ohci.c 105.0 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/bitops.h>
22
#include <linux/bug.h>
23
#include <linux/compiler.h>
24
#include <linux/delay.h>
S
Stefan Richter 已提交
25
#include <linux/device.h>
A
Andrew Morton 已提交
26
#include <linux/dma-mapping.h>
27
#include <linux/firewire.h>
S
Stefan Richter 已提交
28
#include <linux/firewire-constants.h>
29 30
#include <linux/init.h>
#include <linux/interrupt.h>
S
Stefan Richter 已提交
31
#include <linux/io.h>
32
#include <linux/kernel.h>
S
Stefan Richter 已提交
33
#include <linux/list.h>
A
Al Viro 已提交
34
#include <linux/mm.h>
35
#include <linux/module.h>
36
#include <linux/moduleparam.h>
37
#include <linux/mutex.h>
38
#include <linux/pci.h>
39
#include <linux/pci_ids.h>
40
#include <linux/slab.h>
S
Stefan Richter 已提交
41
#include <linux/spinlock.h>
S
Stefan Richter 已提交
42
#include <linux/string.h>
43
#include <linux/time.h>
44
#include <linux/vmalloc.h>
45
#include <linux/workqueue.h>
A
Andrew Morton 已提交
46

S
Stefan Richter 已提交
47
#include <asm/byteorder.h>
S
Stefan Richter 已提交
48
#include <asm/page.h>
49

50 51 52 53
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

54 55
#include "core.h"
#include "ohci.h"
56

57 58 59 60
#define ohci_info(ohci, f, args...)	dev_info(ohci->card.device, f, ##args)
#define ohci_notice(ohci, f, args...)	dev_notice(ohci->card.device, f, ##args)
#define ohci_err(ohci, f, args...)	dev_err(ohci->card.device, f, ##args)

61 62 63 64 65 66 67 68 69 70 71 72 73
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
74

75 76
#define DESCRIPTOR_CMD			(0xf << 12)

77 78 79 80 81 82 83 84 85
struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

86 87 88 89
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
90

91 92 93 94 95 96 97 98
#define AR_BUFFER_SIZE	(32*1024)
#define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
/* we need at least two pages for proper list management */
#define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)

#define MAX_ASYNC_PAYLOAD	4096
#define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
#define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
99

100 101
struct ar_context {
	struct fw_ohci *ohci;
102 103 104 105
	struct page *pages[AR_BUFFERS];
	void *buffer;
	struct descriptor *descriptors;
	dma_addr_t descriptors_bus;
106
	void *pointer;
107
	unsigned int last_buffer_index;
108
	u32 regs;
109 110 111
	struct tasklet_struct tasklet;
};

112 113 114 115 116
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
117 118 119 120 121 122 123 124 125 126 127 128 129

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

130
struct context {
S
Stefan Richter 已提交
131
	struct fw_ohci *ohci;
132
	u32 regs;
133
	int total_allocation;
134
	u32 current_bus;
135
	bool running;
136
	bool flushing;
S
Stefan Richter 已提交
137

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
158
	 * The last descriptor block in the DMA program. It contains the branch
159 160 161
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
162
	int prev_z;
163 164 165

	descriptor_callback_t callback;

S
Stefan Richter 已提交
166
	struct tasklet_struct tasklet;
167 168
};

169 170 171 172 173 174
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
175 176 177

struct iso_context {
	struct fw_iso_context base;
178
	struct context context;
179 180
	void *header;
	size_t header_length;
181 182 183
	unsigned long flushing_completions;
	u32 mc_buffer_bus;
	u16 mc_completed;
184
	u16 last_timestamp;
185 186
	u8 sync;
	u8 tags;
187 188 189 190 191 192 193 194
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

	__iomem char *registers;
195
	int node_id;
196
	int generation;
197
	int request_generation;	/* for timestamping incoming requests */
198
	unsigned quirks;
199
	unsigned int pri_req_max;
200
	u32 bus_time;
201
	bool bus_time_running;
202
	bool is_root;
203
	bool csr_state_setclear_abdicate;
204 205
	int n_ir;
	int n_it;
206 207 208 209
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
210 211
	spinlock_t lock;

212 213
	struct mutex phy_reg_mutex;

214 215 216
	void *misc_buffer;
	dma_addr_t misc_buffer_bus;

217 218
	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
219 220
	struct context at_request_ctx;
	struct context at_response_ctx;
221

222
	u32 it_context_support;
223
	u32 it_context_mask;     /* unoccupied IT contexts */
224
	struct iso_context *it_context_list;
225
	u64 ir_context_channels; /* unoccupied channels */
226
	u32 ir_context_support;
227
	u32 ir_context_mask;     /* unoccupied IR contexts */
228
	struct iso_context *ir_context_list;
229 230
	u64 mc_channels; /* channels in use by the multichannel IR context */
	bool mc_allocated;
231 232 233 234 235 236 237 238 239

	__be32    *config_rom;
	dma_addr_t config_rom_bus;
	__be32    *next_config_rom;
	dma_addr_t next_config_rom_bus;
	__be32     next_header;

	__le32    *self_id_cpu;
	dma_addr_t self_id_bus;
240
	struct work_struct bus_reset_work;
241 242

	u32 self_id_buffer[512];
243 244
};

A
Adrian Bunk 已提交
245
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
246 247 248 249
{
	return container_of(card, struct fw_ohci, card);
}

250 251 252 253 254 255
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
256 257 258 259 260 261

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

262
#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
263 264 265 266 267 268
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
269
#define OHCI_TCODE_PHY_PACKET		0x0e
270
#define OHCI_VERSION_1_1		0x010010
271

272 273
static char ohci_driver_name[] = KBUILD_MODNAME;

274
#define PCI_DEVICE_ID_AGERE_FW643	0x5901
275
#define PCI_DEVICE_ID_CREATIVE_SB1394	0x4001
276
#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
277
#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009
278 279
#define PCI_DEVICE_ID_TI_TSB12LV26	0x8020
#define PCI_DEVICE_ID_TI_TSB82AA2	0x8025
280
#define PCI_DEVICE_ID_VIA_VT630X	0x3044
281
#define PCI_VENDOR_ID_PINNACLE_SYSTEMS	0x11bd
282
#define PCI_REV_ID_VIA_VT6306		0x46
283

284 285 286
#define QUIRK_CYCLE_TIMER		1
#define QUIRK_RESET_PACKET		2
#define QUIRK_BE_HEADERS		4
287
#define QUIRK_NO_1394A			8
288
#define QUIRK_NO_MSI			16
289
#define QUIRK_TI_SLLZ059		32
290
#define QUIRK_IR_WAKE			64
291
#define QUIRK_PHY_LCTRL_TIMEOUT		128
292 293 294

/* In case of multiple matches in ohci_quirks[], only the first one is used. */
static const struct {
295
	unsigned short vendor, device, revision, flags;
296
} ohci_quirks[] = {
297 298 299 300 301 302 303
	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
		QUIRK_BE_HEADERS},

	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
304 305 306 307
		QUIRK_PHY_LCTRL_TIMEOUT | QUIRK_NO_MSI},

	{PCI_VENDOR_ID_ATT, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_PHY_LCTRL_TIMEOUT},
308

309 310 311
	{PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
		QUIRK_RESET_PACKET},

312 313 314 315 316 317
	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
		QUIRK_NO_MSI},

	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

318 319 320
	{PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_NO_MSI},

321
	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
322
		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
323 324 325 326

	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},

327 328 329 330 331 332
	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},

	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},

333 334 335
	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_RESET_PACKET},

336 337 338
	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
		QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},

339 340
	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
341 342
};

343 344 345 346 347 348
/* This overrides anything that was found in ohci_quirks[]. */
static int param_quirks;
module_param_named(quirks, param_quirks, int, 0644);
MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
349
	", AR/selfID endianness = "	__stringify(QUIRK_BE_HEADERS)
350
	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
351
	", disable MSI = "		__stringify(QUIRK_NO_MSI)
352
	", TI SLLZ059 erratum = "	__stringify(QUIRK_TI_SLLZ059)
353
	", IR wake unreliable = "	__stringify(QUIRK_IR_WAKE)
354
	", phy LCtrl timeout = "	__stringify(QUIRK_PHY_LCTRL_TIMEOUT)
355 356
	")");

357
#define OHCI_PARAM_DEBUG_AT_AR		1
358
#define OHCI_PARAM_DEBUG_SELFIDS	2
359 360
#define OHCI_PARAM_DEBUG_IRQS		4
#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
361 362 363 364 365

static int param_debug;
module_param_named(debug, param_debug, int, 0644);
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
366 367 368
	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
369 370
	", or a combination, or all = -1)");

371
static void log_irqs(struct fw_ohci *ohci, u32 evt)
372
{
373 374 375 376 377 378
	if (likely(!(param_debug &
			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
		return;

	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
	    !(evt & OHCI1394_busReset))
379 380
		return;

381
	ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
382 383 384 385 386 387 388 389 390
	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
	    evt & OHCI1394_isochRx		? " IR"			: "",
	    evt & OHCI1394_isochTx		? " IT"			: "",
	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
391
	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
392
	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
393
	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
394
	    evt & OHCI1394_unrecoverableError	? " unrecoverableError"	: "",
395 396 397 398 399
	    evt & OHCI1394_busReset		? " busReset"		: "",
	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
		    OHCI1394_respTxComplete | OHCI1394_isochRx |
		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
400 401
		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
		    OHCI1394_cycleInconsistent |
402
		    OHCI1394_regAccessFail | OHCI1394_busReset)
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
						? " ?"			: "");
}

static const char *speed[] = {
	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
};
static const char *power[] = {
	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
};
static const char port[] = { '.', '-', 'p', 'c', };

static char _p(u32 *s, int shift)
{
	return port[*s >> shift & 3];
}

420
static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
421
{
422 423
	u32 *s;

424 425 426
	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
		return;

427 428
	ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
		    self_id_count, generation, ohci->node_id);
429

430
	for (s = ohci->self_id_buffer; self_id_count--; ++s)
431
		if ((*s & 1 << 23) == 0)
432 433
			ohci_notice(ohci,
			    "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
434 435 436 437
			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
			    speed[*s >> 14 & 3], *s >> 16 & 63,
			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
438
		else
439
			ohci_notice(ohci,
440
			    "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
441 442 443
			    *s, *s >> 24 & 63,
			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
}

static const char *evts[] = {
	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
	[0x10] = "-reserved-",		[0x11] = "ack_complete",
	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
	[0x18] = "-reserved-",		[0x19] = "-reserved-",
	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
	[0x20] = "pending/cancelled",
};
static const char *tcodes[] = {
	[0x0] = "QW req",		[0x1] = "BW req",
	[0x2] = "W resp",		[0x3] = "-reserved-",
	[0x4] = "QR req",		[0x5] = "BR req",
	[0x6] = "QR resp",		[0x7] = "BR resp",
	[0x8] = "cycle start",		[0x9] = "Lk req",
	[0xa] = "async stream packet",	[0xb] = "Lk resp",
	[0xc] = "-reserved-",		[0xd] = "-reserved-",
	[0xe] = "link internal",	[0xf] = "-reserved-",
};

476 477
static void log_ar_at_event(struct fw_ohci *ohci,
			    char dir, int speed, u32 *header, int evt)
478 479 480 481 482 483 484 485 486 487
{
	int tcode = header[0] >> 4 & 0xf;
	char specific[12];

	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
		return;

	if (unlikely(evt >= ARRAY_SIZE(evts)))
			evt = 0x1f;

488
	if (evt == OHCI1394_evt_bus_reset) {
489 490
		ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
			    dir, (header[2] >> 16) & 0xff);
491 492 493
		return;
	}

494 495 496 497 498 499 500 501 502 503 504 505 506 507
	switch (tcode) {
	case 0x0: case 0x6: case 0x8:
		snprintf(specific, sizeof(specific), " = %08x",
			 be32_to_cpu((__force __be32)header[3]));
		break;
	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
		snprintf(specific, sizeof(specific), " %x,%x",
			 header[3] >> 16, header[3] & 0xffff);
		break;
	default:
		specific[0] = '\0';
	}

	switch (tcode) {
508
	case 0xa:
509 510
		ohci_notice(ohci, "A%c %s, %s\n",
			    dir, evts[evt], tcodes[tcode]);
511
		break;
512
	case 0xe:
513 514
		ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
			    dir, evts[evt], header[1], header[2]);
515
		break;
516
	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
517 518 519 520 521
		ohci_notice(ohci,
			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
			    dir, speed, header[0] >> 10 & 0x3f,
			    header[1] >> 16, header[0] >> 16, evts[evt],
			    tcodes[tcode], header[1] & 0xffff, header[2], specific);
522 523
		break;
	default:
524 525 526 527 528
		ohci_notice(ohci,
			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
			    dir, speed, header[0] >> 10 & 0x3f,
			    header[1] >> 16, header[0] >> 16, evts[evt],
			    tcodes[tcode], specific);
529 530 531
	}
}

A
Adrian Bunk 已提交
532
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
533 534 535 536
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
537
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
538 539 540 541
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
542
static inline void flush_writes(const struct fw_ohci *ohci)
543 544 545 546 547
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

548 549 550 551 552 553
/*
 * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
 * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
 */
554
static int read_phy_reg(struct fw_ohci *ohci, int addr)
555
{
556
	u32 val;
557
	int i;
558 559

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
560
	for (i = 0; i < 3 + 100; i++) {
561
		val = reg_read(ohci, OHCI1394_PhyControl);
562 563 564
		if (!~val)
			return -ENODEV; /* Card was ejected. */

565 566 567
		if (val & OHCI1394_PhyControl_ReadDone)
			return OHCI1394_PhyControl_ReadData(val);

568 569 570 571 572 573
		/*
		 * Try a few times without waiting.  Sleeping is necessary
		 * only when the link/PHY interface is busy.
		 */
		if (i >= 3)
			msleep(1);
574
	}
575
	ohci_err(ohci, "failed to read phy reg\n");
576

577 578
	return -EBUSY;
}
579

580 581 582
static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
{
	int i;
583 584

	reg_write(ohci, OHCI1394_PhyControl,
585
		  OHCI1394_PhyControl_Write(addr, val));
586
	for (i = 0; i < 3 + 100; i++) {
587
		val = reg_read(ohci, OHCI1394_PhyControl);
588 589 590
		if (!~val)
			return -ENODEV; /* Card was ejected. */

591 592
		if (!(val & OHCI1394_PhyControl_WritePending))
			return 0;
593

594 595
		if (i >= 3)
			msleep(1);
596
	}
597
	ohci_err(ohci, "failed to write phy reg\n");
598 599

	return -EBUSY;
600 601
}

602 603
static int update_phy_reg(struct fw_ohci *ohci, int addr,
			  int clear_bits, int set_bits)
604
{
605
	int ret = read_phy_reg(ohci, addr);
606 607
	if (ret < 0)
		return ret;
608

609 610 611 612 613 614 615
	/*
	 * The interrupt status bits are cleared by writing a one bit.
	 * Avoid clearing them unless explicitly requested in set_bits.
	 */
	if (addr == 5)
		clear_bits |= PHY_INT_STATUS_BITS;

616
	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
617 618
}

619
static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
620
{
621
	int ret;
622

623
	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
624 625
	if (ret < 0)
		return ret;
626

627
	return read_phy_reg(ohci, addr);
628 629
}

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
static int ohci_read_phy_reg(struct fw_card *card, int addr)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = read_phy_reg(ohci, addr);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
}

static int ohci_update_phy_reg(struct fw_card *card, int addr,
			       int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
653 654
}

655 656 657 658 659 660
static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
{
	return page_private(ctx->pages[i]);
}

static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
661
{
662
	struct descriptor *d;
663

664 665 666 667
	d = &ctx->descriptors[index];
	d->branch_address  &= cpu_to_le32(~0xf);
	d->res_count       =  cpu_to_le16(PAGE_SIZE);
	d->transfer_status =  0;
668

669
	wmb(); /* finish init of new descriptors before branch_address update */
670 671 672 673
	d = &ctx->descriptors[ctx->last_buffer_index];
	d->branch_address  |= cpu_to_le32(1);

	ctx->last_buffer_index = index;
674

675
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
676 677
}

678
static void ar_context_release(struct ar_context *ctx)
679
{
680
	unsigned int i;
681

682 683
	if (ctx->buffer)
		vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
684

685 686 687 688 689 690 691
	for (i = 0; i < AR_BUFFERS; i++)
		if (ctx->pages[i]) {
			dma_unmap_page(ctx->ohci->card.device,
				       ar_buffer_bus(ctx, i),
				       PAGE_SIZE, DMA_FROM_DEVICE);
			__free_page(ctx->pages[i]);
		}
692 693
}

694
static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
695
{
696
	struct fw_ohci *ohci = ctx->ohci;
697

698 699 700
	if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
		reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
		flush_writes(ohci);
701

702
		ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
703
	}
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
	/* FIXME: restart? */
}

static inline unsigned int ar_next_buffer_index(unsigned int index)
{
	return (index + 1) % AR_BUFFERS;
}

static inline unsigned int ar_prev_buffer_index(unsigned int index)
{
	return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
}

static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
{
	return ar_next_buffer_index(ctx->last_buffer_index);
}

/*
 * We search for the buffer that contains the last AR packet DMA data written
 * by the controller.
 */
static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
						 unsigned int *buffer_offset)
{
	unsigned int i, next_i, last = ctx->last_buffer_index;
	__le16 res_count, next_res_count;

	i = ar_first_buffer_index(ctx);
	res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);

	/* A buffer that is not yet completely filled must be the last one. */
	while (i != last && res_count == 0) {

		/* Peek at the next descriptor. */
		next_i = ar_next_buffer_index(i);
		rmb(); /* read descriptors in order */
		next_res_count = ACCESS_ONCE(
				ctx->descriptors[next_i].res_count);
		/*
		 * If the next descriptor is still empty, we must stop at this
		 * descriptor.
		 */
		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
			/*
			 * The exception is when the DMA data for one packet is
			 * split over three buffers; in this case, the middle
			 * buffer's descriptor might be never updated by the
			 * controller and look still empty, and we have to peek
			 * at the third one.
			 */
			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
				next_i = ar_next_buffer_index(next_i);
				rmb();
				next_res_count = ACCESS_ONCE(
					ctx->descriptors[next_i].res_count);
				if (next_res_count != cpu_to_le16(PAGE_SIZE))
					goto next_buffer_is_active;
			}

			break;
		}

next_buffer_is_active:
		i = next_i;
		res_count = next_res_count;
	}

	rmb(); /* read res_count before the DMA data */

	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
	if (*buffer_offset > PAGE_SIZE) {
		*buffer_offset = 0;
		ar_context_abort(ctx, "corrupted descriptor");
	}

	return i;
}

static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
				    unsigned int end_buffer_index,
				    unsigned int end_buffer_offset)
{
	unsigned int i;

	i = ar_first_buffer_index(ctx);
	while (i != end_buffer_index) {
		dma_sync_single_for_cpu(ctx->ohci->card.device,
					ar_buffer_bus(ctx, i),
					PAGE_SIZE, DMA_FROM_DEVICE);
		i = ar_next_buffer_index(i);
	}
	if (end_buffer_offset > 0)
		dma_sync_single_for_cpu(ctx->ohci->card.device,
					ar_buffer_bus(ctx, i),
					end_buffer_offset, DMA_FROM_DEVICE);
800 801
}

802 803
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
804
	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
805 806 807 808
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

809
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
810 811
{
	struct fw_ohci *ohci = ctx->ohci;
812 813
	struct fw_packet p;
	u32 status, length, tcode;
814
	int evt;
815

816 817 818
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
819 820 821 822 823

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
824
		p.header[3] = (__force __u32) buffer[3];
825
		p.header_length = 16;
826
		p.payload_length = 0;
827 828 829
		break;

	case TCODE_READ_BLOCK_REQUEST :
830
		p.header[3] = cond_le32_to_cpu(buffer[3]);
831 832 833 834 835
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
836 837 838
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
839
		p.header[3] = cond_le32_to_cpu(buffer[3]);
840
		p.header_length = 16;
841
		p.payload_length = p.header[3] >> 16;
842 843 844 845
		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
			ar_context_abort(ctx, "invalid packet length");
			return NULL;
		}
846 847 848 849
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
850
	case OHCI_TCODE_PHY_PACKET:
851
		p.header_length = 12;
852
		p.payload_length = 0;
853
		break;
854 855

	default:
856 857
		ar_context_abort(ctx, "invalid tcode");
		return NULL;
858
	}
859

860 861 862 863
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
864
	status = cond_le32_to_cpu(buffer[length]);
865
	evt    = (status >> 16) & 0x1f;
866

867
	p.ack        = evt - 16;
868 869 870
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
871

872
	log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
873

874
	/*
875 876 877 878 879 880 881 882 883
	 * Several controllers, notably from NEC and VIA, forget to
	 * write ack_complete status at PHY packet reception.
	 */
	if (evt == OHCI1394_evt_no_status &&
	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
		p.ack = ACK_COMPLETE;

	/*
	 * The OHCI bus reset handler synthesizes a PHY packet with
884 885 886 887 888
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
889
	 * request.
890 891 892
	 *
	 * Alas some chips sometimes emit bus reset packets with a
	 * wrong generation.  We set the correct generation for these
893
	 * at a slightly incorrect time (in bus_reset_work).
894
	 */
895
	if (evt == OHCI1394_evt_bus_reset) {
896
		if (!(ohci->quirks & QUIRK_RESET_PACKET))
897 898
			ohci->request_generation = (p.header[2] >> 16) & 0xff;
	} else if (ctx == &ohci->ar_request_ctx) {
899
		fw_core_handle_request(&ohci->card, &p);
900
	} else {
901
		fw_core_handle_response(&ohci->card, &p);
902
	}
903

904 905
	return buffer + length + 1;
}
906

907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
{
	void *next;

	while (p < end) {
		next = handle_ar_packet(ctx, p);
		if (!next)
			return p;
		p = next;
	}

	return p;
}

static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
{
	unsigned int i;

	i = ar_first_buffer_index(ctx);
	while (i != end_buffer) {
		dma_sync_single_for_device(ctx->ohci->card.device,
					   ar_buffer_bus(ctx, i),
					   PAGE_SIZE, DMA_FROM_DEVICE);
		ar_context_link_page(ctx, i);
		i = ar_next_buffer_index(i);
	}
}

935 936 937
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
938 939
	unsigned int end_buffer_index, end_buffer_offset;
	void *p, *end;
940

941 942 943
	p = ctx->pointer;
	if (!p)
		return;
944

945 946 947 948
	end_buffer_index = ar_search_last_active_buffer(ctx,
							&end_buffer_offset);
	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
949

950
	if (end_buffer_index < ar_first_buffer_index(ctx)) {
951
		/*
952 953 954 955
		 * The filled part of the overall buffer wraps around; handle
		 * all packets up to the buffer end here.  If the last packet
		 * wraps around, its tail will be visible after the buffer end
		 * because the buffer start pages are mapped there again.
956
		 */
957 958 959 960 961 962 963
		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
		p = handle_ar_packets(ctx, p, buffer_end);
		if (p < buffer_end)
			goto error;
		/* adjust p to point back into the actual buffer */
		p -= AR_BUFFERS * PAGE_SIZE;
	}
964

965 966 967 968 969 970
	p = handle_ar_packets(ctx, p, end);
	if (p != end) {
		if (p > end)
			ar_context_abort(ctx, "inconsistent descriptor");
		goto error;
	}
971

972 973
	ctx->pointer = p;
	ar_recycle_buffers(ctx, end_buffer_index);
974

975
	return;
976

977 978
error:
	ctx->pointer = NULL;
979 980
}

981 982
static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
			   unsigned int descriptors_offset, u32 regs)
983
{
984 985 986 987
	unsigned int i;
	dma_addr_t dma_addr;
	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
	struct descriptor *d;
988

989 990
	ctx->regs        = regs;
	ctx->ohci        = ohci;
991 992
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
	for (i = 0; i < AR_BUFFERS; i++) {
		ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
		if (!ctx->pages[i])
			goto out_of_memory;
		dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
					0, PAGE_SIZE, DMA_FROM_DEVICE);
		if (dma_mapping_error(ohci->card.device, dma_addr)) {
			__free_page(ctx->pages[i]);
			ctx->pages[i] = NULL;
			goto out_of_memory;
		}
		set_page_private(ctx->pages[i], dma_addr);
	}

	for (i = 0; i < AR_BUFFERS; i++)
		pages[i]              = ctx->pages[i];
	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
		pages[AR_BUFFERS + i] = ctx->pages[i];
	ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
1012
				 -1, PAGE_KERNEL);
1013 1014 1015
	if (!ctx->buffer)
		goto out_of_memory;

1016 1017
	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028

	for (i = 0; i < AR_BUFFERS; i++) {
		d = &ctx->descriptors[i];
		d->req_count      = cpu_to_le16(PAGE_SIZE);
		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						DESCRIPTOR_STATUS |
						DESCRIPTOR_BRANCH_ALWAYS);
		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
			ar_next_buffer_index(i) * sizeof(struct descriptor));
	}
1029

1030
	return 0;
1031 1032 1033 1034 1035

out_of_memory:
	ar_context_release(ctx);

	return -ENOMEM;
1036 1037 1038 1039
}

static void ar_context_run(struct ar_context *ctx)
{
1040 1041 1042 1043
	unsigned int i;

	for (i = 0; i < AR_BUFFERS; i++)
		ar_context_link_page(ctx, i);
1044

1045
	ctx->pointer = ctx->buffer;
1046

1047
	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1048
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1049
}
S
Stefan Richter 已提交
1050

1051
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1052
{
1053
	__le16 branch;
1054

1055
	branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1056 1057

	/* figure out which descriptor the branch address goes in */
1058
	if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1059 1060 1061 1062 1063
		return d;
	else
		return d + z - 1;
}

1064 1065 1066 1067 1068 1069
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
1070
	struct descriptor_buffer *desc;
1071

1072 1073 1074
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
1075
	while (last->branch_address != 0) {
1076
		struct descriptor_buffer *old_desc = desc;
1077 1078
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
1079
		address &= ~0xf;
1080
		ctx->current_bus = address;
1081 1082 1083 1084 1085 1086 1087 1088

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1089
		last = find_branch_descriptor(d, z);
1090 1091 1092 1093

		if (!ctx->callback(ctx, d, last))
			break;

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
1104 1105 1106
	}
}

1107 1108 1109 1110
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
1111
static int context_add_buffer(struct context *ctx)
1112 1113
{
	struct descriptor_buffer *desc;
1114
	dma_addr_t uninitialized_var(bus_addr);
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

1140 1141
static int context_init(struct context *ctx, struct fw_ohci *ohci,
			u32 regs, descriptor_callback_t callback)
1142 1143 1144
{
	ctx->ohci = ohci;
	ctx->regs = regs;
1145 1146 1147 1148
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
1149 1150
		return -ENOMEM;

1151 1152 1153
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

1154 1155 1156
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

1157 1158
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
1159
	 * branch address and looks like it's been sent.  That way we
1160
	 * have a descriptor to append DMA programs to.
1161
	 */
1162 1163 1164 1165 1166 1167
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
1168
	ctx->prev_z = 1;
1169 1170 1171 1172

	return 0;
}

1173
static void context_release(struct context *ctx)
1174 1175
{
	struct fw_card *card = &ctx->ohci->card;
1176
	struct descriptor_buffer *desc, *tmp;
1177

1178 1179 1180 1181
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
1182 1183
}

1184
/* Must be called with ohci->lock held */
1185 1186
static struct descriptor *context_get_descriptors(struct context *ctx,
						  int z, dma_addr_t *d_bus)
1187
{
1188 1189 1190 1191 1192 1193 1194 1195 1196
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
1197

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
1208

1209
	d = desc->buffer + desc->used / sizeof(*d);
1210
	memset(d, 0, z * sizeof(*d));
1211
	*d_bus = desc->buffer_bus + desc->used;
1212 1213 1214 1215

	return d;
}

1216
static void context_run(struct context *ctx, u32 extra)
1217 1218 1219
{
	struct fw_ohci *ohci = ctx->ohci;

1220
	reg_write(ohci, COMMAND_PTR(ctx->regs),
1221
		  le32_to_cpu(ctx->last->branch_address));
1222 1223
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1224
	ctx->running = true;
1225 1226 1227 1228 1229 1230 1231
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
1232
	struct descriptor_buffer *desc = ctx->buffer_tail;
1233
	struct descriptor *d_branch;
1234

1235
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1236

1237
	desc->used += (z + extra) * sizeof(*d);
1238 1239

	wmb(); /* finish init of new descriptors before branch_address update */
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261

	d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
	d_branch->branch_address = cpu_to_le32(d_bus | z);

	/*
	 * VT6306 incorrectly checks only the single descriptor at the
	 * CommandPtr when the wake bit is written, so if it's a
	 * multi-descriptor block starting with an INPUT_MORE, put a copy of
	 * the branch address in the first descriptor.
	 *
	 * Not doing this for transmit contexts since not sure how it interacts
	 * with skip addresses.
	 */
	if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
	    d_branch != ctx->prev &&
	    (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
	     cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
		ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	}

	ctx->prev = d;
	ctx->prev_z = z;
1262 1263 1264 1265
}

static void context_stop(struct context *ctx)
{
1266
	struct fw_ohci *ohci = ctx->ohci;
1267
	u32 reg;
1268
	int i;
1269

1270
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1271
	ctx->running = false;
1272

1273
	for (i = 0; i < 1000; i++) {
1274
		reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1275
		if ((reg & CONTEXT_ACTIVE) == 0)
1276
			return;
1277

1278 1279
		if (i)
			udelay(10);
1280
	}
1281
	ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1282
}
1283

1284
struct driver_data {
1285
	u8 inline_data[8];
1286 1287
	struct fw_packet *packet;
};
1288

1289 1290
/*
 * This function apppends a packet to the DMA queue for transmission.
1291
 * Must always be called with the ochi->lock held to ensure proper
1292 1293
 * generation handling and locking around packet queue manipulation.
 */
1294 1295
static int at_context_queue_packet(struct context *ctx,
				   struct fw_packet *packet)
1296 1297
{
	struct fw_ohci *ohci = ctx->ohci;
1298
	dma_addr_t d_bus, uninitialized_var(payload_bus);
1299 1300 1301
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
1302 1303
	int z, tcode;

1304 1305 1306 1307
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1308 1309
	}

1310
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1311 1312
	d[0].res_count = cpu_to_le16(packet->timestamp);

1313
	/*
1314
	 * The DMA format for asynchronous link packets is different
1315
	 * from the IEEE1394 layout, so shift the fields around
1316
	 * accordingly.
1317
	 */
1318

1319
	tcode = (packet->header[0] >> 4) & 0x0f;
1320
	header = (__le32 *) &d[1];
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_WRITE_BLOCK_REQUEST:
	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
	case TCODE_READ_BLOCK_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
1331 1332 1333 1334 1335
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
1336 1337

		if (TCODE_IS_BLOCK_PACKET(tcode))
1338
			header[3] = cpu_to_le32(packet->header[3]);
1339
		else
1340 1341 1342
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
1343 1344
		break;

1345
	case TCODE_LINK_INTERNAL:
1346 1347
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
1348 1349
		header[1] = cpu_to_le32(packet->header[1]);
		header[2] = cpu_to_le32(packet->header[2]);
1350
		d[0].req_count = cpu_to_le16(12);
S
Stefan Richter 已提交
1351

1352
		if (is_ping_packet(&packet->header[1]))
S
Stefan Richter 已提交
1353
			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1354 1355
		break;

1356
	case TCODE_STREAM_DATA:
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
		d[0].req_count = cpu_to_le16(8);
		break;

	default:
		/* BUG(); */
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1367 1368
	}

1369
	BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1370 1371
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
1372
	packet->driver_data = driver_data;
1373

1374
	if (packet->payload_length > 0) {
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
		if (packet->payload_length > sizeof(driver_data->inline_data)) {
			payload_bus = dma_map_single(ohci->card.device,
						     packet->payload,
						     packet->payload_length,
						     DMA_TO_DEVICE);
			if (dma_mapping_error(ohci->card.device, payload_bus)) {
				packet->ack = RCODE_SEND_ERROR;
				return -1;
			}
			packet->payload_bus	= payload_bus;
			packet->payload_mapped	= true;
		} else {
			memcpy(driver_data->inline_data, packet->payload,
			       packet->payload_length);
			payload_bus = d_bus + 3 * sizeof(*d);
1390 1391 1392 1393 1394 1395
		}

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
1396
	} else {
1397 1398
		last = &d[0];
		z = 2;
1399 1400
	}

1401 1402 1403
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
1404

1405 1406
	/* FIXME: Document how the locking works. */
	if (ohci->generation != packet->generation) {
1407
		if (packet->payload_mapped)
1408 1409
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
1410 1411 1412 1413 1414
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
1415

1416
	if (ctx->running)
1417
		reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1418
	else
1419 1420 1421
		context_run(ctx, 0);

	return 0;
1422 1423
}

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
static void at_context_flush(struct context *ctx)
{
	tasklet_disable(&ctx->tasklet);

	ctx->flushing = true;
	context_tasklet((unsigned long)ctx);
	ctx->flushing = false;

	tasklet_enable(&ctx->tasklet);
}

1435 1436 1437
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1438
{
1439
	struct driver_data *driver_data;
1440
	struct fw_packet *packet;
1441
	struct fw_ohci *ohci = context->ohci;
1442 1443
	int evt;

1444
	if (last->transfer_status == 0 && !context->flushing)
1445 1446
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
1447

1448 1449 1450 1451 1452
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
1453

1454
	if (packet->payload_mapped)
1455
		dma_unmap_single(ohci->card.device, packet->payload_bus,
1456 1457
				 packet->payload_length, DMA_TO_DEVICE);

1458 1459
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
1460

1461
	log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1462

1463 1464 1465 1466 1467
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
1468

1469
	case OHCI1394_evt_flushed:
1470 1471 1472 1473
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
1474 1475
		packet->ack = RCODE_GENERATION;
		break;
1476

1477
	case OHCI1394_evt_missing_ack:
1478 1479 1480 1481 1482 1483 1484 1485 1486
		if (context->flushing)
			packet->ack = RCODE_GENERATION;
		else {
			/*
			 * Using a valid (current) generation count, but the
			 * node is not on the bus or not sending acks.
			 */
			packet->ack = RCODE_NO_ACK;
		}
1487
		break;
1488

1489 1490 1491 1492 1493 1494 1495 1496 1497
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
1498

1499 1500 1501 1502 1503 1504 1505
	case OHCI1394_evt_no_status:
		if (context->flushing) {
			packet->ack = RCODE_GENERATION;
			break;
		}
		/* fall through */

1506 1507 1508 1509
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
1510

1511
	packet->callback(packet, &ohci->card, packet->ack);
1512

1513
	return 1;
1514 1515
}

1516 1517 1518 1519 1520
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1521

1522 1523
static void handle_local_rom(struct fw_ohci *ohci,
			     struct fw_packet *packet, u32 csr)
1524 1525 1526 1527
{
	struct fw_packet response;
	int tcode, length, i;

1528
	tcode = HEADER_GET_TCODE(packet->header[0]);
1529
	if (TCODE_IS_BLOCK_PACKET(tcode))
1530
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

1549 1550
static void handle_local_lock(struct fw_ohci *ohci,
			      struct fw_packet *packet, u32 csr)
1551 1552
{
	struct fw_packet response;
1553
	int tcode, length, ext_tcode, sel, try;
1554 1555 1556
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

1557 1558
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1559
	payload = packet->payload;
1560
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
	for (try = 0; try < 20; try++)
		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
			lock_old = cpu_to_be32(reg_read(ohci,
							OHCI1394_CSRData));
			fw_fill_response(&response, packet->header,
					 RCODE_COMPLETE,
					 &lock_old, sizeof(lock_old));
			goto out;
		}

1590
	ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1591
	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1592 1593 1594 1595 1596

 out:
	fw_core_handle_response(&ohci->card, &response);
}

1597
static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1598
{
1599
	u64 offset, csr;
1600

1601 1602 1603 1604
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1605 1606 1607

	offset =
		((unsigned long long)
1608
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
1629 1630 1631 1632 1633

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1634
}
1635

1636
static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1637 1638
{
	unsigned long flags;
1639
	int ret;
1640 1641 1642

	spin_lock_irqsave(&ctx->ohci->lock, flags);

1643
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1644
	    ctx->ohci->generation == packet->generation) {
1645 1646 1647
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
1648
	}
1649

1650
	ret = at_context_queue_packet(ctx, packet);
1651 1652
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

1653
	if (ret < 0)
1654
		packet->callback(packet, &ctx->ohci->card, packet->ack);
1655

1656 1657
}

1658 1659 1660 1661 1662 1663
static void detect_dead_context(struct fw_ohci *ohci,
				const char *name, unsigned int regs)
{
	u32 ctl;

	ctl = reg_read(ohci, CONTROL_SET(regs));
1664
	if (ctl & CONTEXT_DEAD)
1665
		ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1666
			name, evts[ctl & 0x1f]);
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
}

static void handle_dead_contexts(struct fw_ohci *ohci)
{
	unsigned int i;
	char name[8];

	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
	for (i = 0; i < 32; ++i) {
		if (!(ohci->it_context_support & (1 << i)))
			continue;
		sprintf(name, "IT%u", i);
		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
	}
	for (i = 0; i < 32; ++i) {
		if (!(ohci->ir_context_support & (1 << i)))
			continue;
		sprintf(name, "IR%u", i);
		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
	}
	/* TODO: maybe try to flush and restart the dead contexts */
}

1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
static u32 cycle_timer_ticks(u32 cycle_timer)
{
	u32 ticks;

	ticks = cycle_timer & 0xfff;
	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
	ticks += (3072 * 8000) * (cycle_timer >> 25);

	return ticks;
}

/*
 * Some controllers exhibit one or more of the following bugs when updating the
 * iso cycle timer register:
 *  - When the lowest six bits are wrapping around to zero, a read that happens
 *    at the same time will return garbage in the lowest ten bits.
 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
 *    not incremented for about 60 ns.
 *  - Occasionally, the entire register reads zero.
 *
 * To catch these, we read the register three times and ensure that the
 * difference between each two consecutive reads is approximately the same, i.e.
 * less than twice the other.  Furthermore, any negative difference indicates an
 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
 * execute, so we have enough precision to compute the ratio of the differences.)
 */
static u32 get_cycle_time(struct fw_ohci *ohci)
{
	u32 c0, c1, c2;
	u32 t0, t1, t2;
	s32 diff01, diff12;
	int i;

	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);

	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
		i = 0;
		c1 = c2;
		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		do {
			c0 = c1;
			c1 = c2;
			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
			t0 = cycle_timer_ticks(c0);
			t1 = cycle_timer_ticks(c1);
			t2 = cycle_timer_ticks(c2);
			diff01 = t1 - t0;
			diff12 = t2 - t1;
		} while ((diff01 <= 0 || diff12 <= 0 ||
			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
			 && i++ < 20);
	}

	return c2;
}

/*
 * This function has to be called at least every 64 seconds.  The bus_time
 * field stores not only the upper 25 bits of the BUS_TIME register but also
 * the most significant bit of the cycle timer in bit 6 so that we can detect
 * changes in this bit.
 */
static u32 update_bus_time(struct fw_ohci *ohci)
{
	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;

1759 1760 1761 1762 1763 1764 1765
	if (unlikely(!ohci->bus_time_running)) {
		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
		ohci->bus_time = (lower_32_bits(get_seconds()) & ~0x7f) |
		                 (cycle_time_seconds & 0x40);
		ohci->bus_time_running = true;
	}

1766 1767 1768 1769 1770 1771
	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
		ohci->bus_time += 0x40;

	return ohci->bus_time | cycle_time_seconds;
}

1772 1773 1774 1775 1776 1777
static int get_status_for_port(struct fw_ohci *ohci, int port_index)
{
	int reg;

	mutex_lock(&ohci->phy_reg_mutex);
	reg = write_phy_reg(ohci, 7, port_index);
1778 1779
	if (reg >= 0)
		reg = read_phy_reg(ohci, 8);
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
	mutex_unlock(&ohci->phy_reg_mutex);
	if (reg < 0)
		return reg;

	switch (reg & 0x0f) {
	case 0x06:
		return 2;	/* is child node (connected to parent node) */
	case 0x0e:
		return 3;	/* is parent node (connected to child node) */
	}
	return 1;		/* not connected */
}

static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
	int self_id_count)
{
	int i;
	u32 entry;
1798

1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
	for (i = 0; i < self_id_count; i++) {
		entry = ohci->self_id_buffer[i];
		if ((self_id & 0xff000000) == (entry & 0xff000000))
			return -1;
		if ((self_id & 0xff000000) < (entry & 0xff000000))
			return i;
	}
	return i;
}

1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
static int initiated_reset(struct fw_ohci *ohci)
{
	int reg;
	int ret = 0;

	mutex_lock(&ohci->phy_reg_mutex);
	reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
	if (reg >= 0) {
		reg = read_phy_reg(ohci, 8);
		reg |= 0x40;
		reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
		if (reg >= 0) {
			reg = read_phy_reg(ohci, 12); /* read register 12 */
			if (reg >= 0) {
				if ((reg & 0x08) == 0x08) {
					/* bit 3 indicates "initiated reset" */
					ret = 0x2;
				}
			}
		}
	}
	mutex_unlock(&ohci->phy_reg_mutex);
	return ret;
}

1834
/*
1835 1836 1837
 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
 * Construct the selfID from phy register contents.
1838 1839 1840
 */
static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
{
1841 1842 1843
	int reg, i, pos, status;
	/* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
	u32 self_id = 0x8040c800;
1844 1845 1846

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1847 1848
		ohci_notice(ohci,
			    "node ID not valid, new bus reset in progress\n");
1849 1850 1851 1852
		return -EBUSY;
	}
	self_id |= ((reg & 0x3f) << 24); /* phy ID */

1853
	reg = ohci_read_phy_reg(&ohci->card, 4);
1854 1855 1856 1857
	if (reg < 0)
		return reg;
	self_id |= ((reg & 0x07) << 8); /* power class */

1858
	reg = ohci_read_phy_reg(&ohci->card, 1);
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
	if (reg < 0)
		return reg;
	self_id |= ((reg & 0x3f) << 16); /* gap count */

	for (i = 0; i < 3; i++) {
		status = get_status_for_port(ohci, i);
		if (status < 0)
			return status;
		self_id |= ((status & 0x3) << (6 - (i * 2)));
	}

1870 1871
	self_id |= initiated_reset(ohci);

1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
	pos = get_self_id_pos(ohci, self_id, self_id_count);
	if (pos >= 0) {
		memmove(&(ohci->self_id_buffer[pos+1]),
			&(ohci->self_id_buffer[pos]),
			(self_id_count - pos) * sizeof(*ohci->self_id_buffer));
		ohci->self_id_buffer[pos] = self_id;
		self_id_count++;
	}
	return self_id_count;
}

1883
static void bus_reset_work(struct work_struct *work)
1884
{
1885 1886
	struct fw_ohci *ohci =
		container_of(work, struct fw_ohci, bus_reset_work);
1887 1888
	int self_id_count, generation, new_generation, i, j;
	u32 reg;
1889 1890
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1891
	bool is_new_root;
1892 1893 1894

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1895 1896
		ohci_notice(ohci,
			    "node ID not valid, new bus reset in progress\n");
1897 1898
		return;
	}
1899
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1900
		ohci_notice(ohci, "malconfigured bus\n");
1901 1902 1903 1904
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1905

1906 1907 1908 1909 1910 1911
	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
	if (!(ohci->is_root && is_new_root))
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	ohci->is_root = is_new_root;

1912 1913
	reg = reg_read(ohci, OHCI1394_SelfIDCount);
	if (reg & OHCI1394_SelfIDCount_selfIDError) {
1914
		ohci_notice(ohci, "inconsistent self IDs\n");
1915 1916
		return;
	}
1917 1918
	/*
	 * The count in the SelfIDCount register is the number of
1919 1920
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1921 1922
	 * bit extra to get the actual number of self IDs.
	 */
1923
	self_id_count = (reg >> 3) & 0xff;
1924 1925

	if (self_id_count > 252) {
1926
		ohci_notice(ohci, "inconsistent self IDs\n");
1927 1928
		return;
	}
1929

1930
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1931
	rmb();
1932 1933

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1934
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1935 1936 1937 1938 1939 1940 1941 1942 1943
			/*
			 * If the invalid data looks like a cycle start packet,
			 * it's likely to be the result of the cycle master
			 * having a wrong gap count.  In this case, the self IDs
			 * so far are valid and should be processed so that the
			 * bus manager can then correct the gap count.
			 */
			if (cond_le32_to_cpu(ohci->self_id_cpu[i])
							== 0xffff008f) {
1944 1945
				ohci_notice(ohci,
					    "ignoring spurious self IDs\n");
1946 1947 1948
				self_id_count = j;
				break;
			} else {
1949
				ohci_notice(ohci, "inconsistent self IDs\n");
1950 1951
				return;
			}
1952
		}
1953 1954
		ohci->self_id_buffer[j] =
				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1955
	}
1956 1957 1958 1959

	if (ohci->quirks & QUIRK_TI_SLLZ059) {
		self_id_count = find_and_insert_self_id(ohci, self_id_count);
		if (self_id_count < 0) {
1960 1961
			ohci_notice(ohci,
				    "could not construct local self ID\n");
1962 1963 1964 1965 1966
			return;
		}
	}

	if (self_id_count == 0) {
1967
		ohci_notice(ohci, "inconsistent self IDs\n");
1968 1969
		return;
	}
1970
	rmb();
1971

1972 1973
	/*
	 * Check the consistency of the self IDs we just read.  The
1974 1975 1976 1977 1978 1979 1980 1981 1982
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1983 1984
	 * of self IDs.
	 */
1985 1986 1987

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
1988
		ohci_notice(ohci, "new bus reset, discarding self ids\n");
1989 1990 1991 1992
		return;
	}

	/* FIXME: Document how the locking works. */
1993
	spin_lock_irq(&ohci->lock);
1994

1995
	ohci->generation = -1; /* prevent AT packet queueing */
1996 1997
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1998

1999
	spin_unlock_irq(&ohci->lock);
2000

2001 2002 2003 2004 2005
	/*
	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
	 * packets in the AT queues and software needs to drain them.
	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
	 */
2006 2007 2008
	at_context_flush(&ohci->at_request_ctx);
	at_context_flush(&ohci->at_response_ctx);

2009
	spin_lock_irq(&ohci->lock);
2010 2011

	ohci->generation = generation;
2012 2013
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

2014
	if (ohci->quirks & QUIRK_RESET_PACKET)
2015 2016
		ohci->request_generation = generation;

2017 2018
	/*
	 * This next bit is unrelated to the AT context stuff but we
2019 2020 2021 2022
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
T
Thomas Weber 已提交
2023
	 * next_config_rom pointer so a new update can take place.
2024
	 */
2025 2026

	if (ohci->next_config_rom != NULL) {
2027 2028 2029 2030
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
2031 2032 2033 2034
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

2035 2036
		/*
		 * Restore config_rom image and manually update
2037 2038
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
2039 2040
		 * do that last.
		 */
2041 2042
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
2043 2044 2045
		ohci->config_rom[0] = ohci->next_header;
		reg_write(ohci, OHCI1394_ConfigROMhdr,
			  be32_to_cpu(ohci->next_header));
2046 2047
	}

2048 2049 2050 2051 2052
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif

2053
	spin_unlock_irq(&ohci->lock);
2054

2055 2056 2057 2058
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

2059
	log_selfids(ohci, generation, self_id_count);
2060

2061
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2062 2063 2064
				 self_id_count, ohci->self_id_buffer,
				 ohci->csr_state_setclear_abdicate);
	ohci->csr_state_setclear_abdicate = false;
2065 2066 2067 2068 2069
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
2070
	u32 event, iso_event;
2071 2072 2073 2074
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

2075
	if (!event || !~event)
2076 2077
		return IRQ_NONE;

2078 2079 2080 2081 2082 2083
	/*
	 * busReset and postedWriteErr must not be cleared yet
	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
	 */
	reg_write(ohci, OHCI1394_IntEventClear,
		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2084
	log_irqs(ohci, event);
2085 2086

	if (event & OHCI1394_selfIDComplete)
2087
		queue_work(fw_workqueue, &ohci->bus_reset_work);
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
	if (event & OHCI1394_isochRx) {
		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

		while (iso_event) {
			i = ffs(iso_event) - 1;
			tasklet_schedule(
				&ohci->ir_context_list[i].context.tasklet);
			iso_event &= ~(1 << i);
		}
2111 2112
	}

2113 2114 2115
	if (event & OHCI1394_isochTx) {
		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2116

2117 2118 2119 2120 2121 2122
		while (iso_event) {
			i = ffs(iso_event) - 1;
			tasklet_schedule(
				&ohci->it_context_list[i].context.tasklet);
			iso_event &= ~(1 << i);
		}
2123 2124
	}

2125
	if (unlikely(event & OHCI1394_regAccessFail))
2126
		ohci_err(ohci, "register access failure\n");
2127

2128 2129 2130 2131 2132
	if (unlikely(event & OHCI1394_postedWriteErr)) {
		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
		reg_write(ohci, OHCI1394_IntEventClear,
			  OHCI1394_postedWriteErr);
S
Stephan Gatzka 已提交
2133
		if (printk_ratelimit())
2134
			ohci_err(ohci, "PCI posted write error\n");
2135
	}
2136

2137 2138
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
2139
			ohci_notice(ohci, "isochronous cycle too long\n");
2140 2141 2142 2143
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

2144 2145 2146 2147 2148 2149 2150 2151
	if (unlikely(event & OHCI1394_cycleInconsistent)) {
		/*
		 * We need to clear this event bit in order to make
		 * cycleMatch isochronous I/O work.  In theory we should
		 * stop active cycleMatch iso contexts now and restart
		 * them at least two cycles later.  (FIXME?)
		 */
		if (printk_ratelimit())
2152
			ohci_notice(ohci, "isochronous cycle inconsistent\n");
2153 2154
	}

2155 2156 2157
	if (unlikely(event & OHCI1394_unrecoverableError))
		handle_dead_contexts(ohci);

2158 2159 2160 2161
	if (event & OHCI1394_cycle64Seconds) {
		spin_lock(&ohci->lock);
		update_bus_time(ohci);
		spin_unlock(&ohci->lock);
2162 2163
	} else
		flush_writes(ohci);
2164

2165 2166 2167
	return IRQ_HANDLED;
}

2168 2169
static int software_reset(struct fw_ohci *ohci)
{
2170
	u32 val;
2171 2172 2173
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2174 2175 2176 2177
	for (i = 0; i < 500; i++) {
		val = reg_read(ohci, OHCI1394_HCControlSet);
		if (!~val)
			return -ENODEV; /* Card was ejected. */
2178

2179
		if (!(val & OHCI1394_HCControl_softReset))
2180
			return 0;
2181

2182 2183 2184 2185 2186 2187
		msleep(1);
	}

	return -EBUSY;
}

2188 2189 2190 2191 2192 2193 2194 2195 2196
static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
{
	size_t size = length * 4;

	memcpy(dest, src, size);
	if (size < CONFIG_ROM_SIZE)
		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
}

2197 2198 2199
static int configure_1394a_enhancements(struct fw_ohci *ohci)
{
	bool enable_1394a;
2200
	int ret, clear, set, offset;
2201 2202 2203 2204 2205 2206 2207 2208

	/* Check if the driver should configure link and PHY. */
	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
	      OHCI1394_HCControl_programPhyEnable))
		return 0;

	/* Paranoia: check whether the PHY supports 1394a, too. */
	enable_1394a = false;
2209 2210 2211 2212 2213 2214 2215 2216
	ret = read_phy_reg(ohci, 2);
	if (ret < 0)
		return ret;
	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
		ret = read_paged_phy_reg(ohci, 1, 8);
		if (ret < 0)
			return ret;
		if (ret >= 1)
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
			enable_1394a = true;
	}

	if (ohci->quirks & QUIRK_NO_1394A)
		enable_1394a = false;

	/* Configure PHY and link consistently. */
	if (enable_1394a) {
		clear = 0;
		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
	} else {
		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
		set = 0;
	}
2231
	ret = update_phy_reg(ohci, 5, clear, set);
2232 2233
	if (ret < 0)
		return ret;
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247

	if (enable_1394a)
		offset = OHCI1394_HCControlSet;
	else
		offset = OHCI1394_HCControlClear;
	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);

	/* Clean up: configuration has been taken care of. */
	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_programPhyEnable);

	return 0;
}

2248 2249
static int probe_tsb41ba3d(struct fw_ohci *ohci)
{
2250 2251 2252
	/* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
	static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
	int reg, i;
2253 2254 2255 2256

	reg = read_phy_reg(ohci, 2);
	if (reg < 0)
		return reg;
2257 2258
	if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
		return 0;
2259

2260 2261 2262 2263 2264 2265
	for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
		reg = read_paged_phy_reg(ohci, 1, i + 10);
		if (reg < 0)
			return reg;
		if (reg != id[i])
			return 0;
2266
	}
2267
	return 1;
2268 2269
}

2270 2271
static int ohci_enable(struct fw_card *card,
		       const __be32 *config_rom, size_t length)
2272 2273
{
	struct fw_ohci *ohci = fw_ohci(card);
2274
	u32 lps, version, irqs;
2275
	int i, ret;
2276

2277
	if (software_reset(ohci)) {
2278
		ohci_err(ohci, "failed to reset ohci card\n");
2279 2280 2281 2282 2283 2284 2285 2286
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
2287 2288
	 * full link enabled.  However, with some cards (well, at least
	 * a JMicron PCIe card), we have to try again sometimes.
2289 2290 2291 2292 2293 2294 2295
	 *
	 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
	 * cannot actually use the phy at that time.  These need tens of
	 * millisecods pause between LPS write and first phy access too.
	 *
	 * But do not wait for 50msec on Agere/LSI cards.  Their phy
	 * arbitration state machine may time out during such a long wait.
2296
	 */
2297

2298 2299 2300 2301
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
2302

2303
	if (!(ohci->quirks & QUIRK_PHY_LCTRL_TIMEOUT))
2304
		msleep(50);
2305 2306 2307

	for (lps = 0, i = 0; !lps && i < 150; i++) {
		msleep(1);
2308 2309 2310 2311 2312
		lps = reg_read(ohci, OHCI1394_HCControlSet) &
		      OHCI1394_HCControl_LPS;
	}

	if (!lps) {
2313
		ohci_err(ohci, "failed to set Link Power Status\n");
2314 2315
		return -EIO;
	}
2316

2317
	if (ohci->quirks & QUIRK_TI_SLLZ059) {
2318 2319 2320 2321
		ret = probe_tsb41ba3d(ohci);
		if (ret < 0)
			return ret;
		if (ret)
2322
			ohci_notice(ohci, "local TSB41BA3D phy\n");
2323
		else
2324 2325 2326
			ohci->quirks &= ~QUIRK_TI_SLLZ059;
	}

2327 2328 2329
	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

2330
	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2331 2332 2333 2334 2335 2336 2337
	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2338 2339
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
		  (200 << 16));
2340

2341
	ohci->bus_time_running = false;
2342

2343 2344 2345 2346 2347
	for (i = 0; i < 32; i++)
		if (ohci->ir_context_support & (1 << i))
			reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
				  IR_CONTEXT_MULTI_CHANNEL_MODE);

2348 2349 2350 2351
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	if (version >= OHCI_VERSION_1_1) {
		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
			  0xfffffffe);
2352
		card->broadcast_channel_auto_allocated = true;
2353 2354
	}

2355 2356 2357 2358
	/* Get implemented bits of the priority arbitration request counter. */
	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
	reg_write(ohci, OHCI1394_FairnessControl, 0);
2359
	card->priority_budget_implemented = ohci->pri_req_max != 0;
2360 2361 2362 2363 2364

	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);

2365 2366 2367
	ret = configure_1394a_enhancements(ohci);
	if (ret < 0)
		return ret;
2368

2369
	/* Activate link_on bit and contender bit in our self ID packets.*/
2370 2371 2372
	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
	if (ret < 0)
		return ret;
2373

2374 2375
	/*
	 * When the link is not yet enabled, the atomic config rom
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

2393 2394 2395 2396 2397 2398 2399
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
2400

2401
		copy_config_rom(ohci->next_config_rom, config_rom, length);
2402 2403 2404 2405 2406 2407 2408 2409
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
2410

2411
	ohci->next_header = ohci->next_config_rom[0];
2412 2413
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2414 2415
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
2416 2417 2418 2419
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

2420 2421 2422 2423 2424 2425
	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		OHCI1394_RQPkt | OHCI1394_RSPkt |
		OHCI1394_isochTx | OHCI1394_isochRx |
		OHCI1394_postedWriteErr |
		OHCI1394_selfIDComplete |
		OHCI1394_regAccessFail |
2426 2427 2428
		OHCI1394_cycleInconsistent |
		OHCI1394_unrecoverableError |
		OHCI1394_cycleTooLong |
2429 2430 2431 2432 2433
		OHCI1394_masterIntEnable;
	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
		irqs |= OHCI1394_busReset;
	reg_write(ohci, OHCI1394_IntMaskSet, irqs);

2434 2435 2436
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
2437 2438 2439 2440 2441 2442

	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_rcvPhyPkt);

	ar_context_run(&ohci->ar_request_ctx);
2443 2444 2445
	ar_context_run(&ohci->ar_response_ctx);

	flush_writes(ohci);
2446

2447 2448
	/* We are ready to go, reset bus to finish initialization. */
	fw_schedule_bus_reset(&ohci->card, false, true);
2449 2450 2451 2452

	return 0;
}

2453
static int ohci_set_config_rom(struct fw_card *card,
2454
			       const __be32 *config_rom, size_t length)
2455 2456 2457
{
	struct fw_ohci *ohci;
	__be32 *next_config_rom;
2458
	dma_addr_t uninitialized_var(next_config_rom_bus);
2459 2460 2461

	ohci = fw_ohci(card);

2462 2463
	/*
	 * When the OHCI controller is enabled, the config rom update
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
2486
	 * ohci->next_config_rom to NULL (see bus_reset_work).
2487 2488 2489 2490 2491 2492 2493 2494
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

2495
	spin_lock_irq(&ohci->lock);
2496

2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
	/*
	 * If there is not an already pending config_rom update,
	 * push our new allocation into the ohci->next_config_rom
	 * and then mark the local variable as null so that we
	 * won't deallocate the new buffer.
	 *
	 * OTOH, if there is a pending config_rom update, just
	 * use that buffer with the new config_rom data, and
	 * let this routine free the unused DMA allocation.
	 */

2508 2509 2510
	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;
2511 2512
		next_config_rom = NULL;
	}
2513

2514
	copy_config_rom(ohci->next_config_rom, config_rom, length);
2515

2516 2517
	ohci->next_header = config_rom[0];
	ohci->next_config_rom[0] = 0;
2518

2519
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2520

2521
	spin_unlock_irq(&ohci->lock);
2522

2523 2524 2525 2526 2527
	/* If we didn't use the DMA allocation, delete it. */
	if (next_config_rom != NULL)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);

2528 2529
	/*
	 * Now initiate a bus reset to have the changes take
2530 2531 2532
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
2533 2534
	 * takes effect.
	 */
2535

2536 2537 2538
	fw_schedule_bus_reset(&ohci->card, true, true);

	return 0;
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

2555 2556 2557
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
2558 2559
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
2560
	int ret = -ENOENT;
2561

2562
	tasklet_disable(&ctx->tasklet);
2563

2564 2565
	if (packet->ack != 0)
		goto out;
2566

2567
	if (packet->payload_mapped)
2568 2569 2570
		dma_unmap_single(ohci->card.device, packet->payload_bus,
				 packet->payload_length, DMA_TO_DEVICE);

2571
	log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2572 2573 2574
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
2575
	ret = 0;
2576 2577
 out:
	tasklet_enable(&ctx->tasklet);
2578

2579
	return ret;
2580 2581
}

2582 2583
static int ohci_enable_phys_dma(struct fw_card *card,
				int node_id, int generation)
2584
{
2585 2586 2587
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	return 0;
#else
2588 2589
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
2590
	int n, ret = 0;
2591

2592 2593 2594 2595
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
2596 2597 2598 2599

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
2600
		ret = -ESTALE;
2601 2602 2603
		goto out;
	}

2604 2605 2606 2607
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
2608 2609 2610 2611 2612 2613 2614

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

2615 2616
	flush_writes(ohci);
 out:
2617
	spin_unlock_irqrestore(&ohci->lock, flags);
2618 2619

	return ret;
2620
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2621
}
S
Stefan Richter 已提交
2622

2623
static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2624
{
2625
	struct fw_ohci *ohci = fw_ohci(card);
2626 2627
	unsigned long flags;
	u32 value;
2628 2629

	switch (csr_offset) {
2630 2631 2632 2633 2634
	case CSR_STATE_CLEAR:
	case CSR_STATE_SET:
		if (ohci->is_root &&
		    (reg_read(ohci, OHCI1394_LinkControlSet) &
		     OHCI1394_LinkControl_cycleMaster))
2635
			value = CSR_STATE_BIT_CMSTR;
2636
		else
2637 2638 2639
			value = 0;
		if (ohci->csr_state_setclear_abdicate)
			value |= CSR_STATE_BIT_ABDICATE;
2640

2641
		return value;
2642

2643 2644 2645
	case CSR_NODE_IDS:
		return reg_read(ohci, OHCI1394_NodeID) << 16;

2646 2647 2648
	case CSR_CYCLE_TIME:
		return get_cycle_time(ohci);

2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
	case CSR_BUS_TIME:
		/*
		 * We might be called just after the cycle timer has wrapped
		 * around but just before the cycle64Seconds handler, so we
		 * better check here, too, if the bus time needs to be updated.
		 */
		spin_lock_irqsave(&ohci->lock, flags);
		value = update_bus_time(ohci);
		spin_unlock_irqrestore(&ohci->lock, flags);
		return value;

2660 2661 2662 2663
	case CSR_BUSY_TIMEOUT:
		value = reg_read(ohci, OHCI1394_ATRetries);
		return (value >> 4) & 0x0ffff00f;

2664 2665 2666 2667
	case CSR_PRIORITY_BUDGET:
		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
			(ohci->pri_req_max << 8);

2668 2669 2670 2671
	default:
		WARN_ON(1);
		return 0;
	}
2672 2673
}

2674
static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2675 2676
{
	struct fw_ohci *ohci = fw_ohci(card);
2677
	unsigned long flags;
2678

2679
	switch (csr_offset) {
2680 2681 2682 2683 2684 2685
	case CSR_STATE_CLEAR:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlClear,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2686 2687
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = false;
2688
		break;
2689

2690 2691 2692 2693 2694 2695
	case CSR_STATE_SET:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlSet,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2696 2697
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = true;
2698
		break;
2699

2700 2701 2702 2703 2704
	case CSR_NODE_IDS:
		reg_write(ohci, OHCI1394_NodeID, value >> 16);
		flush_writes(ohci);
		break;

2705 2706 2707 2708 2709 2710 2711
	case CSR_CYCLE_TIME:
		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
		reg_write(ohci, OHCI1394_IntEventSet,
			  OHCI1394_cycleInconsistent);
		flush_writes(ohci);
		break;

2712 2713
	case CSR_BUS_TIME:
		spin_lock_irqsave(&ohci->lock, flags);
2714 2715
		ohci->bus_time = (update_bus_time(ohci) & 0x40) |
		                 (value & ~0x7f);
2716 2717 2718
		spin_unlock_irqrestore(&ohci->lock, flags);
		break;

2719 2720 2721 2722 2723 2724 2725
	case CSR_BUSY_TIMEOUT:
		value = (value & 0xf) | ((value & 0xf) << 4) |
			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
		reg_write(ohci, OHCI1394_ATRetries, value);
		flush_writes(ohci);
		break;

2726 2727 2728 2729 2730
	case CSR_PRIORITY_BUDGET:
		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
		flush_writes(ohci);
		break;

2731 2732 2733 2734
	default:
		WARN_ON(1);
		break;
	}
2735 2736
}

2737
static void flush_iso_completions(struct iso_context *ctx)
2738
{
2739 2740 2741 2742 2743
	ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
			      ctx->header_length, ctx->header,
			      ctx->base.callback_data);
	ctx->header_length = 0;
}
2744

2745
static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2746
{
2747
	u32 *ctx_hdr;
2748

2749
	if (ctx->header_length + ctx->base.header_size > PAGE_SIZE)
2750
		flush_iso_completions(ctx);
2751

2752
	ctx_hdr = ctx->header + ctx->header_length;
2753
	ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2754 2755

	/*
2756 2757 2758
	 * The two iso header quadlets are byteswapped to little
	 * endian by the controller, but we want to present them
	 * as big endian for consistency with the bus endianness.
2759 2760
	 */
	if (ctx->base.header_size > 0)
2761
		ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2762
	if (ctx->base.header_size > 4)
2763
		ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2764
	if (ctx->base.header_size > 8)
2765
		memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2766 2767 2768
	ctx->header_length += ctx->base.header_size;
}

2769 2770 2771 2772 2773 2774
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2775
	struct descriptor *pd;
2776
	u32 buffer_dma;
2777

2778
	for (pd = d; pd <= last; pd++)
2779 2780 2781
		if (pd->transfer_status)
			break;
	if (pd > last)
2782 2783 2784
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
	while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
		d++;
		buffer_dma = le32_to_cpu(d->data_address);
		dma_sync_single_range_for_cpu(context->ohci->card.device,
					      buffer_dma & PAGE_MASK,
					      buffer_dma & ~PAGE_MASK,
					      le16_to_cpu(d->req_count),
					      DMA_FROM_DEVICE);
	}

2795
	copy_iso_headers(ctx, (u32 *) (last + 1));
2796

2797 2798
	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
		flush_iso_completions(ctx);
2799 2800 2801 2802

	return 1;
}

2803 2804 2805 2806 2807 2808 2809
/* d == last because each descriptor block is only a single descriptor. */
static int handle_ir_buffer_fill(struct context *context,
				 struct descriptor *d,
				 struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2810
	unsigned int req_count, res_count, completed;
2811
	u32 buffer_dma;
2812

2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
	req_count = le16_to_cpu(last->req_count);
	res_count = le16_to_cpu(ACCESS_ONCE(last->res_count));
	completed = req_count - res_count;
	buffer_dma = le32_to_cpu(last->data_address);

	if (completed > 0) {
		ctx->mc_buffer_bus = buffer_dma;
		ctx->mc_completed = completed;
	}

	if (res_count != 0)
2824 2825 2826
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

2827 2828 2829
	dma_sync_single_range_for_cpu(context->ohci->card.device,
				      buffer_dma & PAGE_MASK,
				      buffer_dma & ~PAGE_MASK,
2830
				      completed, DMA_FROM_DEVICE);
2831

2832
	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2833
		ctx->base.callback.mc(&ctx->base,
2834
				      buffer_dma + completed,
2835
				      ctx->base.callback_data);
2836 2837
		ctx->mc_completed = 0;
	}
2838 2839 2840 2841

	return 1;
}

2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
static void flush_ir_buffer_fill(struct iso_context *ctx)
{
	dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
				      ctx->mc_buffer_bus & PAGE_MASK,
				      ctx->mc_buffer_bus & ~PAGE_MASK,
				      ctx->mc_completed, DMA_FROM_DEVICE);

	ctx->base.callback.mc(&ctx->base,
			      ctx->mc_buffer_bus + ctx->mc_completed,
			      ctx->base.callback_data);
	ctx->mc_completed = 0;
}

2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
static inline void sync_it_packet_for_cpu(struct context *context,
					  struct descriptor *pd)
{
	__le16 control;
	u32 buffer_dma;

	/* only packets beginning with OUTPUT_MORE* have data buffers */
	if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
		return;

	/* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
	pd += 2;

	/*
	 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
	 * data buffer is in the context program's coherent page and must not
	 * be synced.
	 */
	if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
	    (context->current_bus          & PAGE_MASK)) {
		if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
			return;
		pd++;
	}

	do {
		buffer_dma = le32_to_cpu(pd->data_address);
		dma_sync_single_range_for_cpu(context->ohci->card.device,
					      buffer_dma & PAGE_MASK,
					      buffer_dma & ~PAGE_MASK,
					      le16_to_cpu(pd->req_count),
					      DMA_TO_DEVICE);
		control = pd->control;
		pd++;
	} while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
}

2892 2893 2894
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
2895
{
2896 2897
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2898
	struct descriptor *pd;
2899
	__be32 *ctx_hdr;
S
Stefan Richter 已提交
2900

2901 2902 2903 2904 2905
	for (pd = d; pd <= last; pd++)
		if (pd->transfer_status)
			break;
	if (pd > last)
		/* Descriptor(s) not done yet, stop iteration */
2906 2907
		return 0;

2908 2909
	sync_it_packet_for_cpu(context, d);

2910 2911
	if (ctx->header_length + 4 > PAGE_SIZE)
		flush_iso_completions(ctx);
2912

2913
	ctx_hdr = ctx->header + ctx->header_length;
2914
	ctx->last_timestamp = le16_to_cpu(last->res_count);
2915 2916 2917 2918 2919
	/* Present this value as big-endian to match the receive code */
	*ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
			       le16_to_cpu(pd->res_count));
	ctx->header_length += 4;

2920 2921 2922
	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
		flush_iso_completions(ctx);

2923
	return 1;
2924 2925
}

2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
{
	u32 hi = channels >> 32, lo = channels;

	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
	mmiowb();
	ohci->mc_channels = channels;
}

2938
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2939
				int type, int channel, size_t header_size)
2940 2941
{
	struct fw_ohci *ohci = fw_ohci(card);
2942 2943 2944 2945 2946
	struct iso_context *uninitialized_var(ctx);
	descriptor_callback_t uninitialized_var(callback);
	u64 *uninitialized_var(channels);
	u32 *uninitialized_var(mask), uninitialized_var(regs);
	int index, ret = -EBUSY;
2947

2948
	spin_lock_irq(&ohci->lock);
2949

2950 2951 2952
	switch (type) {
	case FW_ISO_CONTEXT_TRANSMIT:
		mask     = &ohci->it_context_mask;
2953
		callback = handle_it_packet;
2954 2955 2956 2957 2958 2959 2960 2961 2962
		index    = ffs(*mask) - 1;
		if (index >= 0) {
			*mask &= ~(1 << index);
			regs = OHCI1394_IsoXmitContextBase(index);
			ctx  = &ohci->it_context_list[index];
		}
		break;

	case FW_ISO_CONTEXT_RECEIVE:
2963
		channels = &ohci->ir_context_channels;
2964
		mask     = &ohci->ir_context_mask;
2965
		callback = handle_ir_packet_per_buffer;
2966 2967 2968 2969 2970 2971 2972 2973
		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
		if (index >= 0) {
			*channels &= ~(1ULL << channel);
			*mask     &= ~(1 << index);
			regs = OHCI1394_IsoRcvContextBase(index);
			ctx  = &ohci->ir_context_list[index];
		}
		break;
2974

2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		mask     = &ohci->ir_context_mask;
		callback = handle_ir_buffer_fill;
		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
		if (index >= 0) {
			ohci->mc_allocated = true;
			*mask &= ~(1 << index);
			regs = OHCI1394_IsoRcvContextBase(index);
			ctx  = &ohci->ir_context_list[index];
		}
		break;

	default:
		index = -1;
		ret = -ENOSYS;
2990
	}
2991

2992
	spin_unlock_irq(&ohci->lock);
2993 2994

	if (index < 0)
2995
		return ERR_PTR(ret);
S
Stefan Richter 已提交
2996

2997
	memset(ctx, 0, sizeof(*ctx));
2998 2999
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
3000 3001
	if (ctx->header == NULL) {
		ret = -ENOMEM;
3002
		goto out;
3003
	}
3004 3005
	ret = context_init(&ctx->context, ohci, regs, callback);
	if (ret < 0)
3006
		goto out_with_header;
3007

3008
	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3009
		set_multichannel_mask(ohci, 0);
3010 3011
		ctx->mc_completed = 0;
	}
3012

3013
	return &ctx->base;
3014 3015 3016 3017

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
3018
	spin_lock_irq(&ohci->lock);
3019 3020 3021 3022 3023 3024 3025 3026 3027 3028

	switch (type) {
	case FW_ISO_CONTEXT_RECEIVE:
		*channels |= 1ULL << channel;
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		ohci->mc_allocated = false;
		break;
	}
3029
	*mask |= 1 << index;
3030

3031
	spin_unlock_irq(&ohci->lock);
3032

3033
	return ERR_PTR(ret);
3034 3035
}

3036 3037
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
3038
{
S
Stefan Richter 已提交
3039
	struct iso_context *ctx = container_of(base, struct iso_context, base);
3040
	struct fw_ohci *ohci = ctx->context.ohci;
3041
	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3042 3043
	int index;

3044 3045 3046 3047
	/* the controller cannot start without any queued packets */
	if (ctx->context.last->branch_address == 0)
		return -ENODATA;

3048 3049
	switch (ctx->base.type) {
	case FW_ISO_CONTEXT_TRANSMIT:
3050
		index = ctx - ohci->it_context_list;
3051 3052 3053
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3054
				(cycle & 0x7fff) << 16;
3055

3056 3057
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3058
		context_run(&ctx->context, match);
3059 3060 3061 3062 3063 3064
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
		/* fall through */
	case FW_ISO_CONTEXT_RECEIVE:
3065
		index = ctx - ohci->ir_context_list;
3066 3067 3068 3069 3070
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
3071

3072 3073
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3074
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3075
		context_run(&ctx->context, control);
3076 3077 3078 3079

		ctx->sync = sync;
		ctx->tags = tags;

3080
		break;
3081
	}
3082 3083 3084 3085

	return 0;
}

3086 3087 3088
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
3089
	struct iso_context *ctx = container_of(base, struct iso_context, base);
3090 3091
	int index;

3092 3093
	switch (ctx->base.type) {
	case FW_ISO_CONTEXT_TRANSMIT:
3094 3095
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3096 3097 3098 3099
		break;

	case FW_ISO_CONTEXT_RECEIVE:
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3100 3101
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3102
		break;
3103 3104 3105
	}
	flush_writes(ohci);
	context_stop(&ctx->context);
3106
	tasklet_kill(&ctx->context.tasklet);
3107 3108 3109 3110

	return 0;
}

3111 3112 3113
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
3114
	struct iso_context *ctx = container_of(base, struct iso_context, base);
3115 3116 3117
	unsigned long flags;
	int index;

3118 3119
	ohci_stop_iso(base);
	context_release(&ctx->context);
3120
	free_page((unsigned long)ctx->header);
3121

3122 3123
	spin_lock_irqsave(&ohci->lock, flags);

3124 3125
	switch (base->type) {
	case FW_ISO_CONTEXT_TRANSMIT:
3126 3127
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
3128 3129 3130
		break;

	case FW_ISO_CONTEXT_RECEIVE:
3131 3132
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
3133
		ohci->ir_context_channels |= 1ULL << base->channel;
3134 3135 3136 3137 3138 3139 3140 3141 3142
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
		ohci->ir_context_channels |= ohci->mc_channels;
		ohci->mc_channels = 0;
		ohci->mc_allocated = false;
		break;
3143 3144 3145 3146 3147
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
	unsigned long flags;
	int ret;

	switch (base->type) {
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:

		spin_lock_irqsave(&ohci->lock, flags);

		/* Don't allow multichannel to grab other contexts' channels. */
		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
			*channels = ohci->ir_context_channels;
			ret = -EBUSY;
		} else {
			set_multichannel_mask(ohci, *channels);
			ret = 0;
		}

		spin_unlock_irqrestore(&ohci->lock, flags);

		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

3178 3179 3180 3181 3182 3183 3184 3185
#ifdef CONFIG_PM
static void ohci_resume_iso_dma(struct fw_ohci *ohci)
{
	int i;
	struct iso_context *ctx;

	for (i = 0 ; i < ohci->n_ir ; i++) {
		ctx = &ohci->ir_context_list[i];
3186
		if (ctx->context.running)
3187 3188 3189 3190 3191
			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
	}

	for (i = 0 ; i < ohci->n_it ; i++) {
		ctx = &ohci->it_context_list[i];
3192
		if (ctx->context.running)
3193 3194 3195 3196 3197
			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
	}
}
#endif

3198 3199 3200 3201
static int queue_iso_transmit(struct iso_context *ctx,
			      struct fw_iso_packet *packet,
			      struct fw_iso_buffer *buffer,
			      unsigned long payload)
3202
{
3203
	struct descriptor *d, *last, *pd;
3204 3205
	struct fw_iso_packet *p;
	__le32 *header;
3206
	dma_addr_t d_bus, page_bus;
3207 3208
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
3209
	int page, end_page, i, length, offset;
3210 3211

	p = packet;
3212
	payload_index = payload;
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
3231
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3232

3233 3234 3235
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
3236 3237

	if (!p->skip) {
3238
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3239
		d[0].req_count = cpu_to_le16(8);
3240 3241 3242 3243 3244 3245 3246 3247
		/*
		 * Link the skip address to this descriptor itself.  This causes
		 * a context to skip a cycle whenever lost cycles or FIFO
		 * overruns occur, without dropping the data.  The application
		 * should then decide whether this is an error condition or not.
		 * FIXME:  Make the context's cycle-lost behaviour configurable?
		 */
		d[0].branch_address = cpu_to_le32(d_bus | z);
3248 3249

		header = (__le32 *) &d[1];
3250 3251 3252 3253 3254
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
3255
		header[1] =
3256
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3257 3258 3259 3260 3261
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
3262
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
3275 3276 3277

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
3278

3279 3280 3281 3282
		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
						 page_bus, offset, length,
						 DMA_TO_DEVICE);

3283 3284 3285 3286
		payload_index += length;
	}

	if (p->interrupt)
3287
		irq = DESCRIPTOR_IRQ_ALWAYS;
3288
	else
3289
		irq = DESCRIPTOR_NO_IRQ;
3290

3291
	last = z == 2 ? d : d + z - 1;
3292 3293 3294
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
3295
				     irq);
3296

3297
	context_append(&ctx->context, d, z, header_z);
3298 3299 3300

	return 0;
}
S
Stefan Richter 已提交
3301

3302 3303 3304 3305
static int queue_iso_packet_per_buffer(struct iso_context *ctx,
				       struct fw_iso_packet *packet,
				       struct fw_iso_buffer *buffer,
				       unsigned long payload)
3306
{
3307
	struct device *device = ctx->context.ohci->card.device;
3308
	struct descriptor *d, *pd;
3309 3310
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
3311 3312
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
3313 3314

	/*
3315 3316
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
3317
	 */
3318
	packet_count = packet->header_length / ctx->base.header_size;
3319
	header_size  = max(ctx->base.header_size, (size_t)8);
3320 3321 3322 3323 3324

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
3325
	payload_per_buffer = packet->payload_length / packet_count;
3326 3327 3328

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
3329
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3330
		d = context_get_descriptors(&ctx->context,
3331
				z + header_z, &d_bus);
3332 3333 3334
		if (d == NULL)
			return -ENOMEM;

3335 3336
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
3337
		if (packet->skip && i == 0)
3338
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3339 3340
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
3341
		d->transfer_status = 0;
3342 3343
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

3344
		rest = payload_per_buffer;
3345
		pd = d;
3346
		for (j = 1; j < z; j++) {
3347
			pd++;
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

3362 3363 3364 3365
			dma_sync_single_range_for_device(device, page_bus,
							 offset, length,
							 DMA_FROM_DEVICE);

3366 3367 3368 3369 3370
			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
3371 3372 3373
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
3374
		if (packet->interrupt && i == packet_count - 1)
3375 3376 3377 3378 3379 3380 3381 3382
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
static int queue_iso_buffer_fill(struct iso_context *ctx,
				 struct fw_iso_packet *packet,
				 struct fw_iso_buffer *buffer,
				 unsigned long payload)
{
	struct descriptor *d;
	dma_addr_t d_bus, page_bus;
	int page, offset, rest, z, i, length;

	page   = payload >> PAGE_SHIFT;
	offset = payload & ~PAGE_MASK;
	rest   = packet->payload_length;

	/* We need one descriptor for each page in the buffer. */
	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);

	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
		return -EFAULT;

	for (i = 0; i < z; i++) {
		d = context_get_descriptors(&ctx->context, 1, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
					 DESCRIPTOR_BRANCH_ALWAYS);
		if (packet->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
		if (packet->interrupt && i == z - 1)
			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		if (offset + rest < PAGE_SIZE)
			length = rest;
		else
			length = PAGE_SIZE - offset;
		d->req_count = cpu_to_le16(length);
		d->res_count = d->req_count;
		d->transfer_status = 0;

		page_bus = page_private(buffer->pages[page]);
		d->data_address = cpu_to_le32(page_bus + offset);

3425 3426 3427 3428
		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
						 page_bus, offset, length,
						 DMA_FROM_DEVICE);

3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
		rest -= length;
		offset = 0;
		page++;

		context_append(&ctx->context, d, 1, 0);
	}

	return 0;
}

3439 3440 3441 3442
static int ohci_queue_iso(struct fw_iso_context *base,
			  struct fw_iso_packet *packet,
			  struct fw_iso_buffer *buffer,
			  unsigned long payload)
3443
{
3444
	struct iso_context *ctx = container_of(base, struct iso_context, base);
3445
	unsigned long flags;
3446
	int ret = -ENOSYS;
3447

3448
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
	switch (base->type) {
	case FW_ISO_CONTEXT_TRANSMIT:
		ret = queue_iso_transmit(ctx, packet, buffer, payload);
		break;
	case FW_ISO_CONTEXT_RECEIVE:
		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
		break;
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
		break;
	}
3460 3461
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

3462
	return ret;
3463 3464
}

3465 3466 3467 3468 3469 3470 3471 3472
static void ohci_flush_queue_iso(struct fw_iso_context *base)
{
	struct context *ctx =
			&container_of(base, struct iso_context, base)->context;

	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
}

3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
static int ohci_flush_iso_completions(struct fw_iso_context *base)
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
	int ret = 0;

	tasklet_disable(&ctx->context.tasklet);

	if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
		context_tasklet((unsigned long)&ctx->context);

		switch (base->type) {
		case FW_ISO_CONTEXT_TRANSMIT:
		case FW_ISO_CONTEXT_RECEIVE:
			if (ctx->header_length != 0)
				flush_iso_completions(ctx);
			break;
		case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
			if (ctx->mc_completed != 0)
				flush_ir_buffer_fill(ctx);
			break;
		default:
			ret = -ENOSYS;
		}

		clear_bit_unlock(0, &ctx->flushing_completions);
		smp_mb__after_clear_bit();
	}

	tasklet_enable(&ctx->context.tasklet);

	return ret;
}

3506
static const struct fw_card_driver ohci_driver = {
3507
	.enable			= ohci_enable,
3508
	.read_phy_reg		= ohci_read_phy_reg,
3509 3510 3511 3512
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
3513
	.cancel_packet		= ohci_cancel_packet,
3514
	.enable_phys_dma	= ohci_enable_phys_dma,
3515 3516
	.read_csr		= ohci_read_csr,
	.write_csr		= ohci_write_csr,
3517 3518 3519

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
3520
	.set_iso_channels	= ohci_set_iso_channels,
3521
	.queue_iso		= ohci_queue_iso,
3522
	.flush_queue_iso	= ohci_flush_queue_iso,
3523
	.flush_iso_completions	= ohci_flush_iso_completions,
3524
	.start_iso		= ohci_start_iso,
3525
	.stop_iso		= ohci_stop_iso,
3526 3527
};

3528
#ifdef CONFIG_PPC_PMAC
3529
static void pmac_ohci_on(struct pci_dev *dev)
3530
{
3531 3532 3533 3534 3535 3536 3537 3538
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
3539 3540
}

3541
static void pmac_ohci_off(struct pci_dev *dev)
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
{
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
}
#else
3553 3554
static inline void pmac_ohci_on(struct pci_dev *dev) {}
static inline void pmac_ohci_off(struct pci_dev *dev) {}
3555 3556
#endif /* CONFIG_PPC_PMAC */

B
Bill Pemberton 已提交
3557
static int pci_probe(struct pci_dev *dev,
3558
			       const struct pci_device_id *ent)
3559 3560
{
	struct fw_ohci *ohci;
3561
	u32 bus_options, max_receive, link_speed, version;
3562
	u64 guid;
3563
	int i, err;
3564 3565
	size_t size;

3566 3567 3568 3569 3570
	if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
		dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
		return -ENOSYS;
	}

3571
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3572
	if (ohci == NULL) {
3573 3574
		err = -ENOMEM;
		goto fail;
3575 3576 3577 3578
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

3579
	pmac_ohci_on(dev);
3580

3581 3582
	err = pci_enable_device(dev);
	if (err) {
3583
		dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3584
		goto fail_free;
3585 3586 3587 3588 3589 3590 3591
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);
3592
	mutex_init(&ohci->phy_reg_mutex);
3593

3594
	INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3595

3596 3597
	if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
	    pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3598
		ohci_err(ohci, "invalid MMIO resource\n");
3599 3600 3601 3602
		err = -ENXIO;
		goto fail_disable;
	}

3603 3604
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
3605
		ohci_err(ohci, "MMIO resource unavailable\n");
3606
		goto fail_disable;
3607 3608 3609 3610
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
3611
		ohci_err(ohci, "failed to remap registers\n");
3612 3613
		err = -ENXIO;
		goto fail_iomem;
3614 3615
	}

3616
	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3617 3618 3619 3620 3621
		if ((ohci_quirks[i].vendor == dev->vendor) &&
		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
		     ohci_quirks[i].device == dev->device) &&
		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
		     ohci_quirks[i].revision >= dev->revision)) {
3622 3623 3624
			ohci->quirks = ohci_quirks[i].flags;
			break;
		}
3625 3626
	if (param_quirks)
		ohci->quirks = param_quirks;
3627

3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644
	/*
	 * Because dma_alloc_coherent() allocates at least one page,
	 * we save space by using a common buffer for the AR request/
	 * response descriptors and the self IDs buffer.
	 */
	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
	ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
					       PAGE_SIZE,
					       &ohci->misc_buffer_bus,
					       GFP_KERNEL);
	if (!ohci->misc_buffer) {
		err = -ENOMEM;
		goto fail_iounmap;
	}

	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3645 3646
			      OHCI1394_AsReqRcvContextControlSet);
	if (err < 0)
3647
		goto fail_misc_buf;
3648

3649
	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3650 3651 3652
			      OHCI1394_AsRspRcvContextControlSet);
	if (err < 0)
		goto fail_arreq_ctx;
3653

3654 3655 3656 3657
	err = context_init(&ohci->at_request_ctx, ohci,
			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
	if (err < 0)
		goto fail_arrsp_ctx;
3658

3659 3660 3661 3662
	err = context_init(&ohci->at_response_ctx, ohci,
			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
	if (err < 0)
		goto fail_atreq_ctx;
3663 3664

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3665
	ohci->ir_context_channels = ~0ULL;
3666
	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3667
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3668
	ohci->ir_context_mask = ohci->ir_context_support;
3669 3670
	ohci->n_ir = hweight32(ohci->ir_context_mask);
	size = sizeof(struct iso_context) * ohci->n_ir;
3671
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3672 3673

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3674
	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3675
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3676
	ohci->it_context_mask = ohci->it_context_support;
3677 3678
	ohci->n_it = hweight32(ohci->it_context_mask);
	size = sizeof(struct iso_context) * ohci->n_it;
3679
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3680 3681

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3682
		err = -ENOMEM;
3683
		goto fail_contexts;
3684 3685
	}

3686 3687
	ohci->self_id_cpu = ohci->misc_buffer     + PAGE_SIZE/2;
	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3688 3689 3690 3691 3692 3693 3694

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

3695 3696 3697 3698 3699
	if (!(ohci->quirks & QUIRK_NO_MSI))
		pci_enable_msi(dev);
	if (request_irq(dev->irq, irq_handler,
			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
			ohci_driver_name, ohci)) {
3700
		ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
3701 3702 3703 3704
		err = -EIO;
		goto fail_msi;
	}

3705
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3706
	if (err)
3707
		goto fail_irq;
3708

3709
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3710 3711 3712 3713 3714
	ohci_notice(ohci,
		    "added OHCI v%x.%x device as card %d, "
		    "%d IR + %d IT contexts, quirks 0x%x\n",
		    version >> 16, version & 0xff, ohci->card.index,
		    ohci->n_ir, ohci->n_it, ohci->quirks);
3715

3716
	return 0;
3717

3718 3719 3720 3721
 fail_irq:
	free_irq(dev->irq, ohci);
 fail_msi:
	pci_disable_msi(dev);
3722
 fail_contexts:
3723
	kfree(ohci->ir_context_list);
3724 3725
	kfree(ohci->it_context_list);
	context_release(&ohci->at_response_ctx);
3726
 fail_atreq_ctx:
3727
	context_release(&ohci->at_request_ctx);
3728
 fail_arrsp_ctx:
3729
	ar_context_release(&ohci->ar_response_ctx);
3730
 fail_arreq_ctx:
3731
	ar_context_release(&ohci->ar_request_ctx);
3732 3733 3734
 fail_misc_buf:
	dma_free_coherent(ohci->card.device, PAGE_SIZE,
			  ohci->misc_buffer, ohci->misc_buffer_bus);
3735
 fail_iounmap:
3736 3737 3738 3739 3740
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
3741
 fail_free:
3742
	kfree(ohci);
3743
	pmac_ohci_off(dev);
3744
 fail:
3745
	return err;
3746 3747 3748 3749
}

static void pci_remove(struct pci_dev *dev)
{
3750
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3751

3752 3753 3754 3755 3756 3757 3758 3759
	/*
	 * If the removal is happening from the suspend state, LPS won't be
	 * enabled and host registers (eg., IntMaskClear) won't be accessible.
	 */
	if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
		reg_write(ohci, OHCI1394_IntMaskClear, ~0);
		flush_writes(ohci);
	}
3760
	cancel_work_sync(&ohci->bus_reset_work);
3761 3762
	fw_core_remove_card(&ohci->card);

3763 3764 3765 3766
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
3767 3768 3769

	software_reset(ohci);
	free_irq(dev->irq, ohci);
3770 3771 3772 3773 3774 3775 3776 3777 3778

	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->next_config_rom, ohci->next_config_rom_bus);
	if (ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
	ar_context_release(&ohci->ar_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
3779 3780
	dma_free_coherent(ohci->card.device, PAGE_SIZE,
			  ohci->misc_buffer, ohci->misc_buffer_bus);
3781 3782
	context_release(&ohci->at_request_ctx);
	context_release(&ohci->at_response_ctx);
3783 3784
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
3785
	pci_disable_msi(dev);
3786 3787 3788
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
3789
	kfree(ohci);
3790
	pmac_ohci_off(dev);
3791

3792
	dev_notice(&dev->dev, "removed fw-ohci device\n");
3793 3794
}

3795
#ifdef CONFIG_PM
3796
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3797
{
3798
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3799 3800 3801
	int err;

	software_reset(ohci);
3802
	err = pci_save_state(dev);
3803
	if (err) {
3804
		ohci_err(ohci, "pci_save_state failed\n");
3805 3806
		return err;
	}
3807
	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3808
	if (err)
3809
		ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3810
	pmac_ohci_off(dev);
3811

3812 3813 3814
	return 0;
}

3815
static int pci_resume(struct pci_dev *dev)
3816
{
3817
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3818 3819
	int err;

3820
	pmac_ohci_on(dev);
3821 3822 3823
	pci_set_power_state(dev, PCI_D0);
	pci_restore_state(dev);
	err = pci_enable_device(dev);
3824
	if (err) {
3825
		ohci_err(ohci, "pci_enable_device failed\n");
3826 3827 3828
		return err;
	}

3829 3830 3831 3832 3833 3834 3835
	/* Some systems don't setup GUID register on resume from ram  */
	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
					!reg_read(ohci, OHCI1394_GUIDHi)) {
		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
	}

3836 3837 3838 3839 3840
	err = ohci_enable(&ohci->card, NULL, 0);
	if (err)
		return err;

	ohci_resume_iso_dma(ohci);
3841

3842
	return 0;
3843 3844 3845
}
#endif

3846
static const struct pci_device_id pci_table[] = {
3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
3858 3859 3860 3861
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
3862 3863
};

A
Axel Lin 已提交
3864 3865
module_pci_driver(fw_ohci_pci_driver);

3866 3867 3868 3869
MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

3870 3871
/* Provide a module alias so root-on-sbp2 initrds don't break. */
MODULE_ALIAS("ohci1394");