ohci.c 105.2 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/bitops.h>
22
#include <linux/bug.h>
23
#include <linux/compiler.h>
24
#include <linux/delay.h>
S
Stefan Richter 已提交
25
#include <linux/device.h>
A
Andrew Morton 已提交
26
#include <linux/dma-mapping.h>
27
#include <linux/firewire.h>
S
Stefan Richter 已提交
28
#include <linux/firewire-constants.h>
29 30
#include <linux/init.h>
#include <linux/interrupt.h>
S
Stefan Richter 已提交
31
#include <linux/io.h>
32
#include <linux/kernel.h>
S
Stefan Richter 已提交
33
#include <linux/list.h>
A
Al Viro 已提交
34
#include <linux/mm.h>
35
#include <linux/module.h>
36
#include <linux/moduleparam.h>
37
#include <linux/mutex.h>
38
#include <linux/pci.h>
39
#include <linux/pci_ids.h>
40
#include <linux/slab.h>
S
Stefan Richter 已提交
41
#include <linux/spinlock.h>
S
Stefan Richter 已提交
42
#include <linux/string.h>
43
#include <linux/time.h>
44
#include <linux/vmalloc.h>
45
#include <linux/workqueue.h>
A
Andrew Morton 已提交
46

S
Stefan Richter 已提交
47
#include <asm/byteorder.h>
S
Stefan Richter 已提交
48
#include <asm/page.h>
49

50 51 52 53
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

54 55
#include "core.h"
#include "ohci.h"
56

57 58 59 60
#define ohci_info(ohci, f, args...)	dev_info(ohci->card.device, f, ##args)
#define ohci_notice(ohci, f, args...)	dev_notice(ohci->card.device, f, ##args)
#define ohci_err(ohci, f, args...)	dev_err(ohci->card.device, f, ##args)

61 62 63 64 65 66 67 68 69 70 71 72 73
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
74

75 76
#define DESCRIPTOR_CMD			(0xf << 12)

77 78 79 80 81 82 83 84 85
struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

86 87 88 89
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
90

91 92 93 94 95 96 97 98
#define AR_BUFFER_SIZE	(32*1024)
#define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
/* we need at least two pages for proper list management */
#define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)

#define MAX_ASYNC_PAYLOAD	4096
#define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
#define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
99

100 101
struct ar_context {
	struct fw_ohci *ohci;
102 103 104 105
	struct page *pages[AR_BUFFERS];
	void *buffer;
	struct descriptor *descriptors;
	dma_addr_t descriptors_bus;
106
	void *pointer;
107
	unsigned int last_buffer_index;
108
	u32 regs;
109 110 111
	struct tasklet_struct tasklet;
};

112 113 114 115 116
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
117 118 119 120 121 122 123 124 125 126 127 128 129

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

130
struct context {
S
Stefan Richter 已提交
131
	struct fw_ohci *ohci;
132
	u32 regs;
133
	int total_allocation;
134
	u32 current_bus;
135
	bool running;
136
	bool flushing;
S
Stefan Richter 已提交
137

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
158
	 * The last descriptor block in the DMA program. It contains the branch
159 160 161
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
162
	int prev_z;
163 164 165

	descriptor_callback_t callback;

S
Stefan Richter 已提交
166
	struct tasklet_struct tasklet;
167 168
};

169 170 171 172 173 174
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
175 176 177

struct iso_context {
	struct fw_iso_context base;
178
	struct context context;
179 180
	void *header;
	size_t header_length;
181 182 183
	unsigned long flushing_completions;
	u32 mc_buffer_bus;
	u16 mc_completed;
184
	u16 last_timestamp;
185 186
	u8 sync;
	u8 tags;
187 188 189 190 191 192 193 194
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

	__iomem char *registers;
195
	int node_id;
196
	int generation;
197
	int request_generation;	/* for timestamping incoming requests */
198
	unsigned quirks;
199
	unsigned int pri_req_max;
200
	u32 bus_time;
201
	bool bus_time_running;
202
	bool is_root;
203
	bool csr_state_setclear_abdicate;
204 205
	int n_ir;
	int n_it;
206 207 208 209
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
210 211
	spinlock_t lock;

212 213
	struct mutex phy_reg_mutex;

214 215 216
	void *misc_buffer;
	dma_addr_t misc_buffer_bus;

217 218
	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
219 220
	struct context at_request_ctx;
	struct context at_response_ctx;
221

222
	u32 it_context_support;
223
	u32 it_context_mask;     /* unoccupied IT contexts */
224
	struct iso_context *it_context_list;
225
	u64 ir_context_channels; /* unoccupied channels */
226
	u32 ir_context_support;
227
	u32 ir_context_mask;     /* unoccupied IR contexts */
228
	struct iso_context *ir_context_list;
229 230
	u64 mc_channels; /* channels in use by the multichannel IR context */
	bool mc_allocated;
231 232 233 234 235 236 237 238 239

	__be32    *config_rom;
	dma_addr_t config_rom_bus;
	__be32    *next_config_rom;
	dma_addr_t next_config_rom_bus;
	__be32     next_header;

	__le32    *self_id_cpu;
	dma_addr_t self_id_bus;
240
	struct work_struct bus_reset_work;
241 242

	u32 self_id_buffer[512];
243 244
};

A
Adrian Bunk 已提交
245
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
246 247 248 249
{
	return container_of(card, struct fw_ohci, card);
}

250 251 252 253 254 255
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
256 257 258 259 260 261

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

262
#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
263 264 265 266 267 268
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
269
#define OHCI_TCODE_PHY_PACKET		0x0e
270
#define OHCI_VERSION_1_1		0x010010
271

272 273
static char ohci_driver_name[] = KBUILD_MODNAME;

274
#define PCI_DEVICE_ID_AGERE_FW643	0x5901
275
#define PCI_DEVICE_ID_CREATIVE_SB1394	0x4001
276
#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
277
#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009
278 279
#define PCI_DEVICE_ID_TI_TSB12LV26	0x8020
#define PCI_DEVICE_ID_TI_TSB82AA2	0x8025
280
#define PCI_DEVICE_ID_VIA_VT630X	0x3044
281
#define PCI_VENDOR_ID_PINNACLE_SYSTEMS	0x11bd
282
#define PCI_REV_ID_VIA_VT6306		0x46
283

284 285 286
#define QUIRK_CYCLE_TIMER		1
#define QUIRK_RESET_PACKET		2
#define QUIRK_BE_HEADERS		4
287
#define QUIRK_NO_1394A			8
288
#define QUIRK_NO_MSI			16
289
#define QUIRK_TI_SLLZ059		32
290
#define QUIRK_IR_WAKE			64
291
#define QUIRK_PHY_LCTRL_TIMEOUT		128
292 293 294

/* In case of multiple matches in ohci_quirks[], only the first one is used. */
static const struct {
295
	unsigned short vendor, device, revision, flags;
296
} ohci_quirks[] = {
297 298 299 300 301 302 303
	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
		QUIRK_BE_HEADERS},

	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
304 305 306 307
		QUIRK_PHY_LCTRL_TIMEOUT | QUIRK_NO_MSI},

	{PCI_VENDOR_ID_ATT, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_PHY_LCTRL_TIMEOUT},
308

309 310 311
	{PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
		QUIRK_RESET_PACKET},

312 313 314 315 316 317
	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
		QUIRK_NO_MSI},

	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

318 319 320
	{PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_NO_MSI},

321
	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
322
		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
323 324 325 326

	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},

327 328 329 330 331 332
	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},

	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},

333 334 335
	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_RESET_PACKET},

336 337 338
	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
		QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},

339 340
	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
341 342
};

343 344 345 346 347 348
/* This overrides anything that was found in ohci_quirks[]. */
static int param_quirks;
module_param_named(quirks, param_quirks, int, 0644);
MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
349
	", AR/selfID endianness = "	__stringify(QUIRK_BE_HEADERS)
350
	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
351
	", disable MSI = "		__stringify(QUIRK_NO_MSI)
352
	", TI SLLZ059 erratum = "	__stringify(QUIRK_TI_SLLZ059)
353
	", IR wake unreliable = "	__stringify(QUIRK_IR_WAKE)
354
	", phy LCtrl timeout = "	__stringify(QUIRK_PHY_LCTRL_TIMEOUT)
355 356
	")");

357
#define OHCI_PARAM_DEBUG_AT_AR		1
358
#define OHCI_PARAM_DEBUG_SELFIDS	2
359 360
#define OHCI_PARAM_DEBUG_IRQS		4
#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
361 362 363 364 365

static int param_debug;
module_param_named(debug, param_debug, int, 0644);
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
366 367 368
	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
369 370
	", or a combination, or all = -1)");

371
static void log_irqs(struct fw_ohci *ohci, u32 evt)
372
{
373 374 375 376 377 378
	if (likely(!(param_debug &
			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
		return;

	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
	    !(evt & OHCI1394_busReset))
379 380
		return;

381
	ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
382 383 384 385 386 387 388 389 390
	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
	    evt & OHCI1394_isochRx		? " IR"			: "",
	    evt & OHCI1394_isochTx		? " IT"			: "",
	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
391
	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
392
	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
393
	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
394
	    evt & OHCI1394_unrecoverableError	? " unrecoverableError"	: "",
395 396 397 398 399
	    evt & OHCI1394_busReset		? " busReset"		: "",
	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
		    OHCI1394_respTxComplete | OHCI1394_isochRx |
		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
400 401
		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
		    OHCI1394_cycleInconsistent |
402
		    OHCI1394_regAccessFail | OHCI1394_busReset)
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
						? " ?"			: "");
}

static const char *speed[] = {
	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
};
static const char *power[] = {
	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
};
static const char port[] = { '.', '-', 'p', 'c', };

static char _p(u32 *s, int shift)
{
	return port[*s >> shift & 3];
}

420
static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
421
{
422 423
	u32 *s;

424 425 426
	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
		return;

427 428
	ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
		    self_id_count, generation, ohci->node_id);
429

430
	for (s = ohci->self_id_buffer; self_id_count--; ++s)
431
		if ((*s & 1 << 23) == 0)
432 433
			ohci_notice(ohci,
			    "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
434 435 436 437
			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
			    speed[*s >> 14 & 3], *s >> 16 & 63,
			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
438
		else
439
			ohci_notice(ohci,
440
			    "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
441 442 443
			    *s, *s >> 24 & 63,
			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
}

static const char *evts[] = {
	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
	[0x10] = "-reserved-",		[0x11] = "ack_complete",
	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
	[0x18] = "-reserved-",		[0x19] = "-reserved-",
	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
	[0x20] = "pending/cancelled",
};
static const char *tcodes[] = {
	[0x0] = "QW req",		[0x1] = "BW req",
	[0x2] = "W resp",		[0x3] = "-reserved-",
	[0x4] = "QR req",		[0x5] = "BR req",
	[0x6] = "QR resp",		[0x7] = "BR resp",
	[0x8] = "cycle start",		[0x9] = "Lk req",
	[0xa] = "async stream packet",	[0xb] = "Lk resp",
	[0xc] = "-reserved-",		[0xd] = "-reserved-",
	[0xe] = "link internal",	[0xf] = "-reserved-",
};

476 477
static void log_ar_at_event(struct fw_ohci *ohci,
			    char dir, int speed, u32 *header, int evt)
478 479 480 481 482 483 484 485 486 487
{
	int tcode = header[0] >> 4 & 0xf;
	char specific[12];

	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
		return;

	if (unlikely(evt >= ARRAY_SIZE(evts)))
			evt = 0x1f;

488
	if (evt == OHCI1394_evt_bus_reset) {
489 490
		ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
			    dir, (header[2] >> 16) & 0xff);
491 492 493
		return;
	}

494 495 496 497 498 499 500 501 502 503 504 505 506 507
	switch (tcode) {
	case 0x0: case 0x6: case 0x8:
		snprintf(specific, sizeof(specific), " = %08x",
			 be32_to_cpu((__force __be32)header[3]));
		break;
	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
		snprintf(specific, sizeof(specific), " %x,%x",
			 header[3] >> 16, header[3] & 0xffff);
		break;
	default:
		specific[0] = '\0';
	}

	switch (tcode) {
508
	case 0xa:
509 510
		ohci_notice(ohci, "A%c %s, %s\n",
			    dir, evts[evt], tcodes[tcode]);
511
		break;
512
	case 0xe:
513 514
		ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
			    dir, evts[evt], header[1], header[2]);
515
		break;
516
	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
517 518 519 520 521
		ohci_notice(ohci,
			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
			    dir, speed, header[0] >> 10 & 0x3f,
			    header[1] >> 16, header[0] >> 16, evts[evt],
			    tcodes[tcode], header[1] & 0xffff, header[2], specific);
522 523
		break;
	default:
524 525 526 527 528
		ohci_notice(ohci,
			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
			    dir, speed, header[0] >> 10 & 0x3f,
			    header[1] >> 16, header[0] >> 16, evts[evt],
			    tcodes[tcode], specific);
529 530 531
	}
}

A
Adrian Bunk 已提交
532
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
533 534 535 536
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
537
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
538 539 540 541
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
542
static inline void flush_writes(const struct fw_ohci *ohci)
543 544 545 546 547
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

548 549 550 551 552 553
/*
 * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
 * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
 */
554
static int read_phy_reg(struct fw_ohci *ohci, int addr)
555
{
556
	u32 val;
557
	int i;
558 559

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
560
	for (i = 0; i < 3 + 100; i++) {
561
		val = reg_read(ohci, OHCI1394_PhyControl);
562 563 564
		if (!~val)
			return -ENODEV; /* Card was ejected. */

565 566 567
		if (val & OHCI1394_PhyControl_ReadDone)
			return OHCI1394_PhyControl_ReadData(val);

568 569 570 571 572 573
		/*
		 * Try a few times without waiting.  Sleeping is necessary
		 * only when the link/PHY interface is busy.
		 */
		if (i >= 3)
			msleep(1);
574
	}
575 576
	ohci_err(ohci, "failed to read phy reg %d\n", addr);
	dump_stack();
577

578 579
	return -EBUSY;
}
580

581 582 583
static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
{
	int i;
584 585

	reg_write(ohci, OHCI1394_PhyControl,
586
		  OHCI1394_PhyControl_Write(addr, val));
587
	for (i = 0; i < 3 + 100; i++) {
588
		val = reg_read(ohci, OHCI1394_PhyControl);
589 590 591
		if (!~val)
			return -ENODEV; /* Card was ejected. */

592 593
		if (!(val & OHCI1394_PhyControl_WritePending))
			return 0;
594

595 596
		if (i >= 3)
			msleep(1);
597
	}
598 599
	ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
	dump_stack();
600 601

	return -EBUSY;
602 603
}

604 605
static int update_phy_reg(struct fw_ohci *ohci, int addr,
			  int clear_bits, int set_bits)
606
{
607
	int ret = read_phy_reg(ohci, addr);
608 609
	if (ret < 0)
		return ret;
610

611 612 613 614 615 616 617
	/*
	 * The interrupt status bits are cleared by writing a one bit.
	 * Avoid clearing them unless explicitly requested in set_bits.
	 */
	if (addr == 5)
		clear_bits |= PHY_INT_STATUS_BITS;

618
	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
619 620
}

621
static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
622
{
623
	int ret;
624

625
	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
626 627
	if (ret < 0)
		return ret;
628

629
	return read_phy_reg(ohci, addr);
630 631
}

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
static int ohci_read_phy_reg(struct fw_card *card, int addr)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = read_phy_reg(ohci, addr);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
}

static int ohci_update_phy_reg(struct fw_card *card, int addr,
			       int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
655 656
}

657 658 659 660 661 662
static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
{
	return page_private(ctx->pages[i]);
}

static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
663
{
664
	struct descriptor *d;
665

666 667 668 669
	d = &ctx->descriptors[index];
	d->branch_address  &= cpu_to_le32(~0xf);
	d->res_count       =  cpu_to_le16(PAGE_SIZE);
	d->transfer_status =  0;
670

671
	wmb(); /* finish init of new descriptors before branch_address update */
672 673 674 675
	d = &ctx->descriptors[ctx->last_buffer_index];
	d->branch_address  |= cpu_to_le32(1);

	ctx->last_buffer_index = index;
676

677
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
678 679
}

680
static void ar_context_release(struct ar_context *ctx)
681
{
682
	unsigned int i;
683

684 685
	if (ctx->buffer)
		vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
686

687 688 689 690 691 692 693
	for (i = 0; i < AR_BUFFERS; i++)
		if (ctx->pages[i]) {
			dma_unmap_page(ctx->ohci->card.device,
				       ar_buffer_bus(ctx, i),
				       PAGE_SIZE, DMA_FROM_DEVICE);
			__free_page(ctx->pages[i]);
		}
694 695
}

696
static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
697
{
698
	struct fw_ohci *ohci = ctx->ohci;
699

700 701 702
	if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
		reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
		flush_writes(ohci);
703

704
		ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
705
	}
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
	/* FIXME: restart? */
}

static inline unsigned int ar_next_buffer_index(unsigned int index)
{
	return (index + 1) % AR_BUFFERS;
}

static inline unsigned int ar_prev_buffer_index(unsigned int index)
{
	return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
}

static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
{
	return ar_next_buffer_index(ctx->last_buffer_index);
}

/*
 * We search for the buffer that contains the last AR packet DMA data written
 * by the controller.
 */
static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
						 unsigned int *buffer_offset)
{
	unsigned int i, next_i, last = ctx->last_buffer_index;
	__le16 res_count, next_res_count;

	i = ar_first_buffer_index(ctx);
	res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);

	/* A buffer that is not yet completely filled must be the last one. */
	while (i != last && res_count == 0) {

		/* Peek at the next descriptor. */
		next_i = ar_next_buffer_index(i);
		rmb(); /* read descriptors in order */
		next_res_count = ACCESS_ONCE(
				ctx->descriptors[next_i].res_count);
		/*
		 * If the next descriptor is still empty, we must stop at this
		 * descriptor.
		 */
		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
			/*
			 * The exception is when the DMA data for one packet is
			 * split over three buffers; in this case, the middle
			 * buffer's descriptor might be never updated by the
			 * controller and look still empty, and we have to peek
			 * at the third one.
			 */
			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
				next_i = ar_next_buffer_index(next_i);
				rmb();
				next_res_count = ACCESS_ONCE(
					ctx->descriptors[next_i].res_count);
				if (next_res_count != cpu_to_le16(PAGE_SIZE))
					goto next_buffer_is_active;
			}

			break;
		}

next_buffer_is_active:
		i = next_i;
		res_count = next_res_count;
	}

	rmb(); /* read res_count before the DMA data */

	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
	if (*buffer_offset > PAGE_SIZE) {
		*buffer_offset = 0;
		ar_context_abort(ctx, "corrupted descriptor");
	}

	return i;
}

static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
				    unsigned int end_buffer_index,
				    unsigned int end_buffer_offset)
{
	unsigned int i;

	i = ar_first_buffer_index(ctx);
	while (i != end_buffer_index) {
		dma_sync_single_for_cpu(ctx->ohci->card.device,
					ar_buffer_bus(ctx, i),
					PAGE_SIZE, DMA_FROM_DEVICE);
		i = ar_next_buffer_index(i);
	}
	if (end_buffer_offset > 0)
		dma_sync_single_for_cpu(ctx->ohci->card.device,
					ar_buffer_bus(ctx, i),
					end_buffer_offset, DMA_FROM_DEVICE);
802 803
}

804 805
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
806
	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
807 808 809 810
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

811
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
812 813
{
	struct fw_ohci *ohci = ctx->ohci;
814 815
	struct fw_packet p;
	u32 status, length, tcode;
816
	int evt;
817

818 819 820
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
821 822 823 824 825

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
826
		p.header[3] = (__force __u32) buffer[3];
827
		p.header_length = 16;
828
		p.payload_length = 0;
829 830 831
		break;

	case TCODE_READ_BLOCK_REQUEST :
832
		p.header[3] = cond_le32_to_cpu(buffer[3]);
833 834 835 836 837
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
838 839 840
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
841
		p.header[3] = cond_le32_to_cpu(buffer[3]);
842
		p.header_length = 16;
843
		p.payload_length = p.header[3] >> 16;
844 845 846 847
		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
			ar_context_abort(ctx, "invalid packet length");
			return NULL;
		}
848 849 850 851
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
852
	case OHCI_TCODE_PHY_PACKET:
853
		p.header_length = 12;
854
		p.payload_length = 0;
855
		break;
856 857

	default:
858 859
		ar_context_abort(ctx, "invalid tcode");
		return NULL;
860
	}
861

862 863 864 865
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
866
	status = cond_le32_to_cpu(buffer[length]);
867
	evt    = (status >> 16) & 0x1f;
868

869
	p.ack        = evt - 16;
870 871 872
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
873

874
	log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
875

876
	/*
877 878 879 880 881 882 883 884 885
	 * Several controllers, notably from NEC and VIA, forget to
	 * write ack_complete status at PHY packet reception.
	 */
	if (evt == OHCI1394_evt_no_status &&
	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
		p.ack = ACK_COMPLETE;

	/*
	 * The OHCI bus reset handler synthesizes a PHY packet with
886 887 888 889 890
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
891
	 * request.
892 893 894
	 *
	 * Alas some chips sometimes emit bus reset packets with a
	 * wrong generation.  We set the correct generation for these
895
	 * at a slightly incorrect time (in bus_reset_work).
896
	 */
897
	if (evt == OHCI1394_evt_bus_reset) {
898
		if (!(ohci->quirks & QUIRK_RESET_PACKET))
899 900
			ohci->request_generation = (p.header[2] >> 16) & 0xff;
	} else if (ctx == &ohci->ar_request_ctx) {
901
		fw_core_handle_request(&ohci->card, &p);
902
	} else {
903
		fw_core_handle_response(&ohci->card, &p);
904
	}
905

906 907
	return buffer + length + 1;
}
908

909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
{
	void *next;

	while (p < end) {
		next = handle_ar_packet(ctx, p);
		if (!next)
			return p;
		p = next;
	}

	return p;
}

static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
{
	unsigned int i;

	i = ar_first_buffer_index(ctx);
	while (i != end_buffer) {
		dma_sync_single_for_device(ctx->ohci->card.device,
					   ar_buffer_bus(ctx, i),
					   PAGE_SIZE, DMA_FROM_DEVICE);
		ar_context_link_page(ctx, i);
		i = ar_next_buffer_index(i);
	}
}

937 938 939
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
940 941
	unsigned int end_buffer_index, end_buffer_offset;
	void *p, *end;
942

943 944 945
	p = ctx->pointer;
	if (!p)
		return;
946

947 948 949 950
	end_buffer_index = ar_search_last_active_buffer(ctx,
							&end_buffer_offset);
	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
951

952
	if (end_buffer_index < ar_first_buffer_index(ctx)) {
953
		/*
954 955 956 957
		 * The filled part of the overall buffer wraps around; handle
		 * all packets up to the buffer end here.  If the last packet
		 * wraps around, its tail will be visible after the buffer end
		 * because the buffer start pages are mapped there again.
958
		 */
959 960 961 962 963 964 965
		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
		p = handle_ar_packets(ctx, p, buffer_end);
		if (p < buffer_end)
			goto error;
		/* adjust p to point back into the actual buffer */
		p -= AR_BUFFERS * PAGE_SIZE;
	}
966

967 968 969 970 971 972
	p = handle_ar_packets(ctx, p, end);
	if (p != end) {
		if (p > end)
			ar_context_abort(ctx, "inconsistent descriptor");
		goto error;
	}
973

974 975
	ctx->pointer = p;
	ar_recycle_buffers(ctx, end_buffer_index);
976

977
	return;
978

979 980
error:
	ctx->pointer = NULL;
981 982
}

983 984
static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
			   unsigned int descriptors_offset, u32 regs)
985
{
986 987 988 989
	unsigned int i;
	dma_addr_t dma_addr;
	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
	struct descriptor *d;
990

991 992
	ctx->regs        = regs;
	ctx->ohci        = ohci;
993 994
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
	for (i = 0; i < AR_BUFFERS; i++) {
		ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
		if (!ctx->pages[i])
			goto out_of_memory;
		dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
					0, PAGE_SIZE, DMA_FROM_DEVICE);
		if (dma_mapping_error(ohci->card.device, dma_addr)) {
			__free_page(ctx->pages[i]);
			ctx->pages[i] = NULL;
			goto out_of_memory;
		}
		set_page_private(ctx->pages[i], dma_addr);
	}

	for (i = 0; i < AR_BUFFERS; i++)
		pages[i]              = ctx->pages[i];
	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
		pages[AR_BUFFERS + i] = ctx->pages[i];
	ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
1014
				 -1, PAGE_KERNEL);
1015 1016 1017
	if (!ctx->buffer)
		goto out_of_memory;

1018 1019
	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030

	for (i = 0; i < AR_BUFFERS; i++) {
		d = &ctx->descriptors[i];
		d->req_count      = cpu_to_le16(PAGE_SIZE);
		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						DESCRIPTOR_STATUS |
						DESCRIPTOR_BRANCH_ALWAYS);
		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
			ar_next_buffer_index(i) * sizeof(struct descriptor));
	}
1031

1032
	return 0;
1033 1034 1035 1036 1037

out_of_memory:
	ar_context_release(ctx);

	return -ENOMEM;
1038 1039 1040 1041
}

static void ar_context_run(struct ar_context *ctx)
{
1042 1043 1044 1045
	unsigned int i;

	for (i = 0; i < AR_BUFFERS; i++)
		ar_context_link_page(ctx, i);
1046

1047
	ctx->pointer = ctx->buffer;
1048

1049
	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1050
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1051
}
S
Stefan Richter 已提交
1052

1053
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1054
{
1055
	__le16 branch;
1056

1057
	branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1058 1059

	/* figure out which descriptor the branch address goes in */
1060
	if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1061 1062 1063 1064 1065
		return d;
	else
		return d + z - 1;
}

1066 1067 1068 1069 1070 1071
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
1072
	struct descriptor_buffer *desc;
1073

1074 1075 1076
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
1077
	while (last->branch_address != 0) {
1078
		struct descriptor_buffer *old_desc = desc;
1079 1080
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
1081
		address &= ~0xf;
1082
		ctx->current_bus = address;
1083 1084 1085 1086 1087 1088 1089 1090

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1091
		last = find_branch_descriptor(d, z);
1092 1093 1094 1095

		if (!ctx->callback(ctx, d, last))
			break;

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
1106 1107 1108
	}
}

1109 1110 1111 1112
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
1113
static int context_add_buffer(struct context *ctx)
1114 1115
{
	struct descriptor_buffer *desc;
1116
	dma_addr_t uninitialized_var(bus_addr);
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

1142 1143
static int context_init(struct context *ctx, struct fw_ohci *ohci,
			u32 regs, descriptor_callback_t callback)
1144 1145 1146
{
	ctx->ohci = ohci;
	ctx->regs = regs;
1147 1148 1149 1150
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
1151 1152
		return -ENOMEM;

1153 1154 1155
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

1156 1157 1158
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

1159 1160
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
1161
	 * branch address and looks like it's been sent.  That way we
1162
	 * have a descriptor to append DMA programs to.
1163
	 */
1164 1165 1166 1167 1168 1169
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
1170
	ctx->prev_z = 1;
1171 1172 1173 1174

	return 0;
}

1175
static void context_release(struct context *ctx)
1176 1177
{
	struct fw_card *card = &ctx->ohci->card;
1178
	struct descriptor_buffer *desc, *tmp;
1179

1180 1181 1182 1183
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
1184 1185
}

1186
/* Must be called with ohci->lock held */
1187 1188
static struct descriptor *context_get_descriptors(struct context *ctx,
						  int z, dma_addr_t *d_bus)
1189
{
1190 1191 1192 1193 1194 1195 1196 1197 1198
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
1199

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
1210

1211
	d = desc->buffer + desc->used / sizeof(*d);
1212
	memset(d, 0, z * sizeof(*d));
1213
	*d_bus = desc->buffer_bus + desc->used;
1214 1215 1216 1217

	return d;
}

1218
static void context_run(struct context *ctx, u32 extra)
1219 1220 1221
{
	struct fw_ohci *ohci = ctx->ohci;

1222
	reg_write(ohci, COMMAND_PTR(ctx->regs),
1223
		  le32_to_cpu(ctx->last->branch_address));
1224 1225
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1226
	ctx->running = true;
1227 1228 1229 1230 1231 1232 1233
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
1234
	struct descriptor_buffer *desc = ctx->buffer_tail;
1235
	struct descriptor *d_branch;
1236

1237
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1238

1239
	desc->used += (z + extra) * sizeof(*d);
1240 1241

	wmb(); /* finish init of new descriptors before branch_address update */
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263

	d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
	d_branch->branch_address = cpu_to_le32(d_bus | z);

	/*
	 * VT6306 incorrectly checks only the single descriptor at the
	 * CommandPtr when the wake bit is written, so if it's a
	 * multi-descriptor block starting with an INPUT_MORE, put a copy of
	 * the branch address in the first descriptor.
	 *
	 * Not doing this for transmit contexts since not sure how it interacts
	 * with skip addresses.
	 */
	if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
	    d_branch != ctx->prev &&
	    (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
	     cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
		ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	}

	ctx->prev = d;
	ctx->prev_z = z;
1264 1265 1266 1267
}

static void context_stop(struct context *ctx)
{
1268
	struct fw_ohci *ohci = ctx->ohci;
1269
	u32 reg;
1270
	int i;
1271

1272
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1273
	ctx->running = false;
1274

1275
	for (i = 0; i < 1000; i++) {
1276
		reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1277
		if ((reg & CONTEXT_ACTIVE) == 0)
1278
			return;
1279

1280 1281
		if (i)
			udelay(10);
1282
	}
1283
	ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1284
}
1285

1286
struct driver_data {
1287
	u8 inline_data[8];
1288 1289
	struct fw_packet *packet;
};
1290

1291 1292
/*
 * This function apppends a packet to the DMA queue for transmission.
1293
 * Must always be called with the ochi->lock held to ensure proper
1294 1295
 * generation handling and locking around packet queue manipulation.
 */
1296 1297
static int at_context_queue_packet(struct context *ctx,
				   struct fw_packet *packet)
1298 1299
{
	struct fw_ohci *ohci = ctx->ohci;
1300
	dma_addr_t d_bus, uninitialized_var(payload_bus);
1301 1302 1303
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
1304 1305
	int z, tcode;

1306 1307 1308 1309
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1310 1311
	}

1312
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1313 1314
	d[0].res_count = cpu_to_le16(packet->timestamp);

1315
	/*
1316
	 * The DMA format for asynchronous link packets is different
1317
	 * from the IEEE1394 layout, so shift the fields around
1318
	 * accordingly.
1319
	 */
1320

1321
	tcode = (packet->header[0] >> 4) & 0x0f;
1322
	header = (__le32 *) &d[1];
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_WRITE_BLOCK_REQUEST:
	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
	case TCODE_READ_BLOCK_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
1333 1334 1335 1336 1337
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
1338 1339

		if (TCODE_IS_BLOCK_PACKET(tcode))
1340
			header[3] = cpu_to_le32(packet->header[3]);
1341
		else
1342 1343 1344
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
1345 1346
		break;

1347
	case TCODE_LINK_INTERNAL:
1348 1349
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
1350 1351
		header[1] = cpu_to_le32(packet->header[1]);
		header[2] = cpu_to_le32(packet->header[2]);
1352
		d[0].req_count = cpu_to_le16(12);
S
Stefan Richter 已提交
1353

1354
		if (is_ping_packet(&packet->header[1]))
S
Stefan Richter 已提交
1355
			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1356 1357
		break;

1358
	case TCODE_STREAM_DATA:
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
		d[0].req_count = cpu_to_le16(8);
		break;

	default:
		/* BUG(); */
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1369 1370
	}

1371
	BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1372 1373
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
1374
	packet->driver_data = driver_data;
1375

1376
	if (packet->payload_length > 0) {
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
		if (packet->payload_length > sizeof(driver_data->inline_data)) {
			payload_bus = dma_map_single(ohci->card.device,
						     packet->payload,
						     packet->payload_length,
						     DMA_TO_DEVICE);
			if (dma_mapping_error(ohci->card.device, payload_bus)) {
				packet->ack = RCODE_SEND_ERROR;
				return -1;
			}
			packet->payload_bus	= payload_bus;
			packet->payload_mapped	= true;
		} else {
			memcpy(driver_data->inline_data, packet->payload,
			       packet->payload_length);
			payload_bus = d_bus + 3 * sizeof(*d);
1392 1393 1394 1395 1396 1397
		}

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
1398
	} else {
1399 1400
		last = &d[0];
		z = 2;
1401 1402
	}

1403 1404 1405
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
1406

1407 1408
	/* FIXME: Document how the locking works. */
	if (ohci->generation != packet->generation) {
1409
		if (packet->payload_mapped)
1410 1411
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
1412 1413 1414 1415 1416
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
1417

1418
	if (ctx->running)
1419
		reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1420
	else
1421 1422 1423
		context_run(ctx, 0);

	return 0;
1424 1425
}

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
static void at_context_flush(struct context *ctx)
{
	tasklet_disable(&ctx->tasklet);

	ctx->flushing = true;
	context_tasklet((unsigned long)ctx);
	ctx->flushing = false;

	tasklet_enable(&ctx->tasklet);
}

1437 1438 1439
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1440
{
1441
	struct driver_data *driver_data;
1442
	struct fw_packet *packet;
1443
	struct fw_ohci *ohci = context->ohci;
1444 1445
	int evt;

1446
	if (last->transfer_status == 0 && !context->flushing)
1447 1448
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
1449

1450 1451 1452 1453 1454
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
1455

1456
	if (packet->payload_mapped)
1457
		dma_unmap_single(ohci->card.device, packet->payload_bus,
1458 1459
				 packet->payload_length, DMA_TO_DEVICE);

1460 1461
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
1462

1463
	log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1464

1465 1466 1467 1468 1469
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
1470

1471
	case OHCI1394_evt_flushed:
1472 1473 1474 1475
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
1476 1477
		packet->ack = RCODE_GENERATION;
		break;
1478

1479
	case OHCI1394_evt_missing_ack:
1480 1481 1482 1483 1484 1485 1486 1487 1488
		if (context->flushing)
			packet->ack = RCODE_GENERATION;
		else {
			/*
			 * Using a valid (current) generation count, but the
			 * node is not on the bus or not sending acks.
			 */
			packet->ack = RCODE_NO_ACK;
		}
1489
		break;
1490

1491 1492 1493 1494 1495 1496 1497 1498 1499
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
1500

1501 1502 1503 1504 1505 1506 1507
	case OHCI1394_evt_no_status:
		if (context->flushing) {
			packet->ack = RCODE_GENERATION;
			break;
		}
		/* fall through */

1508 1509 1510 1511
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
1512

1513
	packet->callback(packet, &ohci->card, packet->ack);
1514

1515
	return 1;
1516 1517
}

1518 1519 1520 1521 1522
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1523

1524 1525
static void handle_local_rom(struct fw_ohci *ohci,
			     struct fw_packet *packet, u32 csr)
1526 1527 1528 1529
{
	struct fw_packet response;
	int tcode, length, i;

1530
	tcode = HEADER_GET_TCODE(packet->header[0]);
1531
	if (TCODE_IS_BLOCK_PACKET(tcode))
1532
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

1551 1552
static void handle_local_lock(struct fw_ohci *ohci,
			      struct fw_packet *packet, u32 csr)
1553 1554
{
	struct fw_packet response;
1555
	int tcode, length, ext_tcode, sel, try;
1556 1557 1558
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

1559 1560
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1561
	payload = packet->payload;
1562
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
	for (try = 0; try < 20; try++)
		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
			lock_old = cpu_to_be32(reg_read(ohci,
							OHCI1394_CSRData));
			fw_fill_response(&response, packet->header,
					 RCODE_COMPLETE,
					 &lock_old, sizeof(lock_old));
			goto out;
		}

1592
	ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1593
	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1594 1595 1596 1597 1598

 out:
	fw_core_handle_response(&ohci->card, &response);
}

1599
static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1600
{
1601
	u64 offset, csr;
1602

1603 1604 1605 1606
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1607 1608 1609

	offset =
		((unsigned long long)
1610
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
1631 1632 1633 1634 1635

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1636
}
1637

1638
static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1639 1640
{
	unsigned long flags;
1641
	int ret;
1642 1643 1644

	spin_lock_irqsave(&ctx->ohci->lock, flags);

1645
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1646
	    ctx->ohci->generation == packet->generation) {
1647 1648 1649
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
1650
	}
1651

1652
	ret = at_context_queue_packet(ctx, packet);
1653 1654
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

1655
	if (ret < 0)
1656
		packet->callback(packet, &ctx->ohci->card, packet->ack);
1657

1658 1659
}

1660 1661 1662 1663 1664 1665
static void detect_dead_context(struct fw_ohci *ohci,
				const char *name, unsigned int regs)
{
	u32 ctl;

	ctl = reg_read(ohci, CONTROL_SET(regs));
1666
	if (ctl & CONTEXT_DEAD)
1667
		ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1668
			name, evts[ctl & 0x1f]);
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
}

static void handle_dead_contexts(struct fw_ohci *ohci)
{
	unsigned int i;
	char name[8];

	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
	for (i = 0; i < 32; ++i) {
		if (!(ohci->it_context_support & (1 << i)))
			continue;
		sprintf(name, "IT%u", i);
		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
	}
	for (i = 0; i < 32; ++i) {
		if (!(ohci->ir_context_support & (1 << i)))
			continue;
		sprintf(name, "IR%u", i);
		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
	}
	/* TODO: maybe try to flush and restart the dead contexts */
}

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
static u32 cycle_timer_ticks(u32 cycle_timer)
{
	u32 ticks;

	ticks = cycle_timer & 0xfff;
	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
	ticks += (3072 * 8000) * (cycle_timer >> 25);

	return ticks;
}

/*
 * Some controllers exhibit one or more of the following bugs when updating the
 * iso cycle timer register:
 *  - When the lowest six bits are wrapping around to zero, a read that happens
 *    at the same time will return garbage in the lowest ten bits.
 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
 *    not incremented for about 60 ns.
 *  - Occasionally, the entire register reads zero.
 *
 * To catch these, we read the register three times and ensure that the
 * difference between each two consecutive reads is approximately the same, i.e.
 * less than twice the other.  Furthermore, any negative difference indicates an
 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
 * execute, so we have enough precision to compute the ratio of the differences.)
 */
static u32 get_cycle_time(struct fw_ohci *ohci)
{
	u32 c0, c1, c2;
	u32 t0, t1, t2;
	s32 diff01, diff12;
	int i;

	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);

	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
		i = 0;
		c1 = c2;
		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		do {
			c0 = c1;
			c1 = c2;
			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
			t0 = cycle_timer_ticks(c0);
			t1 = cycle_timer_ticks(c1);
			t2 = cycle_timer_ticks(c2);
			diff01 = t1 - t0;
			diff12 = t2 - t1;
		} while ((diff01 <= 0 || diff12 <= 0 ||
			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
			 && i++ < 20);
	}

	return c2;
}

/*
 * This function has to be called at least every 64 seconds.  The bus_time
 * field stores not only the upper 25 bits of the BUS_TIME register but also
 * the most significant bit of the cycle timer in bit 6 so that we can detect
 * changes in this bit.
 */
static u32 update_bus_time(struct fw_ohci *ohci)
{
	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;

1761 1762 1763 1764 1765 1766 1767
	if (unlikely(!ohci->bus_time_running)) {
		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
		ohci->bus_time = (lower_32_bits(get_seconds()) & ~0x7f) |
		                 (cycle_time_seconds & 0x40);
		ohci->bus_time_running = true;
	}

1768 1769 1770 1771 1772 1773
	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
		ohci->bus_time += 0x40;

	return ohci->bus_time | cycle_time_seconds;
}

1774 1775 1776 1777 1778 1779
static int get_status_for_port(struct fw_ohci *ohci, int port_index)
{
	int reg;

	mutex_lock(&ohci->phy_reg_mutex);
	reg = write_phy_reg(ohci, 7, port_index);
1780 1781
	if (reg >= 0)
		reg = read_phy_reg(ohci, 8);
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
	mutex_unlock(&ohci->phy_reg_mutex);
	if (reg < 0)
		return reg;

	switch (reg & 0x0f) {
	case 0x06:
		return 2;	/* is child node (connected to parent node) */
	case 0x0e:
		return 3;	/* is parent node (connected to child node) */
	}
	return 1;		/* not connected */
}

static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
	int self_id_count)
{
	int i;
	u32 entry;
1800

1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
	for (i = 0; i < self_id_count; i++) {
		entry = ohci->self_id_buffer[i];
		if ((self_id & 0xff000000) == (entry & 0xff000000))
			return -1;
		if ((self_id & 0xff000000) < (entry & 0xff000000))
			return i;
	}
	return i;
}

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
static int initiated_reset(struct fw_ohci *ohci)
{
	int reg;
	int ret = 0;

	mutex_lock(&ohci->phy_reg_mutex);
	reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
	if (reg >= 0) {
		reg = read_phy_reg(ohci, 8);
		reg |= 0x40;
		reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
		if (reg >= 0) {
			reg = read_phy_reg(ohci, 12); /* read register 12 */
			if (reg >= 0) {
				if ((reg & 0x08) == 0x08) {
					/* bit 3 indicates "initiated reset" */
					ret = 0x2;
				}
			}
		}
	}
	mutex_unlock(&ohci->phy_reg_mutex);
	return ret;
}

1836
/*
1837 1838 1839
 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
 * Construct the selfID from phy register contents.
1840 1841 1842
 */
static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
{
1843 1844 1845
	int reg, i, pos, status;
	/* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
	u32 self_id = 0x8040c800;
1846 1847 1848

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1849 1850
		ohci_notice(ohci,
			    "node ID not valid, new bus reset in progress\n");
1851 1852 1853 1854
		return -EBUSY;
	}
	self_id |= ((reg & 0x3f) << 24); /* phy ID */

1855
	reg = ohci_read_phy_reg(&ohci->card, 4);
1856 1857 1858 1859
	if (reg < 0)
		return reg;
	self_id |= ((reg & 0x07) << 8); /* power class */

1860
	reg = ohci_read_phy_reg(&ohci->card, 1);
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	if (reg < 0)
		return reg;
	self_id |= ((reg & 0x3f) << 16); /* gap count */

	for (i = 0; i < 3; i++) {
		status = get_status_for_port(ohci, i);
		if (status < 0)
			return status;
		self_id |= ((status & 0x3) << (6 - (i * 2)));
	}

1872 1873
	self_id |= initiated_reset(ohci);

1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
	pos = get_self_id_pos(ohci, self_id, self_id_count);
	if (pos >= 0) {
		memmove(&(ohci->self_id_buffer[pos+1]),
			&(ohci->self_id_buffer[pos]),
			(self_id_count - pos) * sizeof(*ohci->self_id_buffer));
		ohci->self_id_buffer[pos] = self_id;
		self_id_count++;
	}
	return self_id_count;
}

1885
static void bus_reset_work(struct work_struct *work)
1886
{
1887 1888
	struct fw_ohci *ohci =
		container_of(work, struct fw_ohci, bus_reset_work);
1889 1890
	int self_id_count, generation, new_generation, i, j;
	u32 reg;
1891 1892
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1893
	bool is_new_root;
1894 1895 1896

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1897 1898
		ohci_notice(ohci,
			    "node ID not valid, new bus reset in progress\n");
1899 1900
		return;
	}
1901
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1902
		ohci_notice(ohci, "malconfigured bus\n");
1903 1904 1905 1906
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1907

1908 1909 1910 1911 1912 1913
	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
	if (!(ohci->is_root && is_new_root))
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	ohci->is_root = is_new_root;

1914 1915
	reg = reg_read(ohci, OHCI1394_SelfIDCount);
	if (reg & OHCI1394_SelfIDCount_selfIDError) {
1916
		ohci_notice(ohci, "self ID receive error\n");
1917 1918
		return;
	}
1919 1920
	/*
	 * The count in the SelfIDCount register is the number of
1921 1922
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1923 1924
	 * bit extra to get the actual number of self IDs.
	 */
1925
	self_id_count = (reg >> 3) & 0xff;
1926 1927

	if (self_id_count > 252) {
1928
		ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1929 1930
		return;
	}
1931

1932
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1933
	rmb();
1934 1935

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1936 1937 1938 1939
		u32 id  = cond_le32_to_cpu(ohci->self_id_cpu[i]);
		u32 id2 = cond_le32_to_cpu(ohci->self_id_cpu[i + 1]);

		if (id != ~id2) {
1940 1941 1942 1943 1944 1945 1946
			/*
			 * If the invalid data looks like a cycle start packet,
			 * it's likely to be the result of the cycle master
			 * having a wrong gap count.  In this case, the self IDs
			 * so far are valid and should be processed so that the
			 * bus manager can then correct the gap count.
			 */
1947 1948
			if (id == 0xffff008f) {
				ohci_notice(ohci, "ignoring spurious self IDs\n");
1949 1950 1951
				self_id_count = j;
				break;
			}
1952 1953 1954 1955

			ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
				    j, self_id_count, id, id2);
			return;
1956
		}
1957
		ohci->self_id_buffer[j] = id;
1958
	}
1959 1960 1961 1962

	if (ohci->quirks & QUIRK_TI_SLLZ059) {
		self_id_count = find_and_insert_self_id(ohci, self_id_count);
		if (self_id_count < 0) {
1963 1964
			ohci_notice(ohci,
				    "could not construct local self ID\n");
1965 1966 1967 1968 1969
			return;
		}
	}

	if (self_id_count == 0) {
1970
		ohci_notice(ohci, "no self IDs\n");
1971 1972
		return;
	}
1973
	rmb();
1974

1975 1976
	/*
	 * Check the consistency of the self IDs we just read.  The
1977 1978 1979 1980 1981 1982 1983 1984 1985
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1986 1987
	 * of self IDs.
	 */
1988 1989 1990

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
1991
		ohci_notice(ohci, "new bus reset, discarding self ids\n");
1992 1993 1994 1995
		return;
	}

	/* FIXME: Document how the locking works. */
1996
	spin_lock_irq(&ohci->lock);
1997

1998
	ohci->generation = -1; /* prevent AT packet queueing */
1999 2000
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
2001

2002
	spin_unlock_irq(&ohci->lock);
2003

2004 2005 2006 2007 2008
	/*
	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
	 * packets in the AT queues and software needs to drain them.
	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
	 */
2009 2010 2011
	at_context_flush(&ohci->at_request_ctx);
	at_context_flush(&ohci->at_response_ctx);

2012
	spin_lock_irq(&ohci->lock);
2013 2014

	ohci->generation = generation;
2015 2016
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

2017
	if (ohci->quirks & QUIRK_RESET_PACKET)
2018 2019
		ohci->request_generation = generation;

2020 2021
	/*
	 * This next bit is unrelated to the AT context stuff but we
2022 2023 2024 2025
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
T
Thomas Weber 已提交
2026
	 * next_config_rom pointer so a new update can take place.
2027
	 */
2028 2029

	if (ohci->next_config_rom != NULL) {
2030 2031 2032 2033
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
2034 2035 2036 2037
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

2038 2039
		/*
		 * Restore config_rom image and manually update
2040 2041
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
2042 2043
		 * do that last.
		 */
2044 2045
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
2046 2047 2048
		ohci->config_rom[0] = ohci->next_header;
		reg_write(ohci, OHCI1394_ConfigROMhdr,
			  be32_to_cpu(ohci->next_header));
2049 2050
	}

2051 2052 2053 2054 2055
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif

2056
	spin_unlock_irq(&ohci->lock);
2057

2058 2059 2060 2061
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

2062
	log_selfids(ohci, generation, self_id_count);
2063

2064
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2065 2066 2067
				 self_id_count, ohci->self_id_buffer,
				 ohci->csr_state_setclear_abdicate);
	ohci->csr_state_setclear_abdicate = false;
2068 2069 2070 2071 2072
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
2073
	u32 event, iso_event;
2074 2075 2076 2077
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

2078
	if (!event || !~event)
2079 2080
		return IRQ_NONE;

2081 2082 2083 2084 2085 2086
	/*
	 * busReset and postedWriteErr must not be cleared yet
	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
	 */
	reg_write(ohci, OHCI1394_IntEventClear,
		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2087
	log_irqs(ohci, event);
2088 2089

	if (event & OHCI1394_selfIDComplete)
2090
		queue_work(fw_workqueue, &ohci->bus_reset_work);
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
	if (event & OHCI1394_isochRx) {
		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

		while (iso_event) {
			i = ffs(iso_event) - 1;
			tasklet_schedule(
				&ohci->ir_context_list[i].context.tasklet);
			iso_event &= ~(1 << i);
		}
2114 2115
	}

2116 2117 2118
	if (event & OHCI1394_isochTx) {
		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2119

2120 2121 2122 2123 2124 2125
		while (iso_event) {
			i = ffs(iso_event) - 1;
			tasklet_schedule(
				&ohci->it_context_list[i].context.tasklet);
			iso_event &= ~(1 << i);
		}
2126 2127
	}

2128
	if (unlikely(event & OHCI1394_regAccessFail))
2129
		ohci_err(ohci, "register access failure\n");
2130

2131 2132 2133 2134 2135
	if (unlikely(event & OHCI1394_postedWriteErr)) {
		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
		reg_write(ohci, OHCI1394_IntEventClear,
			  OHCI1394_postedWriteErr);
S
Stephan Gatzka 已提交
2136
		if (printk_ratelimit())
2137
			ohci_err(ohci, "PCI posted write error\n");
2138
	}
2139

2140 2141
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
2142
			ohci_notice(ohci, "isochronous cycle too long\n");
2143 2144 2145 2146
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

2147 2148 2149 2150 2151 2152 2153 2154
	if (unlikely(event & OHCI1394_cycleInconsistent)) {
		/*
		 * We need to clear this event bit in order to make
		 * cycleMatch isochronous I/O work.  In theory we should
		 * stop active cycleMatch iso contexts now and restart
		 * them at least two cycles later.  (FIXME?)
		 */
		if (printk_ratelimit())
2155
			ohci_notice(ohci, "isochronous cycle inconsistent\n");
2156 2157
	}

2158 2159 2160
	if (unlikely(event & OHCI1394_unrecoverableError))
		handle_dead_contexts(ohci);

2161 2162 2163 2164
	if (event & OHCI1394_cycle64Seconds) {
		spin_lock(&ohci->lock);
		update_bus_time(ohci);
		spin_unlock(&ohci->lock);
2165 2166
	} else
		flush_writes(ohci);
2167

2168 2169 2170
	return IRQ_HANDLED;
}

2171 2172
static int software_reset(struct fw_ohci *ohci)
{
2173
	u32 val;
2174 2175 2176
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2177 2178 2179 2180
	for (i = 0; i < 500; i++) {
		val = reg_read(ohci, OHCI1394_HCControlSet);
		if (!~val)
			return -ENODEV; /* Card was ejected. */
2181

2182
		if (!(val & OHCI1394_HCControl_softReset))
2183
			return 0;
2184

2185 2186 2187 2188 2189 2190
		msleep(1);
	}

	return -EBUSY;
}

2191 2192 2193 2194 2195 2196 2197 2198 2199
static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
{
	size_t size = length * 4;

	memcpy(dest, src, size);
	if (size < CONFIG_ROM_SIZE)
		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
}

2200 2201 2202
static int configure_1394a_enhancements(struct fw_ohci *ohci)
{
	bool enable_1394a;
2203
	int ret, clear, set, offset;
2204 2205 2206 2207 2208 2209 2210 2211

	/* Check if the driver should configure link and PHY. */
	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
	      OHCI1394_HCControl_programPhyEnable))
		return 0;

	/* Paranoia: check whether the PHY supports 1394a, too. */
	enable_1394a = false;
2212 2213 2214 2215 2216 2217 2218 2219
	ret = read_phy_reg(ohci, 2);
	if (ret < 0)
		return ret;
	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
		ret = read_paged_phy_reg(ohci, 1, 8);
		if (ret < 0)
			return ret;
		if (ret >= 1)
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
			enable_1394a = true;
	}

	if (ohci->quirks & QUIRK_NO_1394A)
		enable_1394a = false;

	/* Configure PHY and link consistently. */
	if (enable_1394a) {
		clear = 0;
		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
	} else {
		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
		set = 0;
	}
2234
	ret = update_phy_reg(ohci, 5, clear, set);
2235 2236
	if (ret < 0)
		return ret;
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250

	if (enable_1394a)
		offset = OHCI1394_HCControlSet;
	else
		offset = OHCI1394_HCControlClear;
	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);

	/* Clean up: configuration has been taken care of. */
	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_programPhyEnable);

	return 0;
}

2251 2252
static int probe_tsb41ba3d(struct fw_ohci *ohci)
{
2253 2254 2255
	/* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
	static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
	int reg, i;
2256 2257 2258 2259

	reg = read_phy_reg(ohci, 2);
	if (reg < 0)
		return reg;
2260 2261
	if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
		return 0;
2262

2263 2264 2265 2266 2267 2268
	for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
		reg = read_paged_phy_reg(ohci, 1, i + 10);
		if (reg < 0)
			return reg;
		if (reg != id[i])
			return 0;
2269
	}
2270
	return 1;
2271 2272
}

2273 2274
static int ohci_enable(struct fw_card *card,
		       const __be32 *config_rom, size_t length)
2275 2276
{
	struct fw_ohci *ohci = fw_ohci(card);
2277
	u32 lps, version, irqs;
2278
	int i, ret;
2279

2280
	if (software_reset(ohci)) {
2281
		ohci_err(ohci, "failed to reset ohci card\n");
2282 2283 2284 2285 2286 2287 2288 2289
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
2290 2291
	 * full link enabled.  However, with some cards (well, at least
	 * a JMicron PCIe card), we have to try again sometimes.
2292 2293 2294 2295 2296 2297 2298
	 *
	 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
	 * cannot actually use the phy at that time.  These need tens of
	 * millisecods pause between LPS write and first phy access too.
	 *
	 * But do not wait for 50msec on Agere/LSI cards.  Their phy
	 * arbitration state machine may time out during such a long wait.
2299
	 */
2300

2301 2302 2303 2304
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
2305

2306
	if (!(ohci->quirks & QUIRK_PHY_LCTRL_TIMEOUT))
2307
		msleep(50);
2308 2309 2310

	for (lps = 0, i = 0; !lps && i < 150; i++) {
		msleep(1);
2311 2312 2313 2314 2315
		lps = reg_read(ohci, OHCI1394_HCControlSet) &
		      OHCI1394_HCControl_LPS;
	}

	if (!lps) {
2316
		ohci_err(ohci, "failed to set Link Power Status\n");
2317 2318
		return -EIO;
	}
2319

2320
	if (ohci->quirks & QUIRK_TI_SLLZ059) {
2321 2322 2323 2324
		ret = probe_tsb41ba3d(ohci);
		if (ret < 0)
			return ret;
		if (ret)
2325
			ohci_notice(ohci, "local TSB41BA3D phy\n");
2326
		else
2327 2328 2329
			ohci->quirks &= ~QUIRK_TI_SLLZ059;
	}

2330 2331 2332
	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

2333
	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2334 2335 2336 2337 2338 2339 2340
	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2341 2342
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
		  (200 << 16));
2343

2344
	ohci->bus_time_running = false;
2345

2346 2347 2348 2349 2350
	for (i = 0; i < 32; i++)
		if (ohci->ir_context_support & (1 << i))
			reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
				  IR_CONTEXT_MULTI_CHANNEL_MODE);

2351 2352 2353 2354
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	if (version >= OHCI_VERSION_1_1) {
		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
			  0xfffffffe);
2355
		card->broadcast_channel_auto_allocated = true;
2356 2357
	}

2358 2359 2360 2361
	/* Get implemented bits of the priority arbitration request counter. */
	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
	reg_write(ohci, OHCI1394_FairnessControl, 0);
2362
	card->priority_budget_implemented = ohci->pri_req_max != 0;
2363 2364 2365 2366 2367

	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);

2368 2369 2370
	ret = configure_1394a_enhancements(ohci);
	if (ret < 0)
		return ret;
2371

2372
	/* Activate link_on bit and contender bit in our self ID packets.*/
2373 2374 2375
	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
	if (ret < 0)
		return ret;
2376

2377 2378
	/*
	 * When the link is not yet enabled, the atomic config rom
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

2396 2397 2398 2399 2400 2401 2402
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
2403

2404
		copy_config_rom(ohci->next_config_rom, config_rom, length);
2405 2406 2407 2408 2409 2410 2411 2412
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
2413

2414
	ohci->next_header = ohci->next_config_rom[0];
2415 2416
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2417 2418
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
2419 2420 2421 2422
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

2423 2424 2425 2426 2427 2428
	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		OHCI1394_RQPkt | OHCI1394_RSPkt |
		OHCI1394_isochTx | OHCI1394_isochRx |
		OHCI1394_postedWriteErr |
		OHCI1394_selfIDComplete |
		OHCI1394_regAccessFail |
2429 2430 2431
		OHCI1394_cycleInconsistent |
		OHCI1394_unrecoverableError |
		OHCI1394_cycleTooLong |
2432 2433 2434 2435 2436
		OHCI1394_masterIntEnable;
	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
		irqs |= OHCI1394_busReset;
	reg_write(ohci, OHCI1394_IntMaskSet, irqs);

2437 2438 2439
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
2440 2441 2442 2443 2444 2445

	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_rcvPhyPkt);

	ar_context_run(&ohci->ar_request_ctx);
2446 2447 2448
	ar_context_run(&ohci->ar_response_ctx);

	flush_writes(ohci);
2449

2450 2451
	/* We are ready to go, reset bus to finish initialization. */
	fw_schedule_bus_reset(&ohci->card, false, true);
2452 2453 2454 2455

	return 0;
}

2456
static int ohci_set_config_rom(struct fw_card *card,
2457
			       const __be32 *config_rom, size_t length)
2458 2459 2460
{
	struct fw_ohci *ohci;
	__be32 *next_config_rom;
2461
	dma_addr_t uninitialized_var(next_config_rom_bus);
2462 2463 2464

	ohci = fw_ohci(card);

2465 2466
	/*
	 * When the OHCI controller is enabled, the config rom update
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
2489
	 * ohci->next_config_rom to NULL (see bus_reset_work).
2490 2491 2492 2493 2494 2495 2496 2497
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

2498
	spin_lock_irq(&ohci->lock);
2499

2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
	/*
	 * If there is not an already pending config_rom update,
	 * push our new allocation into the ohci->next_config_rom
	 * and then mark the local variable as null so that we
	 * won't deallocate the new buffer.
	 *
	 * OTOH, if there is a pending config_rom update, just
	 * use that buffer with the new config_rom data, and
	 * let this routine free the unused DMA allocation.
	 */

2511 2512 2513
	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;
2514 2515
		next_config_rom = NULL;
	}
2516

2517
	copy_config_rom(ohci->next_config_rom, config_rom, length);
2518

2519 2520
	ohci->next_header = config_rom[0];
	ohci->next_config_rom[0] = 0;
2521

2522
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2523

2524
	spin_unlock_irq(&ohci->lock);
2525

2526 2527 2528 2529 2530
	/* If we didn't use the DMA allocation, delete it. */
	if (next_config_rom != NULL)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);

2531 2532
	/*
	 * Now initiate a bus reset to have the changes take
2533 2534 2535
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
2536 2537
	 * takes effect.
	 */
2538

2539 2540 2541
	fw_schedule_bus_reset(&ohci->card, true, true);

	return 0;
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

2558 2559 2560
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
2561 2562
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
2563
	int ret = -ENOENT;
2564

2565
	tasklet_disable(&ctx->tasklet);
2566

2567 2568
	if (packet->ack != 0)
		goto out;
2569

2570
	if (packet->payload_mapped)
2571 2572 2573
		dma_unmap_single(ohci->card.device, packet->payload_bus,
				 packet->payload_length, DMA_TO_DEVICE);

2574
	log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2575 2576 2577
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
2578
	ret = 0;
2579 2580
 out:
	tasklet_enable(&ctx->tasklet);
2581

2582
	return ret;
2583 2584
}

2585 2586
static int ohci_enable_phys_dma(struct fw_card *card,
				int node_id, int generation)
2587
{
2588 2589 2590
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	return 0;
#else
2591 2592
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
2593
	int n, ret = 0;
2594

2595 2596 2597 2598
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
2599 2600 2601 2602

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
2603
		ret = -ESTALE;
2604 2605 2606
		goto out;
	}

2607 2608 2609 2610
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
2611 2612 2613 2614 2615 2616 2617

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

2618 2619
	flush_writes(ohci);
 out:
2620
	spin_unlock_irqrestore(&ohci->lock, flags);
2621 2622

	return ret;
2623
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2624
}
S
Stefan Richter 已提交
2625

2626
static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2627
{
2628
	struct fw_ohci *ohci = fw_ohci(card);
2629 2630
	unsigned long flags;
	u32 value;
2631 2632

	switch (csr_offset) {
2633 2634 2635 2636 2637
	case CSR_STATE_CLEAR:
	case CSR_STATE_SET:
		if (ohci->is_root &&
		    (reg_read(ohci, OHCI1394_LinkControlSet) &
		     OHCI1394_LinkControl_cycleMaster))
2638
			value = CSR_STATE_BIT_CMSTR;
2639
		else
2640 2641 2642
			value = 0;
		if (ohci->csr_state_setclear_abdicate)
			value |= CSR_STATE_BIT_ABDICATE;
2643

2644
		return value;
2645

2646 2647 2648
	case CSR_NODE_IDS:
		return reg_read(ohci, OHCI1394_NodeID) << 16;

2649 2650 2651
	case CSR_CYCLE_TIME:
		return get_cycle_time(ohci);

2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
	case CSR_BUS_TIME:
		/*
		 * We might be called just after the cycle timer has wrapped
		 * around but just before the cycle64Seconds handler, so we
		 * better check here, too, if the bus time needs to be updated.
		 */
		spin_lock_irqsave(&ohci->lock, flags);
		value = update_bus_time(ohci);
		spin_unlock_irqrestore(&ohci->lock, flags);
		return value;

2663 2664 2665 2666
	case CSR_BUSY_TIMEOUT:
		value = reg_read(ohci, OHCI1394_ATRetries);
		return (value >> 4) & 0x0ffff00f;

2667 2668 2669 2670
	case CSR_PRIORITY_BUDGET:
		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
			(ohci->pri_req_max << 8);

2671 2672 2673 2674
	default:
		WARN_ON(1);
		return 0;
	}
2675 2676
}

2677
static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2678 2679
{
	struct fw_ohci *ohci = fw_ohci(card);
2680
	unsigned long flags;
2681

2682
	switch (csr_offset) {
2683 2684 2685 2686 2687 2688
	case CSR_STATE_CLEAR:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlClear,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2689 2690
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = false;
2691
		break;
2692

2693 2694 2695 2696 2697 2698
	case CSR_STATE_SET:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlSet,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2699 2700
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = true;
2701
		break;
2702

2703 2704 2705 2706 2707
	case CSR_NODE_IDS:
		reg_write(ohci, OHCI1394_NodeID, value >> 16);
		flush_writes(ohci);
		break;

2708 2709 2710 2711 2712 2713 2714
	case CSR_CYCLE_TIME:
		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
		reg_write(ohci, OHCI1394_IntEventSet,
			  OHCI1394_cycleInconsistent);
		flush_writes(ohci);
		break;

2715 2716
	case CSR_BUS_TIME:
		spin_lock_irqsave(&ohci->lock, flags);
2717 2718
		ohci->bus_time = (update_bus_time(ohci) & 0x40) |
		                 (value & ~0x7f);
2719 2720 2721
		spin_unlock_irqrestore(&ohci->lock, flags);
		break;

2722 2723 2724 2725 2726 2727 2728
	case CSR_BUSY_TIMEOUT:
		value = (value & 0xf) | ((value & 0xf) << 4) |
			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
		reg_write(ohci, OHCI1394_ATRetries, value);
		flush_writes(ohci);
		break;

2729 2730 2731 2732 2733
	case CSR_PRIORITY_BUDGET:
		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
		flush_writes(ohci);
		break;

2734 2735 2736 2737
	default:
		WARN_ON(1);
		break;
	}
2738 2739
}

2740
static void flush_iso_completions(struct iso_context *ctx)
2741
{
2742 2743 2744 2745 2746
	ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
			      ctx->header_length, ctx->header,
			      ctx->base.callback_data);
	ctx->header_length = 0;
}
2747

2748
static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2749
{
2750
	u32 *ctx_hdr;
2751

2752 2753 2754
	if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
		if (ctx->base.drop_overflow_headers)
			return;
2755
		flush_iso_completions(ctx);
2756
	}
2757

2758
	ctx_hdr = ctx->header + ctx->header_length;
2759
	ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2760 2761

	/*
2762 2763 2764
	 * The two iso header quadlets are byteswapped to little
	 * endian by the controller, but we want to present them
	 * as big endian for consistency with the bus endianness.
2765 2766
	 */
	if (ctx->base.header_size > 0)
2767
		ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2768
	if (ctx->base.header_size > 4)
2769
		ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2770
	if (ctx->base.header_size > 8)
2771
		memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2772 2773 2774
	ctx->header_length += ctx->base.header_size;
}

2775 2776 2777 2778 2779 2780
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2781
	struct descriptor *pd;
2782
	u32 buffer_dma;
2783

2784
	for (pd = d; pd <= last; pd++)
2785 2786 2787
		if (pd->transfer_status)
			break;
	if (pd > last)
2788 2789 2790
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
	while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
		d++;
		buffer_dma = le32_to_cpu(d->data_address);
		dma_sync_single_range_for_cpu(context->ohci->card.device,
					      buffer_dma & PAGE_MASK,
					      buffer_dma & ~PAGE_MASK,
					      le16_to_cpu(d->req_count),
					      DMA_FROM_DEVICE);
	}

2801
	copy_iso_headers(ctx, (u32 *) (last + 1));
2802

2803 2804
	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
		flush_iso_completions(ctx);
2805 2806 2807 2808

	return 1;
}

2809 2810 2811 2812 2813 2814 2815
/* d == last because each descriptor block is only a single descriptor. */
static int handle_ir_buffer_fill(struct context *context,
				 struct descriptor *d,
				 struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2816
	unsigned int req_count, res_count, completed;
2817
	u32 buffer_dma;
2818

2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
	req_count = le16_to_cpu(last->req_count);
	res_count = le16_to_cpu(ACCESS_ONCE(last->res_count));
	completed = req_count - res_count;
	buffer_dma = le32_to_cpu(last->data_address);

	if (completed > 0) {
		ctx->mc_buffer_bus = buffer_dma;
		ctx->mc_completed = completed;
	}

	if (res_count != 0)
2830 2831 2832
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

2833 2834 2835
	dma_sync_single_range_for_cpu(context->ohci->card.device,
				      buffer_dma & PAGE_MASK,
				      buffer_dma & ~PAGE_MASK,
2836
				      completed, DMA_FROM_DEVICE);
2837

2838
	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2839
		ctx->base.callback.mc(&ctx->base,
2840
				      buffer_dma + completed,
2841
				      ctx->base.callback_data);
2842 2843
		ctx->mc_completed = 0;
	}
2844 2845 2846 2847

	return 1;
}

2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
static void flush_ir_buffer_fill(struct iso_context *ctx)
{
	dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
				      ctx->mc_buffer_bus & PAGE_MASK,
				      ctx->mc_buffer_bus & ~PAGE_MASK,
				      ctx->mc_completed, DMA_FROM_DEVICE);

	ctx->base.callback.mc(&ctx->base,
			      ctx->mc_buffer_bus + ctx->mc_completed,
			      ctx->base.callback_data);
	ctx->mc_completed = 0;
}

2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
static inline void sync_it_packet_for_cpu(struct context *context,
					  struct descriptor *pd)
{
	__le16 control;
	u32 buffer_dma;

	/* only packets beginning with OUTPUT_MORE* have data buffers */
	if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
		return;

	/* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
	pd += 2;

	/*
	 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
	 * data buffer is in the context program's coherent page and must not
	 * be synced.
	 */
	if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
	    (context->current_bus          & PAGE_MASK)) {
		if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
			return;
		pd++;
	}

	do {
		buffer_dma = le32_to_cpu(pd->data_address);
		dma_sync_single_range_for_cpu(context->ohci->card.device,
					      buffer_dma & PAGE_MASK,
					      buffer_dma & ~PAGE_MASK,
					      le16_to_cpu(pd->req_count),
					      DMA_TO_DEVICE);
		control = pd->control;
		pd++;
	} while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
}

2898 2899 2900
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
2901
{
2902 2903
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2904
	struct descriptor *pd;
2905
	__be32 *ctx_hdr;
S
Stefan Richter 已提交
2906

2907 2908 2909 2910 2911
	for (pd = d; pd <= last; pd++)
		if (pd->transfer_status)
			break;
	if (pd > last)
		/* Descriptor(s) not done yet, stop iteration */
2912 2913
		return 0;

2914 2915
	sync_it_packet_for_cpu(context, d);

2916 2917 2918
	if (ctx->header_length + 4 > PAGE_SIZE) {
		if (ctx->base.drop_overflow_headers)
			return 1;
2919
		flush_iso_completions(ctx);
2920
	}
2921

2922
	ctx_hdr = ctx->header + ctx->header_length;
2923
	ctx->last_timestamp = le16_to_cpu(last->res_count);
2924 2925 2926 2927 2928
	/* Present this value as big-endian to match the receive code */
	*ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
			       le16_to_cpu(pd->res_count));
	ctx->header_length += 4;

2929 2930 2931
	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
		flush_iso_completions(ctx);

2932
	return 1;
2933 2934
}

2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
{
	u32 hi = channels >> 32, lo = channels;

	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
	mmiowb();
	ohci->mc_channels = channels;
}

2947
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2948
				int type, int channel, size_t header_size)
2949 2950
{
	struct fw_ohci *ohci = fw_ohci(card);
2951 2952 2953 2954 2955
	struct iso_context *uninitialized_var(ctx);
	descriptor_callback_t uninitialized_var(callback);
	u64 *uninitialized_var(channels);
	u32 *uninitialized_var(mask), uninitialized_var(regs);
	int index, ret = -EBUSY;
2956

2957
	spin_lock_irq(&ohci->lock);
2958

2959 2960 2961
	switch (type) {
	case FW_ISO_CONTEXT_TRANSMIT:
		mask     = &ohci->it_context_mask;
2962
		callback = handle_it_packet;
2963 2964 2965 2966 2967 2968 2969 2970 2971
		index    = ffs(*mask) - 1;
		if (index >= 0) {
			*mask &= ~(1 << index);
			regs = OHCI1394_IsoXmitContextBase(index);
			ctx  = &ohci->it_context_list[index];
		}
		break;

	case FW_ISO_CONTEXT_RECEIVE:
2972
		channels = &ohci->ir_context_channels;
2973
		mask     = &ohci->ir_context_mask;
2974
		callback = handle_ir_packet_per_buffer;
2975 2976 2977 2978 2979 2980 2981 2982
		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
		if (index >= 0) {
			*channels &= ~(1ULL << channel);
			*mask     &= ~(1 << index);
			regs = OHCI1394_IsoRcvContextBase(index);
			ctx  = &ohci->ir_context_list[index];
		}
		break;
2983

2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		mask     = &ohci->ir_context_mask;
		callback = handle_ir_buffer_fill;
		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
		if (index >= 0) {
			ohci->mc_allocated = true;
			*mask &= ~(1 << index);
			regs = OHCI1394_IsoRcvContextBase(index);
			ctx  = &ohci->ir_context_list[index];
		}
		break;

	default:
		index = -1;
		ret = -ENOSYS;
2999
	}
3000

3001
	spin_unlock_irq(&ohci->lock);
3002 3003

	if (index < 0)
3004
		return ERR_PTR(ret);
S
Stefan Richter 已提交
3005

3006
	memset(ctx, 0, sizeof(*ctx));
3007 3008
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
3009 3010
	if (ctx->header == NULL) {
		ret = -ENOMEM;
3011
		goto out;
3012
	}
3013 3014
	ret = context_init(&ctx->context, ohci, regs, callback);
	if (ret < 0)
3015
		goto out_with_header;
3016

3017
	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3018
		set_multichannel_mask(ohci, 0);
3019 3020
		ctx->mc_completed = 0;
	}
3021

3022
	return &ctx->base;
3023 3024 3025 3026

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
3027
	spin_lock_irq(&ohci->lock);
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037

	switch (type) {
	case FW_ISO_CONTEXT_RECEIVE:
		*channels |= 1ULL << channel;
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		ohci->mc_allocated = false;
		break;
	}
3038
	*mask |= 1 << index;
3039

3040
	spin_unlock_irq(&ohci->lock);
3041

3042
	return ERR_PTR(ret);
3043 3044
}

3045 3046
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
3047
{
S
Stefan Richter 已提交
3048
	struct iso_context *ctx = container_of(base, struct iso_context, base);
3049
	struct fw_ohci *ohci = ctx->context.ohci;
3050
	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3051 3052
	int index;

3053 3054 3055 3056
	/* the controller cannot start without any queued packets */
	if (ctx->context.last->branch_address == 0)
		return -ENODATA;

3057 3058
	switch (ctx->base.type) {
	case FW_ISO_CONTEXT_TRANSMIT:
3059
		index = ctx - ohci->it_context_list;
3060 3061 3062
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3063
				(cycle & 0x7fff) << 16;
3064

3065 3066
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3067
		context_run(&ctx->context, match);
3068 3069 3070 3071 3072 3073
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
		/* fall through */
	case FW_ISO_CONTEXT_RECEIVE:
3074
		index = ctx - ohci->ir_context_list;
3075 3076 3077 3078 3079
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
3080

3081 3082
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3083
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3084
		context_run(&ctx->context, control);
3085 3086 3087 3088

		ctx->sync = sync;
		ctx->tags = tags;

3089
		break;
3090
	}
3091 3092 3093 3094

	return 0;
}

3095 3096 3097
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
3098
	struct iso_context *ctx = container_of(base, struct iso_context, base);
3099 3100
	int index;

3101 3102
	switch (ctx->base.type) {
	case FW_ISO_CONTEXT_TRANSMIT:
3103 3104
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3105 3106 3107 3108
		break;

	case FW_ISO_CONTEXT_RECEIVE:
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3109 3110
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3111
		break;
3112 3113 3114
	}
	flush_writes(ohci);
	context_stop(&ctx->context);
3115
	tasklet_kill(&ctx->context.tasklet);
3116 3117 3118 3119

	return 0;
}

3120 3121 3122
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
3123
	struct iso_context *ctx = container_of(base, struct iso_context, base);
3124 3125 3126
	unsigned long flags;
	int index;

3127 3128
	ohci_stop_iso(base);
	context_release(&ctx->context);
3129
	free_page((unsigned long)ctx->header);
3130

3131 3132
	spin_lock_irqsave(&ohci->lock, flags);

3133 3134
	switch (base->type) {
	case FW_ISO_CONTEXT_TRANSMIT:
3135 3136
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
3137 3138 3139
		break;

	case FW_ISO_CONTEXT_RECEIVE:
3140 3141
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
3142
		ohci->ir_context_channels |= 1ULL << base->channel;
3143 3144 3145 3146 3147 3148 3149 3150 3151
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
		ohci->ir_context_channels |= ohci->mc_channels;
		ohci->mc_channels = 0;
		ohci->mc_allocated = false;
		break;
3152 3153 3154 3155 3156
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
	unsigned long flags;
	int ret;

	switch (base->type) {
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:

		spin_lock_irqsave(&ohci->lock, flags);

		/* Don't allow multichannel to grab other contexts' channels. */
		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
			*channels = ohci->ir_context_channels;
			ret = -EBUSY;
		} else {
			set_multichannel_mask(ohci, *channels);
			ret = 0;
		}

		spin_unlock_irqrestore(&ohci->lock, flags);

		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

3187 3188 3189 3190 3191 3192 3193 3194
#ifdef CONFIG_PM
static void ohci_resume_iso_dma(struct fw_ohci *ohci)
{
	int i;
	struct iso_context *ctx;

	for (i = 0 ; i < ohci->n_ir ; i++) {
		ctx = &ohci->ir_context_list[i];
3195
		if (ctx->context.running)
3196 3197 3198 3199 3200
			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
	}

	for (i = 0 ; i < ohci->n_it ; i++) {
		ctx = &ohci->it_context_list[i];
3201
		if (ctx->context.running)
3202 3203 3204 3205 3206
			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
	}
}
#endif

3207 3208 3209 3210
static int queue_iso_transmit(struct iso_context *ctx,
			      struct fw_iso_packet *packet,
			      struct fw_iso_buffer *buffer,
			      unsigned long payload)
3211
{
3212
	struct descriptor *d, *last, *pd;
3213 3214
	struct fw_iso_packet *p;
	__le32 *header;
3215
	dma_addr_t d_bus, page_bus;
3216 3217
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
3218
	int page, end_page, i, length, offset;
3219 3220

	p = packet;
3221
	payload_index = payload;
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
3240
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3241

3242 3243 3244
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
3245 3246

	if (!p->skip) {
3247
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3248
		d[0].req_count = cpu_to_le16(8);
3249 3250 3251 3252 3253 3254 3255 3256
		/*
		 * Link the skip address to this descriptor itself.  This causes
		 * a context to skip a cycle whenever lost cycles or FIFO
		 * overruns occur, without dropping the data.  The application
		 * should then decide whether this is an error condition or not.
		 * FIXME:  Make the context's cycle-lost behaviour configurable?
		 */
		d[0].branch_address = cpu_to_le32(d_bus | z);
3257 3258

		header = (__le32 *) &d[1];
3259 3260 3261 3262 3263
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
3264
		header[1] =
3265
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3266 3267 3268 3269 3270
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
3271
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
3284 3285 3286

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
3287

3288 3289 3290 3291
		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
						 page_bus, offset, length,
						 DMA_TO_DEVICE);

3292 3293 3294 3295
		payload_index += length;
	}

	if (p->interrupt)
3296
		irq = DESCRIPTOR_IRQ_ALWAYS;
3297
	else
3298
		irq = DESCRIPTOR_NO_IRQ;
3299

3300
	last = z == 2 ? d : d + z - 1;
3301 3302 3303
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
3304
				     irq);
3305

3306
	context_append(&ctx->context, d, z, header_z);
3307 3308 3309

	return 0;
}
S
Stefan Richter 已提交
3310

3311 3312 3313 3314
static int queue_iso_packet_per_buffer(struct iso_context *ctx,
				       struct fw_iso_packet *packet,
				       struct fw_iso_buffer *buffer,
				       unsigned long payload)
3315
{
3316
	struct device *device = ctx->context.ohci->card.device;
3317
	struct descriptor *d, *pd;
3318 3319
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
3320 3321
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
3322 3323

	/*
3324 3325
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
3326
	 */
3327
	packet_count = packet->header_length / ctx->base.header_size;
3328
	header_size  = max(ctx->base.header_size, (size_t)8);
3329 3330 3331 3332 3333

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
3334
	payload_per_buffer = packet->payload_length / packet_count;
3335 3336 3337

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
3338
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3339
		d = context_get_descriptors(&ctx->context,
3340
				z + header_z, &d_bus);
3341 3342 3343
		if (d == NULL)
			return -ENOMEM;

3344 3345
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
3346
		if (packet->skip && i == 0)
3347
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3348 3349
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
3350
		d->transfer_status = 0;
3351 3352
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

3353
		rest = payload_per_buffer;
3354
		pd = d;
3355
		for (j = 1; j < z; j++) {
3356
			pd++;
3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

3371 3372 3373 3374
			dma_sync_single_range_for_device(device, page_bus,
							 offset, length,
							 DMA_FROM_DEVICE);

3375 3376 3377 3378 3379
			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
3380 3381 3382
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
3383
		if (packet->interrupt && i == packet_count - 1)
3384 3385 3386 3387 3388 3389 3390 3391
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
static int queue_iso_buffer_fill(struct iso_context *ctx,
				 struct fw_iso_packet *packet,
				 struct fw_iso_buffer *buffer,
				 unsigned long payload)
{
	struct descriptor *d;
	dma_addr_t d_bus, page_bus;
	int page, offset, rest, z, i, length;

	page   = payload >> PAGE_SHIFT;
	offset = payload & ~PAGE_MASK;
	rest   = packet->payload_length;

	/* We need one descriptor for each page in the buffer. */
	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);

	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
		return -EFAULT;

	for (i = 0; i < z; i++) {
		d = context_get_descriptors(&ctx->context, 1, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
					 DESCRIPTOR_BRANCH_ALWAYS);
		if (packet->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
		if (packet->interrupt && i == z - 1)
			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		if (offset + rest < PAGE_SIZE)
			length = rest;
		else
			length = PAGE_SIZE - offset;
		d->req_count = cpu_to_le16(length);
		d->res_count = d->req_count;
		d->transfer_status = 0;

		page_bus = page_private(buffer->pages[page]);
		d->data_address = cpu_to_le32(page_bus + offset);

3434 3435 3436 3437
		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
						 page_bus, offset, length,
						 DMA_FROM_DEVICE);

3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
		rest -= length;
		offset = 0;
		page++;

		context_append(&ctx->context, d, 1, 0);
	}

	return 0;
}

3448 3449 3450 3451
static int ohci_queue_iso(struct fw_iso_context *base,
			  struct fw_iso_packet *packet,
			  struct fw_iso_buffer *buffer,
			  unsigned long payload)
3452
{
3453
	struct iso_context *ctx = container_of(base, struct iso_context, base);
3454
	unsigned long flags;
3455
	int ret = -ENOSYS;
3456

3457
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
	switch (base->type) {
	case FW_ISO_CONTEXT_TRANSMIT:
		ret = queue_iso_transmit(ctx, packet, buffer, payload);
		break;
	case FW_ISO_CONTEXT_RECEIVE:
		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
		break;
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
		break;
	}
3469 3470
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

3471
	return ret;
3472 3473
}

3474 3475 3476 3477 3478 3479 3480 3481
static void ohci_flush_queue_iso(struct fw_iso_context *base)
{
	struct context *ctx =
			&container_of(base, struct iso_context, base)->context;

	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
}

3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
static int ohci_flush_iso_completions(struct fw_iso_context *base)
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
	int ret = 0;

	tasklet_disable(&ctx->context.tasklet);

	if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
		context_tasklet((unsigned long)&ctx->context);

		switch (base->type) {
		case FW_ISO_CONTEXT_TRANSMIT:
		case FW_ISO_CONTEXT_RECEIVE:
			if (ctx->header_length != 0)
				flush_iso_completions(ctx);
			break;
		case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
			if (ctx->mc_completed != 0)
				flush_ir_buffer_fill(ctx);
			break;
		default:
			ret = -ENOSYS;
		}

		clear_bit_unlock(0, &ctx->flushing_completions);
		smp_mb__after_clear_bit();
	}

	tasklet_enable(&ctx->context.tasklet);

	return ret;
}

3515
static const struct fw_card_driver ohci_driver = {
3516
	.enable			= ohci_enable,
3517
	.read_phy_reg		= ohci_read_phy_reg,
3518 3519 3520 3521
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
3522
	.cancel_packet		= ohci_cancel_packet,
3523
	.enable_phys_dma	= ohci_enable_phys_dma,
3524 3525
	.read_csr		= ohci_read_csr,
	.write_csr		= ohci_write_csr,
3526 3527 3528

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
3529
	.set_iso_channels	= ohci_set_iso_channels,
3530
	.queue_iso		= ohci_queue_iso,
3531
	.flush_queue_iso	= ohci_flush_queue_iso,
3532
	.flush_iso_completions	= ohci_flush_iso_completions,
3533
	.start_iso		= ohci_start_iso,
3534
	.stop_iso		= ohci_stop_iso,
3535 3536
};

3537
#ifdef CONFIG_PPC_PMAC
3538
static void pmac_ohci_on(struct pci_dev *dev)
3539
{
3540 3541 3542 3543 3544 3545 3546 3547
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
3548 3549
}

3550
static void pmac_ohci_off(struct pci_dev *dev)
3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
{
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
}
#else
3562 3563
static inline void pmac_ohci_on(struct pci_dev *dev) {}
static inline void pmac_ohci_off(struct pci_dev *dev) {}
3564 3565
#endif /* CONFIG_PPC_PMAC */

B
Bill Pemberton 已提交
3566
static int pci_probe(struct pci_dev *dev,
3567
			       const struct pci_device_id *ent)
3568 3569
{
	struct fw_ohci *ohci;
3570
	u32 bus_options, max_receive, link_speed, version;
3571
	u64 guid;
3572
	int i, err;
3573 3574
	size_t size;

3575 3576 3577 3578 3579
	if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
		dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
		return -ENOSYS;
	}

3580
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3581
	if (ohci == NULL) {
3582 3583
		err = -ENOMEM;
		goto fail;
3584 3585 3586 3587
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

3588
	pmac_ohci_on(dev);
3589

3590 3591
	err = pci_enable_device(dev);
	if (err) {
3592
		dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3593
		goto fail_free;
3594 3595 3596 3597 3598 3599 3600
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);
3601
	mutex_init(&ohci->phy_reg_mutex);
3602

3603
	INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3604

3605 3606
	if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
	    pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3607
		ohci_err(ohci, "invalid MMIO resource\n");
3608 3609 3610 3611
		err = -ENXIO;
		goto fail_disable;
	}

3612 3613
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
3614
		ohci_err(ohci, "MMIO resource unavailable\n");
3615
		goto fail_disable;
3616 3617 3618 3619
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
3620
		ohci_err(ohci, "failed to remap registers\n");
3621 3622
		err = -ENXIO;
		goto fail_iomem;
3623 3624
	}

3625
	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3626 3627 3628 3629 3630
		if ((ohci_quirks[i].vendor == dev->vendor) &&
		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
		     ohci_quirks[i].device == dev->device) &&
		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
		     ohci_quirks[i].revision >= dev->revision)) {
3631 3632 3633
			ohci->quirks = ohci_quirks[i].flags;
			break;
		}
3634 3635
	if (param_quirks)
		ohci->quirks = param_quirks;
3636

3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
	/*
	 * Because dma_alloc_coherent() allocates at least one page,
	 * we save space by using a common buffer for the AR request/
	 * response descriptors and the self IDs buffer.
	 */
	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
	ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
					       PAGE_SIZE,
					       &ohci->misc_buffer_bus,
					       GFP_KERNEL);
	if (!ohci->misc_buffer) {
		err = -ENOMEM;
		goto fail_iounmap;
	}

	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3654 3655
			      OHCI1394_AsReqRcvContextControlSet);
	if (err < 0)
3656
		goto fail_misc_buf;
3657

3658
	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3659 3660 3661
			      OHCI1394_AsRspRcvContextControlSet);
	if (err < 0)
		goto fail_arreq_ctx;
3662

3663 3664 3665 3666
	err = context_init(&ohci->at_request_ctx, ohci,
			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
	if (err < 0)
		goto fail_arrsp_ctx;
3667

3668 3669 3670 3671
	err = context_init(&ohci->at_response_ctx, ohci,
			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
	if (err < 0)
		goto fail_atreq_ctx;
3672 3673

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3674
	ohci->ir_context_channels = ~0ULL;
3675
	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3676
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3677
	ohci->ir_context_mask = ohci->ir_context_support;
3678 3679
	ohci->n_ir = hweight32(ohci->ir_context_mask);
	size = sizeof(struct iso_context) * ohci->n_ir;
3680
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3681 3682

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3683
	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3684
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3685
	ohci->it_context_mask = ohci->it_context_support;
3686 3687
	ohci->n_it = hweight32(ohci->it_context_mask);
	size = sizeof(struct iso_context) * ohci->n_it;
3688
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3689 3690

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3691
		err = -ENOMEM;
3692
		goto fail_contexts;
3693 3694
	}

3695 3696
	ohci->self_id_cpu = ohci->misc_buffer     + PAGE_SIZE/2;
	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3697 3698 3699 3700 3701 3702 3703

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

3704 3705 3706 3707 3708
	if (!(ohci->quirks & QUIRK_NO_MSI))
		pci_enable_msi(dev);
	if (request_irq(dev->irq, irq_handler,
			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
			ohci_driver_name, ohci)) {
3709
		ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
3710 3711 3712 3713
		err = -EIO;
		goto fail_msi;
	}

3714
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3715
	if (err)
3716
		goto fail_irq;
3717

3718
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3719 3720 3721 3722 3723
	ohci_notice(ohci,
		    "added OHCI v%x.%x device as card %d, "
		    "%d IR + %d IT contexts, quirks 0x%x\n",
		    version >> 16, version & 0xff, ohci->card.index,
		    ohci->n_ir, ohci->n_it, ohci->quirks);
3724

3725
	return 0;
3726

3727 3728 3729 3730
 fail_irq:
	free_irq(dev->irq, ohci);
 fail_msi:
	pci_disable_msi(dev);
3731
 fail_contexts:
3732
	kfree(ohci->ir_context_list);
3733 3734
	kfree(ohci->it_context_list);
	context_release(&ohci->at_response_ctx);
3735
 fail_atreq_ctx:
3736
	context_release(&ohci->at_request_ctx);
3737
 fail_arrsp_ctx:
3738
	ar_context_release(&ohci->ar_response_ctx);
3739
 fail_arreq_ctx:
3740
	ar_context_release(&ohci->ar_request_ctx);
3741 3742 3743
 fail_misc_buf:
	dma_free_coherent(ohci->card.device, PAGE_SIZE,
			  ohci->misc_buffer, ohci->misc_buffer_bus);
3744
 fail_iounmap:
3745 3746 3747 3748 3749
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
3750
 fail_free:
3751
	kfree(ohci);
3752
	pmac_ohci_off(dev);
3753
 fail:
3754
	return err;
3755 3756 3757 3758
}

static void pci_remove(struct pci_dev *dev)
{
3759
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3760

3761 3762 3763 3764 3765 3766 3767 3768
	/*
	 * If the removal is happening from the suspend state, LPS won't be
	 * enabled and host registers (eg., IntMaskClear) won't be accessible.
	 */
	if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
		reg_write(ohci, OHCI1394_IntMaskClear, ~0);
		flush_writes(ohci);
	}
3769
	cancel_work_sync(&ohci->bus_reset_work);
3770 3771
	fw_core_remove_card(&ohci->card);

3772 3773 3774 3775
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
3776 3777 3778

	software_reset(ohci);
	free_irq(dev->irq, ohci);
3779 3780 3781 3782 3783 3784 3785 3786 3787

	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->next_config_rom, ohci->next_config_rom_bus);
	if (ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
	ar_context_release(&ohci->ar_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
3788 3789
	dma_free_coherent(ohci->card.device, PAGE_SIZE,
			  ohci->misc_buffer, ohci->misc_buffer_bus);
3790 3791
	context_release(&ohci->at_request_ctx);
	context_release(&ohci->at_response_ctx);
3792 3793
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
3794
	pci_disable_msi(dev);
3795 3796 3797
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
3798
	kfree(ohci);
3799
	pmac_ohci_off(dev);
3800

3801
	dev_notice(&dev->dev, "removed fw-ohci device\n");
3802 3803
}

3804
#ifdef CONFIG_PM
3805
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3806
{
3807
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3808 3809 3810
	int err;

	software_reset(ohci);
3811
	err = pci_save_state(dev);
3812
	if (err) {
3813
		ohci_err(ohci, "pci_save_state failed\n");
3814 3815
		return err;
	}
3816
	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3817
	if (err)
3818
		ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3819
	pmac_ohci_off(dev);
3820

3821 3822 3823
	return 0;
}

3824
static int pci_resume(struct pci_dev *dev)
3825
{
3826
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3827 3828
	int err;

3829
	pmac_ohci_on(dev);
3830 3831 3832
	pci_set_power_state(dev, PCI_D0);
	pci_restore_state(dev);
	err = pci_enable_device(dev);
3833
	if (err) {
3834
		ohci_err(ohci, "pci_enable_device failed\n");
3835 3836 3837
		return err;
	}

3838 3839 3840 3841 3842 3843 3844
	/* Some systems don't setup GUID register on resume from ram  */
	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
					!reg_read(ohci, OHCI1394_GUIDHi)) {
		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
	}

3845 3846 3847 3848 3849
	err = ohci_enable(&ohci->card, NULL, 0);
	if (err)
		return err;

	ohci_resume_iso_dma(ohci);
3850

3851
	return 0;
3852 3853 3854
}
#endif

3855
static const struct pci_device_id pci_table[] = {
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
3867 3868 3869 3870
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
3871 3872
};

A
Axel Lin 已提交
3873 3874
module_pci_driver(fw_ohci_pci_driver);

3875 3876 3877 3878
MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

3879 3880
/* Provide a module alias so root-on-sbp2 initrds don't break. */
MODULE_ALIAS("ohci1394");