ohci.c 90.9 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/bug.h>
22
#include <linux/compiler.h>
23
#include <linux/delay.h>
S
Stefan Richter 已提交
24
#include <linux/device.h>
A
Andrew Morton 已提交
25
#include <linux/dma-mapping.h>
26
#include <linux/firewire.h>
S
Stefan Richter 已提交
27
#include <linux/firewire-constants.h>
28 29
#include <linux/init.h>
#include <linux/interrupt.h>
S
Stefan Richter 已提交
30
#include <linux/io.h>
31
#include <linux/kernel.h>
S
Stefan Richter 已提交
32
#include <linux/list.h>
A
Al Viro 已提交
33
#include <linux/mm.h>
34
#include <linux/module.h>
35
#include <linux/moduleparam.h>
36
#include <linux/mutex.h>
37
#include <linux/pci.h>
38
#include <linux/pci_ids.h>
39
#include <linux/slab.h>
S
Stefan Richter 已提交
40
#include <linux/spinlock.h>
S
Stefan Richter 已提交
41
#include <linux/string.h>
42
#include <linux/time.h>
43
#include <linux/vmalloc.h>
A
Andrew Morton 已提交
44

S
Stefan Richter 已提交
45
#include <asm/byteorder.h>
S
Stefan Richter 已提交
46
#include <asm/page.h>
47
#include <asm/system.h>
48

49 50 51 52
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

53 54
#include "core.h"
#include "ohci.h"
55

56 57 58 59 60 61 62 63 64 65 66 67 68
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
69 70 71 72 73 74 75 76 77 78

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

79 80 81 82
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
83

84 85 86 87 88 89 90 91
#define AR_BUFFER_SIZE	(32*1024)
#define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
/* we need at least two pages for proper list management */
#define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)

#define MAX_ASYNC_PAYLOAD	4096
#define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
#define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
92

93 94
struct ar_context {
	struct fw_ohci *ohci;
95 96 97 98
	struct page *pages[AR_BUFFERS];
	void *buffer;
	struct descriptor *descriptors;
	dma_addr_t descriptors_bus;
99
	void *pointer;
100
	unsigned int last_buffer_index;
101
	u32 regs;
102 103 104
	struct tasklet_struct tasklet;
};

105 106 107 108 109
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
110 111 112 113 114 115 116 117 118 119 120 121 122

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

123
struct context {
S
Stefan Richter 已提交
124
	struct fw_ohci *ohci;
125
	u32 regs;
126
	int total_allocation;
S
Stefan Richter 已提交
127

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
	 * The last descriptor in the DMA program.  It contains the branch
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
152 153 154

	descriptor_callback_t callback;

S
Stefan Richter 已提交
155
	struct tasklet_struct tasklet;
156 157
};

158 159 160 161 162 163
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
164 165 166

struct iso_context {
	struct fw_iso_context base;
167
	struct context context;
168
	int excess_bytes;
169 170
	void *header;
	size_t header_length;
171 172 173 174 175 176 177 178
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

	__iomem char *registers;
179
	int node_id;
180
	int generation;
181
	int request_generation;	/* for timestamping incoming requests */
182
	unsigned quirks;
183
	unsigned int pri_req_max;
184
	u32 bus_time;
185
	bool is_root;
186
	bool csr_state_setclear_abdicate;
187

188 189 190 191
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
192 193
	spinlock_t lock;

194 195
	struct mutex phy_reg_mutex;

196 197 198
	void *misc_buffer;
	dma_addr_t misc_buffer_bus;

199 200
	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
201 202
	struct context at_request_ctx;
	struct context at_response_ctx;
203

204
	u32 it_context_mask;     /* unoccupied IT contexts */
205
	struct iso_context *it_context_list;
206 207
	u64 ir_context_channels; /* unoccupied channels */
	u32 ir_context_mask;     /* unoccupied IR contexts */
208
	struct iso_context *ir_context_list;
209 210
	u64 mc_channels; /* channels in use by the multichannel IR context */
	bool mc_allocated;
211 212 213 214 215 216 217 218 219 220 221 222

	__be32    *config_rom;
	dma_addr_t config_rom_bus;
	__be32    *next_config_rom;
	dma_addr_t next_config_rom_bus;
	__be32     next_header;

	__le32    *self_id_cpu;
	dma_addr_t self_id_bus;
	struct tasklet_struct bus_reset_tasklet;

	u32 self_id_buffer[512];
223 224
};

A
Adrian Bunk 已提交
225
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
226 227 228 229
{
	return container_of(card, struct fw_ohci, card);
}

230 231 232 233 234 235
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
236 237 238 239 240 241

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

242
#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
243 244 245 246 247 248 249
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
250
#define OHCI_TCODE_PHY_PACKET		0x0e
251
#define OHCI_VERSION_1_1		0x010010
252

253 254
static char ohci_driver_name[] = KBUILD_MODNAME;

255
#define PCI_DEVICE_ID_AGERE_FW643	0x5901
256
#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
257 258
#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009

259 260 261
#define QUIRK_CYCLE_TIMER		1
#define QUIRK_RESET_PACKET		2
#define QUIRK_BE_HEADERS		4
262
#define QUIRK_NO_1394A			8
263
#define QUIRK_NO_MSI			16
264 265 266

/* In case of multiple matches in ohci_quirks[], only the first one is used. */
static const struct {
267
	unsigned short vendor, device, revision, flags;
268
} ohci_quirks[] = {
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
		QUIRK_BE_HEADERS},

	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
		QUIRK_NO_MSI},

	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
		QUIRK_NO_MSI},

	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},

	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_RESET_PACKET},

	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
295 296
};

297 298 299 300 301 302 303
/* This overrides anything that was found in ohci_quirks[]. */
static int param_quirks;
module_param_named(quirks, param_quirks, int, 0644);
MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
	", AR/selfID endianess = "	__stringify(QUIRK_BE_HEADERS)
304
	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
305
	", disable MSI = "		__stringify(QUIRK_NO_MSI)
306 307
	")");

308
#define OHCI_PARAM_DEBUG_AT_AR		1
309
#define OHCI_PARAM_DEBUG_SELFIDS	2
310 311
#define OHCI_PARAM_DEBUG_IRQS		4
#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
312

313 314
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG

315 316 317 318
static int param_debug;
module_param_named(debug, param_debug, int, 0644);
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
319 320 321
	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
322 323 324 325
	", or a combination, or all = -1)");

static void log_irqs(u32 evt)
{
326 327 328 329 330 331
	if (likely(!(param_debug &
			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
		return;

	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
	    !(evt & OHCI1394_busReset))
332 333
		return;

334
	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
335 336 337 338 339 340 341 342 343
	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
	    evt & OHCI1394_isochRx		? " IR"			: "",
	    evt & OHCI1394_isochTx		? " IT"			: "",
	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
344
	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
345
	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
346 347 348 349 350 351
	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
	    evt & OHCI1394_busReset		? " busReset"		: "",
	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
		    OHCI1394_respTxComplete | OHCI1394_isochRx |
		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
352 353
		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
		    OHCI1394_cycleInconsistent |
354
		    OHCI1394_regAccessFail | OHCI1394_busReset)
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
						? " ?"			: "");
}

static const char *speed[] = {
	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
};
static const char *power[] = {
	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
};
static const char port[] = { '.', '-', 'p', 'c', };

static char _p(u32 *s, int shift)
{
	return port[*s >> shift & 3];
}

372
static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
373 374 375 376
{
	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
		return;

377 378
	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
		  self_id_count, generation, node_id);
379 380 381

	for (; self_id_count--; ++s)
		if ((*s & 1 << 23) == 0)
382 383 384 385 386 387
			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
			    "%s gc=%d %s %s%s%s\n",
			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
			    speed[*s >> 14 & 3], *s >> 16 & 63,
			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
388
		else
389 390 391 392
			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
			    *s, *s >> 24 & 63,
			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
}

static const char *evts[] = {
	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
	[0x10] = "-reserved-",		[0x11] = "ack_complete",
	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
	[0x18] = "-reserved-",		[0x19] = "-reserved-",
	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
	[0x20] = "pending/cancelled",
};
static const char *tcodes[] = {
	[0x0] = "QW req",		[0x1] = "BW req",
	[0x2] = "W resp",		[0x3] = "-reserved-",
	[0x4] = "QR req",		[0x5] = "BR req",
	[0x6] = "QR resp",		[0x7] = "BR resp",
	[0x8] = "cycle start",		[0x9] = "Lk req",
	[0xa] = "async stream packet",	[0xb] = "Lk resp",
	[0xc] = "-reserved-",		[0xd] = "-reserved-",
	[0xe] = "link internal",	[0xf] = "-reserved-",
};

static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
{
	int tcode = header[0] >> 4 & 0xf;
	char specific[12];

	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
		return;

	if (unlikely(evt >= ARRAY_SIZE(evts)))
			evt = 0x1f;

436
	if (evt == OHCI1394_evt_bus_reset) {
437 438
		fw_notify("A%c evt_bus_reset, generation %d\n",
		    dir, (header[2] >> 16) & 0xff);
439 440 441
		return;
	}

442 443 444 445 446 447 448 449 450 451 452 453 454 455
	switch (tcode) {
	case 0x0: case 0x6: case 0x8:
		snprintf(specific, sizeof(specific), " = %08x",
			 be32_to_cpu((__force __be32)header[3]));
		break;
	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
		snprintf(specific, sizeof(specific), " %x,%x",
			 header[3] >> 16, header[3] & 0xffff);
		break;
	default:
		specific[0] = '\0';
	}

	switch (tcode) {
456
	case 0xa:
457
		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
458
		break;
459 460 461 462
	case 0xe:
		fw_notify("A%c %s, PHY %08x %08x\n",
			  dir, evts[evt], header[1], header[2]);
		break;
463
	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
464 465 466 467 468 469
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s, %04x%08x%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
470 471
		break;
	default:
472 473 474 475 476 477
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], specific);
478 479 480 481 482
	}
}

#else

483 484 485 486
#define param_debug 0
static inline void log_irqs(u32 evt) {}
static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
487 488 489

#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */

A
Adrian Bunk 已提交
490
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
491 492 493 494
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
495
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
496 497 498 499
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
500
static inline void flush_writes(const struct fw_ohci *ohci)
501 502 503 504 505
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

506
static int read_phy_reg(struct fw_ohci *ohci, int addr)
507
{
508
	u32 val;
509
	int i;
510 511

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
512
	for (i = 0; i < 3 + 100; i++) {
513 514 515 516
		val = reg_read(ohci, OHCI1394_PhyControl);
		if (val & OHCI1394_PhyControl_ReadDone)
			return OHCI1394_PhyControl_ReadData(val);

517 518 519 520 521 522
		/*
		 * Try a few times without waiting.  Sleeping is necessary
		 * only when the link/PHY interface is busy.
		 */
		if (i >= 3)
			msleep(1);
523
	}
524
	fw_error("failed to read phy reg\n");
525

526 527
	return -EBUSY;
}
528

529 530 531
static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
{
	int i;
532 533

	reg_write(ohci, OHCI1394_PhyControl,
534
		  OHCI1394_PhyControl_Write(addr, val));
535
	for (i = 0; i < 3 + 100; i++) {
536 537 538
		val = reg_read(ohci, OHCI1394_PhyControl);
		if (!(val & OHCI1394_PhyControl_WritePending))
			return 0;
539

540 541
		if (i >= 3)
			msleep(1);
542 543 544 545
	}
	fw_error("failed to write phy reg\n");

	return -EBUSY;
546 547
}

548 549
static int update_phy_reg(struct fw_ohci *ohci, int addr,
			  int clear_bits, int set_bits)
550
{
551
	int ret = read_phy_reg(ohci, addr);
552 553
	if (ret < 0)
		return ret;
554

555 556 557 558 559 560 561
	/*
	 * The interrupt status bits are cleared by writing a one bit.
	 * Avoid clearing them unless explicitly requested in set_bits.
	 */
	if (addr == 5)
		clear_bits |= PHY_INT_STATUS_BITS;

562
	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
563 564
}

565
static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
566
{
567
	int ret;
568

569
	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
570 571
	if (ret < 0)
		return ret;
572

573
	return read_phy_reg(ohci, addr);
574 575
}

576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
static int ohci_read_phy_reg(struct fw_card *card, int addr)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = read_phy_reg(ohci, addr);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
}

static int ohci_update_phy_reg(struct fw_card *card, int addr,
			       int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
599 600
}

601 602 603 604 605 606
static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
{
	return page_private(ctx->pages[i]);
}

static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
607
{
608
	struct descriptor *d;
609

610 611 612 613
	d = &ctx->descriptors[index];
	d->branch_address  &= cpu_to_le32(~0xf);
	d->res_count       =  cpu_to_le16(PAGE_SIZE);
	d->transfer_status =  0;
614

615
	wmb(); /* finish init of new descriptors before branch_address update */
616 617 618 619
	d = &ctx->descriptors[ctx->last_buffer_index];
	d->branch_address  |= cpu_to_le32(1);

	ctx->last_buffer_index = index;
620

621
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
622
	flush_writes(ctx->ohci);
623 624
}

625
static void ar_context_release(struct ar_context *ctx)
626
{
627
	unsigned int i;
628

629 630
	if (ctx->buffer)
		vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
631

632 633 634 635 636 637 638
	for (i = 0; i < AR_BUFFERS; i++)
		if (ctx->pages[i]) {
			dma_unmap_page(ctx->ohci->card.device,
				       ar_buffer_bus(ctx, i),
				       PAGE_SIZE, DMA_FROM_DEVICE);
			__free_page(ctx->pages[i]);
		}
639 640
}

641
static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
642
{
643 644 645
	if (reg_read(ctx->ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
		reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
		flush_writes(ctx->ohci);
646

647
		fw_error("AR error: %s; DMA stopped\n", error_msg);
648
	}
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
	/* FIXME: restart? */
}

static inline unsigned int ar_next_buffer_index(unsigned int index)
{
	return (index + 1) % AR_BUFFERS;
}

static inline unsigned int ar_prev_buffer_index(unsigned int index)
{
	return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
}

static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
{
	return ar_next_buffer_index(ctx->last_buffer_index);
}

/*
 * We search for the buffer that contains the last AR packet DMA data written
 * by the controller.
 */
static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
						 unsigned int *buffer_offset)
{
	unsigned int i, next_i, last = ctx->last_buffer_index;
	__le16 res_count, next_res_count;

	i = ar_first_buffer_index(ctx);
	res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);

	/* A buffer that is not yet completely filled must be the last one. */
	while (i != last && res_count == 0) {

		/* Peek at the next descriptor. */
		next_i = ar_next_buffer_index(i);
		rmb(); /* read descriptors in order */
		next_res_count = ACCESS_ONCE(
				ctx->descriptors[next_i].res_count);
		/*
		 * If the next descriptor is still empty, we must stop at this
		 * descriptor.
		 */
		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
			/*
			 * The exception is when the DMA data for one packet is
			 * split over three buffers; in this case, the middle
			 * buffer's descriptor might be never updated by the
			 * controller and look still empty, and we have to peek
			 * at the third one.
			 */
			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
				next_i = ar_next_buffer_index(next_i);
				rmb();
				next_res_count = ACCESS_ONCE(
					ctx->descriptors[next_i].res_count);
				if (next_res_count != cpu_to_le16(PAGE_SIZE))
					goto next_buffer_is_active;
			}

			break;
		}

next_buffer_is_active:
		i = next_i;
		res_count = next_res_count;
	}

	rmb(); /* read res_count before the DMA data */

	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
	if (*buffer_offset > PAGE_SIZE) {
		*buffer_offset = 0;
		ar_context_abort(ctx, "corrupted descriptor");
	}

	return i;
}

static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
				    unsigned int end_buffer_index,
				    unsigned int end_buffer_offset)
{
	unsigned int i;

	i = ar_first_buffer_index(ctx);
	while (i != end_buffer_index) {
		dma_sync_single_for_cpu(ctx->ohci->card.device,
					ar_buffer_bus(ctx, i),
					PAGE_SIZE, DMA_FROM_DEVICE);
		i = ar_next_buffer_index(i);
	}
	if (end_buffer_offset > 0)
		dma_sync_single_for_cpu(ctx->ohci->card.device,
					ar_buffer_bus(ctx, i),
					end_buffer_offset, DMA_FROM_DEVICE);
745 746
}

747 748
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
749
	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
750 751 752 753
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

754
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
755 756
{
	struct fw_ohci *ohci = ctx->ohci;
757 758
	struct fw_packet p;
	u32 status, length, tcode;
759
	int evt;
760

761 762 763
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
764 765 766 767 768

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
769
		p.header[3] = (__force __u32) buffer[3];
770
		p.header_length = 16;
771
		p.payload_length = 0;
772 773 774
		break;

	case TCODE_READ_BLOCK_REQUEST :
775
		p.header[3] = cond_le32_to_cpu(buffer[3]);
776 777 778 779 780
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
781 782 783
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
784
		p.header[3] = cond_le32_to_cpu(buffer[3]);
785
		p.header_length = 16;
786
		p.payload_length = p.header[3] >> 16;
787 788 789 790
		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
			ar_context_abort(ctx, "invalid packet length");
			return NULL;
		}
791 792 793 794
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
795
	case OHCI_TCODE_PHY_PACKET:
796
		p.header_length = 12;
797
		p.payload_length = 0;
798
		break;
799 800

	default:
801 802
		ar_context_abort(ctx, "invalid tcode");
		return NULL;
803
	}
804

805 806 807 808
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
809
	status = cond_le32_to_cpu(buffer[length]);
810
	evt    = (status >> 16) & 0x1f;
811

812
	p.ack        = evt - 16;
813 814 815
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
816

817
	log_ar_at_event('R', p.speed, p.header, evt);
818

819
	/*
820 821 822 823 824 825 826 827 828
	 * Several controllers, notably from NEC and VIA, forget to
	 * write ack_complete status at PHY packet reception.
	 */
	if (evt == OHCI1394_evt_no_status &&
	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
		p.ack = ACK_COMPLETE;

	/*
	 * The OHCI bus reset handler synthesizes a PHY packet with
829 830 831 832 833
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
834
	 * request.
835 836 837 838
	 *
	 * Alas some chips sometimes emit bus reset packets with a
	 * wrong generation.  We set the correct generation for these
	 * at a slightly incorrect time (in bus_reset_tasklet).
839
	 */
840
	if (evt == OHCI1394_evt_bus_reset) {
841
		if (!(ohci->quirks & QUIRK_RESET_PACKET))
842 843
			ohci->request_generation = (p.header[2] >> 16) & 0xff;
	} else if (ctx == &ohci->ar_request_ctx) {
844
		fw_core_handle_request(&ohci->card, &p);
845
	} else {
846
		fw_core_handle_response(&ohci->card, &p);
847
	}
848

849 850
	return buffer + length + 1;
}
851

852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
{
	void *next;

	while (p < end) {
		next = handle_ar_packet(ctx, p);
		if (!next)
			return p;
		p = next;
	}

	return p;
}

static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
{
	unsigned int i;

	i = ar_first_buffer_index(ctx);
	while (i != end_buffer) {
		dma_sync_single_for_device(ctx->ohci->card.device,
					   ar_buffer_bus(ctx, i),
					   PAGE_SIZE, DMA_FROM_DEVICE);
		ar_context_link_page(ctx, i);
		i = ar_next_buffer_index(i);
	}
}

880 881 882
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
883 884
	unsigned int end_buffer_index, end_buffer_offset;
	void *p, *end;
885

886 887 888
	p = ctx->pointer;
	if (!p)
		return;
889

890 891 892 893
	end_buffer_index = ar_search_last_active_buffer(ctx,
							&end_buffer_offset);
	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
894

895
	if (end_buffer_index < ar_first_buffer_index(ctx)) {
896
		/*
897 898 899 900
		 * The filled part of the overall buffer wraps around; handle
		 * all packets up to the buffer end here.  If the last packet
		 * wraps around, its tail will be visible after the buffer end
		 * because the buffer start pages are mapped there again.
901
		 */
902 903 904 905 906 907 908
		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
		p = handle_ar_packets(ctx, p, buffer_end);
		if (p < buffer_end)
			goto error;
		/* adjust p to point back into the actual buffer */
		p -= AR_BUFFERS * PAGE_SIZE;
	}
909

910 911 912 913 914 915
	p = handle_ar_packets(ctx, p, end);
	if (p != end) {
		if (p > end)
			ar_context_abort(ctx, "inconsistent descriptor");
		goto error;
	}
916

917 918
	ctx->pointer = p;
	ar_recycle_buffers(ctx, end_buffer_index);
919

920
	return;
921

922 923
error:
	ctx->pointer = NULL;
924 925
}

926 927
static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
			   unsigned int descriptors_offset, u32 regs)
928
{
929 930 931 932
	unsigned int i;
	dma_addr_t dma_addr;
	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
	struct descriptor *d;
933

934 935
	ctx->regs        = regs;
	ctx->ohci        = ohci;
936 937
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
	for (i = 0; i < AR_BUFFERS; i++) {
		ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
		if (!ctx->pages[i])
			goto out_of_memory;
		dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
					0, PAGE_SIZE, DMA_FROM_DEVICE);
		if (dma_mapping_error(ohci->card.device, dma_addr)) {
			__free_page(ctx->pages[i]);
			ctx->pages[i] = NULL;
			goto out_of_memory;
		}
		set_page_private(ctx->pages[i], dma_addr);
	}

	for (i = 0; i < AR_BUFFERS; i++)
		pages[i]              = ctx->pages[i];
	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
		pages[AR_BUFFERS + i] = ctx->pages[i];
	ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
				 -1, PAGE_KERNEL_RO);
	if (!ctx->buffer)
		goto out_of_memory;

961 962
	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
963 964 965 966 967 968 969 970 971 972 973

	for (i = 0; i < AR_BUFFERS; i++) {
		d = &ctx->descriptors[i];
		d->req_count      = cpu_to_le16(PAGE_SIZE);
		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						DESCRIPTOR_STATUS |
						DESCRIPTOR_BRANCH_ALWAYS);
		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
			ar_next_buffer_index(i) * sizeof(struct descriptor));
	}
974

975
	return 0;
976 977 978 979 980

out_of_memory:
	ar_context_release(ctx);

	return -ENOMEM;
981 982 983 984
}

static void ar_context_run(struct ar_context *ctx)
{
985 986 987 988
	unsigned int i;

	for (i = 0; i < AR_BUFFERS; i++)
		ar_context_link_page(ctx, i);
989

990
	ctx->pointer = ctx->buffer;
991

992
	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
993
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
994
	flush_writes(ctx->ohci);
995
}
S
Stefan Richter 已提交
996

997
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
{
	int b, key;

	b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
	key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;

	/* figure out which descriptor the branch address goes in */
	if (z == 2 && (b == 3 || key == 2))
		return d;
	else
		return d + z - 1;
}

1011 1012 1013 1014 1015 1016
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
1017
	struct descriptor_buffer *desc;
1018

1019 1020 1021
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
1022
	while (last->branch_address != 0) {
1023
		struct descriptor_buffer *old_desc = desc;
1024 1025
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
1026 1027 1028 1029 1030 1031 1032 1033 1034
		address &= ~0xf;

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1035
		last = find_branch_descriptor(d, z);
1036 1037 1038 1039

		if (!ctx->callback(ctx, d, last))
			break;

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
1050 1051 1052
	}
}

1053 1054 1055 1056
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
1057
static int context_add_buffer(struct context *ctx)
1058 1059
{
	struct descriptor_buffer *desc;
1060
	dma_addr_t uninitialized_var(bus_addr);
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

1086 1087
static int context_init(struct context *ctx, struct fw_ohci *ohci,
			u32 regs, descriptor_callback_t callback)
1088 1089 1090
{
	ctx->ohci = ohci;
	ctx->regs = regs;
1091 1092 1093 1094
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
1095 1096
		return -ENOMEM;

1097 1098 1099
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

1100 1101 1102
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

1103 1104
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
1105
	 * branch address and looks like it's been sent.  That way we
1106
	 * have a descriptor to append DMA programs to.
1107
	 */
1108 1109 1110 1111 1112 1113
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
1114 1115 1116 1117

	return 0;
}

1118
static void context_release(struct context *ctx)
1119 1120
{
	struct fw_card *card = &ctx->ohci->card;
1121
	struct descriptor_buffer *desc, *tmp;
1122

1123 1124 1125 1126
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
1127 1128
}

1129
/* Must be called with ohci->lock held */
1130 1131
static struct descriptor *context_get_descriptors(struct context *ctx,
						  int z, dma_addr_t *d_bus)
1132
{
1133 1134 1135 1136 1137 1138 1139 1140 1141
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
1142

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
1153

1154
	d = desc->buffer + desc->used / sizeof(*d);
1155
	memset(d, 0, z * sizeof(*d));
1156
	*d_bus = desc->buffer_bus + desc->used;
1157 1158 1159 1160

	return d;
}

1161
static void context_run(struct context *ctx, u32 extra)
1162 1163 1164
{
	struct fw_ohci *ohci = ctx->ohci;

1165
	reg_write(ohci, COMMAND_PTR(ctx->regs),
1166
		  le32_to_cpu(ctx->last->branch_address));
1167 1168
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1169 1170 1171 1172 1173 1174 1175
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
1176
	struct descriptor_buffer *desc = ctx->buffer_tail;
1177

1178
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1179

1180
	desc->used += (z + extra) * sizeof(*d);
1181 1182

	wmb(); /* finish init of new descriptors before branch_address update */
1183 1184
	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev = find_branch_descriptor(d, z);
1185

1186
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1187 1188 1189 1190 1191 1192
	flush_writes(ctx->ohci);
}

static void context_stop(struct context *ctx)
{
	u32 reg;
1193
	int i;
1194

1195
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1196
	flush_writes(ctx->ohci);
1197

1198
	for (i = 0; i < 10; i++) {
1199
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1200
		if ((reg & CONTEXT_ACTIVE) == 0)
1201
			return;
1202

1203
		mdelay(1);
1204
	}
1205
	fw_error("Error: DMA context still active (0x%08x)\n", reg);
1206
}
1207

1208 1209 1210
struct driver_data {
	struct fw_packet *packet;
};
1211

1212 1213
/*
 * This function apppends a packet to the DMA queue for transmission.
1214
 * Must always be called with the ochi->lock held to ensure proper
1215 1216
 * generation handling and locking around packet queue manipulation.
 */
1217 1218
static int at_context_queue_packet(struct context *ctx,
				   struct fw_packet *packet)
1219 1220
{
	struct fw_ohci *ohci = ctx->ohci;
1221
	dma_addr_t d_bus, uninitialized_var(payload_bus);
1222 1223 1224
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
1225
	int z, tcode;
1226
	u32 reg;
1227

1228 1229 1230 1231
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1232 1233
	}

1234
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1235 1236
	d[0].res_count = cpu_to_le16(packet->timestamp);

1237 1238
	/*
	 * The DMA format for asyncronous link packets is different
1239
	 * from the IEEE1394 layout, so shift the fields around
1240
	 * accordingly.
1241
	 */
1242

1243
	tcode = (packet->header[0] >> 4) & 0x0f;
1244
	header = (__le32 *) &d[1];
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_WRITE_BLOCK_REQUEST:
	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
	case TCODE_READ_BLOCK_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
1255 1256 1257 1258 1259
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
1260 1261

		if (TCODE_IS_BLOCK_PACKET(tcode))
1262
			header[3] = cpu_to_le32(packet->header[3]);
1263
		else
1264 1265 1266
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
1267 1268
		break;

1269
	case TCODE_LINK_INTERNAL:
1270 1271
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
1272 1273
		header[1] = cpu_to_le32(packet->header[1]);
		header[2] = cpu_to_le32(packet->header[2]);
1274
		d[0].req_count = cpu_to_le16(12);
S
Stefan Richter 已提交
1275

1276
		if (is_ping_packet(&packet->header[1]))
S
Stefan Richter 已提交
1277
			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1278 1279
		break;

1280
	case TCODE_STREAM_DATA:
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
		d[0].req_count = cpu_to_le16(8);
		break;

	default:
		/* BUG(); */
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1291 1292
	}

1293 1294
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
1295
	packet->driver_data = driver_data;
1296

1297 1298 1299 1300
	if (packet->payload_length > 0) {
		payload_bus =
			dma_map_single(ohci->card.device, packet->payload,
				       packet->payload_length, DMA_TO_DEVICE);
1301
		if (dma_mapping_error(ohci->card.device, payload_bus)) {
1302 1303 1304
			packet->ack = RCODE_SEND_ERROR;
			return -1;
		}
1305 1306
		packet->payload_bus	= payload_bus;
		packet->payload_mapped	= true;
1307 1308 1309 1310 1311

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
1312
	} else {
1313 1314
		last = &d[0];
		z = 2;
1315 1316
	}

1317 1318 1319
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
1320

1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
	/*
	 * If the controller and packet generations don't match, we need to
	 * bail out and try again.  If IntEvent.busReset is set, the AT context
	 * is halted, so appending to the context and trying to run it is
	 * futile.  Most controllers do the right thing and just flush the AT
	 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
	 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
	 * up stalling out.  So we just bail out in software and try again
	 * later, and everyone is happy.
	 * FIXME: Document how the locking works.
	 */
	if (ohci->generation != packet->generation ||
	    reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1334
		if (packet->payload_mapped)
1335 1336
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
1337 1338 1339 1340 1341
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
1342

1343
	/* If the context isn't already running, start it up. */
1344
	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1345
	if ((reg & CONTEXT_RUN) == 0)
1346 1347 1348
		context_run(ctx, 0);

	return 0;
1349 1350
}

1351 1352 1353
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1354
{
1355
	struct driver_data *driver_data;
1356
	struct fw_packet *packet;
1357
	struct fw_ohci *ohci = context->ohci;
1358 1359
	int evt;

1360 1361 1362
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
1363

1364 1365 1366 1367 1368
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
1369

1370
	if (packet->payload_mapped)
1371
		dma_unmap_single(ohci->card.device, packet->payload_bus,
1372 1373
				 packet->payload_length, DMA_TO_DEVICE);

1374 1375
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
1376

1377 1378
	log_ar_at_event('T', packet->speed, packet->header, evt);

1379 1380 1381 1382 1383
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
1384

1385
	case OHCI1394_evt_flushed:
1386 1387 1388 1389
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
1390 1391
		packet->ack = RCODE_GENERATION;
		break;
1392

1393
	case OHCI1394_evt_missing_ack:
1394 1395 1396 1397
		/*
		 * Using a valid (current) generation count, but the
		 * node is not on the bus or not sending acks.
		 */
1398 1399
		packet->ack = RCODE_NO_ACK;
		break;
1400

1401 1402 1403 1404 1405 1406 1407 1408 1409
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
1410

1411 1412 1413 1414
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
1415

1416
	packet->callback(packet, &ohci->card, packet->ack);
1417

1418
	return 1;
1419 1420
}

1421 1422 1423 1424 1425
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1426

1427 1428
static void handle_local_rom(struct fw_ohci *ohci,
			     struct fw_packet *packet, u32 csr)
1429 1430 1431 1432
{
	struct fw_packet response;
	int tcode, length, i;

1433
	tcode = HEADER_GET_TCODE(packet->header[0]);
1434
	if (TCODE_IS_BLOCK_PACKET(tcode))
1435
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

1454 1455
static void handle_local_lock(struct fw_ohci *ohci,
			      struct fw_packet *packet, u32 csr)
1456 1457
{
	struct fw_packet response;
1458
	int tcode, length, ext_tcode, sel, try;
1459 1460 1461
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

1462 1463
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1464
	payload = packet->payload;
1465
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
	for (try = 0; try < 20; try++)
		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
			lock_old = cpu_to_be32(reg_read(ohci,
							OHCI1394_CSRData));
			fw_fill_response(&response, packet->header,
					 RCODE_COMPLETE,
					 &lock_old, sizeof(lock_old));
			goto out;
		}

	fw_error("swap not done (CSR lock timeout)\n");
	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1497 1498 1499 1500 1501

 out:
	fw_core_handle_response(&ohci->card, &response);
}

1502
static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1503
{
1504
	u64 offset, csr;
1505

1506 1507 1508 1509
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1510 1511 1512

	offset =
		((unsigned long long)
1513
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
1534 1535 1536 1537 1538

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1539
}
1540

1541
static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1542 1543
{
	unsigned long flags;
1544
	int ret;
1545 1546 1547

	spin_lock_irqsave(&ctx->ohci->lock, flags);

1548
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1549
	    ctx->ohci->generation == packet->generation) {
1550 1551 1552
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
1553
	}
1554

1555
	ret = at_context_queue_packet(ctx, packet);
1556 1557
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

1558
	if (ret < 0)
1559
		packet->callback(packet, &ctx->ohci->card, packet->ack);
1560

1561 1562
}

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
static u32 cycle_timer_ticks(u32 cycle_timer)
{
	u32 ticks;

	ticks = cycle_timer & 0xfff;
	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
	ticks += (3072 * 8000) * (cycle_timer >> 25);

	return ticks;
}

/*
 * Some controllers exhibit one or more of the following bugs when updating the
 * iso cycle timer register:
 *  - When the lowest six bits are wrapping around to zero, a read that happens
 *    at the same time will return garbage in the lowest ten bits.
 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
 *    not incremented for about 60 ns.
 *  - Occasionally, the entire register reads zero.
 *
 * To catch these, we read the register three times and ensure that the
 * difference between each two consecutive reads is approximately the same, i.e.
 * less than twice the other.  Furthermore, any negative difference indicates an
 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
 * execute, so we have enough precision to compute the ratio of the differences.)
 */
static u32 get_cycle_time(struct fw_ohci *ohci)
{
	u32 c0, c1, c2;
	u32 t0, t1, t2;
	s32 diff01, diff12;
	int i;

	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);

	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
		i = 0;
		c1 = c2;
		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		do {
			c0 = c1;
			c1 = c2;
			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
			t0 = cycle_timer_ticks(c0);
			t1 = cycle_timer_ticks(c1);
			t2 = cycle_timer_ticks(c2);
			diff01 = t1 - t0;
			diff12 = t2 - t1;
		} while ((diff01 <= 0 || diff12 <= 0 ||
			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
			 && i++ < 20);
	}

	return c2;
}

/*
 * This function has to be called at least every 64 seconds.  The bus_time
 * field stores not only the upper 25 bits of the BUS_TIME register but also
 * the most significant bit of the cycle timer in bit 6 so that we can detect
 * changes in this bit.
 */
static u32 update_bus_time(struct fw_ohci *ohci)
{
	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;

	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
		ohci->bus_time += 0x40;

	return ohci->bus_time | cycle_time_seconds;
}

1635 1636 1637
static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
1638
	int self_id_count, i, j, reg;
1639 1640
	int generation, new_generation;
	unsigned long flags;
1641 1642
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1643
	bool is_new_root;
1644 1645 1646

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1647
		fw_notify("node ID not valid, new bus reset in progress\n");
1648 1649
		return;
	}
1650 1651 1652 1653 1654 1655
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1656

1657 1658 1659 1660 1661 1662
	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
	if (!(ohci->is_root && is_new_root))
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	ohci->is_root = is_new_root;

1663 1664 1665 1666 1667
	reg = reg_read(ohci, OHCI1394_SelfIDCount);
	if (reg & OHCI1394_SelfIDCount_selfIDError) {
		fw_notify("inconsistent self IDs\n");
		return;
	}
1668 1669
	/*
	 * The count in the SelfIDCount register is the number of
1670 1671
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1672 1673
	 * bit extra to get the actual number of self IDs.
	 */
1674 1675
	self_id_count = (reg >> 3) & 0xff;
	if (self_id_count == 0 || self_id_count > 252) {
1676 1677 1678
		fw_notify("inconsistent self IDs\n");
		return;
	}
1679
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1680
	rmb();
1681 1682

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1683 1684 1685 1686
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
			fw_notify("inconsistent self IDs\n");
			return;
		}
1687 1688
		ohci->self_id_buffer[j] =
				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1689
	}
1690
	rmb();
1691

1692 1693
	/*
	 * Check the consistency of the self IDs we just read.  The
1694 1695 1696 1697 1698 1699 1700 1701 1702
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1703 1704
	 * of self IDs.
	 */
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
1717 1718
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1719 1720
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

1721
	if (ohci->quirks & QUIRK_RESET_PACKET)
1722 1723
		ohci->request_generation = generation;

1724 1725
	/*
	 * This next bit is unrelated to the AT context stuff but we
1726 1727 1728 1729
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
T
Thomas Weber 已提交
1730
	 * next_config_rom pointer so a new update can take place.
1731
	 */
1732 1733

	if (ohci->next_config_rom != NULL) {
1734 1735 1736 1737
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1738 1739 1740 1741
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1742 1743
		/*
		 * Restore config_rom image and manually update
1744 1745
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1746 1747
		 * do that last.
		 */
1748 1749
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
1750 1751 1752
		ohci->config_rom[0] = ohci->next_header;
		reg_write(ohci, OHCI1394_ConfigROMhdr,
			  be32_to_cpu(ohci->next_header));
1753 1754
	}

1755 1756 1757 1758 1759
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif

1760 1761
	spin_unlock_irqrestore(&ohci->lock, flags);

1762 1763 1764 1765
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1766 1767
	log_selfids(ohci->node_id, generation,
		    self_id_count, ohci->self_id_buffer);
1768

1769
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1770 1771 1772
				 self_id_count, ohci->self_id_buffer,
				 ohci->csr_state_setclear_abdicate);
	ohci->csr_state_setclear_abdicate = false;
1773 1774 1775 1776 1777
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1778
	u32 event, iso_event;
1779 1780 1781 1782
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1783
	if (!event || !~event)
1784 1785
		return IRQ_NONE;

1786 1787 1788 1789 1790 1791
	/*
	 * busReset and postedWriteErr must not be cleared yet
	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
	 */
	reg_write(ohci, OHCI1394_IntEventClear,
		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
1792
	log_irqs(event);
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
	if (event & OHCI1394_isochRx) {
		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

		while (iso_event) {
			i = ffs(iso_event) - 1;
			tasklet_schedule(
				&ohci->ir_context_list[i].context.tasklet);
			iso_event &= ~(1 << i);
		}
1819 1820
	}

1821 1822 1823
	if (event & OHCI1394_isochTx) {
		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1824

1825 1826 1827 1828 1829 1830
		while (iso_event) {
			i = ffs(iso_event) - 1;
			tasklet_schedule(
				&ohci->it_context_list[i].context.tasklet);
			iso_event &= ~(1 << i);
		}
1831 1832
	}

1833 1834 1835 1836
	if (unlikely(event & OHCI1394_regAccessFail))
		fw_error("Register access failure - "
			 "please notify linux1394-devel@lists.sf.net\n");

1837 1838 1839 1840 1841
	if (unlikely(event & OHCI1394_postedWriteErr)) {
		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
		reg_write(ohci, OHCI1394_IntEventClear,
			  OHCI1394_postedWriteErr);
1842
		fw_error("PCI posted write error\n");
1843
	}
1844

1845 1846 1847 1848 1849 1850 1851
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
			fw_notify("isochronous cycle too long\n");
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
	if (unlikely(event & OHCI1394_cycleInconsistent)) {
		/*
		 * We need to clear this event bit in order to make
		 * cycleMatch isochronous I/O work.  In theory we should
		 * stop active cycleMatch iso contexts now and restart
		 * them at least two cycles later.  (FIXME?)
		 */
		if (printk_ratelimit())
			fw_notify("isochronous cycle inconsistent\n");
	}

1863 1864 1865 1866
	if (event & OHCI1394_cycle64Seconds) {
		spin_lock(&ohci->lock);
		update_bus_time(ohci);
		spin_unlock(&ohci->lock);
1867 1868
	} else
		flush_writes(ohci);
1869

1870 1871 1872
	return IRQ_HANDLED;
}

1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

1889 1890 1891 1892 1893 1894 1895 1896 1897
static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
{
	size_t size = length * 4;

	memcpy(dest, src, size);
	if (size < CONFIG_ROM_SIZE)
		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
}

1898 1899 1900
static int configure_1394a_enhancements(struct fw_ohci *ohci)
{
	bool enable_1394a;
1901
	int ret, clear, set, offset;
1902 1903 1904 1905 1906 1907 1908 1909

	/* Check if the driver should configure link and PHY. */
	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
	      OHCI1394_HCControl_programPhyEnable))
		return 0;

	/* Paranoia: check whether the PHY supports 1394a, too. */
	enable_1394a = false;
1910 1911 1912 1913 1914 1915 1916 1917
	ret = read_phy_reg(ohci, 2);
	if (ret < 0)
		return ret;
	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
		ret = read_paged_phy_reg(ohci, 1, 8);
		if (ret < 0)
			return ret;
		if (ret >= 1)
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
			enable_1394a = true;
	}

	if (ohci->quirks & QUIRK_NO_1394A)
		enable_1394a = false;

	/* Configure PHY and link consistently. */
	if (enable_1394a) {
		clear = 0;
		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
	} else {
		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
		set = 0;
	}
1932
	ret = update_phy_reg(ohci, 5, clear, set);
1933 1934
	if (ret < 0)
		return ret;
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948

	if (enable_1394a)
		offset = OHCI1394_HCControlSet;
	else
		offset = OHCI1394_HCControlClear;
	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);

	/* Clean up: configuration has been taken care of. */
	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_programPhyEnable);

	return 0;
}

1949 1950
static int ohci_enable(struct fw_card *card,
		       const __be32 *config_rom, size_t length)
1951 1952 1953
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);
1954
	u32 lps, seconds, version, irqs;
1955
	int i, ret;
1956

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
1967 1968
	 * full link enabled.  However, with some cards (well, at least
	 * a JMicron PCIe card), we have to try again sometimes.
1969 1970 1971 1972 1973
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984

	for (lps = 0, i = 0; !lps && i < 3; i++) {
		msleep(50);
		lps = reg_read(ohci, OHCI1394_HCControlSet) &
		      OHCI1394_HCControl_LPS;
	}

	if (!lps) {
		fw_error("Failed to set Link Power Status\n");
		return -EIO;
	}
1985 1986 1987 1988

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

1989
	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1990 1991
	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
1992
		  OHCI1394_LinkControl_rcvPhyPkt |
1993 1994 1995 1996 1997 1998
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1999 2000
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
		  (200 << 16));
2001

2002 2003 2004 2005
	seconds = lower_32_bits(get_seconds());
	reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
	ohci->bus_time = seconds & ~0x3f;

2006 2007 2008 2009
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	if (version >= OHCI_VERSION_1_1) {
		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
			  0xfffffffe);
2010
		card->broadcast_channel_auto_allocated = true;
2011 2012
	}

2013 2014 2015 2016
	/* Get implemented bits of the priority arbitration request counter. */
	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
	reg_write(ohci, OHCI1394_FairnessControl, 0);
2017
	card->priority_budget_implemented = ohci->pri_req_max != 0;
2018 2019 2020 2021 2022 2023 2024 2025

	ar_context_run(&ohci->ar_request_ctx);
	ar_context_run(&ohci->ar_response_ctx);

	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);

2026 2027 2028
	ret = configure_1394a_enhancements(ohci);
	if (ret < 0)
		return ret;
2029

2030
	/* Activate link_on bit and contender bit in our self ID packets.*/
2031 2032 2033
	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
	if (ret < 0)
		return ret;
2034

2035 2036
	/*
	 * When the link is not yet enabled, the atomic config rom
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

2054 2055 2056 2057 2058 2059 2060
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
2061

2062
		copy_config_rom(ohci->next_config_rom, config_rom, length);
2063 2064 2065 2066 2067 2068 2069 2070
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
2071

2072
	ohci->next_header = ohci->next_config_rom[0];
2073 2074
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2075 2076
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
2077 2078 2079 2080
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

2081 2082
	if (!(ohci->quirks & QUIRK_NO_MSI))
		pci_enable_msi(dev);
2083
	if (request_irq(dev->irq, irq_handler,
2084 2085 2086 2087
			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
			ohci_driver_name, ohci)) {
		fw_error("Failed to allocate interrupt %d.\n", dev->irq);
		pci_disable_msi(dev);
2088 2089 2090 2091 2092
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

2093 2094 2095 2096 2097 2098
	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		OHCI1394_RQPkt | OHCI1394_RSPkt |
		OHCI1394_isochTx | OHCI1394_isochRx |
		OHCI1394_postedWriteErr |
		OHCI1394_selfIDComplete |
		OHCI1394_regAccessFail |
2099
		OHCI1394_cycle64Seconds |
2100 2101 2102 2103 2104 2105
		OHCI1394_cycleInconsistent | OHCI1394_cycleTooLong |
		OHCI1394_masterIntEnable;
	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
		irqs |= OHCI1394_busReset;
	reg_write(ohci, OHCI1394_IntMaskSet, irqs);

2106 2107 2108 2109 2110
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
	flush_writes(ohci);

2111 2112
	/* We are ready to go, reset bus to finish initialization. */
	fw_schedule_bus_reset(&ohci->card, false, true);
2113 2114 2115 2116

	return 0;
}

2117
static int ohci_set_config_rom(struct fw_card *card,
2118
			       const __be32 *config_rom, size_t length)
2119 2120 2121
{
	struct fw_ohci *ohci;
	unsigned long flags;
2122
	int ret = -EBUSY;
2123
	__be32 *next_config_rom;
2124
	dma_addr_t uninitialized_var(next_config_rom_bus);
2125 2126 2127

	ohci = fw_ohci(card);

2128 2129
	/*
	 * When the OHCI controller is enabled, the config rom update
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;

2167
		copy_config_rom(ohci->next_config_rom, config_rom, length);
2168 2169 2170 2171 2172 2173

		ohci->next_header = config_rom[0];
		ohci->next_config_rom[0] = 0;

		reg_write(ohci, OHCI1394_ConfigROMmap,
			  ohci->next_config_rom_bus);
2174
		ret = 0;
2175 2176 2177 2178
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

2179 2180
	/*
	 * Now initiate a bus reset to have the changes take
2181 2182 2183
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
2184 2185
	 * takes effect.
	 */
2186
	if (ret == 0)
2187
		fw_schedule_bus_reset(&ohci->card, true, true);
2188 2189 2190
	else
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);
2191

2192
	return ret;
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

2209 2210 2211
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
2212 2213
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
2214
	int ret = -ENOENT;
2215

2216
	tasklet_disable(&ctx->tasklet);
2217

2218 2219
	if (packet->ack != 0)
		goto out;
2220

2221
	if (packet->payload_mapped)
2222 2223 2224
		dma_unmap_single(ohci->card.device, packet->payload_bus,
				 packet->payload_length, DMA_TO_DEVICE);

2225
	log_ar_at_event('T', packet->speed, packet->header, 0x20);
2226 2227 2228
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
2229
	ret = 0;
2230 2231
 out:
	tasklet_enable(&ctx->tasklet);
2232

2233
	return ret;
2234 2235
}

2236 2237
static int ohci_enable_phys_dma(struct fw_card *card,
				int node_id, int generation)
2238
{
2239 2240 2241
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	return 0;
#else
2242 2243
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
2244
	int n, ret = 0;
2245

2246 2247 2248 2249
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
2250 2251 2252 2253

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
2254
		ret = -ESTALE;
2255 2256 2257
		goto out;
	}

2258 2259 2260 2261
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
2262 2263 2264 2265 2266 2267 2268

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

2269 2270
	flush_writes(ohci);
 out:
2271
	spin_unlock_irqrestore(&ohci->lock, flags);
2272 2273

	return ret;
2274
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2275
}
S
Stefan Richter 已提交
2276

2277
static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2278
{
2279
	struct fw_ohci *ohci = fw_ohci(card);
2280 2281
	unsigned long flags;
	u32 value;
2282 2283

	switch (csr_offset) {
2284 2285 2286 2287 2288
	case CSR_STATE_CLEAR:
	case CSR_STATE_SET:
		if (ohci->is_root &&
		    (reg_read(ohci, OHCI1394_LinkControlSet) &
		     OHCI1394_LinkControl_cycleMaster))
2289
			value = CSR_STATE_BIT_CMSTR;
2290
		else
2291 2292 2293
			value = 0;
		if (ohci->csr_state_setclear_abdicate)
			value |= CSR_STATE_BIT_ABDICATE;
2294

2295
		return value;
2296

2297 2298 2299
	case CSR_NODE_IDS:
		return reg_read(ohci, OHCI1394_NodeID) << 16;

2300 2301 2302
	case CSR_CYCLE_TIME:
		return get_cycle_time(ohci);

2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
	case CSR_BUS_TIME:
		/*
		 * We might be called just after the cycle timer has wrapped
		 * around but just before the cycle64Seconds handler, so we
		 * better check here, too, if the bus time needs to be updated.
		 */
		spin_lock_irqsave(&ohci->lock, flags);
		value = update_bus_time(ohci);
		spin_unlock_irqrestore(&ohci->lock, flags);
		return value;

2314 2315 2316 2317
	case CSR_BUSY_TIMEOUT:
		value = reg_read(ohci, OHCI1394_ATRetries);
		return (value >> 4) & 0x0ffff00f;

2318 2319 2320 2321
	case CSR_PRIORITY_BUDGET:
		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
			(ohci->pri_req_max << 8);

2322 2323 2324 2325
	default:
		WARN_ON(1);
		return 0;
	}
2326 2327
}

2328
static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2329 2330
{
	struct fw_ohci *ohci = fw_ohci(card);
2331
	unsigned long flags;
2332

2333
	switch (csr_offset) {
2334 2335 2336 2337 2338 2339
	case CSR_STATE_CLEAR:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlClear,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2340 2341
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = false;
2342
		break;
2343

2344 2345 2346 2347 2348 2349
	case CSR_STATE_SET:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlSet,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2350 2351
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = true;
2352
		break;
2353

2354 2355 2356 2357 2358
	case CSR_NODE_IDS:
		reg_write(ohci, OHCI1394_NodeID, value >> 16);
		flush_writes(ohci);
		break;

2359 2360 2361 2362 2363 2364 2365
	case CSR_CYCLE_TIME:
		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
		reg_write(ohci, OHCI1394_IntEventSet,
			  OHCI1394_cycleInconsistent);
		flush_writes(ohci);
		break;

2366 2367 2368 2369 2370 2371
	case CSR_BUS_TIME:
		spin_lock_irqsave(&ohci->lock, flags);
		ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
		spin_unlock_irqrestore(&ohci->lock, flags);
		break;

2372 2373 2374 2375 2376 2377 2378
	case CSR_BUSY_TIMEOUT:
		value = (value & 0xf) | ((value & 0xf) << 4) |
			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
		reg_write(ohci, OHCI1394_ATRetries, value);
		flush_writes(ohci);
		break;

2379 2380 2381 2382 2383
	case CSR_PRIORITY_BUDGET:
		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
		flush_writes(ohci);
		break;

2384 2385 2386 2387
	default:
		WARN_ON(1);
		break;
	}
2388 2389
}

2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
static void copy_iso_headers(struct iso_context *ctx, void *p)
{
	int i = ctx->header_length;

	if (i + ctx->base.header_size > PAGE_SIZE)
		return;

	/*
	 * The iso header is byteswapped to little endian by
	 * the controller, but the remaining header quadlets
	 * are big endian.  We want to present all the headers
	 * as big endian, so we have to swap the first quadlet.
	 */
	if (ctx->base.header_size > 0)
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
	if (ctx->base.header_size > 4)
		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
	if (ctx->base.header_size > 8)
		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
	ctx->header_length += ctx->base.header_size;
}

2412 2413 2414 2415 2416 2417
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2418
	struct descriptor *pd;
2419
	__le32 *ir_header;
2420
	void *p;
2421

2422
	for (pd = d; pd <= last; pd++)
2423 2424 2425
		if (pd->transfer_status)
			break;
	if (pd > last)
2426 2427 2428
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

2429 2430
	p = last + 1;
	copy_iso_headers(ctx, p);
2431

2432 2433
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) p;
2434 2435 2436 2437
		ctx->base.callback.sc(&ctx->base,
				      le32_to_cpu(ir_header[0]) & 0xffff,
				      ctx->header_length, ctx->header,
				      ctx->base.callback_data);
2438 2439 2440 2441 2442 2443
		ctx->header_length = 0;
	}

	return 1;
}

2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
/* d == last because each descriptor block is only a single descriptor. */
static int handle_ir_buffer_fill(struct context *context,
				 struct descriptor *d,
				 struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);

	if (!last->transfer_status)
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
		ctx->base.callback.mc(&ctx->base,
				      le32_to_cpu(last->data_address) +
				      le16_to_cpu(last->req_count) -
				      le16_to_cpu(last->res_count),
				      ctx->base.callback_data);

	return 1;
}

2466 2467 2468
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
2469
{
2470 2471
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2472 2473
	int i;
	struct descriptor *pd;
S
Stefan Richter 已提交
2474

2475 2476 2477 2478 2479
	for (pd = d; pd <= last; pd++)
		if (pd->transfer_status)
			break;
	if (pd > last)
		/* Descriptor(s) not done yet, stop iteration */
2480 2481
		return 0;

2482 2483 2484 2485 2486 2487 2488 2489 2490
	i = ctx->header_length;
	if (i + 4 < PAGE_SIZE) {
		/* Present this value as big-endian to match the receive code */
		*(__be32 *)(ctx->header + i) = cpu_to_be32(
				((u32)le16_to_cpu(pd->transfer_status) << 16) |
				le16_to_cpu(pd->res_count));
		ctx->header_length += 4;
	}
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2491 2492 2493
		ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
				      ctx->header_length, ctx->header,
				      ctx->base.callback_data);
2494 2495
		ctx->header_length = 0;
	}
2496
	return 1;
2497 2498
}

2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
{
	u32 hi = channels >> 32, lo = channels;

	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
	mmiowb();
	ohci->mc_channels = channels;
}

2511
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2512
				int type, int channel, size_t header_size)
2513 2514
{
	struct fw_ohci *ohci = fw_ohci(card);
2515 2516 2517 2518
	struct iso_context *uninitialized_var(ctx);
	descriptor_callback_t uninitialized_var(callback);
	u64 *uninitialized_var(channels);
	u32 *uninitialized_var(mask), uninitialized_var(regs);
2519
	unsigned long flags;
2520
	int index, ret = -EBUSY;
2521

2522
	spin_lock_irqsave(&ohci->lock, flags);
2523

2524 2525 2526
	switch (type) {
	case FW_ISO_CONTEXT_TRANSMIT:
		mask     = &ohci->it_context_mask;
2527
		callback = handle_it_packet;
2528 2529 2530 2531 2532 2533 2534 2535 2536
		index    = ffs(*mask) - 1;
		if (index >= 0) {
			*mask &= ~(1 << index);
			regs = OHCI1394_IsoXmitContextBase(index);
			ctx  = &ohci->it_context_list[index];
		}
		break;

	case FW_ISO_CONTEXT_RECEIVE:
2537
		channels = &ohci->ir_context_channels;
2538
		mask     = &ohci->ir_context_mask;
2539
		callback = handle_ir_packet_per_buffer;
2540 2541 2542 2543 2544 2545 2546 2547
		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
		if (index >= 0) {
			*channels &= ~(1ULL << channel);
			*mask     &= ~(1 << index);
			regs = OHCI1394_IsoRcvContextBase(index);
			ctx  = &ohci->ir_context_list[index];
		}
		break;
2548

2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		mask     = &ohci->ir_context_mask;
		callback = handle_ir_buffer_fill;
		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
		if (index >= 0) {
			ohci->mc_allocated = true;
			*mask &= ~(1 << index);
			regs = OHCI1394_IsoRcvContextBase(index);
			ctx  = &ohci->ir_context_list[index];
		}
		break;

	default:
		index = -1;
		ret = -ENOSYS;
2564
	}
2565

2566 2567 2568
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
2569
		return ERR_PTR(ret);
S
Stefan Richter 已提交
2570

2571
	memset(ctx, 0, sizeof(*ctx));
2572 2573
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
2574 2575
	if (ctx->header == NULL) {
		ret = -ENOMEM;
2576
		goto out;
2577
	}
2578 2579
	ret = context_init(&ctx->context, ohci, regs, callback);
	if (ret < 0)
2580
		goto out_with_header;
2581

2582 2583 2584
	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
		set_multichannel_mask(ohci, 0);

2585
	return &ctx->base;
2586 2587 2588 2589 2590

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600

	switch (type) {
	case FW_ISO_CONTEXT_RECEIVE:
		*channels |= 1ULL << channel;
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		ohci->mc_allocated = false;
		break;
	}
2601
	*mask |= 1 << index;
2602

2603 2604
	spin_unlock_irqrestore(&ohci->lock, flags);

2605
	return ERR_PTR(ret);
2606 2607
}

2608 2609
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
2610
{
S
Stefan Richter 已提交
2611
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2612
	struct fw_ohci *ohci = ctx->context.ohci;
2613
	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2614 2615
	int index;

2616 2617
	switch (ctx->base.type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2618
		index = ctx - ohci->it_context_list;
2619 2620 2621
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2622
				(cycle & 0x7fff) << 16;
2623

2624 2625
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2626
		context_run(&ctx->context, match);
2627 2628 2629 2630 2631 2632
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
		/* fall through */
	case FW_ISO_CONTEXT_RECEIVE:
2633
		index = ctx - ohci->ir_context_list;
2634 2635 2636 2637 2638
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
2639

2640 2641
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2642
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2643
		context_run(&ctx->context, control);
2644
		break;
2645
	}
2646 2647 2648 2649

	return 0;
}

2650 2651 2652
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2653
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2654 2655
	int index;

2656 2657
	switch (ctx->base.type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2658 2659
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2660 2661 2662 2663
		break;

	case FW_ISO_CONTEXT_RECEIVE:
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2664 2665
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2666
		break;
2667 2668 2669 2670 2671 2672 2673
	}
	flush_writes(ohci);
	context_stop(&ctx->context);

	return 0;
}

2674 2675 2676
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2677
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2678 2679 2680
	unsigned long flags;
	int index;

2681 2682
	ohci_stop_iso(base);
	context_release(&ctx->context);
2683
	free_page((unsigned long)ctx->header);
2684

2685 2686
	spin_lock_irqsave(&ohci->lock, flags);

2687 2688
	switch (base->type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2689 2690
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
2691 2692 2693
		break;

	case FW_ISO_CONTEXT_RECEIVE:
2694 2695
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
2696
		ohci->ir_context_channels |= 1ULL << base->channel;
2697 2698 2699 2700 2701 2702 2703 2704 2705
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
		ohci->ir_context_channels |= ohci->mc_channels;
		ohci->mc_channels = 0;
		ohci->mc_allocated = false;
		break;
2706 2707 2708 2709 2710
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
	unsigned long flags;
	int ret;

	switch (base->type) {
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:

		spin_lock_irqsave(&ohci->lock, flags);

		/* Don't allow multichannel to grab other contexts' channels. */
		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
			*channels = ohci->ir_context_channels;
			ret = -EBUSY;
		} else {
			set_multichannel_mask(ohci, *channels);
			ret = 0;
		}

		spin_unlock_irqrestore(&ohci->lock, flags);

		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

static int queue_iso_transmit(struct iso_context *ctx,
			      struct fw_iso_packet *packet,
			      struct fw_iso_buffer *buffer,
			      unsigned long payload)
2745
{
2746
	struct descriptor *d, *last, *pd;
2747 2748
	struct fw_iso_packet *p;
	__le32 *header;
2749
	dma_addr_t d_bus, page_bus;
2750 2751
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
2752
	int page, end_page, i, length, offset;
2753 2754

	p = packet;
2755
	payload_index = payload;
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
2774
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2775

2776 2777 2778
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
2779 2780

	if (!p->skip) {
2781
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2782
		d[0].req_count = cpu_to_le16(8);
2783 2784 2785 2786 2787 2788 2789 2790
		/*
		 * Link the skip address to this descriptor itself.  This causes
		 * a context to skip a cycle whenever lost cycles or FIFO
		 * overruns occur, without dropping the data.  The application
		 * should then decide whether this is an error condition or not.
		 * FIXME:  Make the context's cycle-lost behaviour configurable?
		 */
		d[0].branch_address = cpu_to_le32(d_bus | z);
2791 2792

		header = (__le32 *) &d[1];
2793 2794 2795 2796 2797
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
2798
		header[1] =
2799
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2800 2801 2802 2803 2804
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
2805
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
2818 2819 2820

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
2821 2822 2823 2824 2825

		payload_index += length;
	}

	if (p->interrupt)
2826
		irq = DESCRIPTOR_IRQ_ALWAYS;
2827
	else
2828
		irq = DESCRIPTOR_NO_IRQ;
2829

2830
	last = z == 2 ? d : d + z - 1;
2831 2832 2833
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
2834
				     irq);
2835

2836
	context_append(&ctx->context, d, z, header_z);
2837 2838 2839

	return 0;
}
S
Stefan Richter 已提交
2840

2841 2842 2843 2844
static int queue_iso_packet_per_buffer(struct iso_context *ctx,
				       struct fw_iso_packet *packet,
				       struct fw_iso_buffer *buffer,
				       unsigned long payload)
2845
{
2846
	struct descriptor *d, *pd;
2847 2848
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
2849 2850
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
2851 2852

	/*
2853 2854
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
2855
	 */
2856
	packet_count = packet->header_length / ctx->base.header_size;
2857
	header_size  = max(ctx->base.header_size, (size_t)8);
2858 2859 2860 2861 2862

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
2863
	payload_per_buffer = packet->payload_length / packet_count;
2864 2865 2866

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
2867
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2868
		d = context_get_descriptors(&ctx->context,
2869
				z + header_z, &d_bus);
2870 2871 2872
		if (d == NULL)
			return -ENOMEM;

2873 2874
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
2875
		if (packet->skip && i == 0)
2876
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2877 2878
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
2879
		d->transfer_status = 0;
2880 2881
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

2882
		rest = payload_per_buffer;
2883
		pd = d;
2884
		for (j = 1; j < z; j++) {
2885
			pd++;
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
2905 2906 2907
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
2908
		if (packet->interrupt && i == packet_count - 1)
2909 2910 2911 2912 2913 2914 2915 2916
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
static int queue_iso_buffer_fill(struct iso_context *ctx,
				 struct fw_iso_packet *packet,
				 struct fw_iso_buffer *buffer,
				 unsigned long payload)
{
	struct descriptor *d;
	dma_addr_t d_bus, page_bus;
	int page, offset, rest, z, i, length;

	page   = payload >> PAGE_SHIFT;
	offset = payload & ~PAGE_MASK;
	rest   = packet->payload_length;

	/* We need one descriptor for each page in the buffer. */
	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);

	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
		return -EFAULT;

	for (i = 0; i < z; i++) {
		d = context_get_descriptors(&ctx->context, 1, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
					 DESCRIPTOR_BRANCH_ALWAYS);
		if (packet->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
		if (packet->interrupt && i == z - 1)
			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		if (offset + rest < PAGE_SIZE)
			length = rest;
		else
			length = PAGE_SIZE - offset;
		d->req_count = cpu_to_le16(length);
		d->res_count = d->req_count;
		d->transfer_status = 0;

		page_bus = page_private(buffer->pages[page]);
		d->data_address = cpu_to_le32(page_bus + offset);

		rest -= length;
		offset = 0;
		page++;

		context_append(&ctx->context, d, 1, 0);
	}

	return 0;
}

2969 2970 2971 2972
static int ohci_queue_iso(struct fw_iso_context *base,
			  struct fw_iso_packet *packet,
			  struct fw_iso_buffer *buffer,
			  unsigned long payload)
2973
{
2974
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2975
	unsigned long flags;
2976
	int ret = -ENOSYS;
2977

2978
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
	switch (base->type) {
	case FW_ISO_CONTEXT_TRANSMIT:
		ret = queue_iso_transmit(ctx, packet, buffer, payload);
		break;
	case FW_ISO_CONTEXT_RECEIVE:
		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
		break;
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
		break;
	}
2990 2991
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

2992
	return ret;
2993 2994
}

2995
static const struct fw_card_driver ohci_driver = {
2996
	.enable			= ohci_enable,
2997
	.read_phy_reg		= ohci_read_phy_reg,
2998 2999 3000 3001
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
3002
	.cancel_packet		= ohci_cancel_packet,
3003
	.enable_phys_dma	= ohci_enable_phys_dma,
3004 3005
	.read_csr		= ohci_read_csr,
	.write_csr		= ohci_write_csr,
3006 3007 3008

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
3009
	.set_iso_channels	= ohci_set_iso_channels,
3010
	.queue_iso		= ohci_queue_iso,
3011
	.start_iso		= ohci_start_iso,
3012
	.stop_iso		= ohci_stop_iso,
3013 3014
};

3015
#ifdef CONFIG_PPC_PMAC
3016
static void pmac_ohci_on(struct pci_dev *dev)
3017
{
3018 3019 3020 3021 3022 3023 3024 3025
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
3026 3027
}

3028
static void pmac_ohci_off(struct pci_dev *dev)
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
{
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
}
#else
3040 3041
static inline void pmac_ohci_on(struct pci_dev *dev) {}
static inline void pmac_ohci_off(struct pci_dev *dev) {}
3042 3043
#endif /* CONFIG_PPC_PMAC */

3044 3045
static int __devinit pci_probe(struct pci_dev *dev,
			       const struct pci_device_id *ent)
3046 3047
{
	struct fw_ohci *ohci;
3048
	u32 bus_options, max_receive, link_speed, version;
3049
	u64 guid;
3050
	int i, err, n_ir, n_it;
3051 3052
	size_t size;

3053
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3054
	if (ohci == NULL) {
3055 3056
		err = -ENOMEM;
		goto fail;
3057 3058 3059 3060
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

3061
	pmac_ohci_on(dev);
3062

3063 3064
	err = pci_enable_device(dev);
	if (err) {
3065
		fw_error("Failed to enable OHCI hardware\n");
3066
		goto fail_free;
3067 3068 3069 3070 3071 3072 3073
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);
3074
	mutex_init(&ohci->phy_reg_mutex);
3075 3076 3077 3078

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

3079 3080
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
3081
		fw_error("MMIO resource unavailable\n");
3082
		goto fail_disable;
3083 3084 3085 3086 3087
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
3088 3089
		err = -ENXIO;
		goto fail_iomem;
3090 3091
	}

3092
	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3093 3094 3095 3096 3097
		if ((ohci_quirks[i].vendor == dev->vendor) &&
		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
		     ohci_quirks[i].device == dev->device) &&
		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
		     ohci_quirks[i].revision >= dev->revision)) {
3098 3099 3100
			ohci->quirks = ohci_quirks[i].flags;
			break;
		}
3101 3102
	if (param_quirks)
		ohci->quirks = param_quirks;
3103

3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
	/*
	 * Because dma_alloc_coherent() allocates at least one page,
	 * we save space by using a common buffer for the AR request/
	 * response descriptors and the self IDs buffer.
	 */
	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
	ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
					       PAGE_SIZE,
					       &ohci->misc_buffer_bus,
					       GFP_KERNEL);
	if (!ohci->misc_buffer) {
		err = -ENOMEM;
		goto fail_iounmap;
	}

	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3121 3122
			      OHCI1394_AsReqRcvContextControlSet);
	if (err < 0)
3123
		goto fail_misc_buf;
3124

3125
	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3126 3127 3128
			      OHCI1394_AsRspRcvContextControlSet);
	if (err < 0)
		goto fail_arreq_ctx;
3129

3130 3131 3132 3133
	err = context_init(&ohci->at_request_ctx, ohci,
			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
	if (err < 0)
		goto fail_arrsp_ctx;
3134

3135 3136 3137 3138
	err = context_init(&ohci->at_response_ctx, ohci,
			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
	if (err < 0)
		goto fail_atreq_ctx;
3139 3140

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3141 3142
	ohci->ir_context_channels = ~0ULL;
	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3143
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3144 3145
	n_ir = hweight32(ohci->ir_context_mask);
	size = sizeof(struct iso_context) * n_ir;
3146
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3147 3148

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3149
	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3150
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3151 3152
	n_it = hweight32(ohci->it_context_mask);
	size = sizeof(struct iso_context) * n_it;
3153
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3154 3155

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3156
		err = -ENOMEM;
3157
		goto fail_contexts;
3158 3159
	}

3160 3161
	ohci->self_id_cpu = ohci->misc_buffer     + PAGE_SIZE/2;
	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3162 3163 3164 3165 3166 3167 3168

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

3169
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3170
	if (err)
3171
		goto fail_contexts;
3172

3173 3174 3175 3176 3177
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
		  "%d IR + %d IT contexts, quirks 0x%x\n",
		  dev_name(&dev->dev), version >> 16, version & 0xff,
		  n_ir, n_it, ohci->quirks);
3178

3179
	return 0;
3180

3181
 fail_contexts:
3182
	kfree(ohci->ir_context_list);
3183 3184
	kfree(ohci->it_context_list);
	context_release(&ohci->at_response_ctx);
3185
 fail_atreq_ctx:
3186
	context_release(&ohci->at_request_ctx);
3187
 fail_arrsp_ctx:
3188
	ar_context_release(&ohci->ar_response_ctx);
3189
 fail_arreq_ctx:
3190
	ar_context_release(&ohci->ar_request_ctx);
3191 3192 3193
 fail_misc_buf:
	dma_free_coherent(ohci->card.device, PAGE_SIZE,
			  ohci->misc_buffer, ohci->misc_buffer_bus);
3194
 fail_iounmap:
3195 3196 3197 3198 3199
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
3200 3201
 fail_free:
	kfree(&ohci->card);
3202
	pmac_ohci_off(dev);
3203 3204 3205
 fail:
	if (err == -ENOMEM)
		fw_error("Out of memory\n");
3206 3207

	return err;
3208 3209 3210 3211 3212 3213 3214
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
3215 3216
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
3217 3218
	fw_core_remove_card(&ohci->card);

3219 3220 3221 3222
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
3223 3224 3225

	software_reset(ohci);
	free_irq(dev->irq, ohci);
3226 3227 3228 3229 3230 3231 3232 3233 3234

	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->next_config_rom, ohci->next_config_rom_bus);
	if (ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
	ar_context_release(&ohci->ar_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
3235 3236
	dma_free_coherent(ohci->card.device, PAGE_SIZE,
			  ohci->misc_buffer, ohci->misc_buffer_bus);
3237 3238
	context_release(&ohci->at_request_ctx);
	context_release(&ohci->at_response_ctx);
3239 3240
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
3241
	pci_disable_msi(dev);
3242 3243 3244
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
3245
	kfree(&ohci->card);
3246
	pmac_ohci_off(dev);
3247

3248 3249 3250
	fw_notify("Removed fw-ohci device.\n");
}

3251
#ifdef CONFIG_PM
3252
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3253
{
3254
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3255 3256 3257
	int err;

	software_reset(ohci);
3258
	free_irq(dev->irq, ohci);
3259
	pci_disable_msi(dev);
3260
	err = pci_save_state(dev);
3261
	if (err) {
3262
		fw_error("pci_save_state failed\n");
3263 3264
		return err;
	}
3265
	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3266 3267
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
3268
	pmac_ohci_off(dev);
3269

3270 3271 3272
	return 0;
}

3273
static int pci_resume(struct pci_dev *dev)
3274
{
3275
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3276 3277
	int err;

3278
	pmac_ohci_on(dev);
3279 3280 3281
	pci_set_power_state(dev, PCI_D0);
	pci_restore_state(dev);
	err = pci_enable_device(dev);
3282
	if (err) {
3283
		fw_error("pci_enable_device failed\n");
3284 3285 3286
		return err;
	}

3287 3288 3289 3290 3291 3292 3293
	/* Some systems don't setup GUID register on resume from ram  */
	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
					!reg_read(ohci, OHCI1394_GUIDHi)) {
		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
	}

3294
	return ohci_enable(&ohci->card, NULL, 0);
3295 3296 3297
}
#endif

3298
static const struct pci_device_id pci_table[] = {
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
3310 3311 3312 3313
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
3314 3315 3316 3317 3318 3319
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

3320 3321 3322 3323 3324
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);