
1765
	mpage_da_submit_io(mpd, mapp);
1766
	mpd->io_done = 1;
1767 1768
}

1769 1770
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
1771 1772 1773 1774 1775 1776

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
1777
 * @b_state - b_state of the buffer head added
1778 1779 1780
 *
 * the function is used to collect contig. blocks in same state
 */
1781
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1782
				   unsigned long b_state)
1783 1784
{
	sector_t next;
1785 1786
	int blkbits = mpd->inode->i_blkbits;
	int nrblocks = mpd->b_size >> blkbits;
1787

1788 1789 1790 1791
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
1792
	 * ext4_map_blocks() multiple times in a loop
1793
	 */
1794
	if (nrblocks >= (8*1024*1024 >> blkbits))
1795 1796
		goto flush_it;

1797 1798
	/* check if the reserved journal credits might overflow */
	if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		}
	}
1809 1810 1811
	/*
	 * First block in the extent
	 */
1812 1813
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
1814
		mpd->b_size = 1 << blkbits;
1815
		mpd->b_state = b_state & BH_FLAGS;
1816 1817 1818
		return;
	}

1819
	next = mpd->b_blocknr + nrblocks;
1820 1821 1822
	/*
	 * Can we merge the block to our big extent?
	 */
1823
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1824
		mpd->b_size += 1 << blkbits;
1825 1826 1827
		return;
	}

1828
flush_it:
1829 1830 1831 1832
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
1833
	mpage_da_map_and_submit(mpd);
1834
	return;
1835 1836
}

1837
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1838
{
1839
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1840 1841
}

1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
/*
 * This function is grabs code from the very beginning of
 * ext4_map_blocks, but assumes that the caller is from delayed write
 * time. This function looks up the requested blocks and sets the
 * buffer delay bit under the protection of i_data_sem.
 */
static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
			      struct ext4_map_blocks *map,
			      struct buffer_head *bh)
{
1852
	struct extent_status es;
1853 1854
	int retval;
	sector_t invalid_block = ~((sector_t) 0xffff);
1855 1856 1857 1858 1859
#ifdef ES_AGGRESSIVE_TEST
	struct ext4_map_blocks orig_map;

	memcpy(&orig_map, map, sizeof(*map));
#endif
1860 1861 1862 1863 1864 1865 1866 1867

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;

	map->m_flags = 0;
	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, map->m_len,
		  (unsigned long) map->m_lblk);
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900

	/* Lookup extent status tree firstly */
	if (ext4_es_lookup_extent(inode, iblock, &es)) {

		if (ext4_es_is_hole(&es)) {
			retval = 0;
			down_read((&EXT4_I(inode)->i_data_sem));
			goto add_delayed;
		}

		/*
		 * Delayed extent could be allocated by fallocate.
		 * So we need to check it.
		 */
		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
			map_bh(bh, inode->i_sb, invalid_block);
			set_buffer_new(bh);
			set_buffer_delay(bh);
			return 0;
		}

		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
		retval = es.es_len - (iblock - es.es_lblk);
		if (retval > map->m_len)
			retval = map->m_len;
		map->m_len = retval;
		if (ext4_es_is_written(&es))
			map->m_flags |= EXT4_MAP_MAPPED;
		else if (ext4_es_is_unwritten(&es))
			map->m_flags |= EXT4_MAP_UNWRITTEN;
		else
			BUG_ON(1);

1901 1902 1903
#ifdef ES_AGGRESSIVE_TEST
		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
#endif
1904 1905 1906
		return retval;
	}

1907 1908 1909 1910 1911
	/*
	 * Try to see if we can get the block without requesting a new
	 * file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
	if (ext4_has_inline_data(inode)) {
		/*
		 * We will soon create blocks for this page, and let
		 * us pretend as if the blocks aren't allocated yet.
		 * In case of clusters, we have to handle the work
		 * of mapping from cluster so that the reserved space
		 * is calculated properly.
		 */
		if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
		    ext4_find_delalloc_cluster(inode, map->m_lblk))
			map->m_flags |= EXT4_MAP_FROM_CLUSTER;
		retval = 0;
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1925 1926
		retval = ext4_ext_map_blocks(NULL, inode, map,
					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1927
	else
1928 1929
		retval = ext4_ind_map_blocks(NULL, inode, map,
					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1930

1931
add_delayed:
1932
	if (retval == 0) {
1933
		int ret;
1934 1935 1936 1937
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
1938 1939 1940 1941 1942
		/*
		 * If the block was allocated from previously allocated cluster,
		 * then we don't need to reserve it again. However we still need
		 * to reserve metadata for every block we're going to write.
		 */
1943
		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1944 1945
			ret = ext4_da_reserve_space(inode, iblock);
			if (ret) {
1946
				/* not enough space to reserve */
1947
				retval = ret;
1948
				goto out_unlock;
1949
			}
1950 1951 1952 1953 1954 1955 1956
		} else {
			ret = ext4_da_reserve_metadata(inode, iblock);
			if (ret) {
				/* not enough space to reserve */
				retval = ret;
				goto out_unlock;
			}
1957 1958
		}

1959 1960 1961 1962
		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
					    ~0, EXTENT_STATUS_DELAYED);
		if (ret) {
			retval = ret;
1963
			goto out_unlock;
1964
		}
1965

1966 1967 1968 1969 1970 1971 1972 1973
		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
		 * and it should not appear on the bh->b_state.
		 */
		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;

		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
1974 1975 1976 1977
	} else if (retval > 0) {
		int ret;
		unsigned long long status;

1978 1979 1980 1981 1982 1983 1984 1985 1986
#ifdef ES_AGGRESSIVE_TEST
		if (retval != map->m_len) {
			printk("ES len assertation failed for inode: %lu "
			       "retval %d != map->m_len %d "
			       "in %s (lookup)\n", inode->i_ino, retval,
			       map->m_len, __func__);
		}
#endif

1987 1988 1989 1990 1991 1992
		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
					    map->m_pblk, status);
		if (ret != 0)
			retval = ret;
1993 1994 1995 1996 1997 1998 1999 2000
	}

out_unlock:
	up_read((&EXT4_I(inode)->i_data_sem));

	return retval;
}

2001
/*
2002 2003 2004
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
2005 2006 2007 2008 2009 2010 2011
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
2012
 */
2013 2014
int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int create)
2015
{
2016
	struct ext4_map_blocks map;
2017 2018 2019
	int ret = 0;

	BUG_ON(create == 0);
2020 2021 2022 2023
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
2024 2025 2026 2027 2028 2029

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2030 2031
	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
	if (ret <= 0)
2032
		return ret;
2033

2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
2045
		set_buffer_mapped(bh);
2046 2047
	}
	return 0;
2048
}
2049

2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
2067
	struct buffer_head *page_bufs = NULL;
2068
	handle_t *handle = NULL;
2069 2070 2071
	int ret = 0, err = 0;
	int inline_data = ext4_has_inline_data(inode);
	struct buffer_head *inode_bh = NULL;
2072

2073
	ClearPageChecked(page);
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089

	if (inline_data) {
		BUG_ON(page->index != 0);
		BUG_ON(len > ext4_get_max_inline_size(inode));
		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
		if (inode_bh == NULL)
			goto out;
	} else {
		page_bufs = page_buffers(page);
		if (!page_bufs) {
			BUG();
			goto out;
		}
		ext4_walk_page_buffers(handle, page_bufs, 0, len,
				       NULL, bget_one);
	}
2090 2091 2092 2093
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

2094 2095
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
				    ext4_writepage_trans_blocks(inode));
2096 2097 2098 2099 2100
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

2101 2102
	BUG_ON(!ext4_handle_valid(handle));

2103 2104
	if (inline_data) {
		ret = ext4_journal_get_write_access(handle, inode_bh);
2105

2106 2107 2108 2109 2110 2111 2112 2113 2114
		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);

	} else {
		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
					     do_journal_get_write_access);

		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
					     write_end_fn);
	}
2115 2116
	if (ret == 0)
		ret = err;
2117
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2118 2119 2120 2121
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

2122 2123 2124
	if (!ext4_has_inline_data(inode))
		ext4_walk_page_buffers(handle, page_bufs, 0, len,
				       NULL, bput_one);
2125
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2126
out:
2127
	brelse(inode_bh);
2128 2129 2130
	return ret;
}

2131
/*
2132 2133 2134 2135
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
L
Lucas De Marchi 已提交
2136
 * we are writing back data modified via mmap(), no one guarantees in which
2137 2138 2139 2140
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
2141 2142 2143
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
2144
 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2145
 *   - grab_page_cache when doing write_begin (have journal handle)
2146 2147 2148 2149 2150 2151 2152 2153 2154
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
2155
 * but other buffer_heads would be unmapped but dirty (dirty done via the
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2171
 */
2172
static int ext4_writepage(struct page *page,
2173
			  struct writeback_control *wbc)
2174
{
2175
	int ret = 0;
2176
	loff_t size;
2177
	unsigned int len;
2178
	struct buffer_head *page_bufs = NULL;
2179
	struct inode *inode = page->mapping->host;
2180
	struct ext4_io_submit io_submit;
2181

L
Lukas Czerner 已提交
2182
	trace_ext4_writepage(page);
2183 2184 2185 2186 2187
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2188

T
Theodore Ts'o 已提交
2189 2190
	page_bufs = page_buffers(page);
	/*
2191 2192 2193 2194 2195
	 * We cannot do block allocation or other extent handling in this
	 * function. If there are buffers needing that, we have to redirty
	 * the page. But we may reach here when we do a journal commit via
	 * journal_submit_inode_data_buffers() and in that case we must write
	 * allocated buffers to achieve data=ordered mode guarantees.
T
Theodore Ts'o 已提交
2196
	 */
2197 2198
	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
				   ext4_bh_delay_or_unwritten)) {
2199
		redirty_page_for_writepage(wbc, page);
2200 2201 2202 2203 2204 2205 2206 2207
		if (current->flags & PF_MEMALLOC) {
			/*
			 * For memory cleaning there's no point in writing only
			 * some buffers. So just bail out. Warn if we came here
			 * from direct reclaim.
			 */
			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
							== PF_MEMALLOC);
2208 2209 2210
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
2211
	}
2212

2213
	if (PageChecked(page) && ext4_should_journal_data(inode))
2214 2215 2216 2217
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
2218
		return __ext4_journalled_writepage(page, len);
2219

2220 2221 2222
	memset(&io_submit, 0, sizeof(io_submit));
	ret = ext4_bio_write_page(&io_submit, page, len, wbc);
	ext4_io_submit(&io_submit);
2223 2224 2225
	return ret;
}

2226
/*
2227
 * This is called via ext4_da_writepages() to
L
Lucas De Marchi 已提交
2228
 * calculate the total number of credits to reserve to fit
2229 2230 2231
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2232
 */
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2244
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2245 2246 2247 2248 2249
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2250

2251 2252
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
2253
 * address space and accumulate pages that need writing, and call
2254 2255
 * mpage_da_map_and_submit to map a single contiguous memory region
 * and then write them.
2256
 */
2257 2258
static int write_cache_pages_da(handle_t *handle,
				struct address_space *mapping,
2259
				struct writeback_control *wbc,
2260 2261
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
2262
{
2263
	struct buffer_head	*bh, *head;
2264
	struct inode		*inode = mapping->host;
2265 2266 2267 2268 2269 2270
	struct pagevec		pvec;
	unsigned int		nr_pages;
	sector_t		logical;
	pgoff_t			index, end;
	long			nr_to_write = wbc->nr_to_write;
	int			i, tag, ret = 0;
2271

2272 2273 2274
	memset(mpd, 0, sizeof(struct mpage_da_data));
	mpd->wbc = wbc;
	mpd->inode = inode;
2275 2276 2277 2278
	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

2279
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2280 2281 2282 2283
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

2284
	*done_index = index;
2285
	while (index <= end) {
2286
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2287 2288
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
2289
			return 0;
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
2301 2302
			if (page->index > end)
				goto out;
2303

2304 2305
			*done_index = page->index + 1;

2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
			/*
			 * If we can't merge this page, and we have
			 * accumulated an contiguous region, write it
			 */
			if ((mpd->next_page != page->index) &&
			    (mpd->next_page != mpd->first_page)) {
				mpage_da_map_and_submit(mpd);
				goto ret_extent_tail;
			}

2316 2317 2318
			lock_page(page);

			/*
2319 2320 2321 2322 2323 2324
			 * If the page is no longer dirty, or its
			 * mapping no longer corresponds to inode we
			 * are writing (which means it has been
			 * truncated or invalidated), or the page is
			 * already under writeback and we are not
			 * doing a data integrity writeback, skip the page
2325
			 */
2326 2327 2328 2329
			if (!PageDirty(page) ||
			    (PageWriteback(page) &&
			     (wbc->sync_mode == WB_SYNC_NONE)) ||
			    unlikely(page->mapping != mapping)) {
2330 2331 2332 2333
				unlock_page(page);
				continue;
			}

2334
			wait_on_page_writeback(page);
2335 2336
			BUG_ON(PageWriteback(page));

2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
			/*
			 * If we have inline data and arrive here, it means that
			 * we will soon create the block for the 1st page, so
			 * we'd better clear the inline data here.
			 */
			if (ext4_has_inline_data(inode)) {
				BUG_ON(ext4_test_inode_state(inode,
						EXT4_STATE_MAY_INLINE_DATA));
				ext4_destroy_inline_data(handle, inode);
			}

2348
			if (mpd->next_page != page->index)
2349 2350 2351 2352 2353
				mpd->first_page = page->index;
			mpd->next_page = page->index + 1;
			logical = (sector_t) page->index <<
				(PAGE_CACHE_SHIFT - inode->i_blkbits);

2354 2355 2356 2357 2358
			/* Add all dirty buffers to mpd */
			head = page_buffers(page);
			bh = head;
			do {
				BUG_ON(buffer_locked(bh));
2359
				/*
2360 2361 2362
				 * We need to try to allocate unmapped blocks
				 * in the same page.  Otherwise we won't make
				 * progress with the page in ext4_writepage
2363
				 */
2364 2365 2366 2367 2368 2369 2370
				if (ext4_bh_delay_or_unwritten(NULL, bh)) {
					mpage_add_bh_to_extent(mpd, logical,
							       bh->b_state);
					if (mpd->io_done)
						goto ret_extent_tail;
				} else if (buffer_dirty(bh) &&
					   buffer_mapped(bh)) {
2371
					/*
2372 2373 2374 2375 2376 2377 2378
					 * mapped dirty buffer. We need to
					 * update the b_state because we look
					 * at b_state in mpage_da_map_blocks.
					 * We don't update b_size because if we
					 * find an unmapped buffer_head later
					 * we need to use the b_state flag of
					 * that buffer_head.
2379
					 */
2380 2381 2382 2383 2384 2385
					if (mpd->b_size == 0)
						mpd->b_state =
							bh->b_state & BH_FLAGS;
				}
				logical++;
			} while ((bh = bh->b_this_page) != head);
2386 2387 2388 2389

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
2390
				    wbc->sync_mode == WB_SYNC_NONE)
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
2401
					goto out;
2402 2403 2404 2405 2406
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2407 2408 2409
	return 0;
ret_extent_tail:
	ret = MPAGE_DA_EXTENT_TAIL;
2410 2411 2412
out:
	pagevec_release(&pvec);
	cond_resched();
2413 2414 2415 2416
	return ret;
}


2417
static int ext4_da_writepages(struct address_space *mapping,
2418
			      struct writeback_control *wbc)
2419
{
2420 2421
	pgoff_t	index;
	int range_whole = 0;
2422
	handle_t *handle = NULL;
2423
	struct mpage_da_data mpd;
2424
	struct inode *inode = mapping->host;
2425
	int pages_written = 0;
2426
	unsigned int max_pages;
2427
	int range_cyclic, cycled = 1, io_done = 0;
2428 2429
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2430
	loff_t range_start = wbc->range_start;
2431
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2432
	pgoff_t done_index = 0;
2433
	pgoff_t end;
S
Shaohua Li 已提交
2434
	struct blk_plug plug;
2435

2436
	trace_ext4_da_writepages(inode, wbc);
2437

2438 2439 2440 2441 2442
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2443
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2444
		return 0;
2445 2446 2447 2448 2449

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2450
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2451 2452 2453 2454 2455
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2456
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2457 2458
		return -EROFS;

2459 2460
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2461

2462 2463
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2464
		index = mapping->writeback_index;
2465 2466 2467 2468 2469
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2470 2471
		end = -1;
	} else {
2472
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2473 2474
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2475

2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2493 2494 2495 2496 2497 2498
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2509
retry:
2510
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2511 2512
		tag_pages_for_writeback(mapping, index, end);

S
Shaohua Li 已提交
2513
	blk_start_plug(&plug);
2514
	while (!ret && wbc->nr_to_write > 0) {
2515 2516 2517 2518 2519 2520 2521 2522

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2523
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2524

2525
		/* start a new transaction*/
2526 2527
		handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
					    needed_blocks);
2528 2529
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2530
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2531
			       "%ld pages, ino %lu; err %d", __func__,
2532
				wbc->nr_to_write, inode->i_ino, ret);
2533
			blk_finish_plug(&plug);
2534 2535
			goto out_writepages;
		}
2536 2537

		/*
2538
		 * Now call write_cache_pages_da() to find the next
2539
		 * contiguous region of logical blocks that need
2540
		 * blocks to be allocated by ext4 and submit them.
2541
		 */
2542 2543
		ret = write_cache_pages_da(handle, mapping,
					   wbc, &mpd, &done_index);
2544
		/*
2545
		 * If we have a contiguous extent of pages and we
2546 2547 2548 2549
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2550
			mpage_da_map_and_submit(&mpd);
2551 2552
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2553
		trace_ext4_da_write_pages(inode, &mpd);
2554
		wbc->nr_to_write -= mpd.pages_written;
2555

2556
		ext4_journal_stop(handle);
2557

2558
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2559 2560 2561 2562
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2563
			jbd2_journal_force_commit_nested(sbi->s_journal);
2564 2565
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2566
			/*
2567 2568 2569
			 * Got one extent now try with rest of the pages.
			 * If mpd.retval is set -EIO, journal is aborted.
			 * So we don't need to write any more.
2570
			 */
2571
			pages_written += mpd.pages_written;
2572
			ret = mpd.retval;
2573
			io_done = 1;
2574
		} else if (wbc->nr_to_write)
2575 2576 2577 2578 2579 2580
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2581
	}
S
Shaohua Li 已提交
2582
	blk_finish_plug(&plug);
2583 2584 2585 2586 2587 2588 2589
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2590 2591

	/* Update index */
2592
	wbc->range_cyclic = range_cyclic;
2593 2594 2595 2596 2597
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
2598
		mapping->writeback_index = done_index;
2599

2600
out_writepages:
2601
	wbc->nr_to_write -= nr_to_writebump;
2602
	wbc->range_start = range_start;
2603
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2604
	return ret;
2605 2606
}

2607 2608 2609 2610 2611 2612 2613 2614
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2615
	 * counters can get slightly wrong with percpu_counter_batch getting
2616 2617 2618 2619
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
2620 2621 2622
	free_blocks  = EXT4_C2B(sbi,
		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2623 2624 2625
	/*
	 * Start pushing delalloc when 1/2 of free blocks are dirty.
	 */
2626 2627
	if (dirty_blocks && (free_blocks < 2 * dirty_blocks))
		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2628

2629
	if (2 * free_blocks < 3 * dirty_blocks ||
2630
		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2631
		/*
2632 2633
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
2634 2635 2636 2637 2638 2639
		 */
		return 1;
	}
	return 0;
}

2640
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2641 2642
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
2643
{
2644
	int ret, retries = 0;
2645 2646 2647 2648 2649 2650
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
2651 2652 2653 2654 2655 2656 2657

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2658
	trace_ext4_da_write_begin(inode, pos, len, flags);
2659 2660 2661 2662 2663 2664

	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
		ret = ext4_da_write_inline_data_begin(mapping, inode,
						      pos, len, flags,
						      pagep, fsdata);
		if (ret < 0)
2665 2666 2667
			return ret;
		if (ret == 1)
			return 0;
2668 2669
	}

2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
	/*
	 * grab_cache_page_write_begin() can take a long time if the
	 * system is thrashing due to memory pressure, or if the page
	 * is being written back.  So grab it first before we start
	 * the transaction handle.  This also allows us to allocate
	 * the page (if needed) without using GFP_NOFS.
	 */
retry_grab:
	page = grab_cache_page_write_begin(mapping, index, flags);
	if (!page)
		return -ENOMEM;
	unlock_page(page);

2683 2684 2685 2686 2687 2688
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
2689
retry_journal:
2690
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2691
	if (IS_ERR(handle)) {
2692 2693
		page_cache_release(page);
		return PTR_ERR(handle);
2694 2695
	}

2696 2697 2698 2699 2700
	lock_page(page);
	if (page->mapping != mapping) {
		/* The page got truncated from under us */
		unlock_page(page);
		page_cache_release(page);
2701
		ext4_journal_stop(handle);
2702
		goto retry_grab;
2703
	}
2704 2705
	/* In case writeback began while the page was unlocked */
	wait_on_page_writeback(page);
2706

2707
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2708 2709 2710
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
2711 2712 2713 2714 2715 2716
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
2717
			ext4_truncate_failed_write(inode);
2718 2719 2720 2721 2722 2723 2724

		if (ret == -ENOSPC &&
		    ext4_should_retry_alloc(inode->i_sb, &retries))
			goto retry_journal;

		page_cache_release(page);
		return ret;
2725 2726
	}

2727
	*pagep = page;
2728 2729 2730
	return ret;
}

2731 2732 2733 2734 2735
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
2736
					    unsigned long offset)
2737 2738 2739 2740 2741 2742 2743 2744 2745
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2746
	for (i = 0; i < idx; i++)
2747 2748
		bh = bh->b_this_page;

2749
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2750 2751 2752 2753
		return 0;
	return 1;
}

2754
static int ext4_da_write_end(struct file *file,
2755 2756 2757
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
2758 2759 2760 2761 2762
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2763
	unsigned long start, end;
2764 2765
	int write_mode = (int)(unsigned long)fsdata;

2766 2767 2768
	if (write_mode == FALL_BACK_TO_NONDELALLOC)
		return ext4_write_end(file, mapping, pos,
				      len, copied, page, fsdata);
2769

2770
	trace_ext4_da_write_end(inode, pos, len, copied);
2771
	start = pos & (PAGE_CACHE_SIZE - 1);
2772
	end = start + copied - 1;
2773 2774 2775 2776 2777 2778 2779

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */
	new_i_size = pos + copied;
2780
	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2781 2782
		if (ext4_has_inline_data(inode) ||
		    ext4_da_should_update_i_disksize(page, end)) {
2783
			down_write(&EXT4_I(inode)->i_data_sem);
2784
			if (new_i_size > EXT4_I(inode)->i_disksize)
2785 2786
				EXT4_I(inode)->i_disksize = new_i_size;
			up_write(&EXT4_I(inode)->i_data_sem);
2787 2788 2789 2790 2791
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2792
		}
2793
	}
2794 2795 2796 2797 2798 2799 2800 2801

	if (write_mode != CONVERT_INLINE_DATA &&
	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
	    ext4_has_inline_data(inode))
		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
						     page);
	else
		ret2 = generic_write_end(file, mapping, pos, len, copied,
2802
							page, fsdata);
2803

2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2823
	ext4_da_page_release_reservation(page, offset);
2824 2825 2826 2827 2828 2829 2830

out:
	ext4_invalidatepage(page, offset);

	return;
}

2831 2832 2833 2834 2835
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
2836 2837
	trace_ext4_alloc_da_blocks(inode);

2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
2848
	 *
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
2861
	 * the pages by calling redirty_page_for_writepage() but that
2862 2863
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
L
Lucas De Marchi 已提交
2864
	 * simplifying them because we wouldn't actually intend to
2865 2866 2867
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
2868
	 *
2869 2870 2871 2872 2873 2874
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
2875

2876 2877 2878 2879 2880
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2881
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2882 2883 2884 2885 2886 2887 2888 2889
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2890
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2891 2892 2893 2894 2895
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

T
Tao Ma 已提交
2896 2897 2898 2899 2900 2901
	/*
	 * We can get here for an inline file via the FIBMAP ioctl
	 */
	if (ext4_has_inline_data(inode))
		return 0;

2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2912 2913
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2925
		 * NB. EXT4_STATE_JDATA is not set on files other than
2926 2927 2928 2929 2930 2931
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2932
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2933
		journal = EXT4_JOURNAL(inode);
2934 2935 2936
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2937 2938 2939 2940 2941

		if (err)
			return 0;
	}

2942
	return generic_block_bmap(mapping, block, ext4_get_block);
2943 2944
}

2945
static int ext4_readpage(struct file *file, struct page *page)
2946
{
T
Tao Ma 已提交
2947 2948 2949
	int ret = -EAGAIN;
	struct inode *inode = page->mapping->host;

2950
	trace_ext4_readpage(page);
T
Tao Ma 已提交
2951 2952 2953 2954 2955 2956 2957 2958

	if (ext4_has_inline_data(inode))
		ret = ext4_readpage_inline(inode, page);

	if (ret == -EAGAIN)
		return mpage_readpage(page, ext4_get_block);

	return ret;
2959 2960 2961
}

static int
2962
ext4_readpages(struct file *file, struct address_space *mapping,
2963 2964
		struct list_head *pages, unsigned nr_pages)
{
T
Tao Ma 已提交
2965 2966 2967 2968 2969 2970
	struct inode *inode = mapping->host;

	/* If the file has inline data, no need to do readpages. */
	if (ext4_has_inline_data(inode))
		return 0;

2971
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2972 2973
}

2974
static void ext4_invalidatepage(struct page *page, unsigned long offset)
2975
{
2976 2977
	trace_ext4_invalidatepage(page, offset);

2978 2979 2980 2981 2982 2983
	/* No journalling happens on data buffers when this function is used */
	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));

	block_invalidatepage(page, offset);
}

2984 2985
static int __ext4_journalled_invalidatepage(struct page *page,
					    unsigned long offset)
2986 2987 2988 2989 2990
{
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);

	trace_ext4_journalled_invalidatepage(page, offset);

2991 2992 2993 2994 2995 2996
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

2997 2998 2999 3000 3001 3002 3003 3004
	return jbd2_journal_invalidatepage(journal, page, offset);
}

/* Wrapper for aops... */
static void ext4_journalled_invalidatepage(struct page *page,
					   unsigned long offset)
{
	WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3005 3006
}

3007
static int ext4_releasepage(struct page *page, gfp_t wait)
3008
{
3009
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3010

3011 3012
	trace_ext4_releasepage(page);

3013 3014
	/* Page has dirty journalled data -> cannot release */
	if (PageChecked(page))
3015
		return 0;
3016 3017 3018 3019
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3020 3021
}

3022 3023 3024 3025 3026
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
3027
int ext4_get_block_write(struct inode *inode, sector_t iblock,
3028 3029
		   struct buffer_head *bh_result, int create)
{
3030
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3031
		   inode->i_ino, create);
3032 3033
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3034 3035
}

3036
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3037
		   struct buffer_head *bh_result, int create)
3038
{
3039 3040 3041 3042
	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
		   inode->i_ino, create);
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_NO_LOCK);
3043 3044
}

3045
static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3046 3047
			    ssize_t size, void *private, int ret,
			    bool is_async)
3048
{
A
Al Viro 已提交
3049
	struct inode *inode = file_inode(iocb->ki_filp);
3050 3051
        ext4_io_end_t *io_end = iocb->private;

3052 3053
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
3054
		goto out;
3055

3056
	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3057
		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3058 3059 3060
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

3061 3062
	iocb->private = NULL;

3063
	/* if not aio dio with unwritten extents, just free io and return */
3064
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3065
		ext4_free_io_end(io_end);
3066
out:
3067
		inode_dio_done(inode);
3068 3069 3070
		if (is_async)
			aio_complete(iocb, ret, 0);
		return;
3071 3072
	}

3073 3074
	io_end->offset = offset;
	io_end->size = size;
3075 3076 3077 3078
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
3079

3080
	ext4_add_complete_io(io_end);
3081
}
3082

3083 3084 3085 3086 3087
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
3088
 * For holes, we fallocate those blocks, mark them as uninitialized
3089
 * If those blocks were preallocated, we mark sure they are split, but
3090
 * still keep the range to write as uninitialized.
3091
 *
3092
 * The unwritten extents will be converted to written when DIO is completed.
3093
 * For async direct IO, since the IO may still pending when return, we
L
Lucas De Marchi 已提交
3094
 * set up an end_io call back function, which will do the conversion
3095
 * when async direct IO completed.
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);
3110 3111 3112
	int overwrite = 0;
	get_block_t *get_block_func = NULL;
	int dio_flags = 0;
3113
	loff_t final_size = offset + count;
3114

3115 3116 3117
	/* Use the old path for reads and writes beyond i_size. */
	if (rw != WRITE || final_size > inode->i_size)
		return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3118

3119
	BUG_ON(iocb->private == NULL);
3120

3121 3122
	/* If we do a overwrite dio, i_mutex locking can be released */
	overwrite = *((int *)iocb->private);
3123

3124 3125 3126 3127 3128
	if (overwrite) {
		atomic_inc(&inode->i_dio_count);
		down_read(&EXT4_I(inode)->i_data_sem);
		mutex_unlock(&inode->i_mutex);
	}
3129

3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155
	/*
	 * We could direct write to holes and fallocate.
	 *
	 * Allocated blocks to fill the hole are marked as
	 * uninitialized to prevent parallel buffered read to expose
	 * the stale data before DIO complete the data IO.
	 *
	 * As to previously fallocated extents, ext4 get_block will
	 * just simply mark the buffer mapped but still keep the
	 * extents uninitialized.
	 *
	 * For non AIO case, we will convert those unwritten extents
	 * to written after return back from blockdev_direct_IO.
	 *
	 * For async DIO, the conversion needs to be deferred when the
	 * IO is completed. The ext4 end_io callback function will be
	 * called to take care of the conversion work.  Here for async
	 * case, we allocate an io_end structure to hook to the iocb.
	 */
	iocb->private = NULL;
	ext4_inode_aio_set(inode, NULL);
	if (!is_sync_kiocb(iocb)) {
		ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
		if (!io_end) {
			ret = -ENOMEM;
			goto retake_lock;
3156
		}
3157 3158
		io_end->flag |= EXT4_IO_END_DIRECT;
		iocb->private = io_end;
3159
		/*
3160 3161 3162 3163
		 * we save the io structure for current async direct
		 * IO, so that later ext4_map_blocks() could flag the
		 * io structure whether there is a unwritten extents
		 * needs to be converted when IO is completed.
3164
		 */
3165 3166
		ext4_inode_aio_set(inode, io_end);
	}
3167

3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
	if (overwrite) {
		get_block_func = ext4_get_block_write_nolock;
	} else {
		get_block_func = ext4_get_block_write;
		dio_flags = DIO_LOCKING;
	}
	ret = __blockdev_direct_IO(rw, iocb, inode,
				   inode->i_sb->s_bdev, iov,
				   offset, nr_segs,
				   get_block_func,
				   ext4_end_io_dio,
				   NULL,
				   dio_flags);

	if (iocb->private)
		ext4_inode_aio_set(inode, NULL);
	/*
	 * The io_end structure takes a reference to the inode, that
	 * structure needs to be destroyed and the reference to the
	 * inode need to be dropped, when IO is complete, even with 0
	 * byte write, or failed.
	 *
	 * In the successful AIO DIO case, the io_end structure will
	 * be destroyed and the reference to the inode will be dropped
	 * after the end_io call back function is called.
	 *
	 * In the case there is 0 byte write, or error case, since VFS
	 * direct IO won't invoke the end_io call back function, we
	 * need to free the end_io structure here.
	 */
	if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
		ext4_free_io_end(iocb->private);
		iocb->private = NULL;
	} else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
		int err;
		/*
		 * for non AIO case, since the IO is already
		 * completed, we could do the conversion right here
		 */
		err = ext4_convert_unwritten_extents(inode,
						     offset, ret);
		if (err < 0)
			ret = err;
		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
	}
3214

3215 3216 3217 3218 3219 3220
retake_lock:
	/* take i_mutex locking again if we do a ovewrite dio */
	if (overwrite) {
		inode_dio_done(inode);
		up_read(&EXT4_I(inode)->i_data_sem);
		mutex_lock(&inode->i_mutex);
3221
	}
3222

3223
	return ret;
3224 3225 3226 3227 3228 3229 3230 3231
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3232
	ssize_t ret;
3233

3234 3235 3236 3237 3238 3239
	/*
	 * If we are doing data journalling we don't support O_DIRECT
	 */
	if (ext4_should_journal_data(inode))
		return 0;

T
Tao Ma 已提交
3240 3241 3242 3243
	/* Let buffer I/O handle the inline data case. */
	if (ext4_has_inline_data(inode))
		return 0;

3244
	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3245
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3246 3247 3248 3249 3250 3251
		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
	else
		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
	trace_ext4_direct_IO_exit(inode, offset,
				iov_length(iov, nr_segs), rw, ret);
	return ret;
3252 3253
}

3254
/*
3255
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3267
static int ext4_journalled_set_page_dirty(struct page *page)
3268 3269 3270 3271 3272
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3273
static const struct address_space_operations ext4_aops = {
3274 3275
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3276
	.writepage		= ext4_writepage,
3277
	.write_begin		= ext4_write_begin,
3278
	.write_end		= ext4_write_end,
3279 3280 3281 3282 3283 3284
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3285
	.error_remove_page	= generic_error_remove_page,
3286 3287
};

3288
static const struct address_space_operations ext4_journalled_aops = {
3289 3290
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3291
	.writepage		= ext4_writepage,
3292 3293 3294 3295
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
3296
	.invalidatepage		= ext4_journalled_invalidatepage,
3297
	.releasepage		= ext4_releasepage,
3298
	.direct_IO		= ext4_direct_IO,
3299
	.is_partially_uptodate  = block_is_partially_uptodate,
3300
	.error_remove_page	= generic_error_remove_page,
3301 3302
};

3303
static const struct address_space_operations ext4_da_aops = {
3304 3305
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3306
	.writepage		= ext4_writepage,
3307 3308 3309 3310 3311 3312 3313 3314 3315
	.writepages		= ext4_da_writepages,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3316
	.error_remove_page	= generic_error_remove_page,
3317 3318
};

3319
void ext4_set_aops(struct inode *inode)
3320
{
3321 3322
	switch (ext4_inode_journal_mode(inode)) {
	case EXT4_INODE_ORDERED_DATA_MODE:
3323
		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3324 3325
		break;
	case EXT4_INODE_WRITEBACK_DATA_MODE:
3326
		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3327 3328
		break;
	case EXT4_INODE_JOURNAL_DATA_MODE:
3329
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3330
		return;
3331 3332 3333
	default:
		BUG();
	}
3334 3335 3336 3337
	if (test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else
		inode->i_mapping->a_ops = &ext4_aops;
3338 3339
}

3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359

/*
 * ext4_discard_partial_page_buffers()
 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
 * This function finds and locks the page containing the offset
 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
 * Calling functions that already have the page locked should call
 * ext4_discard_partial_page_buffers_no_lock directly.
 */
int ext4_discard_partial_page_buffers(handle_t *handle,
		struct address_space *mapping, loff_t from,
		loff_t length, int flags)
{
	struct inode *inode = mapping->host;
	struct page *page;
	int err = 0;

	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
	if (!page)
3360
		return -ENOMEM;
3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388

	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
		from, length, flags);

	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * ext4_discard_partial_page_buffers_no_lock()
 * Zeros a page range of length 'length' starting from offset 'from'.
 * Buffer heads that correspond to the block aligned regions of the
 * zeroed range will be unmapped.  Unblock aligned regions
 * will have the corresponding buffer head mapped if needed so that
 * that region of the page can be updated with the partial zero out.
 *
 * This function assumes that the page has already been  locked.  The
 * The range to be discarded must be contained with in the given page.
 * If the specified range exceeds the end of the page it will be shortened
 * to the end of the page that corresponds to 'from'.  This function is
 * appropriate for updating a page and it buffer heads to be unmapped and
 * zeroed for blocks that have been either released, or are going to be
 * released.
 *
 * handle: The journal handle
 * inode:  The files inode
 * page:   A locked page that contains the offset "from"
3389
 * from:   The starting byte offset (from the beginning of the file)
3390 3391 3392 3393 3394 3395 3396
 *         to begin discarding
 * len:    The length of bytes to discard
 * flags:  Optional flags that may be used:
 *
 *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
 *         Only zero the regions of the page whose buffer heads
 *         have already been unmapped.  This flag is appropriate
3397
 *         for updating the contents of a page whose blocks may
3398 3399 3400
 *         have already been released, and we only want to zero
 *         out the regions that correspond to those released blocks.
 *
3401
 * Returns zero on success or negative on failure.
3402
 */
E
Eric Sandeen 已提交
3403
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags)
{
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
	unsigned int blocksize, max, pos;
	ext4_lblk_t iblock;
	struct buffer_head *bh;
	int err = 0;

	blocksize = inode->i_sb->s_blocksize;
	max = PAGE_CACHE_SIZE - offset;

	if (index != page->index)
		return -EINVAL;

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the page
	 */
	if (length > max || length < 0)
		length = max;

	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

3429 3430
	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);
3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	pos = offset;
	while (pos < offset + length) {
3443 3444
		unsigned int end_of_block, range_to_discard;

3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
		err = 0;

		/* The length of space left to zero and unmap */
		range_to_discard = offset + length - pos;

		/* The length of space until the end of the block */
		end_of_block = blocksize - (pos & (blocksize-1));

		/*
		 * Do not unmap or zero past end of block
		 * for this buffer head
		 */
		if (range_to_discard > end_of_block)
			range_to_discard = end_of_block;


		/*
		 * Skip this buffer head if we are only zeroing unampped
		 * regions of the page
		 */
		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
			buffer_mapped(bh))
				goto next;

		/* If the range is block aligned, unmap */
		if (range_to_discard == blocksize) {
			clear_buffer_dirty(bh);
			bh->b_bdev = NULL;
			clear_buffer_mapped(bh);
			clear_buffer_req(bh);
			clear_buffer_new(bh);
			clear_buffer_delay(bh);
			clear_buffer_unwritten(bh);
			clear_buffer_uptodate(bh);
			zero_user(page, pos, range_to_discard);
			BUFFER_TRACE(bh, "Buffer discarded");
			goto next;
		}

		/*
		 * If this block is not completely contained in the range
		 * to be discarded, then it is not going to be released. Because
		 * we need to keep this block, we need to make sure this part
		 * of the page is uptodate before we modify it by writeing
		 * partial zeros on it.
		 */
		if (!buffer_mapped(bh)) {
			/*
			 * Buffer head must be mapped before we can read
			 * from the block
			 */
			BUFFER_TRACE(bh, "unmapped");
			ext4_get_block(inode, iblock, bh, 0);
			/* unmapped? It's a hole - nothing to do */
			if (!buffer_mapped(bh)) {
				BUFFER_TRACE(bh, "still unmapped");
				goto next;
			}
		}

		/* Ok, it's mapped. Make sure it's up-to-date */
		if (PageUptodate(page))
			set_buffer_uptodate(bh);

		if (!buffer_uptodate(bh)) {
			err = -EIO;
			ll_rw_block(READ, 1, &bh);
			wait_on_buffer(bh);
			/* Uhhuh. Read error. Complain and punt.*/
			if (!buffer_uptodate(bh))
				goto next;
		}

		if (ext4_should_journal_data(inode)) {
			BUFFER_TRACE(bh, "get write access");
			err = ext4_journal_get_write_access(handle, bh);
			if (err)
				goto next;
		}

		zero_user(page, pos, range_to_discard);

		err = 0;
		if (ext4_should_journal_data(inode)) {
			err = ext4_handle_dirty_metadata(handle, inode, bh);
3530
		} else
3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542
			mark_buffer_dirty(bh);

		BUFFER_TRACE(bh, "Partial buffer zeroed");
next:
		bh = bh->b_this_page;
		iblock++;
		pos += range_to_discard;
	}

	return err;
}

3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
int ext4_can_truncate(struct inode *inode)
{
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3554 3555 3556 3557 3558 3559 3560 3561
/*
 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 * associated with the given offset and length
 *
 * @inode:  File inode
 * @offset: The offset where the hole will begin
 * @len:    The length of the hole
 *
3562
 * Returns: 0 on success or negative on failure
3563 3564 3565 3566
 */

int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
{
A
Al Viro 已提交
3567
	struct inode *inode = file_inode(file);
T
Theodore Ts'o 已提交
3568 3569 3570 3571 3572 3573 3574 3575 3576
	struct super_block *sb = inode->i_sb;
	ext4_lblk_t first_block, stop_block;
	struct address_space *mapping = inode->i_mapping;
	loff_t first_page, last_page, page_len;
	loff_t first_page_offset, last_page_offset;
	handle_t *handle;
	unsigned int credits;
	int ret = 0;

3577
	if (!S_ISREG(inode->i_mode))
3578
		return -EOPNOTSUPP;
3579

T
Theodore Ts'o 已提交
3580
	if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3581
		/* TODO: Add support for bigalloc file systems */
3582
		return -EOPNOTSUPP;
3583 3584
	}

3585 3586
	trace_ext4_punch_hole(inode, offset, length);

T
Theodore Ts'o 已提交
3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
	/*
	 * Write out all dirty pages to avoid race conditions
	 * Then release them.
	 */
	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
		ret = filemap_write_and_wait_range(mapping, offset,
						   offset + length - 1);
		if (ret)
			return ret;
	}

	mutex_lock(&inode->i_mutex);
	/* It's not possible punch hole on append only file */
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
		ret = -EPERM;
		goto out_mutex;
	}
	if (IS_SWAPFILE(inode)) {
		ret = -ETXTBSY;
		goto out_mutex;
	}

	/* No need to punch hole beyond i_size */
	if (offset >= inode->i_size)
		goto out_mutex;

	/*
	 * If the hole extends beyond i_size, set the hole
	 * to end after the page that contains i_size
	 */
	if (offset + length > inode->i_size) {
		length = inode->i_size +
		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
		   offset;
	}

	first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
	last_page = (offset + length) >> PAGE_CACHE_SHIFT;

	first_page_offset = first_page << PAGE_CACHE_SHIFT;
	last_page_offset = last_page << PAGE_CACHE_SHIFT;

	/* Now release the pages */
	if (last_page_offset > first_page_offset) {
		truncate_pagecache_range(inode, first_page_offset,
					 last_page_offset - 1);
	}

	/* Wait all existing dio workers, newcomers will block on i_mutex */
	ext4_inode_block_unlocked_dio(inode);
	ret = ext4_flush_unwritten_io(inode);
	if (ret)
		goto out_dio;
	inode_dio_wait(inode);

	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
		credits = ext4_writepage_trans_blocks(inode);
	else
		credits = ext4_blocks_for_truncate(inode);
	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		ext4_std_error(sb, ret);
		goto out_dio;
	}

	/*
	 * Now we need to zero out the non-page-aligned data in the
	 * pages at the start and tail of the hole, and unmap the
	 * buffer heads for the block aligned regions of the page that
	 * were completely zeroed.
	 */
	if (first_page > last_page) {
		/*
		 * If the file space being truncated is contained
		 * within a page just zero out and unmap the middle of
		 * that page
		 */
		ret = ext4_discard_partial_page_buffers(handle,
			mapping, offset, length, 0);

		if (ret)
			goto out_stop;
	} else {
		/*
		 * zero out and unmap the partial page that contains
		 * the start of the hole
		 */
		page_len = first_page_offset - offset;
		if (page_len > 0) {
			ret = ext4_discard_partial_page_buffers(handle, mapping,
						offset, page_len, 0);
			if (ret)
				goto out_stop;
		}

		/*
		 * zero out and unmap the partial page that contains
		 * the end of the hole
		 */
		page_len = offset + length - last_page_offset;
		if (page_len > 0) {
			ret = ext4_discard_partial_page_buffers(handle, mapping,
					last_page_offset, page_len, 0);
			if (ret)
				goto out_stop;
		}
	}

	/*
	 * If i_size is contained in the last page, we need to
	 * unmap and zero the partial page after i_size
	 */
	if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
	   inode->i_size % PAGE_CACHE_SIZE != 0) {
		page_len = PAGE_CACHE_SIZE -
			(inode->i_size & (PAGE_CACHE_SIZE - 1));

		if (page_len > 0) {
			ret = ext4_discard_partial_page_buffers(handle,
					mapping, inode->i_size, page_len, 0);

			if (ret)
				goto out_stop;
		}
	}

	first_block = (offset + sb->s_blocksize - 1) >>
		EXT4_BLOCK_SIZE_BITS(sb);
	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);

	/* If there are no blocks to remove, return now */
	if (first_block >= stop_block)
		goto out_stop;

	down_write(&EXT4_I(inode)->i_data_sem);
	ext4_discard_preallocations(inode);

	ret = ext4_es_remove_extent(inode, first_block,
				    stop_block - first_block);
	if (ret) {
		up_write(&EXT4_I(inode)->i_data_sem);
		goto out_stop;
	}

	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
		ret = ext4_ext_remove_space(inode, first_block,
					    stop_block - 1);
	else
		ret = ext4_free_hole_blocks(handle, inode, first_block,
					    stop_block);

	ext4_discard_preallocations(inode);
T
Theodore Ts'o 已提交
3740
	up_write(&EXT4_I(inode)->i_data_sem);
T
Theodore Ts'o 已提交
3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
	if (IS_SYNC(inode))
		ext4_handle_sync(handle);
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
	ext4_mark_inode_dirty(handle, inode);
out_stop:
	ext4_journal_stop(handle);
out_dio:
	ext4_inode_resume_unlocked_dio(inode);
out_mutex:
	mutex_unlock(&inode->i_mutex);
	return ret;
3752 3753
}

3754
/*
3755
 * ext4_truncate()
3756
 *
3757 3758
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3759 3760
 * simultaneously on behalf of the same inode.
 *
3761
 * As we work through the truncate and commit bits of it to the journal there
3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3775
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3776
 * that this inode's truncate did not complete and it will again call
3777 3778
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3779
 * that's fine - as long as they are linked from the inode, the post-crash
3780
 * ext4_truncate() run will find them and release them.
3781
 */
3782
void ext4_truncate(struct inode *inode)
3783
{
T
Theodore Ts'o 已提交
3784 3785 3786 3787 3788 3789
	struct ext4_inode_info *ei = EXT4_I(inode);
	unsigned int credits;
	handle_t *handle;
	struct address_space *mapping = inode->i_mapping;
	loff_t page_len;

3790 3791 3792 3793 3794 3795 3796
	/*
	 * There is a possibility that we're either freeing the inode
	 * or it completely new indode. In those cases we might not
	 * have i_mutex locked because it's not necessary.
	 */
	if (!(inode->i_state & (I_NEW|I_FREEING)))
		WARN_ON(!mutex_is_locked(&inode->i_mutex));
3797 3798
	trace_ext4_truncate_enter(inode);

3799
	if (!ext4_can_truncate(inode))
3800 3801
		return;

3802
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3803

3804
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3805
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3806

3807 3808 3809 3810 3811 3812 3813 3814
	if (ext4_has_inline_data(inode)) {
		int has_inline = 1;

		ext4_inline_data_truncate(inode, &has_inline);
		if (has_inline)
			return;
	}

T
Theodore Ts'o 已提交
3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
	/*
	 * finish any pending end_io work so we won't run the risk of
	 * converting any truncated blocks to initialized later
	 */
	ext4_flush_unwritten_io(inode);

	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
		credits = ext4_writepage_trans_blocks(inode);
	else
		credits = ext4_blocks_for_truncate(inode);

	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
	if (IS_ERR(handle)) {
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
		return;
	}

	if (inode->i_size % PAGE_CACHE_SIZE != 0) {
		page_len = PAGE_CACHE_SIZE -
			(inode->i_size & (PAGE_CACHE_SIZE - 1));

		if (ext4_discard_partial_page_buffers(handle,
				mapping, inode->i_size, page_len, 0))
			goto out_stop;
	}

	/*
	 * We add the inode to the orphan list, so that if this
	 * truncate spans multiple transactions, and we crash, we will
	 * resume the truncate when the filesystem recovers.  It also
	 * marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
	if (ext4_orphan_add(handle, inode))
		goto out_stop;

	down_write(&EXT4_I(inode)->i_data_sem);

	ext4_discard_preallocations(inode);

3857
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
T
Theodore Ts'o 已提交
3858
		ext4_ext_truncate(handle, inode);
3859
	else
T
Theodore Ts'o 已提交
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880
		ext4_ind_truncate(handle, inode);

	up_write(&ei->i_data_sem);

	if (IS_SYNC(inode))
		ext4_handle_sync(handle);

out_stop:
	/*
	 * If this was a simple ftruncate() and the file will remain alive,
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
	 * ext4_delete_inode(), and we allow that function to clean up the
	 * orphan info for us.
	 */
	if (inode->i_nlink)
		ext4_orphan_del(handle, inode);

	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
	ext4_mark_inode_dirty(handle, inode);
	ext4_journal_stop(handle);
3881

3882
	trace_ext4_truncate_exit(inode);
3883 3884 3885
}

/*
3886
 * ext4_get_inode_loc returns with an extra refcount against the inode's
3887 3888 3889 3890
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
3891 3892
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
3893
{
3894 3895 3896 3897 3898 3899
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
3900
	iloc->bh = NULL;
3901 3902
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
3903

3904 3905 3906
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
3907 3908
		return -EIO;

3909 3910 3911
	/*
	 * Figure out the offset within the block group inode table
	 */
3912
	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3913 3914 3915 3916 3917 3918
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
3919
	if (unlikely(!bh))
3920
		return -ENOMEM;
3921 3922
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
3923 3924 3925 3926 3927 3928 3929 3930 3931 3932

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
3946
			int i, start;
3947

3948
			start = inode_offset & ~(inodes_per_block - 1);
3949

3950 3951
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3952
			if (unlikely(!bitmap_bh))
3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
3964
			for (i = start; i < start + inodes_per_block; i++) {
3965 3966
				if (i == inode_offset)
					continue;
3967
				if (ext4_test_bit(i, bitmap_bh->b_data))
3968 3969 3970
					break;
			}
			brelse(bitmap_bh);
3971
			if (i == start + inodes_per_block) {
3972 3973 3974 3975 3976 3977 3978 3979 3980
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
3981 3982 3983 3984 3985 3986 3987 3988 3989
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
3990
			/* s_inode_readahead_blks is always a power of 2 */
3991 3992 3993 3994 3995
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
3996
			if (ext4_has_group_desc_csum(sb))
3997
				num -= ext4_itable_unused_count(sb, gdp);
3998 3999 4000 4001 4002 4003 4004
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

4005 4006 4007 4008 4009
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
4010
		trace_ext4_load_inode(inode);
4011 4012
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
4013
		submit_bh(READ | REQ_META | REQ_PRIO, bh);
4014 4015
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
4016 4017
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
4018 4019 4020 4021 4022 4023 4024 4025 4026
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

4027
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4028 4029
{
	/* We have all inode data except xattrs in memory here. */
4030
	return __ext4_get_inode_loc(inode, iloc,
4031
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4032 4033
}

4034
void ext4_set_inode_flags(struct inode *inode)
4035
{
4036
	unsigned int flags = EXT4_I(inode)->i_flags;
4037 4038

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4039
	if (flags & EXT4_SYNC_FL)
4040
		inode->i_flags |= S_SYNC;
4041
	if (flags & EXT4_APPEND_FL)
4042
		inode->i_flags |= S_APPEND;
4043
	if (flags & EXT4_IMMUTABLE_FL)
4044
		inode->i_flags |= S_IMMUTABLE;
4045
	if (flags & EXT4_NOATIME_FL)
4046
		inode->i_flags |= S_NOATIME;
4047
	if (flags & EXT4_DIRSYNC_FL)
4048 4049 4050
		inode->i_flags |= S_DIRSYNC;
}

4051 4052 4053
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4074
}
4075

4076
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4077
				  struct ext4_inode_info *ei)
4078 4079
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
4080 4081
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
4082 4083 4084 4085 4086 4087

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
4088
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
4089 4090 4091 4092 4093
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
4094 4095 4096 4097
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
4098

4099 4100 4101 4102 4103 4104
static inline void ext4_iget_extra_inode(struct inode *inode,
					 struct ext4_inode *raw_inode,
					 struct ext4_inode_info *ei)
{
	__le32 *magic = (void *)raw_inode +
			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4105
	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4106
		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4107
		ext4_find_inline_data_nolock(inode);
4108 4109
	} else
		EXT4_I(inode)->i_inline_off = 0;
4110 4111
}

4112
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4113
{
4114 4115
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
4116 4117
	struct ext4_inode_info *ei;
	struct inode *inode;
4118
	journal_t *journal = EXT4_SB(sb)->s_journal;
4119
	long ret;
4120
	int block;
4121 4122
	uid_t i_uid;
	gid_t i_gid;
4123

4124 4125 4126 4127 4128 4129 4130
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
4131
	iloc.bh = NULL;
4132

4133 4134
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
4135
		goto bad_inode;
4136
	raw_inode = ext4_raw_inode(&iloc);
4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169

	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
		    EXT4_INODE_SIZE(inode->i_sb)) {
			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
				EXT4_INODE_SIZE(inode->i_sb));
			ret = -EIO;
			goto bad_inode;
		}
	} else
		ei->i_extra_isize = 0;

	/* Precompute checksum seed for inode metadata */
	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
		__u32 csum;
		__le32 inum = cpu_to_le32(inode->i_ino);
		__le32 gen = raw_inode->i_generation;
		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
				   sizeof(inum));
		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
					      sizeof(gen));
	}

	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
		EXT4_ERROR_INODE(inode, "checksum invalid");
		ret = -EIO;
		goto bad_inode;
	}

4170
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4171 4172
	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4173
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4174 4175
		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4176
	}
4177 4178
	i_uid_write(inode, i_uid);
	i_gid_write(inode, i_gid);
M
Miklos Szeredi 已提交
4179
	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4180

4181
	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4182
	ei->i_inline_off = 0;
4183 4184 4185 4186 4187 4188 4189 4190 4191
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
4192
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4193
			/* this inode is deleted */
4194
			ret = -ESTALE;
4195 4196 4197 4198 4199 4200 4201 4202
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4203
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4204
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4205
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
4206 4207
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4208
	inode->i_size = ext4_isize(raw_inode);
4209
	ei->i_disksize = inode->i_size;
4210 4211 4212
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
4213 4214
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
4215
	ei->i_last_alloc_group = ~0;
4216 4217 4218 4219
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
4220
	for (block = 0; block < EXT4_N_BLOCKS; block++)
4221 4222 4223
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

4235
		read_lock(&journal->j_state_lock);
4236 4237 4238 4239 4240 4241 4242 4243
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
4244
		read_unlock(&journal->j_state_lock);
4245 4246 4247 4248
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

4249
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4250 4251
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
4252 4253
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
4254
		} else {
4255
			ext4_iget_extra_inode(inode, raw_inode, ei);
4256
		}
4257
	}
4258

K
Kalpak Shah 已提交
4259 4260 4261 4262 4263
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

4264 4265 4266 4267 4268 4269 4270
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

4271
	ret = 0;
4272
	if (ei->i_file_acl &&
4273
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4274 4275
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
4276 4277
		ret = -EIO;
		goto bad_inode;
4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290
	} else if (!ext4_has_inline_data(inode)) {
		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
			    (S_ISLNK(inode->i_mode) &&
			     !ext4_inode_is_fast_symlink(inode))))
				/* Validate extent which is part of inode */
				ret = ext4_ext_check_inode(inode);
		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
			   (S_ISLNK(inode->i_mode) &&
			    !ext4_inode_is_fast_symlink(inode))) {
			/* Validate block references which are part of inode */
			ret = ext4_ind_check_inode(inode);
		}
4291
	}
4292
	if (ret)
4293
		goto bad_inode;
4294

4295
	if (S_ISREG(inode->i_mode)) {
4296 4297 4298
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
4299
	} else if (S_ISDIR(inode->i_mode)) {
4300 4301
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
4302
	} else if (S_ISLNK(inode->i_mode)) {
4303
		if (ext4_inode_is_fast_symlink(inode)) {
4304
			inode->i_op = &ext4_fast_symlink_inode_operations;
4305 4306 4307
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
4308 4309
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
4310
		}
4311 4312
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4313
		inode->i_op = &ext4_special_inode_operations;
4314 4315 4316 4317 4318 4319
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4320 4321
	} else {
		ret = -EIO;
4322
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4323
		goto bad_inode;
4324
	}
4325
	brelse(iloc.bh);
4326
	ext4_set_inode_flags(inode);
4327 4328
	unlock_new_inode(inode);
	return inode;
4329 4330

bad_inode:
4331
	brelse(iloc.bh);
4332 4333
	iget_failed(inode);
	return ERR_PTR(ret);
4334 4335
}

4336 4337 4338 4339 4340 4341 4342 4343 4344 4345
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
4346
		 * i_blocks can be represented in a 32 bit variable
4347 4348
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4349
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4350
		raw_inode->i_blocks_high = 0;
4351
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4352 4353 4354 4355 4356 4357
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
4358 4359 4360 4361
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4362
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4363
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4364
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4365
	} else {
4366
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
4367 4368 4369 4370
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4371
	}
4372
	return 0;
4373 4374
}

4375 4376 4377 4378 4379 4380 4381
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
4382
static int ext4_do_update_inode(handle_t *handle,
4383
				struct inode *inode,
4384
				struct ext4_iloc *iloc)
4385
{
4386 4387
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
4388 4389
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;
4390
	int need_datasync = 0;
4391 4392
	uid_t i_uid;
	gid_t i_gid;
4393 4394 4395

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
4396
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4397
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4398

4399
	ext4_get_inode_flags(ei);
4400
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4401 4402
	i_uid = i_uid_read(inode);
	i_gid = i_gid_read(inode);
4403
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4404 4405
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4406 4407 4408 4409
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
4410
		if (!ei->i_dtime) {
4411
			raw_inode->i_uid_high =
4412
				cpu_to_le16(high_16_bits(i_uid));
4413
			raw_inode->i_gid_high =
4414
				cpu_to_le16(high_16_bits(i_gid));
4415 4416 4417 4418 4419
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
4420 4421
		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4422 4423 4424 4425
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4426 4427 4428 4429 4430 4431

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4432 4433
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4434
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4435
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4436 4437
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4438 4439
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4440
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4441 4442 4443 4444
	if (ei->i_disksize != ext4_isize(raw_inode)) {
		ext4_isize_set(raw_inode, ei->i_disksize);
		need_datasync = 1;
	}
4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4460
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4461
			ext4_handle_sync(handle);
4462
			err = ext4_handle_dirty_super(handle, sb);
4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4477
	} else if (!ext4_has_inline_data(inode)) {
4478 4479
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
4480
	}
4481

4482 4483 4484 4485 4486
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4487
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4488 4489
	}

4490 4491
	ext4_inode_csum_set(inode, raw_inode, ei);

4492
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4493
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4494 4495
	if (!err)
		err = rc;
4496
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4497

4498
	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4499
out_brelse:
4500
	brelse(bh);
4501
	ext4_std_error(inode->i_sb, err);
4502 4503 4504 4505
	return err;
}

/*
4506
 * ext4_write_inode()
4507 4508 4509 4510 4511
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
4512
 *   transaction to commit.
4513 4514 4515 4516 4517 4518 4519 4520 4521 4522
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4523
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4540
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4541
{
4542 4543
	int err;

4544 4545 4546
	if (current->flags & PF_MEMALLOC)
		return 0;

4547 4548 4549 4550 4551 4552
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
4553

4554
		if (wbc->sync_mode != WB_SYNC_ALL)
4555 4556 4557 4558 4559
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
4560

4561
		err = __ext4_get_inode_loc(inode, &iloc, 0);
4562 4563
		if (err)
			return err;
4564
		if (wbc->sync_mode == WB_SYNC_ALL)
4565 4566
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4567 4568
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
4569 4570
			err = -EIO;
		}
4571
		brelse(iloc.bh);
4572 4573
	}
	return err;
4574 4575
}

4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616
/*
 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
 * buffers that are attached to a page stradding i_size and are undergoing
 * commit. In that case we have to wait for commit to finish and try again.
 */
static void ext4_wait_for_tail_page_commit(struct inode *inode)
{
	struct page *page;
	unsigned offset;
	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
	tid_t commit_tid = 0;
	int ret;

	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
	/*
	 * All buffers in the last page remain valid? Then there's nothing to
	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
	 * blocksize case
	 */
	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
		return;
	while (1) {
		page = find_lock_page(inode->i_mapping,
				      inode->i_size >> PAGE_CACHE_SHIFT);
		if (!page)
			return;
		ret = __ext4_journalled_invalidatepage(page, offset);
		unlock_page(page);
		page_cache_release(page);
		if (ret != -EBUSY)
			return;
		commit_tid = 0;
		read_lock(&journal->j_state_lock);
		if (journal->j_committing_transaction)
			commit_tid = journal->j_committing_transaction->t_tid;
		read_unlock(&journal->j_state_lock);
		if (commit_tid)
			jbd2_log_wait_commit(journal, commit_tid);
	}
}

4617
/*
4618
 * ext4_setattr()
4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4632 4633 4634 4635 4636 4637 4638 4639
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4640
 */
4641
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4642 4643 4644
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
4645
	int orphan = 0;
4646 4647 4648 4649 4650 4651
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

4652
	if (is_quota_modification(inode, attr))
4653
		dquot_initialize(inode);
4654 4655
	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4656 4657 4658 4659
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
4660 4661 4662
		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4663 4664 4665 4666
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4667
		error = dquot_transfer(inode, attr);
4668
		if (error) {
4669
			ext4_journal_stop(handle);
4670 4671 4672 4673 4674 4675 4676 4677
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4678 4679
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4680 4681
	}

4682
	if (attr->ia_valid & ATTR_SIZE) {
4683

4684
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4685 4686
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

4687 4688
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
4689 4690 4691
		}
	}

4692
	if (S_ISREG(inode->i_mode) &&
4693
	    attr->ia_valid & ATTR_SIZE &&
4694
	    (attr->ia_size < inode->i_size)) {
4695 4696
		handle_t *handle;

4697
		handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4698 4699 4700 4701
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4702 4703 4704 4705
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
4706 4707
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4708 4709
		if (!error)
			error = rc;
4710
		ext4_journal_stop(handle);
4711 4712 4713 4714 4715 4716

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
4717 4718
				handle = ext4_journal_start(inode,
							    EXT4_HT_INODE, 3);
4719 4720 4721 4722 4723
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
4724
				orphan = 0;
4725 4726 4727 4728
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4729 4730
	}

4731
	if (attr->ia_valid & ATTR_SIZE) {
4732 4733 4734 4735 4736 4737 4738 4739 4740
		if (attr->ia_size != inode->i_size) {
			loff_t oldsize = inode->i_size;

			i_size_write(inode, attr->ia_size);
			/*
			 * Blocks are going to be removed from the inode. Wait
			 * for dio in flight.  Temporarily disable
			 * dioread_nolock to prevent livelock.
			 */
4741
			if (orphan) {
4742 4743 4744 4745 4746 4747
				if (!ext4_should_journal_data(inode)) {
					ext4_inode_block_unlocked_dio(inode);
					inode_dio_wait(inode);
					ext4_inode_resume_unlocked_dio(inode);
				} else
					ext4_wait_for_tail_page_commit(inode);
4748
			}
4749 4750 4751 4752 4753
			/*
			 * Truncate pagecache after we've waited for commit
			 * in data=journal mode to make pages freeable.
			 */
			truncate_pagecache(inode, oldsize, inode->i_size);
4754
		}
4755
		ext4_truncate(inode);
4756
	}
4757

C
Christoph Hellwig 已提交
4758 4759 4760 4761 4762 4763 4764 4765 4766
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
4767
	if (orphan && inode->i_nlink)
4768
		ext4_orphan_del(NULL, inode);
4769 4770

	if (!rc && (ia_valid & ATTR_MODE))
4771
		rc = ext4_acl_chmod(inode);
4772 4773

err_out:
4774
	ext4_std_error(inode->i_sb, error);
4775 4776 4777 4778 4779
	if (!error)
		error = rc;
	return error;
}

4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
4799 4800
	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
				EXT4_I(inode)->i_reserved_data_blocks);
4801 4802 4803 4804

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4805

4806 4807
static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
4808
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4809
		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4810
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4811
}
4812

4813
/*
4814 4815 4816
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4817
 *
4818
 * If datablocks are discontiguous, they are possible to spread over
4819
 * different block groups too. If they are contiguous, with flexbg,
4820
 * they could still across block group boundary.
4821
 *
4822 4823
 * Also account for superblock, inode, quota and xattr blocks
 */
4824
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4825
{
4826 4827
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
4854 4855
	if (groups > ngroups)
		groups = ngroups;
4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
L
Lucas De Marchi 已提交
4869
 * Calculate the total number of credits to reserve to fit
4870 4871
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4872
 *
4873
 * This could be called via ext4_write_begin()
4874
 *
4875
 * We need to consider the worse case, when
4876
 * one new block per extent.
4877
 */
A
Alex Tomas 已提交
4878
int ext4_writepage_trans_blocks(struct inode *inode)
4879
{
4880
	int bpp = ext4_journal_blocks_per_page(inode);
4881 4882
	int ret;

4883
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4884

4885
	/* Account for data blocks for journalled mode */
4886
	if (ext4_should_journal_data(inode))
4887
		ret += bpp;
4888 4889
	return ret;
}
4890 4891 4892 4893 4894

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
4895
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4896 4897 4898 4899 4900 4901 4902 4903 4904
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4905
/*
4906
 * The caller must have previously called ext4_reserve_inode_write().
4907 4908
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4909
int ext4_mark_iloc_dirty(handle_t *handle,
4910
			 struct inode *inode, struct ext4_iloc *iloc)
4911 4912 4913
{
	int err = 0;

4914
	if (IS_I_VERSION(inode))
4915 4916
		inode_inc_iversion(inode);

4917 4918 4919
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4920
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4921
	err = ext4_do_update_inode(handle, inode, iloc);
4922 4923 4924 4925 4926 4927 4928 4929 4930 4931
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4932 4933
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4934
{
4935 4936 4937 4938 4939 4940 4941 4942 4943
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
4944 4945
		}
	}
4946
	ext4_std_error(inode->i_sb, err);
4947 4948 4949
	return err;
}

4950 4951 4952 4953
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
4954 4955 4956 4957
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
4970 4971
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 */
4996
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4997
{
4998
	struct ext4_iloc iloc;
4999 5000 5001
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
5002 5003

	might_sleep();
5004
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5005
	err = ext4_reserve_inode_write(handle, inode, &iloc);
5006 5007
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5008
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
5022 5023
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
5024 5025
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5026
					ext4_warning(inode->i_sb,
5027 5028 5029
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
5030 5031
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
5032 5033 5034 5035
				}
			}
		}
	}
5036
	if (!err)
5037
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5038 5039 5040 5041
	return err;
}

/*
5042
 * ext4_dirty_inode() is called from __mark_inode_dirty()
5043 5044 5045 5046 5047
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
5048
 * Also, dquot_alloc_block() will always dirty the inode when blocks
5049 5050 5051 5052 5053 5054
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
5055
void ext4_dirty_inode(struct inode *inode, int flags)
5056 5057 5058
{
	handle_t *handle;

5059
	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5060 5061
	if (IS_ERR(handle))
		goto out;
5062 5063 5064

	ext4_mark_inode_dirty(handle, inode);

5065
	ext4_journal_stop(handle);
5066 5067 5068 5069 5070 5071 5072 5073
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
5074
 * ext4_reserve_inode_write, this leaves behind no bh reference and
5075 5076 5077
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
5078
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5079
{
5080
	struct ext4_iloc iloc;
5081 5082 5083

	int err = 0;
	if (handle) {
5084
		err = ext4_get_inode_loc(inode, &iloc);
5085 5086
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
5087
			err = jbd2_journal_get_write_access(handle, iloc.bh);
5088
			if (!err)
5089
				err = ext4_handle_dirty_metadata(handle,
5090
								 NULL,
5091
								 iloc.bh);
5092 5093 5094
			brelse(iloc.bh);
		}
	}
5095
	ext4_std_error(inode->i_sb, err);
5096 5097 5098 5099
	return err;
}
#endif

5100
int ext4_change_inode_journal_flag(struct inode *inode, int val)
5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

5116
	journal = EXT4_JOURNAL(inode);
5117 5118
	if (!journal)
		return 0;
5119
	if (is_journal_aborted(journal))
5120
		return -EROFS;
5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131
	/* We have to allocate physical blocks for delalloc blocks
	 * before flushing journal. otherwise delalloc blocks can not
	 * be allocated any more. even more truncate on delalloc blocks
	 * could trigger BUG by flushing delalloc blocks in journal.
	 * There is no delalloc block in non-journal data mode.
	 */
	if (val && test_opt(inode->i_sb, DELALLOC)) {
		err = ext4_alloc_da_blocks(inode);
		if (err < 0)
			return err;
	}
5132

5133 5134 5135 5136
	/* Wait for all existing dio workers */
	ext4_inode_block_unlocked_dio(inode);
	inode_dio_wait(inode);

5137
	jbd2_journal_lock_updates(journal);
5138 5139 5140 5141 5142 5143 5144 5145 5146 5147

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
5148
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5149 5150
	else {
		jbd2_journal_flush(journal);
5151
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5152
	}
5153
	ext4_set_aops(inode);
5154

5155
	jbd2_journal_unlock_updates(journal);
5156
	ext4_inode_resume_unlocked_dio(inode);
5157 5158 5159

	/* Finally we can mark the inode as dirty. */

5160
	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5161 5162 5163
	if (IS_ERR(handle))
		return PTR_ERR(handle);

5164
	err = ext4_mark_inode_dirty(handle, inode);
5165
	ext4_handle_sync(handle);
5166 5167
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
5168 5169 5170

	return err;
}
5171 5172 5173 5174 5175 5176

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

5177
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5178
{
5179
	struct page *page = vmf->page;
5180 5181
	loff_t size;
	unsigned long len;
5182
	int ret;
5183
	struct file *file = vma->vm_file;
A
Al Viro 已提交
5184
	struct inode *inode = file_inode(file);
5185
	struct address_space *mapping = inode->i_mapping;
5186 5187 5188
	handle_t *handle;
	get_block_t *get_block;
	int retries = 0;
5189

5190
	sb_start_pagefault(inode->i_sb);
5191
	file_update_time(vma->vm_file);
5192 5193 5194 5195 5196 5197 5198 5199 5200 5201
	/* Delalloc case is easy... */
	if (test_opt(inode->i_sb, DELALLOC) &&
	    !ext4_should_journal_data(inode) &&
	    !ext4_nonda_switch(inode->i_sb)) {
		do {
			ret = __block_page_mkwrite(vma, vmf,
						   ext4_da_get_block_prep);
		} while (ret == -ENOSPC &&
		       ext4_should_retry_alloc(inode->i_sb, &retries));
		goto out_ret;
5202
	}
5203 5204

	lock_page(page);
5205 5206 5207 5208 5209 5210
	size = i_size_read(inode);
	/* Page got truncated from under us? */
	if (page->mapping != mapping || page_offset(page) > size) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
5211
	}
5212 5213 5214 5215 5216

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
5217
	/*
5218 5219
	 * Return if we have all the buffers mapped. This avoids the need to do
	 * journal_start/journal_stop which can block and take a long time
5220
	 */
5221
	if (page_has_buffers(page)) {
5222 5223 5224
		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
					    0, len, NULL,
					    ext4_bh_unmapped)) {
5225
			/* Wait so that we don't change page under IO */
5226
			wait_for_stable_page(page);
5227 5228
			ret = VM_FAULT_LOCKED;
			goto out;
5229
		}
5230
	}
5231
	unlock_page(page);
5232 5233 5234 5235 5236 5237
	/* OK, we need to fill the hole... */
	if (ext4_should_dioread_nolock(inode))
		get_block = ext4_get_block_write;
	else
		get_block = ext4_get_block;
retry_alloc:
5238 5239
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
				    ext4_writepage_trans_blocks(inode));
5240
	if (IS_ERR(handle)) {
5241
		ret = VM_FAULT_SIGBUS;
5242 5243 5244 5245
		goto out;
	}
	ret = __block_page_mkwrite(vma, vmf, get_block);
	if (!ret && ext4_should_journal_data(inode)) {
5246
		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5247 5248 5249
			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
			unlock_page(page);
			ret = VM_FAULT_SIGBUS;
5250
			ext4_journal_stop(handle);
5251 5252 5253 5254 5255 5256 5257 5258 5259 5260
			goto out;
		}
		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
	}
	ext4_journal_stop(handle);
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry_alloc;
out_ret:
	ret = block_page_mkwrite_return(ret);
out:
5261
	sb_end_pagefault(inode->i_sb);
5262 5263
	return ret;
}