ohci.c 95.0 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/bitops.h>
22
#include <linux/bug.h>
23
#include <linux/compiler.h>
24
#include <linux/delay.h>
S
Stefan Richter 已提交
25
#include <linux/device.h>
A
Andrew Morton 已提交
26
#include <linux/dma-mapping.h>
27
#include <linux/firewire.h>
S
Stefan Richter 已提交
28
#include <linux/firewire-constants.h>
29 30
#include <linux/init.h>
#include <linux/interrupt.h>
S
Stefan Richter 已提交
31
#include <linux/io.h>
32
#include <linux/kernel.h>
S
Stefan Richter 已提交
33
#include <linux/list.h>
A
Al Viro 已提交
34
#include <linux/mm.h>
35
#include <linux/module.h>
36
#include <linux/moduleparam.h>
37
#include <linux/mutex.h>
38
#include <linux/pci.h>
39
#include <linux/pci_ids.h>
40
#include <linux/slab.h>
S
Stefan Richter 已提交
41
#include <linux/spinlock.h>
S
Stefan Richter 已提交
42
#include <linux/string.h>
43
#include <linux/time.h>
44
#include <linux/vmalloc.h>
A
Andrew Morton 已提交
45

S
Stefan Richter 已提交
46
#include <asm/byteorder.h>
S
Stefan Richter 已提交
47
#include <asm/page.h>
48
#include <asm/system.h>
49

50 51 52 53
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

54 55
#include "core.h"
#include "ohci.h"
56

57 58 59 60 61 62 63 64 65 66 67 68 69
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
70 71 72 73 74 75 76 77 78 79

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

80 81 82 83
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
84

85 86 87 88 89 90 91 92
#define AR_BUFFER_SIZE	(32*1024)
#define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
/* we need at least two pages for proper list management */
#define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)

#define MAX_ASYNC_PAYLOAD	4096
#define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
#define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
93

94 95
struct ar_context {
	struct fw_ohci *ohci;
96 97 98 99
	struct page *pages[AR_BUFFERS];
	void *buffer;
	struct descriptor *descriptors;
	dma_addr_t descriptors_bus;
100
	void *pointer;
101
	unsigned int last_buffer_index;
102
	u32 regs;
103 104 105
	struct tasklet_struct tasklet;
};

106 107 108 109 110
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
111 112 113 114 115 116 117 118 119 120 121 122 123

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

124
struct context {
S
Stefan Richter 已提交
125
	struct fw_ohci *ohci;
126
	u32 regs;
127
	int total_allocation;
128
	bool running;
129
	bool flushing;
S
Stefan Richter 已提交
130

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
	 * The last descriptor in the DMA program.  It contains the branch
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
155 156 157

	descriptor_callback_t callback;

S
Stefan Richter 已提交
158
	struct tasklet_struct tasklet;
159 160
};

161 162 163 164 165 166
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
167 168 169

struct iso_context {
	struct fw_iso_context base;
170
	struct context context;
171
	int excess_bytes;
172 173
	void *header;
	size_t header_length;
174 175 176

	u8 sync;
	u8 tags;
177 178 179 180 181 182 183 184
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

	__iomem char *registers;
185
	int node_id;
186
	int generation;
187
	int request_generation;	/* for timestamping incoming requests */
188
	unsigned quirks;
189
	unsigned int pri_req_max;
190
	u32 bus_time;
191
	bool is_root;
192
	bool csr_state_setclear_abdicate;
193 194
	int n_ir;
	int n_it;
195 196 197 198
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
199 200
	spinlock_t lock;

201 202
	struct mutex phy_reg_mutex;

203 204 205
	void *misc_buffer;
	dma_addr_t misc_buffer_bus;

206 207
	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
208 209
	struct context at_request_ctx;
	struct context at_response_ctx;
210

211
	u32 it_context_support;
212
	u32 it_context_mask;     /* unoccupied IT contexts */
213
	struct iso_context *it_context_list;
214
	u64 ir_context_channels; /* unoccupied channels */
215
	u32 ir_context_support;
216
	u32 ir_context_mask;     /* unoccupied IR contexts */
217
	struct iso_context *ir_context_list;
218 219
	u64 mc_channels; /* channels in use by the multichannel IR context */
	bool mc_allocated;
220 221 222 223 224 225 226 227 228 229 230 231

	__be32    *config_rom;
	dma_addr_t config_rom_bus;
	__be32    *next_config_rom;
	dma_addr_t next_config_rom_bus;
	__be32     next_header;

	__le32    *self_id_cpu;
	dma_addr_t self_id_bus;
	struct tasklet_struct bus_reset_tasklet;

	u32 self_id_buffer[512];
232 233
};

A
Adrian Bunk 已提交
234
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
235 236 237 238
{
	return container_of(card, struct fw_ohci, card);
}

239 240 241 242 243 244
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
245 246 247 248 249 250

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

251
#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
252 253 254 255 256 257
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
258
#define OHCI_TCODE_PHY_PACKET		0x0e
259
#define OHCI_VERSION_1_1		0x010010
260

261 262
static char ohci_driver_name[] = KBUILD_MODNAME;

263
#define PCI_DEVICE_ID_AGERE_FW643	0x5901
264
#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
265
#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009
266
#define PCI_VENDOR_ID_PINNACLE_SYSTEMS	0x11bd
267

268 269 270
#define QUIRK_CYCLE_TIMER		1
#define QUIRK_RESET_PACKET		2
#define QUIRK_BE_HEADERS		4
271
#define QUIRK_NO_1394A			8
272
#define QUIRK_NO_MSI			16
273 274 275

/* In case of multiple matches in ohci_quirks[], only the first one is used. */
static const struct {
276
	unsigned short vendor, device, revision, flags;
277
} ohci_quirks[] = {
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
		QUIRK_BE_HEADERS},

	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
		QUIRK_NO_MSI},

	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
		QUIRK_NO_MSI},

	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},

	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_RESET_PACKET},

	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
304 305
};

306 307 308 309 310 311 312
/* This overrides anything that was found in ohci_quirks[]. */
static int param_quirks;
module_param_named(quirks, param_quirks, int, 0644);
MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
	", AR/selfID endianess = "	__stringify(QUIRK_BE_HEADERS)
313
	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
314
	", disable MSI = "		__stringify(QUIRK_NO_MSI)
315 316
	")");

317
#define OHCI_PARAM_DEBUG_AT_AR		1
318
#define OHCI_PARAM_DEBUG_SELFIDS	2
319 320
#define OHCI_PARAM_DEBUG_IRQS		4
#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
321

322 323
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG

324 325 326 327
static int param_debug;
module_param_named(debug, param_debug, int, 0644);
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
328 329 330
	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
331 332 333 334
	", or a combination, or all = -1)");

static void log_irqs(u32 evt)
{
335 336 337 338 339 340
	if (likely(!(param_debug &
			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
		return;

	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
	    !(evt & OHCI1394_busReset))
341 342
		return;

343
	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
344 345 346 347 348 349 350 351 352
	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
	    evt & OHCI1394_isochRx		? " IR"			: "",
	    evt & OHCI1394_isochTx		? " IT"			: "",
	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
353
	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
354
	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
355
	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
356
	    evt & OHCI1394_unrecoverableError	? " unrecoverableError"	: "",
357 358 359 360 361
	    evt & OHCI1394_busReset		? " busReset"		: "",
	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
		    OHCI1394_respTxComplete | OHCI1394_isochRx |
		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
362 363
		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
		    OHCI1394_cycleInconsistent |
364
		    OHCI1394_regAccessFail | OHCI1394_busReset)
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
						? " ?"			: "");
}

static const char *speed[] = {
	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
};
static const char *power[] = {
	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
};
static const char port[] = { '.', '-', 'p', 'c', };

static char _p(u32 *s, int shift)
{
	return port[*s >> shift & 3];
}

382
static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
383 384 385 386
{
	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
		return;

387 388
	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
		  self_id_count, generation, node_id);
389 390 391

	for (; self_id_count--; ++s)
		if ((*s & 1 << 23) == 0)
392 393 394 395 396 397
			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
			    "%s gc=%d %s %s%s%s\n",
			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
			    speed[*s >> 14 & 3], *s >> 16 & 63,
			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
398
		else
399 400 401 402
			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
			    *s, *s >> 24 & 63,
			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
}

static const char *evts[] = {
	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
	[0x10] = "-reserved-",		[0x11] = "ack_complete",
	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
	[0x18] = "-reserved-",		[0x19] = "-reserved-",
	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
	[0x20] = "pending/cancelled",
};
static const char *tcodes[] = {
	[0x0] = "QW req",		[0x1] = "BW req",
	[0x2] = "W resp",		[0x3] = "-reserved-",
	[0x4] = "QR req",		[0x5] = "BR req",
	[0x6] = "QR resp",		[0x7] = "BR resp",
	[0x8] = "cycle start",		[0x9] = "Lk req",
	[0xa] = "async stream packet",	[0xb] = "Lk resp",
	[0xc] = "-reserved-",		[0xd] = "-reserved-",
	[0xe] = "link internal",	[0xf] = "-reserved-",
};

static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
{
	int tcode = header[0] >> 4 & 0xf;
	char specific[12];

	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
		return;

	if (unlikely(evt >= ARRAY_SIZE(evts)))
			evt = 0x1f;

446
	if (evt == OHCI1394_evt_bus_reset) {
447 448
		fw_notify("A%c evt_bus_reset, generation %d\n",
		    dir, (header[2] >> 16) & 0xff);
449 450 451
		return;
	}

452 453 454 455 456 457 458 459 460 461 462 463 464 465
	switch (tcode) {
	case 0x0: case 0x6: case 0x8:
		snprintf(specific, sizeof(specific), " = %08x",
			 be32_to_cpu((__force __be32)header[3]));
		break;
	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
		snprintf(specific, sizeof(specific), " %x,%x",
			 header[3] >> 16, header[3] & 0xffff);
		break;
	default:
		specific[0] = '\0';
	}

	switch (tcode) {
466
	case 0xa:
467
		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
468
		break;
469 470 471 472
	case 0xe:
		fw_notify("A%c %s, PHY %08x %08x\n",
			  dir, evts[evt], header[1], header[2]);
		break;
473
	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
474 475 476 477 478 479
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s, %04x%08x%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
480 481
		break;
	default:
482 483 484 485 486 487
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], specific);
488 489 490 491 492
	}
}

#else

493 494 495 496
#define param_debug 0
static inline void log_irqs(u32 evt) {}
static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
497 498 499

#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */

A
Adrian Bunk 已提交
500
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
501 502 503 504
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
505
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
506 507 508 509
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
510
static inline void flush_writes(const struct fw_ohci *ohci)
511 512 513 514 515
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

516 517 518 519 520 521
/*
 * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
 * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
 */
522
static int read_phy_reg(struct fw_ohci *ohci, int addr)
523
{
524
	u32 val;
525
	int i;
526 527

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
528
	for (i = 0; i < 3 + 100; i++) {
529
		val = reg_read(ohci, OHCI1394_PhyControl);
530 531 532
		if (!~val)
			return -ENODEV; /* Card was ejected. */

533 534 535
		if (val & OHCI1394_PhyControl_ReadDone)
			return OHCI1394_PhyControl_ReadData(val);

536 537 538 539 540 541
		/*
		 * Try a few times without waiting.  Sleeping is necessary
		 * only when the link/PHY interface is busy.
		 */
		if (i >= 3)
			msleep(1);
542
	}
543
	fw_error("failed to read phy reg\n");
544

545 546
	return -EBUSY;
}
547

548 549 550
static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
{
	int i;
551 552

	reg_write(ohci, OHCI1394_PhyControl,
553
		  OHCI1394_PhyControl_Write(addr, val));
554
	for (i = 0; i < 3 + 100; i++) {
555
		val = reg_read(ohci, OHCI1394_PhyControl);
556 557 558
		if (!~val)
			return -ENODEV; /* Card was ejected. */

559 560
		if (!(val & OHCI1394_PhyControl_WritePending))
			return 0;
561

562 563
		if (i >= 3)
			msleep(1);
564 565 566 567
	}
	fw_error("failed to write phy reg\n");

	return -EBUSY;
568 569
}

570 571
static int update_phy_reg(struct fw_ohci *ohci, int addr,
			  int clear_bits, int set_bits)
572
{
573
	int ret = read_phy_reg(ohci, addr);
574 575
	if (ret < 0)
		return ret;
576

577 578 579 580 581 582 583
	/*
	 * The interrupt status bits are cleared by writing a one bit.
	 * Avoid clearing them unless explicitly requested in set_bits.
	 */
	if (addr == 5)
		clear_bits |= PHY_INT_STATUS_BITS;

584
	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
585 586
}

587
static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
588
{
589
	int ret;
590

591
	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
592 593
	if (ret < 0)
		return ret;
594

595
	return read_phy_reg(ohci, addr);
596 597
}

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
static int ohci_read_phy_reg(struct fw_card *card, int addr)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = read_phy_reg(ohci, addr);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
}

static int ohci_update_phy_reg(struct fw_card *card, int addr,
			       int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
621 622
}

623 624 625 626 627 628
static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
{
	return page_private(ctx->pages[i]);
}

static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
629
{
630
	struct descriptor *d;
631

632 633 634 635
	d = &ctx->descriptors[index];
	d->branch_address  &= cpu_to_le32(~0xf);
	d->res_count       =  cpu_to_le16(PAGE_SIZE);
	d->transfer_status =  0;
636

637
	wmb(); /* finish init of new descriptors before branch_address update */
638 639 640 641
	d = &ctx->descriptors[ctx->last_buffer_index];
	d->branch_address  |= cpu_to_le32(1);

	ctx->last_buffer_index = index;
642

643
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
644 645
}

646
static void ar_context_release(struct ar_context *ctx)
647
{
648
	unsigned int i;
649

650 651
	if (ctx->buffer)
		vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
652

653 654 655 656 657 658 659
	for (i = 0; i < AR_BUFFERS; i++)
		if (ctx->pages[i]) {
			dma_unmap_page(ctx->ohci->card.device,
				       ar_buffer_bus(ctx, i),
				       PAGE_SIZE, DMA_FROM_DEVICE);
			__free_page(ctx->pages[i]);
		}
660 661
}

662
static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
663
{
664 665 666
	if (reg_read(ctx->ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
		reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
		flush_writes(ctx->ohci);
667

668
		fw_error("AR error: %s; DMA stopped\n", error_msg);
669
	}
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
	/* FIXME: restart? */
}

static inline unsigned int ar_next_buffer_index(unsigned int index)
{
	return (index + 1) % AR_BUFFERS;
}

static inline unsigned int ar_prev_buffer_index(unsigned int index)
{
	return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
}

static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
{
	return ar_next_buffer_index(ctx->last_buffer_index);
}

/*
 * We search for the buffer that contains the last AR packet DMA data written
 * by the controller.
 */
static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
						 unsigned int *buffer_offset)
{
	unsigned int i, next_i, last = ctx->last_buffer_index;
	__le16 res_count, next_res_count;

	i = ar_first_buffer_index(ctx);
	res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);

	/* A buffer that is not yet completely filled must be the last one. */
	while (i != last && res_count == 0) {

		/* Peek at the next descriptor. */
		next_i = ar_next_buffer_index(i);
		rmb(); /* read descriptors in order */
		next_res_count = ACCESS_ONCE(
				ctx->descriptors[next_i].res_count);
		/*
		 * If the next descriptor is still empty, we must stop at this
		 * descriptor.
		 */
		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
			/*
			 * The exception is when the DMA data for one packet is
			 * split over three buffers; in this case, the middle
			 * buffer's descriptor might be never updated by the
			 * controller and look still empty, and we have to peek
			 * at the third one.
			 */
			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
				next_i = ar_next_buffer_index(next_i);
				rmb();
				next_res_count = ACCESS_ONCE(
					ctx->descriptors[next_i].res_count);
				if (next_res_count != cpu_to_le16(PAGE_SIZE))
					goto next_buffer_is_active;
			}

			break;
		}

next_buffer_is_active:
		i = next_i;
		res_count = next_res_count;
	}

	rmb(); /* read res_count before the DMA data */

	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
	if (*buffer_offset > PAGE_SIZE) {
		*buffer_offset = 0;
		ar_context_abort(ctx, "corrupted descriptor");
	}

	return i;
}

static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
				    unsigned int end_buffer_index,
				    unsigned int end_buffer_offset)
{
	unsigned int i;

	i = ar_first_buffer_index(ctx);
	while (i != end_buffer_index) {
		dma_sync_single_for_cpu(ctx->ohci->card.device,
					ar_buffer_bus(ctx, i),
					PAGE_SIZE, DMA_FROM_DEVICE);
		i = ar_next_buffer_index(i);
	}
	if (end_buffer_offset > 0)
		dma_sync_single_for_cpu(ctx->ohci->card.device,
					ar_buffer_bus(ctx, i),
					end_buffer_offset, DMA_FROM_DEVICE);
766 767
}

768 769
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
770
	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
771 772 773 774
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

775
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
776 777
{
	struct fw_ohci *ohci = ctx->ohci;
778 779
	struct fw_packet p;
	u32 status, length, tcode;
780
	int evt;
781

782 783 784
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
785 786 787 788 789

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
790
		p.header[3] = (__force __u32) buffer[3];
791
		p.header_length = 16;
792
		p.payload_length = 0;
793 794 795
		break;

	case TCODE_READ_BLOCK_REQUEST :
796
		p.header[3] = cond_le32_to_cpu(buffer[3]);
797 798 799 800 801
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
802 803 804
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
805
		p.header[3] = cond_le32_to_cpu(buffer[3]);
806
		p.header_length = 16;
807
		p.payload_length = p.header[3] >> 16;
808 809 810 811
		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
			ar_context_abort(ctx, "invalid packet length");
			return NULL;
		}
812 813 814 815
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
816
	case OHCI_TCODE_PHY_PACKET:
817
		p.header_length = 12;
818
		p.payload_length = 0;
819
		break;
820 821

	default:
822 823
		ar_context_abort(ctx, "invalid tcode");
		return NULL;
824
	}
825

826 827 828 829
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
830
	status = cond_le32_to_cpu(buffer[length]);
831
	evt    = (status >> 16) & 0x1f;
832

833
	p.ack        = evt - 16;
834 835 836
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
837

838
	log_ar_at_event('R', p.speed, p.header, evt);
839

840
	/*
841 842 843 844 845 846 847 848 849
	 * Several controllers, notably from NEC and VIA, forget to
	 * write ack_complete status at PHY packet reception.
	 */
	if (evt == OHCI1394_evt_no_status &&
	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
		p.ack = ACK_COMPLETE;

	/*
	 * The OHCI bus reset handler synthesizes a PHY packet with
850 851 852 853 854
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
855
	 * request.
856 857 858 859
	 *
	 * Alas some chips sometimes emit bus reset packets with a
	 * wrong generation.  We set the correct generation for these
	 * at a slightly incorrect time (in bus_reset_tasklet).
860
	 */
861
	if (evt == OHCI1394_evt_bus_reset) {
862
		if (!(ohci->quirks & QUIRK_RESET_PACKET))
863 864
			ohci->request_generation = (p.header[2] >> 16) & 0xff;
	} else if (ctx == &ohci->ar_request_ctx) {
865
		fw_core_handle_request(&ohci->card, &p);
866
	} else {
867
		fw_core_handle_response(&ohci->card, &p);
868
	}
869

870 871
	return buffer + length + 1;
}
872

873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
{
	void *next;

	while (p < end) {
		next = handle_ar_packet(ctx, p);
		if (!next)
			return p;
		p = next;
	}

	return p;
}

static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
{
	unsigned int i;

	i = ar_first_buffer_index(ctx);
	while (i != end_buffer) {
		dma_sync_single_for_device(ctx->ohci->card.device,
					   ar_buffer_bus(ctx, i),
					   PAGE_SIZE, DMA_FROM_DEVICE);
		ar_context_link_page(ctx, i);
		i = ar_next_buffer_index(i);
	}
}

901 902 903
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
904 905
	unsigned int end_buffer_index, end_buffer_offset;
	void *p, *end;
906

907 908 909
	p = ctx->pointer;
	if (!p)
		return;
910

911 912 913 914
	end_buffer_index = ar_search_last_active_buffer(ctx,
							&end_buffer_offset);
	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
915

916
	if (end_buffer_index < ar_first_buffer_index(ctx)) {
917
		/*
918 919 920 921
		 * The filled part of the overall buffer wraps around; handle
		 * all packets up to the buffer end here.  If the last packet
		 * wraps around, its tail will be visible after the buffer end
		 * because the buffer start pages are mapped there again.
922
		 */
923 924 925 926 927 928 929
		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
		p = handle_ar_packets(ctx, p, buffer_end);
		if (p < buffer_end)
			goto error;
		/* adjust p to point back into the actual buffer */
		p -= AR_BUFFERS * PAGE_SIZE;
	}
930

931 932 933 934 935 936
	p = handle_ar_packets(ctx, p, end);
	if (p != end) {
		if (p > end)
			ar_context_abort(ctx, "inconsistent descriptor");
		goto error;
	}
937

938 939
	ctx->pointer = p;
	ar_recycle_buffers(ctx, end_buffer_index);
940

941
	return;
942

943 944
error:
	ctx->pointer = NULL;
945 946
}

947 948
static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
			   unsigned int descriptors_offset, u32 regs)
949
{
950 951 952 953
	unsigned int i;
	dma_addr_t dma_addr;
	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
	struct descriptor *d;
954

955 956
	ctx->regs        = regs;
	ctx->ohci        = ohci;
957 958
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
	for (i = 0; i < AR_BUFFERS; i++) {
		ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
		if (!ctx->pages[i])
			goto out_of_memory;
		dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
					0, PAGE_SIZE, DMA_FROM_DEVICE);
		if (dma_mapping_error(ohci->card.device, dma_addr)) {
			__free_page(ctx->pages[i]);
			ctx->pages[i] = NULL;
			goto out_of_memory;
		}
		set_page_private(ctx->pages[i], dma_addr);
	}

	for (i = 0; i < AR_BUFFERS; i++)
		pages[i]              = ctx->pages[i];
	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
		pages[AR_BUFFERS + i] = ctx->pages[i];
	ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
978
				 -1, PAGE_KERNEL);
979 980 981
	if (!ctx->buffer)
		goto out_of_memory;

982 983
	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
984 985 986 987 988 989 990 991 992 993 994

	for (i = 0; i < AR_BUFFERS; i++) {
		d = &ctx->descriptors[i];
		d->req_count      = cpu_to_le16(PAGE_SIZE);
		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						DESCRIPTOR_STATUS |
						DESCRIPTOR_BRANCH_ALWAYS);
		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
			ar_next_buffer_index(i) * sizeof(struct descriptor));
	}
995

996
	return 0;
997 998 999 1000 1001

out_of_memory:
	ar_context_release(ctx);

	return -ENOMEM;
1002 1003 1004 1005
}

static void ar_context_run(struct ar_context *ctx)
{
1006 1007 1008 1009
	unsigned int i;

	for (i = 0; i < AR_BUFFERS; i++)
		ar_context_link_page(ctx, i);
1010

1011
	ctx->pointer = ctx->buffer;
1012

1013
	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1014
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1015
}
S
Stefan Richter 已提交
1016

1017
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1018
{
1019
	__le16 branch;
1020

1021
	branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1022 1023

	/* figure out which descriptor the branch address goes in */
1024
	if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1025 1026 1027 1028 1029
		return d;
	else
		return d + z - 1;
}

1030 1031 1032 1033 1034 1035
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
1036
	struct descriptor_buffer *desc;
1037

1038 1039 1040
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
1041
	while (last->branch_address != 0) {
1042
		struct descriptor_buffer *old_desc = desc;
1043 1044
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
1045 1046 1047 1048 1049 1050 1051 1052 1053
		address &= ~0xf;

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1054
		last = find_branch_descriptor(d, z);
1055 1056 1057 1058

		if (!ctx->callback(ctx, d, last))
			break;

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
1069 1070 1071
	}
}

1072 1073 1074 1075
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
1076
static int context_add_buffer(struct context *ctx)
1077 1078
{
	struct descriptor_buffer *desc;
1079
	dma_addr_t uninitialized_var(bus_addr);
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

1105 1106
static int context_init(struct context *ctx, struct fw_ohci *ohci,
			u32 regs, descriptor_callback_t callback)
1107 1108 1109
{
	ctx->ohci = ohci;
	ctx->regs = regs;
1110 1111 1112 1113
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
1114 1115
		return -ENOMEM;

1116 1117 1118
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

1119 1120 1121
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

1122 1123
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
1124
	 * branch address and looks like it's been sent.  That way we
1125
	 * have a descriptor to append DMA programs to.
1126
	 */
1127 1128 1129 1130 1131 1132
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
1133 1134 1135 1136

	return 0;
}

1137
static void context_release(struct context *ctx)
1138 1139
{
	struct fw_card *card = &ctx->ohci->card;
1140
	struct descriptor_buffer *desc, *tmp;
1141

1142 1143 1144 1145
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
1146 1147
}

1148
/* Must be called with ohci->lock held */
1149 1150
static struct descriptor *context_get_descriptors(struct context *ctx,
						  int z, dma_addr_t *d_bus)
1151
{
1152 1153 1154 1155 1156 1157 1158 1159 1160
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
1161

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
1172

1173
	d = desc->buffer + desc->used / sizeof(*d);
1174
	memset(d, 0, z * sizeof(*d));
1175
	*d_bus = desc->buffer_bus + desc->used;
1176 1177 1178 1179

	return d;
}

1180
static void context_run(struct context *ctx, u32 extra)
1181 1182 1183
{
	struct fw_ohci *ohci = ctx->ohci;

1184
	reg_write(ohci, COMMAND_PTR(ctx->regs),
1185
		  le32_to_cpu(ctx->last->branch_address));
1186 1187
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1188
	ctx->running = true;
1189 1190 1191 1192 1193 1194 1195
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
1196
	struct descriptor_buffer *desc = ctx->buffer_tail;
1197

1198
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1199

1200
	desc->used += (z + extra) * sizeof(*d);
1201 1202

	wmb(); /* finish init of new descriptors before branch_address update */
1203 1204
	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev = find_branch_descriptor(d, z);
1205 1206 1207 1208 1209
}

static void context_stop(struct context *ctx)
{
	u32 reg;
1210
	int i;
1211

1212
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1213
	ctx->running = false;
1214

1215
	for (i = 0; i < 1000; i++) {
1216
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1217
		if ((reg & CONTEXT_ACTIVE) == 0)
1218
			return;
1219

1220 1221
		if (i)
			udelay(10);
1222
	}
1223
	fw_error("Error: DMA context still active (0x%08x)\n", reg);
1224
}
1225

1226
struct driver_data {
1227
	u8 inline_data[8];
1228 1229
	struct fw_packet *packet;
};
1230

1231 1232
/*
 * This function apppends a packet to the DMA queue for transmission.
1233
 * Must always be called with the ochi->lock held to ensure proper
1234 1235
 * generation handling and locking around packet queue manipulation.
 */
1236 1237
static int at_context_queue_packet(struct context *ctx,
				   struct fw_packet *packet)
1238 1239
{
	struct fw_ohci *ohci = ctx->ohci;
1240
	dma_addr_t d_bus, uninitialized_var(payload_bus);
1241 1242 1243
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
1244 1245
	int z, tcode;

1246 1247 1248 1249
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1250 1251
	}

1252
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1253 1254
	d[0].res_count = cpu_to_le16(packet->timestamp);

1255 1256
	/*
	 * The DMA format for asyncronous link packets is different
1257
	 * from the IEEE1394 layout, so shift the fields around
1258
	 * accordingly.
1259
	 */
1260

1261
	tcode = (packet->header[0] >> 4) & 0x0f;
1262
	header = (__le32 *) &d[1];
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_WRITE_BLOCK_REQUEST:
	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
	case TCODE_READ_BLOCK_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
1273 1274 1275 1276 1277
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
1278 1279

		if (TCODE_IS_BLOCK_PACKET(tcode))
1280
			header[3] = cpu_to_le32(packet->header[3]);
1281
		else
1282 1283 1284
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
1285 1286
		break;

1287
	case TCODE_LINK_INTERNAL:
1288 1289
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
1290 1291
		header[1] = cpu_to_le32(packet->header[1]);
		header[2] = cpu_to_le32(packet->header[2]);
1292
		d[0].req_count = cpu_to_le16(12);
S
Stefan Richter 已提交
1293

1294
		if (is_ping_packet(&packet->header[1]))
S
Stefan Richter 已提交
1295
			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1296 1297
		break;

1298
	case TCODE_STREAM_DATA:
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
		d[0].req_count = cpu_to_le16(8);
		break;

	default:
		/* BUG(); */
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1309 1310
	}

1311
	BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1312 1313
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
1314
	packet->driver_data = driver_data;
1315

1316
	if (packet->payload_length > 0) {
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
		if (packet->payload_length > sizeof(driver_data->inline_data)) {
			payload_bus = dma_map_single(ohci->card.device,
						     packet->payload,
						     packet->payload_length,
						     DMA_TO_DEVICE);
			if (dma_mapping_error(ohci->card.device, payload_bus)) {
				packet->ack = RCODE_SEND_ERROR;
				return -1;
			}
			packet->payload_bus	= payload_bus;
			packet->payload_mapped	= true;
		} else {
			memcpy(driver_data->inline_data, packet->payload,
			       packet->payload_length);
			payload_bus = d_bus + 3 * sizeof(*d);
1332 1333 1334 1335 1336 1337
		}

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
1338
	} else {
1339 1340
		last = &d[0];
		z = 2;
1341 1342
	}

1343 1344 1345
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
1346

1347 1348
	/* FIXME: Document how the locking works. */
	if (ohci->generation != packet->generation) {
1349
		if (packet->payload_mapped)
1350 1351
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
1352 1353 1354 1355 1356
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
1357

1358
	if (ctx->running)
1359
		reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1360
	else
1361 1362 1363
		context_run(ctx, 0);

	return 0;
1364 1365
}

1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
static void at_context_flush(struct context *ctx)
{
	tasklet_disable(&ctx->tasklet);

	ctx->flushing = true;
	context_tasklet((unsigned long)ctx);
	ctx->flushing = false;

	tasklet_enable(&ctx->tasklet);
}

1377 1378 1379
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1380
{
1381
	struct driver_data *driver_data;
1382
	struct fw_packet *packet;
1383
	struct fw_ohci *ohci = context->ohci;
1384 1385
	int evt;

1386
	if (last->transfer_status == 0 && !context->flushing)
1387 1388
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
1389

1390 1391 1392 1393 1394
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
1395

1396
	if (packet->payload_mapped)
1397
		dma_unmap_single(ohci->card.device, packet->payload_bus,
1398 1399
				 packet->payload_length, DMA_TO_DEVICE);

1400 1401
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
1402

1403 1404
	log_ar_at_event('T', packet->speed, packet->header, evt);

1405 1406 1407 1408 1409
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
1410

1411
	case OHCI1394_evt_flushed:
1412 1413 1414 1415
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
1416 1417
		packet->ack = RCODE_GENERATION;
		break;
1418

1419
	case OHCI1394_evt_missing_ack:
1420 1421 1422 1423 1424 1425 1426 1427 1428
		if (context->flushing)
			packet->ack = RCODE_GENERATION;
		else {
			/*
			 * Using a valid (current) generation count, but the
			 * node is not on the bus or not sending acks.
			 */
			packet->ack = RCODE_NO_ACK;
		}
1429
		break;
1430

1431 1432 1433 1434 1435 1436 1437 1438 1439
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
1440

1441 1442 1443 1444 1445 1446 1447
	case OHCI1394_evt_no_status:
		if (context->flushing) {
			packet->ack = RCODE_GENERATION;
			break;
		}
		/* fall through */

1448 1449 1450 1451
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
1452

1453
	packet->callback(packet, &ohci->card, packet->ack);
1454

1455
	return 1;
1456 1457
}

1458 1459 1460 1461 1462
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1463

1464 1465
static void handle_local_rom(struct fw_ohci *ohci,
			     struct fw_packet *packet, u32 csr)
1466 1467 1468 1469
{
	struct fw_packet response;
	int tcode, length, i;

1470
	tcode = HEADER_GET_TCODE(packet->header[0]);
1471
	if (TCODE_IS_BLOCK_PACKET(tcode))
1472
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

1491 1492
static void handle_local_lock(struct fw_ohci *ohci,
			      struct fw_packet *packet, u32 csr)
1493 1494
{
	struct fw_packet response;
1495
	int tcode, length, ext_tcode, sel, try;
1496 1497 1498
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

1499 1500
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1501
	payload = packet->payload;
1502
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
	for (try = 0; try < 20; try++)
		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
			lock_old = cpu_to_be32(reg_read(ohci,
							OHCI1394_CSRData));
			fw_fill_response(&response, packet->header,
					 RCODE_COMPLETE,
					 &lock_old, sizeof(lock_old));
			goto out;
		}

	fw_error("swap not done (CSR lock timeout)\n");
	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1534 1535 1536 1537 1538

 out:
	fw_core_handle_response(&ohci->card, &response);
}

1539
static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1540
{
1541
	u64 offset, csr;
1542

1543 1544 1545 1546
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1547 1548 1549

	offset =
		((unsigned long long)
1550
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
1571 1572 1573 1574 1575

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1576
}
1577

1578
static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1579 1580
{
	unsigned long flags;
1581
	int ret;
1582 1583 1584

	spin_lock_irqsave(&ctx->ohci->lock, flags);

1585
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1586
	    ctx->ohci->generation == packet->generation) {
1587 1588 1589
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
1590
	}
1591

1592
	ret = at_context_queue_packet(ctx, packet);
1593 1594
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

1595
	if (ret < 0)
1596
		packet->callback(packet, &ctx->ohci->card, packet->ack);
1597

1598 1599
}

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
static void detect_dead_context(struct fw_ohci *ohci,
				const char *name, unsigned int regs)
{
	u32 ctl;

	ctl = reg_read(ohci, CONTROL_SET(regs));
	if (ctl & CONTEXT_DEAD) {
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG
		fw_error("DMA context %s has stopped, error code: %s\n",
			 name, evts[ctl & 0x1f]);
#else
		fw_error("DMA context %s has stopped, error code: %#x\n",
			 name, ctl & 0x1f);
#endif
	}
}

static void handle_dead_contexts(struct fw_ohci *ohci)
{
	unsigned int i;
	char name[8];

	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
	for (i = 0; i < 32; ++i) {
		if (!(ohci->it_context_support & (1 << i)))
			continue;
		sprintf(name, "IT%u", i);
		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
	}
	for (i = 0; i < 32; ++i) {
		if (!(ohci->ir_context_support & (1 << i)))
			continue;
		sprintf(name, "IR%u", i);
		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
	}
	/* TODO: maybe try to flush and restart the dead contexts */
}

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
static u32 cycle_timer_ticks(u32 cycle_timer)
{
	u32 ticks;

	ticks = cycle_timer & 0xfff;
	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
	ticks += (3072 * 8000) * (cycle_timer >> 25);

	return ticks;
}

/*
 * Some controllers exhibit one or more of the following bugs when updating the
 * iso cycle timer register:
 *  - When the lowest six bits are wrapping around to zero, a read that happens
 *    at the same time will return garbage in the lowest ten bits.
 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
 *    not incremented for about 60 ns.
 *  - Occasionally, the entire register reads zero.
 *
 * To catch these, we read the register three times and ensure that the
 * difference between each two consecutive reads is approximately the same, i.e.
 * less than twice the other.  Furthermore, any negative difference indicates an
 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
 * execute, so we have enough precision to compute the ratio of the differences.)
 */
static u32 get_cycle_time(struct fw_ohci *ohci)
{
	u32 c0, c1, c2;
	u32 t0, t1, t2;
	s32 diff01, diff12;
	int i;

	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);

	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
		i = 0;
		c1 = c2;
		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		do {
			c0 = c1;
			c1 = c2;
			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
			t0 = cycle_timer_ticks(c0);
			t1 = cycle_timer_ticks(c1);
			t2 = cycle_timer_ticks(c2);
			diff01 = t1 - t0;
			diff12 = t2 - t1;
		} while ((diff01 <= 0 || diff12 <= 0 ||
			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
			 && i++ < 20);
	}

	return c2;
}

/*
 * This function has to be called at least every 64 seconds.  The bus_time
 * field stores not only the upper 25 bits of the BUS_TIME register but also
 * the most significant bit of the cycle timer in bit 6 so that we can detect
 * changes in this bit.
 */
static u32 update_bus_time(struct fw_ohci *ohci)
{
	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;

	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
		ohci->bus_time += 0x40;

	return ohci->bus_time | cycle_time_seconds;
}

1713 1714 1715
static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
1716
	int self_id_count, i, j, reg;
1717 1718
	int generation, new_generation;
	unsigned long flags;
1719 1720
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1721
	bool is_new_root;
1722 1723 1724

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1725
		fw_notify("node ID not valid, new bus reset in progress\n");
1726 1727
		return;
	}
1728 1729 1730 1731 1732 1733
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1734

1735 1736 1737 1738 1739 1740
	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
	if (!(ohci->is_root && is_new_root))
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	ohci->is_root = is_new_root;

1741 1742 1743 1744 1745
	reg = reg_read(ohci, OHCI1394_SelfIDCount);
	if (reg & OHCI1394_SelfIDCount_selfIDError) {
		fw_notify("inconsistent self IDs\n");
		return;
	}
1746 1747
	/*
	 * The count in the SelfIDCount register is the number of
1748 1749
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1750 1751
	 * bit extra to get the actual number of self IDs.
	 */
1752 1753
	self_id_count = (reg >> 3) & 0xff;
	if (self_id_count == 0 || self_id_count > 252) {
1754 1755 1756
		fw_notify("inconsistent self IDs\n");
		return;
	}
1757
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1758
	rmb();
1759 1760

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1761 1762 1763 1764
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
			fw_notify("inconsistent self IDs\n");
			return;
		}
1765 1766
		ohci->self_id_buffer[j] =
				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1767
	}
1768
	rmb();
1769

1770 1771
	/*
	 * Check the consistency of the self IDs we just read.  The
1772 1773 1774 1775 1776 1777 1778 1779 1780
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1781 1782
	 * of self IDs.
	 */
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

1794
	ohci->generation = -1; /* prevent AT packet queueing */
1795 1796
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1797 1798 1799

	spin_unlock_irqrestore(&ohci->lock, flags);

1800 1801 1802 1803 1804
	/*
	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
	 * packets in the AT queues and software needs to drain them.
	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
	 */
1805 1806 1807 1808 1809 1810
	at_context_flush(&ohci->at_request_ctx);
	at_context_flush(&ohci->at_response_ctx);

	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
1811 1812
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

1813
	if (ohci->quirks & QUIRK_RESET_PACKET)
1814 1815
		ohci->request_generation = generation;

1816 1817
	/*
	 * This next bit is unrelated to the AT context stuff but we
1818 1819 1820 1821
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
T
Thomas Weber 已提交
1822
	 * next_config_rom pointer so a new update can take place.
1823
	 */
1824 1825

	if (ohci->next_config_rom != NULL) {
1826 1827 1828 1829
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1830 1831 1832 1833
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1834 1835
		/*
		 * Restore config_rom image and manually update
1836 1837
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1838 1839
		 * do that last.
		 */
1840 1841
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
1842 1843 1844
		ohci->config_rom[0] = ohci->next_header;
		reg_write(ohci, OHCI1394_ConfigROMhdr,
			  be32_to_cpu(ohci->next_header));
1845 1846
	}

1847 1848 1849 1850 1851
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif

1852 1853
	spin_unlock_irqrestore(&ohci->lock, flags);

1854 1855 1856 1857
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1858 1859
	log_selfids(ohci->node_id, generation,
		    self_id_count, ohci->self_id_buffer);
1860

1861
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1862 1863 1864
				 self_id_count, ohci->self_id_buffer,
				 ohci->csr_state_setclear_abdicate);
	ohci->csr_state_setclear_abdicate = false;
1865 1866 1867 1868 1869
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1870
	u32 event, iso_event;
1871 1872 1873 1874
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1875
	if (!event || !~event)
1876 1877
		return IRQ_NONE;

1878 1879 1880 1881 1882 1883
	/*
	 * busReset and postedWriteErr must not be cleared yet
	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
	 */
	reg_write(ohci, OHCI1394_IntEventClear,
		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
1884
	log_irqs(event);
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
	if (event & OHCI1394_isochRx) {
		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

		while (iso_event) {
			i = ffs(iso_event) - 1;
			tasklet_schedule(
				&ohci->ir_context_list[i].context.tasklet);
			iso_event &= ~(1 << i);
		}
1911 1912
	}

1913 1914 1915
	if (event & OHCI1394_isochTx) {
		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1916

1917 1918 1919 1920 1921 1922
		while (iso_event) {
			i = ffs(iso_event) - 1;
			tasklet_schedule(
				&ohci->it_context_list[i].context.tasklet);
			iso_event &= ~(1 << i);
		}
1923 1924
	}

1925 1926 1927 1928
	if (unlikely(event & OHCI1394_regAccessFail))
		fw_error("Register access failure - "
			 "please notify linux1394-devel@lists.sf.net\n");

1929 1930 1931 1932 1933
	if (unlikely(event & OHCI1394_postedWriteErr)) {
		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
		reg_write(ohci, OHCI1394_IntEventClear,
			  OHCI1394_postedWriteErr);
1934
		fw_error("PCI posted write error\n");
1935
	}
1936

1937 1938 1939 1940 1941 1942 1943
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
			fw_notify("isochronous cycle too long\n");
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
	if (unlikely(event & OHCI1394_cycleInconsistent)) {
		/*
		 * We need to clear this event bit in order to make
		 * cycleMatch isochronous I/O work.  In theory we should
		 * stop active cycleMatch iso contexts now and restart
		 * them at least two cycles later.  (FIXME?)
		 */
		if (printk_ratelimit())
			fw_notify("isochronous cycle inconsistent\n");
	}

1955 1956 1957
	if (unlikely(event & OHCI1394_unrecoverableError))
		handle_dead_contexts(ohci);

1958 1959 1960 1961
	if (event & OHCI1394_cycle64Seconds) {
		spin_lock(&ohci->lock);
		update_bus_time(ohci);
		spin_unlock(&ohci->lock);
1962 1963
	} else
		flush_writes(ohci);
1964

1965 1966 1967
	return IRQ_HANDLED;
}

1968 1969
static int software_reset(struct fw_ohci *ohci)
{
1970
	u32 val;
1971 1972 1973
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1974 1975 1976 1977
	for (i = 0; i < 500; i++) {
		val = reg_read(ohci, OHCI1394_HCControlSet);
		if (!~val)
			return -ENODEV; /* Card was ejected. */
1978

1979
		if (!(val & OHCI1394_HCControl_softReset))
1980
			return 0;
1981

1982 1983 1984 1985 1986 1987
		msleep(1);
	}

	return -EBUSY;
}

1988 1989 1990 1991 1992 1993 1994 1995 1996
static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
{
	size_t size = length * 4;

	memcpy(dest, src, size);
	if (size < CONFIG_ROM_SIZE)
		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
}

1997 1998 1999
static int configure_1394a_enhancements(struct fw_ohci *ohci)
{
	bool enable_1394a;
2000
	int ret, clear, set, offset;
2001 2002 2003 2004 2005 2006 2007 2008

	/* Check if the driver should configure link and PHY. */
	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
	      OHCI1394_HCControl_programPhyEnable))
		return 0;

	/* Paranoia: check whether the PHY supports 1394a, too. */
	enable_1394a = false;
2009 2010 2011 2012 2013 2014 2015 2016
	ret = read_phy_reg(ohci, 2);
	if (ret < 0)
		return ret;
	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
		ret = read_paged_phy_reg(ohci, 1, 8);
		if (ret < 0)
			return ret;
		if (ret >= 1)
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
			enable_1394a = true;
	}

	if (ohci->quirks & QUIRK_NO_1394A)
		enable_1394a = false;

	/* Configure PHY and link consistently. */
	if (enable_1394a) {
		clear = 0;
		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
	} else {
		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
		set = 0;
	}
2031
	ret = update_phy_reg(ohci, 5, clear, set);
2032 2033
	if (ret < 0)
		return ret;
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

	if (enable_1394a)
		offset = OHCI1394_HCControlSet;
	else
		offset = OHCI1394_HCControlClear;
	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);

	/* Clean up: configuration has been taken care of. */
	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_programPhyEnable);

	return 0;
}

2048 2049
static int ohci_enable(struct fw_card *card,
		       const __be32 *config_rom, size_t length)
2050 2051 2052
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);
2053
	u32 lps, seconds, version, irqs;
2054
	int i, ret;
2055

2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
2066 2067
	 * full link enabled.  However, with some cards (well, at least
	 * a JMicron PCIe card), we have to try again sometimes.
2068 2069 2070 2071 2072
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083

	for (lps = 0, i = 0; !lps && i < 3; i++) {
		msleep(50);
		lps = reg_read(ohci, OHCI1394_HCControlSet) &
		      OHCI1394_HCControl_LPS;
	}

	if (!lps) {
		fw_error("Failed to set Link Power Status\n");
		return -EIO;
	}
2084 2085 2086 2087

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

2088
	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2089 2090 2091 2092 2093 2094 2095
	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2096 2097
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
		  (200 << 16));
2098

2099 2100 2101 2102
	seconds = lower_32_bits(get_seconds());
	reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
	ohci->bus_time = seconds & ~0x3f;

2103 2104 2105 2106
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	if (version >= OHCI_VERSION_1_1) {
		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
			  0xfffffffe);
2107
		card->broadcast_channel_auto_allocated = true;
2108 2109
	}

2110 2111 2112 2113
	/* Get implemented bits of the priority arbitration request counter. */
	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
	reg_write(ohci, OHCI1394_FairnessControl, 0);
2114
	card->priority_budget_implemented = ohci->pri_req_max != 0;
2115 2116 2117 2118 2119

	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);

2120 2121 2122
	ret = configure_1394a_enhancements(ohci);
	if (ret < 0)
		return ret;
2123

2124
	/* Activate link_on bit and contender bit in our self ID packets.*/
2125 2126 2127
	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
	if (ret < 0)
		return ret;
2128

2129 2130
	/*
	 * When the link is not yet enabled, the atomic config rom
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

2148 2149 2150 2151 2152 2153 2154
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
2155

2156
		copy_config_rom(ohci->next_config_rom, config_rom, length);
2157 2158 2159 2160 2161 2162 2163 2164
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
2165

2166
	ohci->next_header = ohci->next_config_rom[0];
2167 2168
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2169 2170
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
2171 2172 2173 2174
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

2175 2176
	if (!(ohci->quirks & QUIRK_NO_MSI))
		pci_enable_msi(dev);
2177
	if (request_irq(dev->irq, irq_handler,
2178 2179 2180 2181
			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
			ohci_driver_name, ohci)) {
		fw_error("Failed to allocate interrupt %d.\n", dev->irq);
		pci_disable_msi(dev);
2182 2183 2184 2185 2186 2187 2188

		if (config_rom) {
			dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					  ohci->next_config_rom,
					  ohci->next_config_rom_bus);
			ohci->next_config_rom = NULL;
		}
2189 2190 2191
		return -EIO;
	}

2192 2193 2194 2195 2196 2197
	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		OHCI1394_RQPkt | OHCI1394_RSPkt |
		OHCI1394_isochTx | OHCI1394_isochRx |
		OHCI1394_postedWriteErr |
		OHCI1394_selfIDComplete |
		OHCI1394_regAccessFail |
2198
		OHCI1394_cycle64Seconds |
2199 2200 2201
		OHCI1394_cycleInconsistent |
		OHCI1394_unrecoverableError |
		OHCI1394_cycleTooLong |
2202 2203 2204 2205 2206
		OHCI1394_masterIntEnable;
	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
		irqs |= OHCI1394_busReset;
	reg_write(ohci, OHCI1394_IntMaskSet, irqs);

2207 2208 2209
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
2210 2211 2212 2213 2214 2215

	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_rcvPhyPkt);

	ar_context_run(&ohci->ar_request_ctx);
2216 2217 2218
	ar_context_run(&ohci->ar_response_ctx);

	flush_writes(ohci);
2219

2220 2221
	/* We are ready to go, reset bus to finish initialization. */
	fw_schedule_bus_reset(&ohci->card, false, true);
2222 2223 2224 2225

	return 0;
}

2226
static int ohci_set_config_rom(struct fw_card *card,
2227
			       const __be32 *config_rom, size_t length)
2228 2229 2230 2231
{
	struct fw_ohci *ohci;
	unsigned long flags;
	__be32 *next_config_rom;
2232
	dma_addr_t uninitialized_var(next_config_rom_bus);
2233 2234 2235

	ohci = fw_ohci(card);

2236 2237
	/*
	 * When the OHCI controller is enabled, the config rom update
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
	/*
	 * If there is not an already pending config_rom update,
	 * push our new allocation into the ohci->next_config_rom
	 * and then mark the local variable as null so that we
	 * won't deallocate the new buffer.
	 *
	 * OTOH, if there is a pending config_rom update, just
	 * use that buffer with the new config_rom data, and
	 * let this routine free the unused DMA allocation.
	 */

2282 2283 2284
	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;
2285 2286
		next_config_rom = NULL;
	}
2287

2288
	copy_config_rom(ohci->next_config_rom, config_rom, length);
2289

2290 2291
	ohci->next_header = config_rom[0];
	ohci->next_config_rom[0] = 0;
2292

2293
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2294 2295 2296

	spin_unlock_irqrestore(&ohci->lock, flags);

2297 2298 2299 2300 2301
	/* If we didn't use the DMA allocation, delete it. */
	if (next_config_rom != NULL)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);

2302 2303
	/*
	 * Now initiate a bus reset to have the changes take
2304 2305 2306
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
2307 2308
	 * takes effect.
	 */
2309

2310 2311 2312
	fw_schedule_bus_reset(&ohci->card, true, true);

	return 0;
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

2329 2330 2331
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
2332 2333
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
2334
	int ret = -ENOENT;
2335

2336
	tasklet_disable(&ctx->tasklet);
2337

2338 2339
	if (packet->ack != 0)
		goto out;
2340

2341
	if (packet->payload_mapped)
2342 2343 2344
		dma_unmap_single(ohci->card.device, packet->payload_bus,
				 packet->payload_length, DMA_TO_DEVICE);

2345
	log_ar_at_event('T', packet->speed, packet->header, 0x20);
2346 2347 2348
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
2349
	ret = 0;
2350 2351
 out:
	tasklet_enable(&ctx->tasklet);
2352

2353
	return ret;
2354 2355
}

2356 2357
static int ohci_enable_phys_dma(struct fw_card *card,
				int node_id, int generation)
2358
{
2359 2360 2361
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	return 0;
#else
2362 2363
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
2364
	int n, ret = 0;
2365

2366 2367 2368 2369
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
2370 2371 2372 2373

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
2374
		ret = -ESTALE;
2375 2376 2377
		goto out;
	}

2378 2379 2380 2381
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
2382 2383 2384 2385 2386 2387 2388

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

2389 2390
	flush_writes(ohci);
 out:
2391
	spin_unlock_irqrestore(&ohci->lock, flags);
2392 2393

	return ret;
2394
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2395
}
S
Stefan Richter 已提交
2396

2397
static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2398
{
2399
	struct fw_ohci *ohci = fw_ohci(card);
2400 2401
	unsigned long flags;
	u32 value;
2402 2403

	switch (csr_offset) {
2404 2405 2406 2407 2408
	case CSR_STATE_CLEAR:
	case CSR_STATE_SET:
		if (ohci->is_root &&
		    (reg_read(ohci, OHCI1394_LinkControlSet) &
		     OHCI1394_LinkControl_cycleMaster))
2409
			value = CSR_STATE_BIT_CMSTR;
2410
		else
2411 2412 2413
			value = 0;
		if (ohci->csr_state_setclear_abdicate)
			value |= CSR_STATE_BIT_ABDICATE;
2414

2415
		return value;
2416

2417 2418 2419
	case CSR_NODE_IDS:
		return reg_read(ohci, OHCI1394_NodeID) << 16;

2420 2421 2422
	case CSR_CYCLE_TIME:
		return get_cycle_time(ohci);

2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
	case CSR_BUS_TIME:
		/*
		 * We might be called just after the cycle timer has wrapped
		 * around but just before the cycle64Seconds handler, so we
		 * better check here, too, if the bus time needs to be updated.
		 */
		spin_lock_irqsave(&ohci->lock, flags);
		value = update_bus_time(ohci);
		spin_unlock_irqrestore(&ohci->lock, flags);
		return value;

2434 2435 2436 2437
	case CSR_BUSY_TIMEOUT:
		value = reg_read(ohci, OHCI1394_ATRetries);
		return (value >> 4) & 0x0ffff00f;

2438 2439 2440 2441
	case CSR_PRIORITY_BUDGET:
		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
			(ohci->pri_req_max << 8);

2442 2443 2444 2445
	default:
		WARN_ON(1);
		return 0;
	}
2446 2447
}

2448
static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2449 2450
{
	struct fw_ohci *ohci = fw_ohci(card);
2451
	unsigned long flags;
2452

2453
	switch (csr_offset) {
2454 2455 2456 2457 2458 2459
	case CSR_STATE_CLEAR:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlClear,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2460 2461
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = false;
2462
		break;
2463

2464 2465 2466 2467 2468 2469
	case CSR_STATE_SET:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlSet,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2470 2471
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = true;
2472
		break;
2473

2474 2475 2476 2477 2478
	case CSR_NODE_IDS:
		reg_write(ohci, OHCI1394_NodeID, value >> 16);
		flush_writes(ohci);
		break;

2479 2480 2481 2482 2483 2484 2485
	case CSR_CYCLE_TIME:
		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
		reg_write(ohci, OHCI1394_IntEventSet,
			  OHCI1394_cycleInconsistent);
		flush_writes(ohci);
		break;

2486 2487 2488 2489 2490 2491
	case CSR_BUS_TIME:
		spin_lock_irqsave(&ohci->lock, flags);
		ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
		spin_unlock_irqrestore(&ohci->lock, flags);
		break;

2492 2493 2494 2495 2496 2497 2498
	case CSR_BUSY_TIMEOUT:
		value = (value & 0xf) | ((value & 0xf) << 4) |
			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
		reg_write(ohci, OHCI1394_ATRetries, value);
		flush_writes(ohci);
		break;

2499 2500 2501 2502 2503
	case CSR_PRIORITY_BUDGET:
		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
		flush_writes(ohci);
		break;

2504 2505 2506 2507
	default:
		WARN_ON(1);
		break;
	}
2508 2509
}

2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
static void copy_iso_headers(struct iso_context *ctx, void *p)
{
	int i = ctx->header_length;

	if (i + ctx->base.header_size > PAGE_SIZE)
		return;

	/*
	 * The iso header is byteswapped to little endian by
	 * the controller, but the remaining header quadlets
	 * are big endian.  We want to present all the headers
	 * as big endian, so we have to swap the first quadlet.
	 */
	if (ctx->base.header_size > 0)
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
	if (ctx->base.header_size > 4)
		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
	if (ctx->base.header_size > 8)
		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
	ctx->header_length += ctx->base.header_size;
}

2532 2533 2534 2535 2536 2537
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2538
	struct descriptor *pd;
2539
	__le32 *ir_header;
2540
	void *p;
2541

2542
	for (pd = d; pd <= last; pd++)
2543 2544 2545
		if (pd->transfer_status)
			break;
	if (pd > last)
2546 2547 2548
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

2549 2550
	p = last + 1;
	copy_iso_headers(ctx, p);
2551

2552 2553
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) p;
2554 2555 2556 2557
		ctx->base.callback.sc(&ctx->base,
				      le32_to_cpu(ir_header[0]) & 0xffff,
				      ctx->header_length, ctx->header,
				      ctx->base.callback_data);
2558 2559 2560 2561 2562 2563
		ctx->header_length = 0;
	}

	return 1;
}

2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
/* d == last because each descriptor block is only a single descriptor. */
static int handle_ir_buffer_fill(struct context *context,
				 struct descriptor *d,
				 struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);

	if (!last->transfer_status)
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
		ctx->base.callback.mc(&ctx->base,
				      le32_to_cpu(last->data_address) +
				      le16_to_cpu(last->req_count) -
				      le16_to_cpu(last->res_count),
				      ctx->base.callback_data);

	return 1;
}

2586 2587 2588
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
2589
{
2590 2591
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2592 2593
	int i;
	struct descriptor *pd;
S
Stefan Richter 已提交
2594

2595 2596 2597 2598 2599
	for (pd = d; pd <= last; pd++)
		if (pd->transfer_status)
			break;
	if (pd > last)
		/* Descriptor(s) not done yet, stop iteration */
2600 2601
		return 0;

2602 2603 2604 2605 2606 2607 2608 2609 2610
	i = ctx->header_length;
	if (i + 4 < PAGE_SIZE) {
		/* Present this value as big-endian to match the receive code */
		*(__be32 *)(ctx->header + i) = cpu_to_be32(
				((u32)le16_to_cpu(pd->transfer_status) << 16) |
				le16_to_cpu(pd->res_count));
		ctx->header_length += 4;
	}
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2611 2612 2613
		ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
				      ctx->header_length, ctx->header,
				      ctx->base.callback_data);
2614 2615
		ctx->header_length = 0;
	}
2616
	return 1;
2617 2618
}

2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
{
	u32 hi = channels >> 32, lo = channels;

	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
	mmiowb();
	ohci->mc_channels = channels;
}

2631
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2632
				int type, int channel, size_t header_size)
2633 2634
{
	struct fw_ohci *ohci = fw_ohci(card);
2635 2636 2637 2638
	struct iso_context *uninitialized_var(ctx);
	descriptor_callback_t uninitialized_var(callback);
	u64 *uninitialized_var(channels);
	u32 *uninitialized_var(mask), uninitialized_var(regs);
2639
	unsigned long flags;
2640
	int index, ret = -EBUSY;
2641

2642
	spin_lock_irqsave(&ohci->lock, flags);
2643

2644 2645 2646
	switch (type) {
	case FW_ISO_CONTEXT_TRANSMIT:
		mask     = &ohci->it_context_mask;
2647
		callback = handle_it_packet;
2648 2649 2650 2651 2652 2653 2654 2655 2656
		index    = ffs(*mask) - 1;
		if (index >= 0) {
			*mask &= ~(1 << index);
			regs = OHCI1394_IsoXmitContextBase(index);
			ctx  = &ohci->it_context_list[index];
		}
		break;

	case FW_ISO_CONTEXT_RECEIVE:
2657
		channels = &ohci->ir_context_channels;
2658
		mask     = &ohci->ir_context_mask;
2659
		callback = handle_ir_packet_per_buffer;
2660 2661 2662 2663 2664 2665 2666 2667
		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
		if (index >= 0) {
			*channels &= ~(1ULL << channel);
			*mask     &= ~(1 << index);
			regs = OHCI1394_IsoRcvContextBase(index);
			ctx  = &ohci->ir_context_list[index];
		}
		break;
2668

2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		mask     = &ohci->ir_context_mask;
		callback = handle_ir_buffer_fill;
		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
		if (index >= 0) {
			ohci->mc_allocated = true;
			*mask &= ~(1 << index);
			regs = OHCI1394_IsoRcvContextBase(index);
			ctx  = &ohci->ir_context_list[index];
		}
		break;

	default:
		index = -1;
		ret = -ENOSYS;
2684
	}
2685

2686 2687 2688
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
2689
		return ERR_PTR(ret);
S
Stefan Richter 已提交
2690

2691
	memset(ctx, 0, sizeof(*ctx));
2692 2693
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
2694 2695
	if (ctx->header == NULL) {
		ret = -ENOMEM;
2696
		goto out;
2697
	}
2698 2699
	ret = context_init(&ctx->context, ohci, regs, callback);
	if (ret < 0)
2700
		goto out_with_header;
2701

2702 2703 2704
	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
		set_multichannel_mask(ohci, 0);

2705
	return &ctx->base;
2706 2707 2708 2709 2710

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720

	switch (type) {
	case FW_ISO_CONTEXT_RECEIVE:
		*channels |= 1ULL << channel;
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		ohci->mc_allocated = false;
		break;
	}
2721
	*mask |= 1 << index;
2722

2723 2724
	spin_unlock_irqrestore(&ohci->lock, flags);

2725
	return ERR_PTR(ret);
2726 2727
}

2728 2729
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
2730
{
S
Stefan Richter 已提交
2731
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2732
	struct fw_ohci *ohci = ctx->context.ohci;
2733
	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2734 2735
	int index;

2736 2737 2738 2739
	/* the controller cannot start without any queued packets */
	if (ctx->context.last->branch_address == 0)
		return -ENODATA;

2740 2741
	switch (ctx->base.type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2742
		index = ctx - ohci->it_context_list;
2743 2744 2745
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2746
				(cycle & 0x7fff) << 16;
2747

2748 2749
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2750
		context_run(&ctx->context, match);
2751 2752 2753 2754 2755 2756
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
		/* fall through */
	case FW_ISO_CONTEXT_RECEIVE:
2757
		index = ctx - ohci->ir_context_list;
2758 2759 2760 2761 2762
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
2763

2764 2765
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2766
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2767
		context_run(&ctx->context, control);
2768 2769 2770 2771

		ctx->sync = sync;
		ctx->tags = tags;

2772
		break;
2773
	}
2774 2775 2776 2777

	return 0;
}

2778 2779 2780
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2781
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2782 2783
	int index;

2784 2785
	switch (ctx->base.type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2786 2787
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2788 2789 2790 2791
		break;

	case FW_ISO_CONTEXT_RECEIVE:
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2792 2793
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2794
		break;
2795 2796 2797
	}
	flush_writes(ohci);
	context_stop(&ctx->context);
2798
	tasklet_kill(&ctx->context.tasklet);
2799 2800 2801 2802

	return 0;
}

2803 2804 2805
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2806
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2807 2808 2809
	unsigned long flags;
	int index;

2810 2811
	ohci_stop_iso(base);
	context_release(&ctx->context);
2812
	free_page((unsigned long)ctx->header);
2813

2814 2815
	spin_lock_irqsave(&ohci->lock, flags);

2816 2817
	switch (base->type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2818 2819
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
2820 2821 2822
		break;

	case FW_ISO_CONTEXT_RECEIVE:
2823 2824
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
2825
		ohci->ir_context_channels |= 1ULL << base->channel;
2826 2827 2828 2829 2830 2831 2832 2833 2834
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
		ohci->ir_context_channels |= ohci->mc_channels;
		ohci->mc_channels = 0;
		ohci->mc_allocated = false;
		break;
2835 2836 2837 2838 2839
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
	unsigned long flags;
	int ret;

	switch (base->type) {
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:

		spin_lock_irqsave(&ohci->lock, flags);

		/* Don't allow multichannel to grab other contexts' channels. */
		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
			*channels = ohci->ir_context_channels;
			ret = -EBUSY;
		} else {
			set_multichannel_mask(ohci, *channels);
			ret = 0;
		}

		spin_unlock_irqrestore(&ohci->lock, flags);

		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

2870 2871 2872 2873 2874 2875 2876 2877
#ifdef CONFIG_PM
static void ohci_resume_iso_dma(struct fw_ohci *ohci)
{
	int i;
	struct iso_context *ctx;

	for (i = 0 ; i < ohci->n_ir ; i++) {
		ctx = &ohci->ir_context_list[i];
2878
		if (ctx->context.running)
2879 2880 2881 2882 2883
			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
	}

	for (i = 0 ; i < ohci->n_it ; i++) {
		ctx = &ohci->it_context_list[i];
2884
		if (ctx->context.running)
2885 2886 2887 2888 2889
			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
	}
}
#endif

2890 2891 2892 2893
static int queue_iso_transmit(struct iso_context *ctx,
			      struct fw_iso_packet *packet,
			      struct fw_iso_buffer *buffer,
			      unsigned long payload)
2894
{
2895
	struct descriptor *d, *last, *pd;
2896 2897
	struct fw_iso_packet *p;
	__le32 *header;
2898
	dma_addr_t d_bus, page_bus;
2899 2900
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
2901
	int page, end_page, i, length, offset;
2902 2903

	p = packet;
2904
	payload_index = payload;
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
2923
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2924

2925 2926 2927
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
2928 2929

	if (!p->skip) {
2930
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2931
		d[0].req_count = cpu_to_le16(8);
2932 2933 2934 2935 2936 2937 2938 2939
		/*
		 * Link the skip address to this descriptor itself.  This causes
		 * a context to skip a cycle whenever lost cycles or FIFO
		 * overruns occur, without dropping the data.  The application
		 * should then decide whether this is an error condition or not.
		 * FIXME:  Make the context's cycle-lost behaviour configurable?
		 */
		d[0].branch_address = cpu_to_le32(d_bus | z);
2940 2941

		header = (__le32 *) &d[1];
2942 2943 2944 2945 2946
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
2947
		header[1] =
2948
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2949 2950 2951 2952 2953
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
2954
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
2967 2968 2969

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
2970 2971 2972 2973 2974

		payload_index += length;
	}

	if (p->interrupt)
2975
		irq = DESCRIPTOR_IRQ_ALWAYS;
2976
	else
2977
		irq = DESCRIPTOR_NO_IRQ;
2978

2979
	last = z == 2 ? d : d + z - 1;
2980 2981 2982
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
2983
				     irq);
2984

2985
	context_append(&ctx->context, d, z, header_z);
2986 2987 2988

	return 0;
}
S
Stefan Richter 已提交
2989

2990 2991 2992 2993
static int queue_iso_packet_per_buffer(struct iso_context *ctx,
				       struct fw_iso_packet *packet,
				       struct fw_iso_buffer *buffer,
				       unsigned long payload)
2994
{
2995
	struct descriptor *d, *pd;
2996 2997
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
2998 2999
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
3000 3001

	/*
3002 3003
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
3004
	 */
3005
	packet_count = packet->header_length / ctx->base.header_size;
3006
	header_size  = max(ctx->base.header_size, (size_t)8);
3007 3008 3009 3010 3011

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
3012
	payload_per_buffer = packet->payload_length / packet_count;
3013 3014 3015

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
3016
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3017
		d = context_get_descriptors(&ctx->context,
3018
				z + header_z, &d_bus);
3019 3020 3021
		if (d == NULL)
			return -ENOMEM;

3022 3023
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
3024
		if (packet->skip && i == 0)
3025
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3026 3027
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
3028
		d->transfer_status = 0;
3029 3030
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

3031
		rest = payload_per_buffer;
3032
		pd = d;
3033
		for (j = 1; j < z; j++) {
3034
			pd++;
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
3054 3055 3056
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
3057
		if (packet->interrupt && i == packet_count - 1)
3058 3059 3060 3061 3062 3063 3064 3065
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
static int queue_iso_buffer_fill(struct iso_context *ctx,
				 struct fw_iso_packet *packet,
				 struct fw_iso_buffer *buffer,
				 unsigned long payload)
{
	struct descriptor *d;
	dma_addr_t d_bus, page_bus;
	int page, offset, rest, z, i, length;

	page   = payload >> PAGE_SHIFT;
	offset = payload & ~PAGE_MASK;
	rest   = packet->payload_length;

	/* We need one descriptor for each page in the buffer. */
	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);

	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
		return -EFAULT;

	for (i = 0; i < z; i++) {
		d = context_get_descriptors(&ctx->context, 1, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
					 DESCRIPTOR_BRANCH_ALWAYS);
		if (packet->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
		if (packet->interrupt && i == z - 1)
			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		if (offset + rest < PAGE_SIZE)
			length = rest;
		else
			length = PAGE_SIZE - offset;
		d->req_count = cpu_to_le16(length);
		d->res_count = d->req_count;
		d->transfer_status = 0;

		page_bus = page_private(buffer->pages[page]);
		d->data_address = cpu_to_le32(page_bus + offset);

		rest -= length;
		offset = 0;
		page++;

		context_append(&ctx->context, d, 1, 0);
	}

	return 0;
}

3118 3119 3120 3121
static int ohci_queue_iso(struct fw_iso_context *base,
			  struct fw_iso_packet *packet,
			  struct fw_iso_buffer *buffer,
			  unsigned long payload)
3122
{
3123
	struct iso_context *ctx = container_of(base, struct iso_context, base);
3124
	unsigned long flags;
3125
	int ret = -ENOSYS;
3126

3127
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
	switch (base->type) {
	case FW_ISO_CONTEXT_TRANSMIT:
		ret = queue_iso_transmit(ctx, packet, buffer, payload);
		break;
	case FW_ISO_CONTEXT_RECEIVE:
		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
		break;
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
		break;
	}
3139 3140
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

3141
	return ret;
3142 3143
}

3144 3145 3146 3147 3148 3149 3150 3151
static void ohci_flush_queue_iso(struct fw_iso_context *base)
{
	struct context *ctx =
			&container_of(base, struct iso_context, base)->context;

	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
}

3152
static const struct fw_card_driver ohci_driver = {
3153
	.enable			= ohci_enable,
3154
	.read_phy_reg		= ohci_read_phy_reg,
3155 3156 3157 3158
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
3159
	.cancel_packet		= ohci_cancel_packet,
3160
	.enable_phys_dma	= ohci_enable_phys_dma,
3161 3162
	.read_csr		= ohci_read_csr,
	.write_csr		= ohci_write_csr,
3163 3164 3165

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
3166
	.set_iso_channels	= ohci_set_iso_channels,
3167
	.queue_iso		= ohci_queue_iso,
3168
	.flush_queue_iso	= ohci_flush_queue_iso,
3169
	.start_iso		= ohci_start_iso,
3170
	.stop_iso		= ohci_stop_iso,
3171 3172
};

3173
#ifdef CONFIG_PPC_PMAC
3174
static void pmac_ohci_on(struct pci_dev *dev)
3175
{
3176 3177 3178 3179 3180 3181 3182 3183
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
3184 3185
}

3186
static void pmac_ohci_off(struct pci_dev *dev)
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
{
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
}
#else
3198 3199
static inline void pmac_ohci_on(struct pci_dev *dev) {}
static inline void pmac_ohci_off(struct pci_dev *dev) {}
3200 3201
#endif /* CONFIG_PPC_PMAC */

3202 3203
static int __devinit pci_probe(struct pci_dev *dev,
			       const struct pci_device_id *ent)
3204 3205
{
	struct fw_ohci *ohci;
3206
	u32 bus_options, max_receive, link_speed, version;
3207
	u64 guid;
3208
	int i, err;
3209 3210
	size_t size;

3211 3212 3213 3214 3215
	if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
		dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
		return -ENOSYS;
	}

3216
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3217
	if (ohci == NULL) {
3218 3219
		err = -ENOMEM;
		goto fail;
3220 3221 3222 3223
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

3224
	pmac_ohci_on(dev);
3225

3226 3227
	err = pci_enable_device(dev);
	if (err) {
3228
		fw_error("Failed to enable OHCI hardware\n");
3229
		goto fail_free;
3230 3231 3232 3233 3234 3235 3236
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);
3237
	mutex_init(&ohci->phy_reg_mutex);
3238 3239 3240 3241

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

3242 3243
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
3244
		fw_error("MMIO resource unavailable\n");
3245
		goto fail_disable;
3246 3247 3248 3249 3250
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
3251 3252
		err = -ENXIO;
		goto fail_iomem;
3253 3254
	}

3255
	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3256 3257 3258 3259 3260
		if ((ohci_quirks[i].vendor == dev->vendor) &&
		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
		     ohci_quirks[i].device == dev->device) &&
		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
		     ohci_quirks[i].revision >= dev->revision)) {
3261 3262 3263
			ohci->quirks = ohci_quirks[i].flags;
			break;
		}
3264 3265
	if (param_quirks)
		ohci->quirks = param_quirks;
3266

3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
	/*
	 * Because dma_alloc_coherent() allocates at least one page,
	 * we save space by using a common buffer for the AR request/
	 * response descriptors and the self IDs buffer.
	 */
	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
	ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
					       PAGE_SIZE,
					       &ohci->misc_buffer_bus,
					       GFP_KERNEL);
	if (!ohci->misc_buffer) {
		err = -ENOMEM;
		goto fail_iounmap;
	}

	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3284 3285
			      OHCI1394_AsReqRcvContextControlSet);
	if (err < 0)
3286
		goto fail_misc_buf;
3287

3288
	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3289 3290 3291
			      OHCI1394_AsRspRcvContextControlSet);
	if (err < 0)
		goto fail_arreq_ctx;
3292

3293 3294 3295 3296
	err = context_init(&ohci->at_request_ctx, ohci,
			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
	if (err < 0)
		goto fail_arrsp_ctx;
3297

3298 3299 3300 3301
	err = context_init(&ohci->at_response_ctx, ohci,
			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
	if (err < 0)
		goto fail_atreq_ctx;
3302 3303

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3304
	ohci->ir_context_channels = ~0ULL;
3305
	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3306
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3307
	ohci->ir_context_mask = ohci->ir_context_support;
3308 3309
	ohci->n_ir = hweight32(ohci->ir_context_mask);
	size = sizeof(struct iso_context) * ohci->n_ir;
3310
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3311 3312

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3313
	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3314
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3315
	ohci->it_context_mask = ohci->it_context_support;
3316 3317
	ohci->n_it = hweight32(ohci->it_context_mask);
	size = sizeof(struct iso_context) * ohci->n_it;
3318
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3319 3320

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3321
		err = -ENOMEM;
3322
		goto fail_contexts;
3323 3324
	}

3325 3326
	ohci->self_id_cpu = ohci->misc_buffer     + PAGE_SIZE/2;
	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3327 3328 3329 3330 3331 3332 3333

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

3334
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3335
	if (err)
3336
		goto fail_contexts;
3337

3338 3339 3340 3341
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
		  "%d IR + %d IT contexts, quirks 0x%x\n",
		  dev_name(&dev->dev), version >> 16, version & 0xff,
3342
		  ohci->n_ir, ohci->n_it, ohci->quirks);
3343

3344
	return 0;
3345

3346
 fail_contexts:
3347
	kfree(ohci->ir_context_list);
3348 3349
	kfree(ohci->it_context_list);
	context_release(&ohci->at_response_ctx);
3350
 fail_atreq_ctx:
3351
	context_release(&ohci->at_request_ctx);
3352
 fail_arrsp_ctx:
3353
	ar_context_release(&ohci->ar_response_ctx);
3354
 fail_arreq_ctx:
3355
	ar_context_release(&ohci->ar_request_ctx);
3356 3357 3358
 fail_misc_buf:
	dma_free_coherent(ohci->card.device, PAGE_SIZE,
			  ohci->misc_buffer, ohci->misc_buffer_bus);
3359
 fail_iounmap:
3360 3361 3362 3363 3364
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
3365
 fail_free:
3366
	kfree(ohci);
3367
	pmac_ohci_off(dev);
3368 3369 3370
 fail:
	if (err == -ENOMEM)
		fw_error("Out of memory\n");
3371 3372

	return err;
3373 3374 3375 3376 3377 3378 3379
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
3380 3381
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
3382 3383
	fw_core_remove_card(&ohci->card);

3384 3385 3386 3387
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
3388 3389 3390

	software_reset(ohci);
	free_irq(dev->irq, ohci);
3391 3392 3393 3394 3395 3396 3397 3398 3399

	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->next_config_rom, ohci->next_config_rom_bus);
	if (ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
	ar_context_release(&ohci->ar_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
3400 3401
	dma_free_coherent(ohci->card.device, PAGE_SIZE,
			  ohci->misc_buffer, ohci->misc_buffer_bus);
3402 3403
	context_release(&ohci->at_request_ctx);
	context_release(&ohci->at_response_ctx);
3404 3405
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
3406
	pci_disable_msi(dev);
3407 3408 3409
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
3410
	kfree(ohci);
3411
	pmac_ohci_off(dev);
3412

3413 3414 3415
	fw_notify("Removed fw-ohci device.\n");
}

3416
#ifdef CONFIG_PM
3417
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3418
{
3419
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3420 3421 3422
	int err;

	software_reset(ohci);
3423
	free_irq(dev->irq, ohci);
3424
	pci_disable_msi(dev);
3425
	err = pci_save_state(dev);
3426
	if (err) {
3427
		fw_error("pci_save_state failed\n");
3428 3429
		return err;
	}
3430
	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3431 3432
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
3433
	pmac_ohci_off(dev);
3434

3435 3436 3437
	return 0;
}

3438
static int pci_resume(struct pci_dev *dev)
3439
{
3440
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3441 3442
	int err;

3443
	pmac_ohci_on(dev);
3444 3445 3446
	pci_set_power_state(dev, PCI_D0);
	pci_restore_state(dev);
	err = pci_enable_device(dev);
3447
	if (err) {
3448
		fw_error("pci_enable_device failed\n");
3449 3450 3451
		return err;
	}

3452 3453 3454 3455 3456 3457 3458
	/* Some systems don't setup GUID register on resume from ram  */
	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
					!reg_read(ohci, OHCI1394_GUIDHi)) {
		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
	}

3459 3460 3461 3462 3463
	err = ohci_enable(&ohci->card, NULL, 0);
	if (err)
		return err;

	ohci_resume_iso_dma(ohci);
3464

3465
	return 0;
3466 3467 3468
}
#endif

3469
static const struct pci_device_id pci_table[] = {
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
3481 3482 3483 3484
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
3485 3486 3487 3488 3489 3490
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

3491 3492 3493 3494 3495
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);