ohci.c 94.6 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/bitops.h>
22
#include <linux/bug.h>
23
#include <linux/compiler.h>
24
#include <linux/delay.h>
S
Stefan Richter 已提交
25
#include <linux/device.h>
A
Andrew Morton 已提交
26
#include <linux/dma-mapping.h>
27
#include <linux/firewire.h>
S
Stefan Richter 已提交
28
#include <linux/firewire-constants.h>
29 30
#include <linux/init.h>
#include <linux/interrupt.h>
S
Stefan Richter 已提交
31
#include <linux/io.h>
32
#include <linux/kernel.h>
S
Stefan Richter 已提交
33
#include <linux/list.h>
A
Al Viro 已提交
34
#include <linux/mm.h>
35
#include <linux/module.h>
36
#include <linux/moduleparam.h>
37
#include <linux/mutex.h>
38
#include <linux/pci.h>
39
#include <linux/pci_ids.h>
40
#include <linux/slab.h>
S
Stefan Richter 已提交
41
#include <linux/spinlock.h>
S
Stefan Richter 已提交
42
#include <linux/string.h>
43
#include <linux/time.h>
44
#include <linux/vmalloc.h>
A
Andrew Morton 已提交
45

S
Stefan Richter 已提交
46
#include <asm/byteorder.h>
S
Stefan Richter 已提交
47
#include <asm/page.h>
48
#include <asm/system.h>
49

50 51 52 53
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

54 55
#include "core.h"
#include "ohci.h"
56

57 58 59 60 61 62 63 64 65 66 67 68 69
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
70 71 72 73 74 75 76 77 78 79

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

80 81 82 83
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
84

85 86 87 88 89 90 91 92
#define AR_BUFFER_SIZE	(32*1024)
#define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
/* we need at least two pages for proper list management */
#define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)

#define MAX_ASYNC_PAYLOAD	4096
#define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
#define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
93

94 95
struct ar_context {
	struct fw_ohci *ohci;
96 97 98 99
	struct page *pages[AR_BUFFERS];
	void *buffer;
	struct descriptor *descriptors;
	dma_addr_t descriptors_bus;
100
	void *pointer;
101
	unsigned int last_buffer_index;
102
	u32 regs;
103 104 105
	struct tasklet_struct tasklet;
};

106 107 108 109 110
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
111 112 113 114 115 116 117 118 119 120 121 122 123

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

124
struct context {
S
Stefan Richter 已提交
125
	struct fw_ohci *ohci;
126
	u32 regs;
127
	int total_allocation;
128
	bool running;
129
	bool flushing;
S
Stefan Richter 已提交
130

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
	 * The last descriptor in the DMA program.  It contains the branch
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
155 156 157

	descriptor_callback_t callback;

S
Stefan Richter 已提交
158
	struct tasklet_struct tasklet;
159 160
};

161 162 163 164 165 166
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
167 168 169

struct iso_context {
	struct fw_iso_context base;
170
	struct context context;
171
	int excess_bytes;
172 173
	void *header;
	size_t header_length;
174 175 176

	u8 sync;
	u8 tags;
177 178 179 180 181 182 183 184
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

	__iomem char *registers;
185
	int node_id;
186
	int generation;
187
	int request_generation;	/* for timestamping incoming requests */
188
	unsigned quirks;
189
	unsigned int pri_req_max;
190
	u32 bus_time;
191
	bool is_root;
192
	bool csr_state_setclear_abdicate;
193 194
	int n_ir;
	int n_it;
195 196 197 198
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
199 200
	spinlock_t lock;

201 202
	struct mutex phy_reg_mutex;

203 204 205
	void *misc_buffer;
	dma_addr_t misc_buffer_bus;

206 207
	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
208 209
	struct context at_request_ctx;
	struct context at_response_ctx;
210

211
	u32 it_context_support;
212
	u32 it_context_mask;     /* unoccupied IT contexts */
213
	struct iso_context *it_context_list;
214
	u64 ir_context_channels; /* unoccupied channels */
215
	u32 ir_context_support;
216
	u32 ir_context_mask;     /* unoccupied IR contexts */
217
	struct iso_context *ir_context_list;
218 219
	u64 mc_channels; /* channels in use by the multichannel IR context */
	bool mc_allocated;
220 221 222 223 224 225 226 227 228 229 230 231

	__be32    *config_rom;
	dma_addr_t config_rom_bus;
	__be32    *next_config_rom;
	dma_addr_t next_config_rom_bus;
	__be32     next_header;

	__le32    *self_id_cpu;
	dma_addr_t self_id_bus;
	struct tasklet_struct bus_reset_tasklet;

	u32 self_id_buffer[512];
232 233
};

A
Adrian Bunk 已提交
234
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
235 236 237 238
{
	return container_of(card, struct fw_ohci, card);
}

239 240 241 242 243 244
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
245 246 247 248 249 250

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

251
#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
252 253 254 255 256 257 258
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
259
#define OHCI_TCODE_PHY_PACKET		0x0e
260
#define OHCI_VERSION_1_1		0x010010
261

262 263
static char ohci_driver_name[] = KBUILD_MODNAME;

264
#define PCI_DEVICE_ID_AGERE_FW643	0x5901
265
#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
266 267
#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009

268 269 270
#define QUIRK_CYCLE_TIMER		1
#define QUIRK_RESET_PACKET		2
#define QUIRK_BE_HEADERS		4
271
#define QUIRK_NO_1394A			8
272
#define QUIRK_NO_MSI			16
273 274 275

/* In case of multiple matches in ohci_quirks[], only the first one is used. */
static const struct {
276
	unsigned short vendor, device, revision, flags;
277
} ohci_quirks[] = {
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
		QUIRK_BE_HEADERS},

	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
		QUIRK_NO_MSI},

	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
		QUIRK_NO_MSI},

	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},

	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_RESET_PACKET},

	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
304 305
};

306 307 308 309 310 311 312
/* This overrides anything that was found in ohci_quirks[]. */
static int param_quirks;
module_param_named(quirks, param_quirks, int, 0644);
MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
	", AR/selfID endianess = "	__stringify(QUIRK_BE_HEADERS)
313
	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
314
	", disable MSI = "		__stringify(QUIRK_NO_MSI)
315 316
	")");

317
#define OHCI_PARAM_DEBUG_AT_AR		1
318
#define OHCI_PARAM_DEBUG_SELFIDS	2
319 320
#define OHCI_PARAM_DEBUG_IRQS		4
#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
321

322 323
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG

324 325 326 327
static int param_debug;
module_param_named(debug, param_debug, int, 0644);
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
328 329 330
	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
331 332 333 334
	", or a combination, or all = -1)");

static void log_irqs(u32 evt)
{
335 336 337 338 339 340
	if (likely(!(param_debug &
			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
		return;

	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
	    !(evt & OHCI1394_busReset))
341 342
		return;

343
	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
344 345 346 347 348 349 350 351 352
	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
	    evt & OHCI1394_isochRx		? " IR"			: "",
	    evt & OHCI1394_isochTx		? " IT"			: "",
	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
353
	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
354
	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
355
	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
356
	    evt & OHCI1394_unrecoverableError	? " unrecoverableError"	: "",
357 358 359 360 361
	    evt & OHCI1394_busReset		? " busReset"		: "",
	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
		    OHCI1394_respTxComplete | OHCI1394_isochRx |
		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
362 363
		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
		    OHCI1394_cycleInconsistent |
364
		    OHCI1394_regAccessFail | OHCI1394_busReset)
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
						? " ?"			: "");
}

static const char *speed[] = {
	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
};
static const char *power[] = {
	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
};
static const char port[] = { '.', '-', 'p', 'c', };

static char _p(u32 *s, int shift)
{
	return port[*s >> shift & 3];
}

382
static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
383 384 385 386
{
	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
		return;

387 388
	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
		  self_id_count, generation, node_id);
389 390 391

	for (; self_id_count--; ++s)
		if ((*s & 1 << 23) == 0)
392 393 394 395 396 397
			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
			    "%s gc=%d %s %s%s%s\n",
			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
			    speed[*s >> 14 & 3], *s >> 16 & 63,
			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
398
		else
399 400 401 402
			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
			    *s, *s >> 24 & 63,
			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
}

static const char *evts[] = {
	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
	[0x10] = "-reserved-",		[0x11] = "ack_complete",
	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
	[0x18] = "-reserved-",		[0x19] = "-reserved-",
	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
	[0x20] = "pending/cancelled",
};
static const char *tcodes[] = {
	[0x0] = "QW req",		[0x1] = "BW req",
	[0x2] = "W resp",		[0x3] = "-reserved-",
	[0x4] = "QR req",		[0x5] = "BR req",
	[0x6] = "QR resp",		[0x7] = "BR resp",
	[0x8] = "cycle start",		[0x9] = "Lk req",
	[0xa] = "async stream packet",	[0xb] = "Lk resp",
	[0xc] = "-reserved-",		[0xd] = "-reserved-",
	[0xe] = "link internal",	[0xf] = "-reserved-",
};

static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
{
	int tcode = header[0] >> 4 & 0xf;
	char specific[12];

	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
		return;

	if (unlikely(evt >= ARRAY_SIZE(evts)))
			evt = 0x1f;

446
	if (evt == OHCI1394_evt_bus_reset) {
447 448
		fw_notify("A%c evt_bus_reset, generation %d\n",
		    dir, (header[2] >> 16) & 0xff);
449 450 451
		return;
	}

452 453 454 455 456 457 458 459 460 461 462 463 464 465
	switch (tcode) {
	case 0x0: case 0x6: case 0x8:
		snprintf(specific, sizeof(specific), " = %08x",
			 be32_to_cpu((__force __be32)header[3]));
		break;
	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
		snprintf(specific, sizeof(specific), " %x,%x",
			 header[3] >> 16, header[3] & 0xffff);
		break;
	default:
		specific[0] = '\0';
	}

	switch (tcode) {
466
	case 0xa:
467
		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
468
		break;
469 470 471 472
	case 0xe:
		fw_notify("A%c %s, PHY %08x %08x\n",
			  dir, evts[evt], header[1], header[2]);
		break;
473
	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
474 475 476 477 478 479
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s, %04x%08x%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
480 481
		break;
	default:
482 483 484 485 486 487
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], specific);
488 489 490 491 492
	}
}

#else

493 494 495 496
#define param_debug 0
static inline void log_irqs(u32 evt) {}
static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
497 498 499

#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */

A
Adrian Bunk 已提交
500
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
501 502 503 504
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
505
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
506 507 508 509
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
510
static inline void flush_writes(const struct fw_ohci *ohci)
511 512 513 514 515
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

516 517 518 519 520 521
/*
 * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
 * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
 */
522
static int read_phy_reg(struct fw_ohci *ohci, int addr)
523
{
524
	u32 val;
525
	int i;
526 527

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
528
	for (i = 0; i < 3 + 100; i++) {
529 530 531 532
		val = reg_read(ohci, OHCI1394_PhyControl);
		if (val & OHCI1394_PhyControl_ReadDone)
			return OHCI1394_PhyControl_ReadData(val);

533 534 535 536 537 538
		/*
		 * Try a few times without waiting.  Sleeping is necessary
		 * only when the link/PHY interface is busy.
		 */
		if (i >= 3)
			msleep(1);
539
	}
540
	fw_error("failed to read phy reg\n");
541

542 543
	return -EBUSY;
}
544

545 546 547
static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
{
	int i;
548 549

	reg_write(ohci, OHCI1394_PhyControl,
550
		  OHCI1394_PhyControl_Write(addr, val));
551
	for (i = 0; i < 3 + 100; i++) {
552 553 554
		val = reg_read(ohci, OHCI1394_PhyControl);
		if (!(val & OHCI1394_PhyControl_WritePending))
			return 0;
555

556 557
		if (i >= 3)
			msleep(1);
558 559 560 561
	}
	fw_error("failed to write phy reg\n");

	return -EBUSY;
562 563
}

564 565
static int update_phy_reg(struct fw_ohci *ohci, int addr,
			  int clear_bits, int set_bits)
566
{
567
	int ret = read_phy_reg(ohci, addr);
568 569
	if (ret < 0)
		return ret;
570

571 572 573 574 575 576 577
	/*
	 * The interrupt status bits are cleared by writing a one bit.
	 * Avoid clearing them unless explicitly requested in set_bits.
	 */
	if (addr == 5)
		clear_bits |= PHY_INT_STATUS_BITS;

578
	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
579 580
}

581
static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
582
{
583
	int ret;
584

585
	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
586 587
	if (ret < 0)
		return ret;
588

589
	return read_phy_reg(ohci, addr);
590 591
}

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
static int ohci_read_phy_reg(struct fw_card *card, int addr)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = read_phy_reg(ohci, addr);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
}

static int ohci_update_phy_reg(struct fw_card *card, int addr,
			       int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
615 616
}

617 618 619 620 621 622
static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
{
	return page_private(ctx->pages[i]);
}

static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
623
{
624
	struct descriptor *d;
625

626 627 628 629
	d = &ctx->descriptors[index];
	d->branch_address  &= cpu_to_le32(~0xf);
	d->res_count       =  cpu_to_le16(PAGE_SIZE);
	d->transfer_status =  0;
630

631
	wmb(); /* finish init of new descriptors before branch_address update */
632 633 634 635
	d = &ctx->descriptors[ctx->last_buffer_index];
	d->branch_address  |= cpu_to_le32(1);

	ctx->last_buffer_index = index;
636

637
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
638 639
}

640
static void ar_context_release(struct ar_context *ctx)
641
{
642
	unsigned int i;
643

644 645
	if (ctx->buffer)
		vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
646

647 648 649 650 651 652 653
	for (i = 0; i < AR_BUFFERS; i++)
		if (ctx->pages[i]) {
			dma_unmap_page(ctx->ohci->card.device,
				       ar_buffer_bus(ctx, i),
				       PAGE_SIZE, DMA_FROM_DEVICE);
			__free_page(ctx->pages[i]);
		}
654 655
}

656
static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
657
{
658 659 660
	if (reg_read(ctx->ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
		reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
		flush_writes(ctx->ohci);
661

662
		fw_error("AR error: %s; DMA stopped\n", error_msg);
663
	}
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
	/* FIXME: restart? */
}

static inline unsigned int ar_next_buffer_index(unsigned int index)
{
	return (index + 1) % AR_BUFFERS;
}

static inline unsigned int ar_prev_buffer_index(unsigned int index)
{
	return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
}

static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
{
	return ar_next_buffer_index(ctx->last_buffer_index);
}

/*
 * We search for the buffer that contains the last AR packet DMA data written
 * by the controller.
 */
static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
						 unsigned int *buffer_offset)
{
	unsigned int i, next_i, last = ctx->last_buffer_index;
	__le16 res_count, next_res_count;

	i = ar_first_buffer_index(ctx);
	res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);

	/* A buffer that is not yet completely filled must be the last one. */
	while (i != last && res_count == 0) {

		/* Peek at the next descriptor. */
		next_i = ar_next_buffer_index(i);
		rmb(); /* read descriptors in order */
		next_res_count = ACCESS_ONCE(
				ctx->descriptors[next_i].res_count);
		/*
		 * If the next descriptor is still empty, we must stop at this
		 * descriptor.
		 */
		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
			/*
			 * The exception is when the DMA data for one packet is
			 * split over three buffers; in this case, the middle
			 * buffer's descriptor might be never updated by the
			 * controller and look still empty, and we have to peek
			 * at the third one.
			 */
			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
				next_i = ar_next_buffer_index(next_i);
				rmb();
				next_res_count = ACCESS_ONCE(
					ctx->descriptors[next_i].res_count);
				if (next_res_count != cpu_to_le16(PAGE_SIZE))
					goto next_buffer_is_active;
			}

			break;
		}

next_buffer_is_active:
		i = next_i;
		res_count = next_res_count;
	}

	rmb(); /* read res_count before the DMA data */

	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
	if (*buffer_offset > PAGE_SIZE) {
		*buffer_offset = 0;
		ar_context_abort(ctx, "corrupted descriptor");
	}

	return i;
}

static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
				    unsigned int end_buffer_index,
				    unsigned int end_buffer_offset)
{
	unsigned int i;

	i = ar_first_buffer_index(ctx);
	while (i != end_buffer_index) {
		dma_sync_single_for_cpu(ctx->ohci->card.device,
					ar_buffer_bus(ctx, i),
					PAGE_SIZE, DMA_FROM_DEVICE);
		i = ar_next_buffer_index(i);
	}
	if (end_buffer_offset > 0)
		dma_sync_single_for_cpu(ctx->ohci->card.device,
					ar_buffer_bus(ctx, i),
					end_buffer_offset, DMA_FROM_DEVICE);
760 761
}

762 763
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
764
	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
765 766 767 768
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

769
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
770 771
{
	struct fw_ohci *ohci = ctx->ohci;
772 773
	struct fw_packet p;
	u32 status, length, tcode;
774
	int evt;
775

776 777 778
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
779 780 781 782 783

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
784
		p.header[3] = (__force __u32) buffer[3];
785
		p.header_length = 16;
786
		p.payload_length = 0;
787 788 789
		break;

	case TCODE_READ_BLOCK_REQUEST :
790
		p.header[3] = cond_le32_to_cpu(buffer[3]);
791 792 793 794 795
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
796 797 798
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
799
		p.header[3] = cond_le32_to_cpu(buffer[3]);
800
		p.header_length = 16;
801
		p.payload_length = p.header[3] >> 16;
802 803 804 805
		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
			ar_context_abort(ctx, "invalid packet length");
			return NULL;
		}
806 807 808 809
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
810
	case OHCI_TCODE_PHY_PACKET:
811
		p.header_length = 12;
812
		p.payload_length = 0;
813
		break;
814 815

	default:
816 817
		ar_context_abort(ctx, "invalid tcode");
		return NULL;
818
	}
819

820 821 822 823
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
824
	status = cond_le32_to_cpu(buffer[length]);
825
	evt    = (status >> 16) & 0x1f;
826

827
	p.ack        = evt - 16;
828 829 830
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
831

832
	log_ar_at_event('R', p.speed, p.header, evt);
833

834
	/*
835 836 837 838 839 840 841 842 843
	 * Several controllers, notably from NEC and VIA, forget to
	 * write ack_complete status at PHY packet reception.
	 */
	if (evt == OHCI1394_evt_no_status &&
	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
		p.ack = ACK_COMPLETE;

	/*
	 * The OHCI bus reset handler synthesizes a PHY packet with
844 845 846 847 848
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
849
	 * request.
850 851 852 853
	 *
	 * Alas some chips sometimes emit bus reset packets with a
	 * wrong generation.  We set the correct generation for these
	 * at a slightly incorrect time (in bus_reset_tasklet).
854
	 */
855
	if (evt == OHCI1394_evt_bus_reset) {
856
		if (!(ohci->quirks & QUIRK_RESET_PACKET))
857 858
			ohci->request_generation = (p.header[2] >> 16) & 0xff;
	} else if (ctx == &ohci->ar_request_ctx) {
859
		fw_core_handle_request(&ohci->card, &p);
860
	} else {
861
		fw_core_handle_response(&ohci->card, &p);
862
	}
863

864 865
	return buffer + length + 1;
}
866

867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
{
	void *next;

	while (p < end) {
		next = handle_ar_packet(ctx, p);
		if (!next)
			return p;
		p = next;
	}

	return p;
}

static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
{
	unsigned int i;

	i = ar_first_buffer_index(ctx);
	while (i != end_buffer) {
		dma_sync_single_for_device(ctx->ohci->card.device,
					   ar_buffer_bus(ctx, i),
					   PAGE_SIZE, DMA_FROM_DEVICE);
		ar_context_link_page(ctx, i);
		i = ar_next_buffer_index(i);
	}
}

895 896 897
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
898 899
	unsigned int end_buffer_index, end_buffer_offset;
	void *p, *end;
900

901 902 903
	p = ctx->pointer;
	if (!p)
		return;
904

905 906 907 908
	end_buffer_index = ar_search_last_active_buffer(ctx,
							&end_buffer_offset);
	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
909

910
	if (end_buffer_index < ar_first_buffer_index(ctx)) {
911
		/*
912 913 914 915
		 * The filled part of the overall buffer wraps around; handle
		 * all packets up to the buffer end here.  If the last packet
		 * wraps around, its tail will be visible after the buffer end
		 * because the buffer start pages are mapped there again.
916
		 */
917 918 919 920 921 922 923
		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
		p = handle_ar_packets(ctx, p, buffer_end);
		if (p < buffer_end)
			goto error;
		/* adjust p to point back into the actual buffer */
		p -= AR_BUFFERS * PAGE_SIZE;
	}
924

925 926 927 928 929 930
	p = handle_ar_packets(ctx, p, end);
	if (p != end) {
		if (p > end)
			ar_context_abort(ctx, "inconsistent descriptor");
		goto error;
	}
931

932 933
	ctx->pointer = p;
	ar_recycle_buffers(ctx, end_buffer_index);
934

935
	return;
936

937 938
error:
	ctx->pointer = NULL;
939 940
}

941 942
static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
			   unsigned int descriptors_offset, u32 regs)
943
{
944 945 946 947
	unsigned int i;
	dma_addr_t dma_addr;
	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
	struct descriptor *d;
948

949 950
	ctx->regs        = regs;
	ctx->ohci        = ohci;
951 952
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
	for (i = 0; i < AR_BUFFERS; i++) {
		ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
		if (!ctx->pages[i])
			goto out_of_memory;
		dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
					0, PAGE_SIZE, DMA_FROM_DEVICE);
		if (dma_mapping_error(ohci->card.device, dma_addr)) {
			__free_page(ctx->pages[i]);
			ctx->pages[i] = NULL;
			goto out_of_memory;
		}
		set_page_private(ctx->pages[i], dma_addr);
	}

	for (i = 0; i < AR_BUFFERS; i++)
		pages[i]              = ctx->pages[i];
	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
		pages[AR_BUFFERS + i] = ctx->pages[i];
	ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
972
				 -1, PAGE_KERNEL);
973 974 975
	if (!ctx->buffer)
		goto out_of_memory;

976 977
	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
978 979 980 981 982 983 984 985 986 987 988

	for (i = 0; i < AR_BUFFERS; i++) {
		d = &ctx->descriptors[i];
		d->req_count      = cpu_to_le16(PAGE_SIZE);
		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						DESCRIPTOR_STATUS |
						DESCRIPTOR_BRANCH_ALWAYS);
		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
			ar_next_buffer_index(i) * sizeof(struct descriptor));
	}
989

990
	return 0;
991 992 993 994 995

out_of_memory:
	ar_context_release(ctx);

	return -ENOMEM;
996 997 998 999
}

static void ar_context_run(struct ar_context *ctx)
{
1000 1001 1002 1003
	unsigned int i;

	for (i = 0; i < AR_BUFFERS; i++)
		ar_context_link_page(ctx, i);
1004

1005
	ctx->pointer = ctx->buffer;
1006

1007
	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1008
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1009
}
S
Stefan Richter 已提交
1010

1011
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1012
{
1013
	__le16 branch;
1014

1015
	branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1016 1017

	/* figure out which descriptor the branch address goes in */
1018
	if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1019 1020 1021 1022 1023
		return d;
	else
		return d + z - 1;
}

1024 1025 1026 1027 1028 1029
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
1030
	struct descriptor_buffer *desc;
1031

1032 1033 1034
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
1035
	while (last->branch_address != 0) {
1036
		struct descriptor_buffer *old_desc = desc;
1037 1038
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
1039 1040 1041 1042 1043 1044 1045 1046 1047
		address &= ~0xf;

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1048
		last = find_branch_descriptor(d, z);
1049 1050 1051 1052

		if (!ctx->callback(ctx, d, last))
			break;

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
1063 1064 1065
	}
}

1066 1067 1068 1069
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
1070
static int context_add_buffer(struct context *ctx)
1071 1072
{
	struct descriptor_buffer *desc;
1073
	dma_addr_t uninitialized_var(bus_addr);
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

1099 1100
static int context_init(struct context *ctx, struct fw_ohci *ohci,
			u32 regs, descriptor_callback_t callback)
1101 1102 1103
{
	ctx->ohci = ohci;
	ctx->regs = regs;
1104 1105 1106 1107
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
1108 1109
		return -ENOMEM;

1110 1111 1112
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

1113 1114 1115
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

1116 1117
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
1118
	 * branch address and looks like it's been sent.  That way we
1119
	 * have a descriptor to append DMA programs to.
1120
	 */
1121 1122 1123 1124 1125 1126
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
1127 1128 1129 1130

	return 0;
}

1131
static void context_release(struct context *ctx)
1132 1133
{
	struct fw_card *card = &ctx->ohci->card;
1134
	struct descriptor_buffer *desc, *tmp;
1135

1136 1137 1138 1139
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
1140 1141
}

1142
/* Must be called with ohci->lock held */
1143 1144
static struct descriptor *context_get_descriptors(struct context *ctx,
						  int z, dma_addr_t *d_bus)
1145
{
1146 1147 1148 1149 1150 1151 1152 1153 1154
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
1155

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
1166

1167
	d = desc->buffer + desc->used / sizeof(*d);
1168
	memset(d, 0, z * sizeof(*d));
1169
	*d_bus = desc->buffer_bus + desc->used;
1170 1171 1172 1173

	return d;
}

1174
static void context_run(struct context *ctx, u32 extra)
1175 1176 1177
{
	struct fw_ohci *ohci = ctx->ohci;

1178
	reg_write(ohci, COMMAND_PTR(ctx->regs),
1179
		  le32_to_cpu(ctx->last->branch_address));
1180 1181
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1182
	ctx->running = true;
1183 1184 1185 1186 1187 1188 1189
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
1190
	struct descriptor_buffer *desc = ctx->buffer_tail;
1191

1192
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1193

1194
	desc->used += (z + extra) * sizeof(*d);
1195 1196

	wmb(); /* finish init of new descriptors before branch_address update */
1197 1198
	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev = find_branch_descriptor(d, z);
1199 1200 1201 1202 1203
}

static void context_stop(struct context *ctx)
{
	u32 reg;
1204
	int i;
1205

1206
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1207
	ctx->running = false;
1208

1209
	for (i = 0; i < 1000; i++) {
1210
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1211
		if ((reg & CONTEXT_ACTIVE) == 0)
1212
			return;
1213

1214 1215
		if (i)
			udelay(10);
1216
	}
1217
	fw_error("Error: DMA context still active (0x%08x)\n", reg);
1218
}
1219

1220
struct driver_data {
1221
	u8 inline_data[8];
1222 1223
	struct fw_packet *packet;
};
1224

1225 1226
/*
 * This function apppends a packet to the DMA queue for transmission.
1227
 * Must always be called with the ochi->lock held to ensure proper
1228 1229
 * generation handling and locking around packet queue manipulation.
 */
1230 1231
static int at_context_queue_packet(struct context *ctx,
				   struct fw_packet *packet)
1232 1233
{
	struct fw_ohci *ohci = ctx->ohci;
1234
	dma_addr_t d_bus, uninitialized_var(payload_bus);
1235 1236 1237
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
1238 1239
	int z, tcode;

1240 1241 1242 1243
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1244 1245
	}

1246
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1247 1248
	d[0].res_count = cpu_to_le16(packet->timestamp);

1249 1250
	/*
	 * The DMA format for asyncronous link packets is different
1251
	 * from the IEEE1394 layout, so shift the fields around
1252
	 * accordingly.
1253
	 */
1254

1255
	tcode = (packet->header[0] >> 4) & 0x0f;
1256
	header = (__le32 *) &d[1];
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_WRITE_BLOCK_REQUEST:
	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
	case TCODE_READ_BLOCK_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
1267 1268 1269 1270 1271
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
1272 1273

		if (TCODE_IS_BLOCK_PACKET(tcode))
1274
			header[3] = cpu_to_le32(packet->header[3]);
1275
		else
1276 1277 1278
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
1279 1280
		break;

1281
	case TCODE_LINK_INTERNAL:
1282 1283
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
1284 1285
		header[1] = cpu_to_le32(packet->header[1]);
		header[2] = cpu_to_le32(packet->header[2]);
1286
		d[0].req_count = cpu_to_le16(12);
S
Stefan Richter 已提交
1287

1288
		if (is_ping_packet(&packet->header[1]))
S
Stefan Richter 已提交
1289
			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1290 1291
		break;

1292
	case TCODE_STREAM_DATA:
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
		d[0].req_count = cpu_to_le16(8);
		break;

	default:
		/* BUG(); */
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1303 1304
	}

1305
	BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1306 1307
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
1308
	packet->driver_data = driver_data;
1309

1310
	if (packet->payload_length > 0) {
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
		if (packet->payload_length > sizeof(driver_data->inline_data)) {
			payload_bus = dma_map_single(ohci->card.device,
						     packet->payload,
						     packet->payload_length,
						     DMA_TO_DEVICE);
			if (dma_mapping_error(ohci->card.device, payload_bus)) {
				packet->ack = RCODE_SEND_ERROR;
				return -1;
			}
			packet->payload_bus	= payload_bus;
			packet->payload_mapped	= true;
		} else {
			memcpy(driver_data->inline_data, packet->payload,
			       packet->payload_length);
			payload_bus = d_bus + 3 * sizeof(*d);
1326 1327 1328 1329 1330 1331
		}

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
1332
	} else {
1333 1334
		last = &d[0];
		z = 2;
1335 1336
	}

1337 1338 1339
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
1340

1341 1342
	/* FIXME: Document how the locking works. */
	if (ohci->generation != packet->generation) {
1343
		if (packet->payload_mapped)
1344 1345
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
1346 1347 1348 1349 1350
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
1351

1352
	if (ctx->running)
1353
		reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1354
	else
1355 1356 1357
		context_run(ctx, 0);

	return 0;
1358 1359
}

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
static void at_context_flush(struct context *ctx)
{
	tasklet_disable(&ctx->tasklet);

	ctx->flushing = true;
	context_tasklet((unsigned long)ctx);
	ctx->flushing = false;

	tasklet_enable(&ctx->tasklet);
}

1371 1372 1373
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1374
{
1375
	struct driver_data *driver_data;
1376
	struct fw_packet *packet;
1377
	struct fw_ohci *ohci = context->ohci;
1378 1379
	int evt;

1380
	if (last->transfer_status == 0 && !context->flushing)
1381 1382
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
1383

1384 1385 1386 1387 1388
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
1389

1390
	if (packet->payload_mapped)
1391
		dma_unmap_single(ohci->card.device, packet->payload_bus,
1392 1393
				 packet->payload_length, DMA_TO_DEVICE);

1394 1395
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
1396

1397 1398
	log_ar_at_event('T', packet->speed, packet->header, evt);

1399 1400 1401 1402 1403
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
1404

1405
	case OHCI1394_evt_flushed:
1406 1407 1408 1409
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
1410 1411
		packet->ack = RCODE_GENERATION;
		break;
1412

1413
	case OHCI1394_evt_missing_ack:
1414 1415 1416 1417 1418 1419 1420 1421 1422
		if (context->flushing)
			packet->ack = RCODE_GENERATION;
		else {
			/*
			 * Using a valid (current) generation count, but the
			 * node is not on the bus or not sending acks.
			 */
			packet->ack = RCODE_NO_ACK;
		}
1423
		break;
1424

1425 1426 1427 1428 1429 1430 1431 1432 1433
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
1434

1435 1436 1437 1438 1439 1440 1441
	case OHCI1394_evt_no_status:
		if (context->flushing) {
			packet->ack = RCODE_GENERATION;
			break;
		}
		/* fall through */

1442 1443 1444 1445
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
1446

1447
	packet->callback(packet, &ohci->card, packet->ack);
1448

1449
	return 1;
1450 1451
}

1452 1453 1454 1455 1456
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1457

1458 1459
static void handle_local_rom(struct fw_ohci *ohci,
			     struct fw_packet *packet, u32 csr)
1460 1461 1462 1463
{
	struct fw_packet response;
	int tcode, length, i;

1464
	tcode = HEADER_GET_TCODE(packet->header[0]);
1465
	if (TCODE_IS_BLOCK_PACKET(tcode))
1466
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

1485 1486
static void handle_local_lock(struct fw_ohci *ohci,
			      struct fw_packet *packet, u32 csr)
1487 1488
{
	struct fw_packet response;
1489
	int tcode, length, ext_tcode, sel, try;
1490 1491 1492
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

1493 1494
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1495
	payload = packet->payload;
1496
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
	for (try = 0; try < 20; try++)
		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
			lock_old = cpu_to_be32(reg_read(ohci,
							OHCI1394_CSRData));
			fw_fill_response(&response, packet->header,
					 RCODE_COMPLETE,
					 &lock_old, sizeof(lock_old));
			goto out;
		}

	fw_error("swap not done (CSR lock timeout)\n");
	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1528 1529 1530 1531 1532

 out:
	fw_core_handle_response(&ohci->card, &response);
}

1533
static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1534
{
1535
	u64 offset, csr;
1536

1537 1538 1539 1540
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1541 1542 1543

	offset =
		((unsigned long long)
1544
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
1565 1566 1567 1568 1569

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1570
}
1571

1572
static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1573 1574
{
	unsigned long flags;
1575
	int ret;
1576 1577 1578

	spin_lock_irqsave(&ctx->ohci->lock, flags);

1579
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1580
	    ctx->ohci->generation == packet->generation) {
1581 1582 1583
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
1584
	}
1585

1586
	ret = at_context_queue_packet(ctx, packet);
1587 1588
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

1589
	if (ret < 0)
1590
		packet->callback(packet, &ctx->ohci->card, packet->ack);
1591

1592 1593
}

1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
static void detect_dead_context(struct fw_ohci *ohci,
				const char *name, unsigned int regs)
{
	u32 ctl;

	ctl = reg_read(ohci, CONTROL_SET(regs));
	if (ctl & CONTEXT_DEAD) {
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG
		fw_error("DMA context %s has stopped, error code: %s\n",
			 name, evts[ctl & 0x1f]);
#else
		fw_error("DMA context %s has stopped, error code: %#x\n",
			 name, ctl & 0x1f);
#endif
	}
}

static void handle_dead_contexts(struct fw_ohci *ohci)
{
	unsigned int i;
	char name[8];

	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
	for (i = 0; i < 32; ++i) {
		if (!(ohci->it_context_support & (1 << i)))
			continue;
		sprintf(name, "IT%u", i);
		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
	}
	for (i = 0; i < 32; ++i) {
		if (!(ohci->ir_context_support & (1 << i)))
			continue;
		sprintf(name, "IR%u", i);
		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
	}
	/* TODO: maybe try to flush and restart the dead contexts */
}

1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
static u32 cycle_timer_ticks(u32 cycle_timer)
{
	u32 ticks;

	ticks = cycle_timer & 0xfff;
	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
	ticks += (3072 * 8000) * (cycle_timer >> 25);

	return ticks;
}

/*
 * Some controllers exhibit one or more of the following bugs when updating the
 * iso cycle timer register:
 *  - When the lowest six bits are wrapping around to zero, a read that happens
 *    at the same time will return garbage in the lowest ten bits.
 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
 *    not incremented for about 60 ns.
 *  - Occasionally, the entire register reads zero.
 *
 * To catch these, we read the register three times and ensure that the
 * difference between each two consecutive reads is approximately the same, i.e.
 * less than twice the other.  Furthermore, any negative difference indicates an
 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
 * execute, so we have enough precision to compute the ratio of the differences.)
 */
static u32 get_cycle_time(struct fw_ohci *ohci)
{
	u32 c0, c1, c2;
	u32 t0, t1, t2;
	s32 diff01, diff12;
	int i;

	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);

	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
		i = 0;
		c1 = c2;
		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		do {
			c0 = c1;
			c1 = c2;
			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
			t0 = cycle_timer_ticks(c0);
			t1 = cycle_timer_ticks(c1);
			t2 = cycle_timer_ticks(c2);
			diff01 = t1 - t0;
			diff12 = t2 - t1;
		} while ((diff01 <= 0 || diff12 <= 0 ||
			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
			 && i++ < 20);
	}

	return c2;
}

/*
 * This function has to be called at least every 64 seconds.  The bus_time
 * field stores not only the upper 25 bits of the BUS_TIME register but also
 * the most significant bit of the cycle timer in bit 6 so that we can detect
 * changes in this bit.
 */
static u32 update_bus_time(struct fw_ohci *ohci)
{
	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;

	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
		ohci->bus_time += 0x40;

	return ohci->bus_time | cycle_time_seconds;
}

1707 1708 1709
static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
1710
	int self_id_count, i, j, reg;
1711 1712
	int generation, new_generation;
	unsigned long flags;
1713 1714
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1715
	bool is_new_root;
1716 1717 1718

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1719
		fw_notify("node ID not valid, new bus reset in progress\n");
1720 1721
		return;
	}
1722 1723 1724 1725 1726 1727
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1728

1729 1730 1731 1732 1733 1734
	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
	if (!(ohci->is_root && is_new_root))
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	ohci->is_root = is_new_root;

1735 1736 1737 1738 1739
	reg = reg_read(ohci, OHCI1394_SelfIDCount);
	if (reg & OHCI1394_SelfIDCount_selfIDError) {
		fw_notify("inconsistent self IDs\n");
		return;
	}
1740 1741
	/*
	 * The count in the SelfIDCount register is the number of
1742 1743
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1744 1745
	 * bit extra to get the actual number of self IDs.
	 */
1746 1747
	self_id_count = (reg >> 3) & 0xff;
	if (self_id_count == 0 || self_id_count > 252) {
1748 1749 1750
		fw_notify("inconsistent self IDs\n");
		return;
	}
1751
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1752
	rmb();
1753 1754

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1755 1756 1757 1758
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
			fw_notify("inconsistent self IDs\n");
			return;
		}
1759 1760
		ohci->self_id_buffer[j] =
				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1761
	}
1762
	rmb();
1763

1764 1765
	/*
	 * Check the consistency of the self IDs we just read.  The
1766 1767 1768 1769 1770 1771 1772 1773 1774
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1775 1776
	 * of self IDs.
	 */
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

1788
	ohci->generation = -1; /* prevent AT packet queueing */
1789 1790
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1791 1792 1793

	spin_unlock_irqrestore(&ohci->lock, flags);

1794 1795 1796 1797 1798
	/*
	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
	 * packets in the AT queues and software needs to drain them.
	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
	 */
1799 1800 1801 1802 1803 1804
	at_context_flush(&ohci->at_request_ctx);
	at_context_flush(&ohci->at_response_ctx);

	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
1805 1806
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

1807
	if (ohci->quirks & QUIRK_RESET_PACKET)
1808 1809
		ohci->request_generation = generation;

1810 1811
	/*
	 * This next bit is unrelated to the AT context stuff but we
1812 1813 1814 1815
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
T
Thomas Weber 已提交
1816
	 * next_config_rom pointer so a new update can take place.
1817
	 */
1818 1819

	if (ohci->next_config_rom != NULL) {
1820 1821 1822 1823
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1824 1825 1826 1827
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1828 1829
		/*
		 * Restore config_rom image and manually update
1830 1831
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1832 1833
		 * do that last.
		 */
1834 1835
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
1836 1837 1838
		ohci->config_rom[0] = ohci->next_header;
		reg_write(ohci, OHCI1394_ConfigROMhdr,
			  be32_to_cpu(ohci->next_header));
1839 1840
	}

1841 1842 1843 1844 1845
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif

1846 1847
	spin_unlock_irqrestore(&ohci->lock, flags);

1848 1849 1850 1851
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1852 1853
	log_selfids(ohci->node_id, generation,
		    self_id_count, ohci->self_id_buffer);
1854

1855
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1856 1857 1858
				 self_id_count, ohci->self_id_buffer,
				 ohci->csr_state_setclear_abdicate);
	ohci->csr_state_setclear_abdicate = false;
1859 1860 1861 1862 1863
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1864
	u32 event, iso_event;
1865 1866 1867 1868
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1869
	if (!event || !~event)
1870 1871
		return IRQ_NONE;

1872 1873 1874 1875 1876 1877
	/*
	 * busReset and postedWriteErr must not be cleared yet
	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
	 */
	reg_write(ohci, OHCI1394_IntEventClear,
		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
1878
	log_irqs(event);
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
	if (event & OHCI1394_isochRx) {
		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

		while (iso_event) {
			i = ffs(iso_event) - 1;
			tasklet_schedule(
				&ohci->ir_context_list[i].context.tasklet);
			iso_event &= ~(1 << i);
		}
1905 1906
	}

1907 1908 1909
	if (event & OHCI1394_isochTx) {
		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1910

1911 1912 1913 1914 1915 1916
		while (iso_event) {
			i = ffs(iso_event) - 1;
			tasklet_schedule(
				&ohci->it_context_list[i].context.tasklet);
			iso_event &= ~(1 << i);
		}
1917 1918
	}

1919 1920 1921 1922
	if (unlikely(event & OHCI1394_regAccessFail))
		fw_error("Register access failure - "
			 "please notify linux1394-devel@lists.sf.net\n");

1923 1924 1925 1926 1927
	if (unlikely(event & OHCI1394_postedWriteErr)) {
		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
		reg_write(ohci, OHCI1394_IntEventClear,
			  OHCI1394_postedWriteErr);
1928
		fw_error("PCI posted write error\n");
1929
	}
1930

1931 1932 1933 1934 1935 1936 1937
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
			fw_notify("isochronous cycle too long\n");
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
	if (unlikely(event & OHCI1394_cycleInconsistent)) {
		/*
		 * We need to clear this event bit in order to make
		 * cycleMatch isochronous I/O work.  In theory we should
		 * stop active cycleMatch iso contexts now and restart
		 * them at least two cycles later.  (FIXME?)
		 */
		if (printk_ratelimit())
			fw_notify("isochronous cycle inconsistent\n");
	}

1949 1950 1951
	if (unlikely(event & OHCI1394_unrecoverableError))
		handle_dead_contexts(ohci);

1952 1953 1954 1955
	if (event & OHCI1394_cycle64Seconds) {
		spin_lock(&ohci->lock);
		update_bus_time(ohci);
		spin_unlock(&ohci->lock);
1956 1957
	} else
		flush_writes(ohci);
1958

1959 1960 1961
	return IRQ_HANDLED;
}

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

1978 1979 1980 1981 1982 1983 1984 1985 1986
static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
{
	size_t size = length * 4;

	memcpy(dest, src, size);
	if (size < CONFIG_ROM_SIZE)
		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
}

1987 1988 1989
static int configure_1394a_enhancements(struct fw_ohci *ohci)
{
	bool enable_1394a;
1990
	int ret, clear, set, offset;
1991 1992 1993 1994 1995 1996 1997 1998

	/* Check if the driver should configure link and PHY. */
	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
	      OHCI1394_HCControl_programPhyEnable))
		return 0;

	/* Paranoia: check whether the PHY supports 1394a, too. */
	enable_1394a = false;
1999 2000 2001 2002 2003 2004 2005 2006
	ret = read_phy_reg(ohci, 2);
	if (ret < 0)
		return ret;
	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
		ret = read_paged_phy_reg(ohci, 1, 8);
		if (ret < 0)
			return ret;
		if (ret >= 1)
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
			enable_1394a = true;
	}

	if (ohci->quirks & QUIRK_NO_1394A)
		enable_1394a = false;

	/* Configure PHY and link consistently. */
	if (enable_1394a) {
		clear = 0;
		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
	} else {
		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
		set = 0;
	}
2021
	ret = update_phy_reg(ohci, 5, clear, set);
2022 2023
	if (ret < 0)
		return ret;
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037

	if (enable_1394a)
		offset = OHCI1394_HCControlSet;
	else
		offset = OHCI1394_HCControlClear;
	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);

	/* Clean up: configuration has been taken care of. */
	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_programPhyEnable);

	return 0;
}

2038 2039
static int ohci_enable(struct fw_card *card,
		       const __be32 *config_rom, size_t length)
2040 2041 2042
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);
2043
	u32 lps, seconds, version, irqs;
2044
	int i, ret;
2045

2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
2056 2057
	 * full link enabled.  However, with some cards (well, at least
	 * a JMicron PCIe card), we have to try again sometimes.
2058 2059 2060 2061 2062
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073

	for (lps = 0, i = 0; !lps && i < 3; i++) {
		msleep(50);
		lps = reg_read(ohci, OHCI1394_HCControlSet) &
		      OHCI1394_HCControl_LPS;
	}

	if (!lps) {
		fw_error("Failed to set Link Power Status\n");
		return -EIO;
	}
2074 2075 2076 2077

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

2078
	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2079 2080 2081 2082 2083 2084 2085
	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2086 2087
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
		  (200 << 16));
2088

2089 2090 2091 2092
	seconds = lower_32_bits(get_seconds());
	reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
	ohci->bus_time = seconds & ~0x3f;

2093 2094 2095 2096
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	if (version >= OHCI_VERSION_1_1) {
		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
			  0xfffffffe);
2097
		card->broadcast_channel_auto_allocated = true;
2098 2099
	}

2100 2101 2102 2103
	/* Get implemented bits of the priority arbitration request counter. */
	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
	reg_write(ohci, OHCI1394_FairnessControl, 0);
2104
	card->priority_budget_implemented = ohci->pri_req_max != 0;
2105 2106 2107 2108 2109

	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);

2110 2111 2112
	ret = configure_1394a_enhancements(ohci);
	if (ret < 0)
		return ret;
2113

2114
	/* Activate link_on bit and contender bit in our self ID packets.*/
2115 2116 2117
	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
	if (ret < 0)
		return ret;
2118

2119 2120
	/*
	 * When the link is not yet enabled, the atomic config rom
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

2138 2139 2140 2141 2142 2143 2144
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
2145

2146
		copy_config_rom(ohci->next_config_rom, config_rom, length);
2147 2148 2149 2150 2151 2152 2153 2154
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
2155

2156
	ohci->next_header = ohci->next_config_rom[0];
2157 2158
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2159 2160
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
2161 2162 2163 2164
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

2165 2166
	if (!(ohci->quirks & QUIRK_NO_MSI))
		pci_enable_msi(dev);
2167
	if (request_irq(dev->irq, irq_handler,
2168 2169 2170 2171
			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
			ohci_driver_name, ohci)) {
		fw_error("Failed to allocate interrupt %d.\n", dev->irq);
		pci_disable_msi(dev);
2172 2173 2174 2175 2176
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

2177 2178 2179 2180 2181 2182
	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		OHCI1394_RQPkt | OHCI1394_RSPkt |
		OHCI1394_isochTx | OHCI1394_isochRx |
		OHCI1394_postedWriteErr |
		OHCI1394_selfIDComplete |
		OHCI1394_regAccessFail |
2183
		OHCI1394_cycle64Seconds |
2184 2185 2186
		OHCI1394_cycleInconsistent |
		OHCI1394_unrecoverableError |
		OHCI1394_cycleTooLong |
2187 2188 2189 2190 2191
		OHCI1394_masterIntEnable;
	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
		irqs |= OHCI1394_busReset;
	reg_write(ohci, OHCI1394_IntMaskSet, irqs);

2192 2193 2194
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
2195 2196 2197 2198 2199 2200

	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_rcvPhyPkt);

	ar_context_run(&ohci->ar_request_ctx);
2201 2202 2203
	ar_context_run(&ohci->ar_response_ctx);

	flush_writes(ohci);
2204

2205 2206
	/* We are ready to go, reset bus to finish initialization. */
	fw_schedule_bus_reset(&ohci->card, false, true);
2207 2208 2209 2210

	return 0;
}

2211
static int ohci_set_config_rom(struct fw_card *card,
2212
			       const __be32 *config_rom, size_t length)
2213 2214 2215 2216
{
	struct fw_ohci *ohci;
	unsigned long flags;
	__be32 *next_config_rom;
2217
	dma_addr_t uninitialized_var(next_config_rom_bus);
2218 2219 2220

	ohci = fw_ohci(card);

2221 2222
	/*
	 * When the OHCI controller is enabled, the config rom update
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
	/*
	 * If there is not an already pending config_rom update,
	 * push our new allocation into the ohci->next_config_rom
	 * and then mark the local variable as null so that we
	 * won't deallocate the new buffer.
	 *
	 * OTOH, if there is a pending config_rom update, just
	 * use that buffer with the new config_rom data, and
	 * let this routine free the unused DMA allocation.
	 */

2267 2268 2269
	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;
2270 2271
		next_config_rom = NULL;
	}
2272

2273
	copy_config_rom(ohci->next_config_rom, config_rom, length);
2274

2275 2276
	ohci->next_header = config_rom[0];
	ohci->next_config_rom[0] = 0;
2277

2278
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2279 2280 2281

	spin_unlock_irqrestore(&ohci->lock, flags);

2282 2283 2284 2285 2286
	/* If we didn't use the DMA allocation, delete it. */
	if (next_config_rom != NULL)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);

2287 2288
	/*
	 * Now initiate a bus reset to have the changes take
2289 2290 2291
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
2292 2293
	 * takes effect.
	 */
2294

2295 2296 2297
	fw_schedule_bus_reset(&ohci->card, true, true);

	return 0;
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

2314 2315 2316
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
2317 2318
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
2319
	int ret = -ENOENT;
2320

2321
	tasklet_disable(&ctx->tasklet);
2322

2323 2324
	if (packet->ack != 0)
		goto out;
2325

2326
	if (packet->payload_mapped)
2327 2328 2329
		dma_unmap_single(ohci->card.device, packet->payload_bus,
				 packet->payload_length, DMA_TO_DEVICE);

2330
	log_ar_at_event('T', packet->speed, packet->header, 0x20);
2331 2332 2333
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
2334
	ret = 0;
2335 2336
 out:
	tasklet_enable(&ctx->tasklet);
2337

2338
	return ret;
2339 2340
}

2341 2342
static int ohci_enable_phys_dma(struct fw_card *card,
				int node_id, int generation)
2343
{
2344 2345 2346
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	return 0;
#else
2347 2348
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
2349
	int n, ret = 0;
2350

2351 2352 2353 2354
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
2355 2356 2357 2358

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
2359
		ret = -ESTALE;
2360 2361 2362
		goto out;
	}

2363 2364 2365 2366
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
2367 2368 2369 2370 2371 2372 2373

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

2374 2375
	flush_writes(ohci);
 out:
2376
	spin_unlock_irqrestore(&ohci->lock, flags);
2377 2378

	return ret;
2379
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2380
}
S
Stefan Richter 已提交
2381

2382
static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2383
{
2384
	struct fw_ohci *ohci = fw_ohci(card);
2385 2386
	unsigned long flags;
	u32 value;
2387 2388

	switch (csr_offset) {
2389 2390 2391 2392 2393
	case CSR_STATE_CLEAR:
	case CSR_STATE_SET:
		if (ohci->is_root &&
		    (reg_read(ohci, OHCI1394_LinkControlSet) &
		     OHCI1394_LinkControl_cycleMaster))
2394
			value = CSR_STATE_BIT_CMSTR;
2395
		else
2396 2397 2398
			value = 0;
		if (ohci->csr_state_setclear_abdicate)
			value |= CSR_STATE_BIT_ABDICATE;
2399

2400
		return value;
2401

2402 2403 2404
	case CSR_NODE_IDS:
		return reg_read(ohci, OHCI1394_NodeID) << 16;

2405 2406 2407
	case CSR_CYCLE_TIME:
		return get_cycle_time(ohci);

2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
	case CSR_BUS_TIME:
		/*
		 * We might be called just after the cycle timer has wrapped
		 * around but just before the cycle64Seconds handler, so we
		 * better check here, too, if the bus time needs to be updated.
		 */
		spin_lock_irqsave(&ohci->lock, flags);
		value = update_bus_time(ohci);
		spin_unlock_irqrestore(&ohci->lock, flags);
		return value;

2419 2420 2421 2422
	case CSR_BUSY_TIMEOUT:
		value = reg_read(ohci, OHCI1394_ATRetries);
		return (value >> 4) & 0x0ffff00f;

2423 2424 2425 2426
	case CSR_PRIORITY_BUDGET:
		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
			(ohci->pri_req_max << 8);

2427 2428 2429 2430
	default:
		WARN_ON(1);
		return 0;
	}
2431 2432
}

2433
static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2434 2435
{
	struct fw_ohci *ohci = fw_ohci(card);
2436
	unsigned long flags;
2437

2438
	switch (csr_offset) {
2439 2440 2441 2442 2443 2444
	case CSR_STATE_CLEAR:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlClear,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2445 2446
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = false;
2447
		break;
2448

2449 2450 2451 2452 2453 2454
	case CSR_STATE_SET:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlSet,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2455 2456
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = true;
2457
		break;
2458

2459 2460 2461 2462 2463
	case CSR_NODE_IDS:
		reg_write(ohci, OHCI1394_NodeID, value >> 16);
		flush_writes(ohci);
		break;

2464 2465 2466 2467 2468 2469 2470
	case CSR_CYCLE_TIME:
		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
		reg_write(ohci, OHCI1394_IntEventSet,
			  OHCI1394_cycleInconsistent);
		flush_writes(ohci);
		break;

2471 2472 2473 2474 2475 2476
	case CSR_BUS_TIME:
		spin_lock_irqsave(&ohci->lock, flags);
		ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
		spin_unlock_irqrestore(&ohci->lock, flags);
		break;

2477 2478 2479 2480 2481 2482 2483
	case CSR_BUSY_TIMEOUT:
		value = (value & 0xf) | ((value & 0xf) << 4) |
			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
		reg_write(ohci, OHCI1394_ATRetries, value);
		flush_writes(ohci);
		break;

2484 2485 2486 2487 2488
	case CSR_PRIORITY_BUDGET:
		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
		flush_writes(ohci);
		break;

2489 2490 2491 2492
	default:
		WARN_ON(1);
		break;
	}
2493 2494
}

2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
static void copy_iso_headers(struct iso_context *ctx, void *p)
{
	int i = ctx->header_length;

	if (i + ctx->base.header_size > PAGE_SIZE)
		return;

	/*
	 * The iso header is byteswapped to little endian by
	 * the controller, but the remaining header quadlets
	 * are big endian.  We want to present all the headers
	 * as big endian, so we have to swap the first quadlet.
	 */
	if (ctx->base.header_size > 0)
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
	if (ctx->base.header_size > 4)
		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
	if (ctx->base.header_size > 8)
		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
	ctx->header_length += ctx->base.header_size;
}

2517 2518 2519 2520 2521 2522
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2523
	struct descriptor *pd;
2524
	__le32 *ir_header;
2525
	void *p;
2526

2527
	for (pd = d; pd <= last; pd++)
2528 2529 2530
		if (pd->transfer_status)
			break;
	if (pd > last)
2531 2532 2533
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

2534 2535
	p = last + 1;
	copy_iso_headers(ctx, p);
2536

2537 2538
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) p;
2539 2540 2541 2542
		ctx->base.callback.sc(&ctx->base,
				      le32_to_cpu(ir_header[0]) & 0xffff,
				      ctx->header_length, ctx->header,
				      ctx->base.callback_data);
2543 2544 2545 2546 2547 2548
		ctx->header_length = 0;
	}

	return 1;
}

2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
/* d == last because each descriptor block is only a single descriptor. */
static int handle_ir_buffer_fill(struct context *context,
				 struct descriptor *d,
				 struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);

	if (!last->transfer_status)
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
		ctx->base.callback.mc(&ctx->base,
				      le32_to_cpu(last->data_address) +
				      le16_to_cpu(last->req_count) -
				      le16_to_cpu(last->res_count),
				      ctx->base.callback_data);

	return 1;
}

2571 2572 2573
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
2574
{
2575 2576
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2577 2578
	int i;
	struct descriptor *pd;
S
Stefan Richter 已提交
2579

2580 2581 2582 2583 2584
	for (pd = d; pd <= last; pd++)
		if (pd->transfer_status)
			break;
	if (pd > last)
		/* Descriptor(s) not done yet, stop iteration */
2585 2586
		return 0;

2587 2588 2589 2590 2591 2592 2593 2594 2595
	i = ctx->header_length;
	if (i + 4 < PAGE_SIZE) {
		/* Present this value as big-endian to match the receive code */
		*(__be32 *)(ctx->header + i) = cpu_to_be32(
				((u32)le16_to_cpu(pd->transfer_status) << 16) |
				le16_to_cpu(pd->res_count));
		ctx->header_length += 4;
	}
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2596 2597 2598
		ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
				      ctx->header_length, ctx->header,
				      ctx->base.callback_data);
2599 2600
		ctx->header_length = 0;
	}
2601
	return 1;
2602 2603
}

2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
{
	u32 hi = channels >> 32, lo = channels;

	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
	mmiowb();
	ohci->mc_channels = channels;
}

2616
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2617
				int type, int channel, size_t header_size)
2618 2619
{
	struct fw_ohci *ohci = fw_ohci(card);
2620 2621 2622 2623
	struct iso_context *uninitialized_var(ctx);
	descriptor_callback_t uninitialized_var(callback);
	u64 *uninitialized_var(channels);
	u32 *uninitialized_var(mask), uninitialized_var(regs);
2624
	unsigned long flags;
2625
	int index, ret = -EBUSY;
2626

2627
	spin_lock_irqsave(&ohci->lock, flags);
2628

2629 2630 2631
	switch (type) {
	case FW_ISO_CONTEXT_TRANSMIT:
		mask     = &ohci->it_context_mask;
2632
		callback = handle_it_packet;
2633 2634 2635 2636 2637 2638 2639 2640 2641
		index    = ffs(*mask) - 1;
		if (index >= 0) {
			*mask &= ~(1 << index);
			regs = OHCI1394_IsoXmitContextBase(index);
			ctx  = &ohci->it_context_list[index];
		}
		break;

	case FW_ISO_CONTEXT_RECEIVE:
2642
		channels = &ohci->ir_context_channels;
2643
		mask     = &ohci->ir_context_mask;
2644
		callback = handle_ir_packet_per_buffer;
2645 2646 2647 2648 2649 2650 2651 2652
		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
		if (index >= 0) {
			*channels &= ~(1ULL << channel);
			*mask     &= ~(1 << index);
			regs = OHCI1394_IsoRcvContextBase(index);
			ctx  = &ohci->ir_context_list[index];
		}
		break;
2653

2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		mask     = &ohci->ir_context_mask;
		callback = handle_ir_buffer_fill;
		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
		if (index >= 0) {
			ohci->mc_allocated = true;
			*mask &= ~(1 << index);
			regs = OHCI1394_IsoRcvContextBase(index);
			ctx  = &ohci->ir_context_list[index];
		}
		break;

	default:
		index = -1;
		ret = -ENOSYS;
2669
	}
2670

2671 2672 2673
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
2674
		return ERR_PTR(ret);
S
Stefan Richter 已提交
2675

2676
	memset(ctx, 0, sizeof(*ctx));
2677 2678
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
2679 2680
	if (ctx->header == NULL) {
		ret = -ENOMEM;
2681
		goto out;
2682
	}
2683 2684
	ret = context_init(&ctx->context, ohci, regs, callback);
	if (ret < 0)
2685
		goto out_with_header;
2686

2687 2688 2689
	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
		set_multichannel_mask(ohci, 0);

2690
	return &ctx->base;
2691 2692 2693 2694 2695

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705

	switch (type) {
	case FW_ISO_CONTEXT_RECEIVE:
		*channels |= 1ULL << channel;
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		ohci->mc_allocated = false;
		break;
	}
2706
	*mask |= 1 << index;
2707

2708 2709
	spin_unlock_irqrestore(&ohci->lock, flags);

2710
	return ERR_PTR(ret);
2711 2712
}

2713 2714
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
2715
{
S
Stefan Richter 已提交
2716
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2717
	struct fw_ohci *ohci = ctx->context.ohci;
2718
	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2719 2720
	int index;

2721 2722 2723 2724
	/* the controller cannot start without any queued packets */
	if (ctx->context.last->branch_address == 0)
		return -ENODATA;

2725 2726
	switch (ctx->base.type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2727
		index = ctx - ohci->it_context_list;
2728 2729 2730
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2731
				(cycle & 0x7fff) << 16;
2732

2733 2734
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2735
		context_run(&ctx->context, match);
2736 2737 2738 2739 2740 2741
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
		/* fall through */
	case FW_ISO_CONTEXT_RECEIVE:
2742
		index = ctx - ohci->ir_context_list;
2743 2744 2745 2746 2747
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
2748

2749 2750
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2751
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2752
		context_run(&ctx->context, control);
2753 2754 2755 2756

		ctx->sync = sync;
		ctx->tags = tags;

2757
		break;
2758
	}
2759 2760 2761 2762

	return 0;
}

2763 2764 2765
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2766
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2767 2768
	int index;

2769 2770
	switch (ctx->base.type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2771 2772
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2773 2774 2775 2776
		break;

	case FW_ISO_CONTEXT_RECEIVE:
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2777 2778
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2779
		break;
2780 2781 2782
	}
	flush_writes(ohci);
	context_stop(&ctx->context);
2783
	tasklet_kill(&ctx->context.tasklet);
2784 2785 2786 2787

	return 0;
}

2788 2789 2790
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2791
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2792 2793 2794
	unsigned long flags;
	int index;

2795 2796
	ohci_stop_iso(base);
	context_release(&ctx->context);
2797
	free_page((unsigned long)ctx->header);
2798

2799 2800
	spin_lock_irqsave(&ohci->lock, flags);

2801 2802
	switch (base->type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2803 2804
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
2805 2806 2807
		break;

	case FW_ISO_CONTEXT_RECEIVE:
2808 2809
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
2810
		ohci->ir_context_channels |= 1ULL << base->channel;
2811 2812 2813 2814 2815 2816 2817 2818 2819
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
		ohci->ir_context_channels |= ohci->mc_channels;
		ohci->mc_channels = 0;
		ohci->mc_allocated = false;
		break;
2820 2821 2822 2823 2824
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
	unsigned long flags;
	int ret;

	switch (base->type) {
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:

		spin_lock_irqsave(&ohci->lock, flags);

		/* Don't allow multichannel to grab other contexts' channels. */
		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
			*channels = ohci->ir_context_channels;
			ret = -EBUSY;
		} else {
			set_multichannel_mask(ohci, *channels);
			ret = 0;
		}

		spin_unlock_irqrestore(&ohci->lock, flags);

		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

2855 2856 2857 2858 2859 2860 2861 2862
#ifdef CONFIG_PM
static void ohci_resume_iso_dma(struct fw_ohci *ohci)
{
	int i;
	struct iso_context *ctx;

	for (i = 0 ; i < ohci->n_ir ; i++) {
		ctx = &ohci->ir_context_list[i];
2863
		if (ctx->context.running)
2864 2865 2866 2867 2868
			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
	}

	for (i = 0 ; i < ohci->n_it ; i++) {
		ctx = &ohci->it_context_list[i];
2869
		if (ctx->context.running)
2870 2871 2872 2873 2874
			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
	}
}
#endif

2875 2876 2877 2878
static int queue_iso_transmit(struct iso_context *ctx,
			      struct fw_iso_packet *packet,
			      struct fw_iso_buffer *buffer,
			      unsigned long payload)
2879
{
2880
	struct descriptor *d, *last, *pd;
2881 2882
	struct fw_iso_packet *p;
	__le32 *header;
2883
	dma_addr_t d_bus, page_bus;
2884 2885
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
2886
	int page, end_page, i, length, offset;
2887 2888

	p = packet;
2889
	payload_index = payload;
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
2908
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2909

2910 2911 2912
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
2913 2914

	if (!p->skip) {
2915
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2916
		d[0].req_count = cpu_to_le16(8);
2917 2918 2919 2920 2921 2922 2923 2924
		/*
		 * Link the skip address to this descriptor itself.  This causes
		 * a context to skip a cycle whenever lost cycles or FIFO
		 * overruns occur, without dropping the data.  The application
		 * should then decide whether this is an error condition or not.
		 * FIXME:  Make the context's cycle-lost behaviour configurable?
		 */
		d[0].branch_address = cpu_to_le32(d_bus | z);
2925 2926

		header = (__le32 *) &d[1];
2927 2928 2929 2930 2931
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
2932
		header[1] =
2933
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2934 2935 2936 2937 2938
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
2939
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
2952 2953 2954

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
2955 2956 2957 2958 2959

		payload_index += length;
	}

	if (p->interrupt)
2960
		irq = DESCRIPTOR_IRQ_ALWAYS;
2961
	else
2962
		irq = DESCRIPTOR_NO_IRQ;
2963

2964
	last = z == 2 ? d : d + z - 1;
2965 2966 2967
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
2968
				     irq);
2969

2970
	context_append(&ctx->context, d, z, header_z);
2971 2972 2973

	return 0;
}
S
Stefan Richter 已提交
2974

2975 2976 2977 2978
static int queue_iso_packet_per_buffer(struct iso_context *ctx,
				       struct fw_iso_packet *packet,
				       struct fw_iso_buffer *buffer,
				       unsigned long payload)
2979
{
2980
	struct descriptor *d, *pd;
2981 2982
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
2983 2984
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
2985 2986

	/*
2987 2988
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
2989
	 */
2990
	packet_count = packet->header_length / ctx->base.header_size;
2991
	header_size  = max(ctx->base.header_size, (size_t)8);
2992 2993 2994 2995 2996

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
2997
	payload_per_buffer = packet->payload_length / packet_count;
2998 2999 3000

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
3001
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3002
		d = context_get_descriptors(&ctx->context,
3003
				z + header_z, &d_bus);
3004 3005 3006
		if (d == NULL)
			return -ENOMEM;

3007 3008
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
3009
		if (packet->skip && i == 0)
3010
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3011 3012
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
3013
		d->transfer_status = 0;
3014 3015
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

3016
		rest = payload_per_buffer;
3017
		pd = d;
3018
		for (j = 1; j < z; j++) {
3019
			pd++;
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
3039 3040 3041
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
3042
		if (packet->interrupt && i == packet_count - 1)
3043 3044 3045 3046 3047 3048 3049 3050
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
static int queue_iso_buffer_fill(struct iso_context *ctx,
				 struct fw_iso_packet *packet,
				 struct fw_iso_buffer *buffer,
				 unsigned long payload)
{
	struct descriptor *d;
	dma_addr_t d_bus, page_bus;
	int page, offset, rest, z, i, length;

	page   = payload >> PAGE_SHIFT;
	offset = payload & ~PAGE_MASK;
	rest   = packet->payload_length;

	/* We need one descriptor for each page in the buffer. */
	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);

	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
		return -EFAULT;

	for (i = 0; i < z; i++) {
		d = context_get_descriptors(&ctx->context, 1, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
					 DESCRIPTOR_BRANCH_ALWAYS);
		if (packet->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
		if (packet->interrupt && i == z - 1)
			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		if (offset + rest < PAGE_SIZE)
			length = rest;
		else
			length = PAGE_SIZE - offset;
		d->req_count = cpu_to_le16(length);
		d->res_count = d->req_count;
		d->transfer_status = 0;

		page_bus = page_private(buffer->pages[page]);
		d->data_address = cpu_to_le32(page_bus + offset);

		rest -= length;
		offset = 0;
		page++;

		context_append(&ctx->context, d, 1, 0);
	}

	return 0;
}

3103 3104 3105 3106
static int ohci_queue_iso(struct fw_iso_context *base,
			  struct fw_iso_packet *packet,
			  struct fw_iso_buffer *buffer,
			  unsigned long payload)
3107
{
3108
	struct iso_context *ctx = container_of(base, struct iso_context, base);
3109
	unsigned long flags;
3110
	int ret = -ENOSYS;
3111

3112
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
	switch (base->type) {
	case FW_ISO_CONTEXT_TRANSMIT:
		ret = queue_iso_transmit(ctx, packet, buffer, payload);
		break;
	case FW_ISO_CONTEXT_RECEIVE:
		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
		break;
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
		break;
	}
3124 3125
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

3126
	return ret;
3127 3128
}

3129 3130 3131 3132 3133 3134 3135 3136
static void ohci_flush_queue_iso(struct fw_iso_context *base)
{
	struct context *ctx =
			&container_of(base, struct iso_context, base)->context;

	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
}

3137
static const struct fw_card_driver ohci_driver = {
3138
	.enable			= ohci_enable,
3139
	.read_phy_reg		= ohci_read_phy_reg,
3140 3141 3142 3143
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
3144
	.cancel_packet		= ohci_cancel_packet,
3145
	.enable_phys_dma	= ohci_enable_phys_dma,
3146 3147
	.read_csr		= ohci_read_csr,
	.write_csr		= ohci_write_csr,
3148 3149 3150

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
3151
	.set_iso_channels	= ohci_set_iso_channels,
3152
	.queue_iso		= ohci_queue_iso,
3153
	.flush_queue_iso	= ohci_flush_queue_iso,
3154
	.start_iso		= ohci_start_iso,
3155
	.stop_iso		= ohci_stop_iso,
3156 3157
};

3158
#ifdef CONFIG_PPC_PMAC
3159
static void pmac_ohci_on(struct pci_dev *dev)
3160
{
3161 3162 3163 3164 3165 3166 3167 3168
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
3169 3170
}

3171
static void pmac_ohci_off(struct pci_dev *dev)
3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
{
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
}
#else
3183 3184
static inline void pmac_ohci_on(struct pci_dev *dev) {}
static inline void pmac_ohci_off(struct pci_dev *dev) {}
3185 3186
#endif /* CONFIG_PPC_PMAC */

3187 3188
static int __devinit pci_probe(struct pci_dev *dev,
			       const struct pci_device_id *ent)
3189 3190
{
	struct fw_ohci *ohci;
3191
	u32 bus_options, max_receive, link_speed, version;
3192
	u64 guid;
3193
	int i, err;
3194 3195
	size_t size;

3196
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3197
	if (ohci == NULL) {
3198 3199
		err = -ENOMEM;
		goto fail;
3200 3201 3202 3203
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

3204
	pmac_ohci_on(dev);
3205

3206 3207
	err = pci_enable_device(dev);
	if (err) {
3208
		fw_error("Failed to enable OHCI hardware\n");
3209
		goto fail_free;
3210 3211 3212 3213 3214 3215 3216
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);
3217
	mutex_init(&ohci->phy_reg_mutex);
3218 3219 3220 3221

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

3222 3223
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
3224
		fw_error("MMIO resource unavailable\n");
3225
		goto fail_disable;
3226 3227 3228 3229 3230
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
3231 3232
		err = -ENXIO;
		goto fail_iomem;
3233 3234
	}

3235
	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3236 3237 3238 3239 3240
		if ((ohci_quirks[i].vendor == dev->vendor) &&
		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
		     ohci_quirks[i].device == dev->device) &&
		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
		     ohci_quirks[i].revision >= dev->revision)) {
3241 3242 3243
			ohci->quirks = ohci_quirks[i].flags;
			break;
		}
3244 3245
	if (param_quirks)
		ohci->quirks = param_quirks;
3246

3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
	/*
	 * Because dma_alloc_coherent() allocates at least one page,
	 * we save space by using a common buffer for the AR request/
	 * response descriptors and the self IDs buffer.
	 */
	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
	ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
					       PAGE_SIZE,
					       &ohci->misc_buffer_bus,
					       GFP_KERNEL);
	if (!ohci->misc_buffer) {
		err = -ENOMEM;
		goto fail_iounmap;
	}

	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3264 3265
			      OHCI1394_AsReqRcvContextControlSet);
	if (err < 0)
3266
		goto fail_misc_buf;
3267

3268
	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3269 3270 3271
			      OHCI1394_AsRspRcvContextControlSet);
	if (err < 0)
		goto fail_arreq_ctx;
3272

3273 3274 3275 3276
	err = context_init(&ohci->at_request_ctx, ohci,
			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
	if (err < 0)
		goto fail_arrsp_ctx;
3277

3278 3279 3280 3281
	err = context_init(&ohci->at_response_ctx, ohci,
			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
	if (err < 0)
		goto fail_atreq_ctx;
3282 3283

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3284
	ohci->ir_context_channels = ~0ULL;
3285
	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3286
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3287
	ohci->ir_context_mask = ohci->ir_context_support;
3288 3289
	ohci->n_ir = hweight32(ohci->ir_context_mask);
	size = sizeof(struct iso_context) * ohci->n_ir;
3290
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3291 3292

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3293
	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3294
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3295
	ohci->it_context_mask = ohci->it_context_support;
3296 3297
	ohci->n_it = hweight32(ohci->it_context_mask);
	size = sizeof(struct iso_context) * ohci->n_it;
3298
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3299 3300

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3301
		err = -ENOMEM;
3302
		goto fail_contexts;
3303 3304
	}

3305 3306
	ohci->self_id_cpu = ohci->misc_buffer     + PAGE_SIZE/2;
	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3307 3308 3309 3310 3311 3312 3313

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

3314
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3315
	if (err)
3316
		goto fail_contexts;
3317

3318 3319 3320 3321
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
		  "%d IR + %d IT contexts, quirks 0x%x\n",
		  dev_name(&dev->dev), version >> 16, version & 0xff,
3322
		  ohci->n_ir, ohci->n_it, ohci->quirks);
3323

3324
	return 0;
3325

3326
 fail_contexts:
3327
	kfree(ohci->ir_context_list);
3328 3329
	kfree(ohci->it_context_list);
	context_release(&ohci->at_response_ctx);
3330
 fail_atreq_ctx:
3331
	context_release(&ohci->at_request_ctx);
3332
 fail_arrsp_ctx:
3333
	ar_context_release(&ohci->ar_response_ctx);
3334
 fail_arreq_ctx:
3335
	ar_context_release(&ohci->ar_request_ctx);
3336 3337 3338
 fail_misc_buf:
	dma_free_coherent(ohci->card.device, PAGE_SIZE,
			  ohci->misc_buffer, ohci->misc_buffer_bus);
3339
 fail_iounmap:
3340 3341 3342 3343 3344
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
3345
 fail_free:
3346
	kfree(ohci);
3347
	pmac_ohci_off(dev);
3348 3349 3350
 fail:
	if (err == -ENOMEM)
		fw_error("Out of memory\n");
3351 3352

	return err;
3353 3354 3355 3356 3357 3358 3359
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
3360 3361
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
3362 3363
	fw_core_remove_card(&ohci->card);

3364 3365 3366 3367
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
3368 3369 3370

	software_reset(ohci);
	free_irq(dev->irq, ohci);
3371 3372 3373 3374 3375 3376 3377 3378 3379

	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->next_config_rom, ohci->next_config_rom_bus);
	if (ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
	ar_context_release(&ohci->ar_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
3380 3381
	dma_free_coherent(ohci->card.device, PAGE_SIZE,
			  ohci->misc_buffer, ohci->misc_buffer_bus);
3382 3383
	context_release(&ohci->at_request_ctx);
	context_release(&ohci->at_response_ctx);
3384 3385
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
3386
	pci_disable_msi(dev);
3387 3388 3389
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
3390
	kfree(ohci);
3391
	pmac_ohci_off(dev);
3392

3393 3394 3395
	fw_notify("Removed fw-ohci device.\n");
}

3396
#ifdef CONFIG_PM
3397
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3398
{
3399
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3400 3401 3402
	int err;

	software_reset(ohci);
3403
	free_irq(dev->irq, ohci);
3404
	pci_disable_msi(dev);
3405
	err = pci_save_state(dev);
3406
	if (err) {
3407
		fw_error("pci_save_state failed\n");
3408 3409
		return err;
	}
3410
	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3411 3412
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
3413
	pmac_ohci_off(dev);
3414

3415 3416 3417
	return 0;
}

3418
static int pci_resume(struct pci_dev *dev)
3419
{
3420
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3421 3422
	int err;

3423
	pmac_ohci_on(dev);
3424 3425 3426
	pci_set_power_state(dev, PCI_D0);
	pci_restore_state(dev);
	err = pci_enable_device(dev);
3427
	if (err) {
3428
		fw_error("pci_enable_device failed\n");
3429 3430 3431
		return err;
	}

3432 3433 3434 3435 3436 3437 3438
	/* Some systems don't setup GUID register on resume from ram  */
	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
					!reg_read(ohci, OHCI1394_GUIDHi)) {
		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
	}

3439 3440 3441 3442 3443
	err = ohci_enable(&ohci->card, NULL, 0);
	if (err)
		return err;

	ohci_resume_iso_dma(ohci);
3444

3445
	return 0;
3446 3447 3448
}
#endif

3449
static const struct pci_device_id pci_table[] = {
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
3461 3462 3463 3464
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
3465 3466 3467 3468 3469 3470
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

3471 3472 3473 3474 3475
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);