ohci.c 80.5 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/bug.h>
22
#include <linux/compiler.h>
23
#include <linux/delay.h>
S
Stefan Richter 已提交
24
#include <linux/device.h>
A
Andrew Morton 已提交
25
#include <linux/dma-mapping.h>
26
#include <linux/firewire.h>
S
Stefan Richter 已提交
27
#include <linux/firewire-constants.h>
S
Stefan Richter 已提交
28
#include <linux/gfp.h>
29 30
#include <linux/init.h>
#include <linux/interrupt.h>
S
Stefan Richter 已提交
31
#include <linux/io.h>
32
#include <linux/kernel.h>
S
Stefan Richter 已提交
33
#include <linux/list.h>
A
Al Viro 已提交
34
#include <linux/mm.h>
35
#include <linux/module.h>
36
#include <linux/moduleparam.h>
37
#include <linux/mutex.h>
38
#include <linux/pci.h>
39
#include <linux/pci_ids.h>
S
Stefan Richter 已提交
40
#include <linux/spinlock.h>
S
Stefan Richter 已提交
41
#include <linux/string.h>
A
Andrew Morton 已提交
42

S
Stefan Richter 已提交
43
#include <asm/byteorder.h>
S
Stefan Richter 已提交
44
#include <asm/page.h>
45
#include <asm/system.h>
46

47 48 49 50
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

51 52
#include "core.h"
#include "ohci.h"
53

54 55 56 57 58 59 60 61 62 63 64 65 66
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
67 68 69 70 71 72 73 74 75 76

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

77 78 79 80
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
81

82
struct ar_buffer {
83
	struct descriptor descriptor;
84 85 86
	struct ar_buffer *next;
	__le32 data[0];
};
87

88 89 90 91 92
struct ar_context {
	struct fw_ohci *ohci;
	struct ar_buffer *current_buffer;
	struct ar_buffer *last_buffer;
	void *pointer;
93
	u32 regs;
94 95 96
	struct tasklet_struct tasklet;
};

97 98 99 100 101
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
102 103 104 105 106 107 108 109 110 111 112 113 114

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

115
struct context {
S
Stefan Richter 已提交
116
	struct fw_ohci *ohci;
117
	u32 regs;
118
	int total_allocation;
S
Stefan Richter 已提交
119

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
	 * The last descriptor in the DMA program.  It contains the branch
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
144 145 146

	descriptor_callback_t callback;

S
Stefan Richter 已提交
147
	struct tasklet_struct tasklet;
148 149
};

150 151 152 153 154 155
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
156 157 158

struct iso_context {
	struct fw_iso_context base;
159
	struct context context;
160
	int excess_bytes;
161 162
	void *header;
	size_t header_length;
163 164 165 166 167 168 169 170
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

	__iomem char *registers;
171
	int node_id;
172
	int generation;
173
	int request_generation;	/* for timestamping incoming requests */
174
	unsigned quirks;
175
	unsigned int pri_req_max;
176
	u32 bus_time;
177
	bool is_root;
178
	bool csr_state_setclear_abdicate;
179

180 181 182 183
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
184 185
	spinlock_t lock;

186 187
	struct mutex phy_reg_mutex;

188 189
	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
190 191
	struct context at_request_ctx;
	struct context at_response_ctx;
192 193 194

	u32 it_context_mask;
	struct iso_context *it_context_list;
195
	u64 ir_context_channels;
196 197
	u32 ir_context_mask;
	struct iso_context *ir_context_list;
198 199 200 201 202 203 204 205 206 207 208 209

	__be32    *config_rom;
	dma_addr_t config_rom_bus;
	__be32    *next_config_rom;
	dma_addr_t next_config_rom_bus;
	__be32     next_header;

	__le32    *self_id_cpu;
	dma_addr_t self_id_bus;
	struct tasklet_struct bus_reset_tasklet;

	u32 self_id_buffer[512];
210 211
};

A
Adrian Bunk 已提交
212
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
213 214 215 216
{
	return container_of(card, struct fw_ohci, card);
}

217 218 219 220 221 222
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
223 224 225 226 227 228

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

229
#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
230 231 232 233 234 235 236
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
237
#define OHCI_TCODE_PHY_PACKET		0x0e
238
#define OHCI_VERSION_1_1		0x010010
239

240 241
static char ohci_driver_name[] = KBUILD_MODNAME;

242
#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
243 244
#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009

245 246 247
#define QUIRK_CYCLE_TIMER		1
#define QUIRK_RESET_PACKET		2
#define QUIRK_BE_HEADERS		4
248
#define QUIRK_NO_1394A			8
249
#define QUIRK_NO_MSI			16
250 251 252 253 254

/* In case of multiple matches in ohci_quirks[], only the first one is used. */
static const struct {
	unsigned short vendor, device, flags;
} ohci_quirks[] = {
255
	{PCI_VENDOR_ID_TI,	PCI_DEVICE_ID_TI_TSB12LV22, QUIRK_CYCLE_TIMER |
256 257
							    QUIRK_RESET_PACKET |
							    QUIRK_NO_1394A},
258 259
	{PCI_VENDOR_ID_TI,	PCI_ANY_ID,	QUIRK_RESET_PACKET},
	{PCI_VENDOR_ID_AL,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
260
	{PCI_VENDOR_ID_JMICRON,	PCI_DEVICE_ID_JMICRON_JMB38X_FW, QUIRK_NO_MSI},
261 262 263 264 265
	{PCI_VENDOR_ID_NEC,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
	{PCI_VENDOR_ID_VIA,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
	{PCI_VENDOR_ID_APPLE,	PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
};

266 267 268 269 270 271 272
/* This overrides anything that was found in ohci_quirks[]. */
static int param_quirks;
module_param_named(quirks, param_quirks, int, 0644);
MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
	", AR/selfID endianess = "	__stringify(QUIRK_BE_HEADERS)
273
	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
274
	", disable MSI = "		__stringify(QUIRK_NO_MSI)
275 276
	")");

277
#define OHCI_PARAM_DEBUG_AT_AR		1
278
#define OHCI_PARAM_DEBUG_SELFIDS	2
279 280
#define OHCI_PARAM_DEBUG_IRQS		4
#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
281

282 283
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG

284 285 286 287
static int param_debug;
module_param_named(debug, param_debug, int, 0644);
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
288 289 290
	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
291 292 293 294
	", or a combination, or all = -1)");

static void log_irqs(u32 evt)
{
295 296 297 298 299 300
	if (likely(!(param_debug &
			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
		return;

	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
	    !(evt & OHCI1394_busReset))
301 302
		return;

303
	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
304 305 306 307 308 309 310 311 312
	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
	    evt & OHCI1394_isochRx		? " IR"			: "",
	    evt & OHCI1394_isochTx		? " IT"			: "",
	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
313
	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
314
	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
315 316 317 318 319 320
	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
	    evt & OHCI1394_busReset		? " busReset"		: "",
	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
		    OHCI1394_respTxComplete | OHCI1394_isochRx |
		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
321 322
		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
		    OHCI1394_cycleInconsistent |
323
		    OHCI1394_regAccessFail | OHCI1394_busReset)
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
						? " ?"			: "");
}

static const char *speed[] = {
	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
};
static const char *power[] = {
	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
};
static const char port[] = { '.', '-', 'p', 'c', };

static char _p(u32 *s, int shift)
{
	return port[*s >> shift & 3];
}

341
static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
342 343 344 345
{
	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
		return;

346 347
	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
		  self_id_count, generation, node_id);
348 349 350

	for (; self_id_count--; ++s)
		if ((*s & 1 << 23) == 0)
351 352 353 354 355 356
			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
			    "%s gc=%d %s %s%s%s\n",
			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
			    speed[*s >> 14 & 3], *s >> 16 & 63,
			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
357
		else
358 359 360 361
			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
			    *s, *s >> 24 & 63,
			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
}

static const char *evts[] = {
	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
	[0x10] = "-reserved-",		[0x11] = "ack_complete",
	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
	[0x18] = "-reserved-",		[0x19] = "-reserved-",
	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
	[0x20] = "pending/cancelled",
};
static const char *tcodes[] = {
	[0x0] = "QW req",		[0x1] = "BW req",
	[0x2] = "W resp",		[0x3] = "-reserved-",
	[0x4] = "QR req",		[0x5] = "BR req",
	[0x6] = "QR resp",		[0x7] = "BR resp",
	[0x8] = "cycle start",		[0x9] = "Lk req",
	[0xa] = "async stream packet",	[0xb] = "Lk resp",
	[0xc] = "-reserved-",		[0xd] = "-reserved-",
	[0xe] = "link internal",	[0xf] = "-reserved-",
};
static const char *phys[] = {
	[0x0] = "phy config packet",	[0x1] = "link-on packet",
	[0x2] = "self-id packet",	[0x3] = "-reserved-",
};

static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
{
	int tcode = header[0] >> 4 & 0xf;
	char specific[12];

	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
		return;

	if (unlikely(evt >= ARRAY_SIZE(evts)))
			evt = 0x1f;

409
	if (evt == OHCI1394_evt_bus_reset) {
410 411
		fw_notify("A%c evt_bus_reset, generation %d\n",
		    dir, (header[2] >> 16) & 0xff);
412 413 414
		return;
	}

415
	if (header[0] == ~header[1]) {
416 417
		fw_notify("A%c %s, %s, %08x\n",
		    dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
		return;
	}

	switch (tcode) {
	case 0x0: case 0x6: case 0x8:
		snprintf(specific, sizeof(specific), " = %08x",
			 be32_to_cpu((__force __be32)header[3]));
		break;
	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
		snprintf(specific, sizeof(specific), " %x,%x",
			 header[3] >> 16, header[3] & 0xffff);
		break;
	default:
		specific[0] = '\0';
	}

	switch (tcode) {
	case 0xe: case 0xa:
436
		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
437 438
		break;
	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
439 440 441 442 443 444
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s, %04x%08x%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
445 446
		break;
	default:
447 448 449 450 451 452
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], specific);
453 454 455 456 457
	}
}

#else

458 459 460 461
#define param_debug 0
static inline void log_irqs(u32 evt) {}
static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
462 463 464

#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */

A
Adrian Bunk 已提交
465
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
466 467 468 469
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
470
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
471 472 473 474
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
475
static inline void flush_writes(const struct fw_ohci *ohci)
476 477 478 479 480
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

481
static int read_phy_reg(struct fw_ohci *ohci, int addr)
482
{
483
	u32 val;
484
	int i;
485 486

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
487
	for (i = 0; i < 3 + 100; i++) {
488 489 490 491
		val = reg_read(ohci, OHCI1394_PhyControl);
		if (val & OHCI1394_PhyControl_ReadDone)
			return OHCI1394_PhyControl_ReadData(val);

492 493 494 495 496 497
		/*
		 * Try a few times without waiting.  Sleeping is necessary
		 * only when the link/PHY interface is busy.
		 */
		if (i >= 3)
			msleep(1);
498
	}
499
	fw_error("failed to read phy reg\n");
500

501 502
	return -EBUSY;
}
503

504 505 506 507 508 509
static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
{
	int i;

	reg_write(ohci, OHCI1394_PhyControl,
		  OHCI1394_PhyControl_Write(addr, val));
510
	for (i = 0; i < 3 + 100; i++) {
511 512 513 514
		val = reg_read(ohci, OHCI1394_PhyControl);
		if (!(val & OHCI1394_PhyControl_WritePending))
			return 0;

515 516
		if (i >= 3)
			msleep(1);
517 518 519 520
	}
	fw_error("failed to write phy reg\n");

	return -EBUSY;
521 522
}

523 524
static int update_phy_reg(struct fw_ohci *ohci, int addr,
			  int clear_bits, int set_bits)
525
{
526
	int ret = read_phy_reg(ohci, addr);
527 528
	if (ret < 0)
		return ret;
529

530 531 532 533 534 535 536
	/*
	 * The interrupt status bits are cleared by writing a one bit.
	 * Avoid clearing them unless explicitly requested in set_bits.
	 */
	if (addr == 5)
		clear_bits |= PHY_INT_STATUS_BITS;

537
	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
538 539
}

540
static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
541
{
542
	int ret;
543

544
	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
545 546
	if (ret < 0)
		return ret;
547

548
	return read_phy_reg(ohci, addr);
549 550
}

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
static int ohci_read_phy_reg(struct fw_card *card, int addr)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = read_phy_reg(ohci, addr);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
}

static int ohci_update_phy_reg(struct fw_card *card, int addr,
			       int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
}

576
static int ar_context_add_page(struct ar_context *ctx)
577
{
578 579
	struct device *dev = ctx->ohci->card.device;
	struct ar_buffer *ab;
580
	dma_addr_t uninitialized_var(ab_bus);
581 582
	size_t offset;

583
	ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
584 585 586
	if (ab == NULL)
		return -ENOMEM;

587
	ab->next = NULL;
588
	memset(&ab->descriptor, 0, sizeof(ab->descriptor));
589 590 591
	ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						    DESCRIPTOR_STATUS |
						    DESCRIPTOR_BRANCH_ALWAYS);
592 593 594 595 596 597
	offset = offsetof(struct ar_buffer, data);
	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.branch_address = 0;

598
	wmb(); /* finish init of new descriptors before branch_address update */
599
	ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
600 601 602
	ctx->last_buffer->next = ab;
	ctx->last_buffer = ab;

603
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
604
	flush_writes(ctx->ohci);
605 606

	return 0;
607 608
}

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
static void ar_context_release(struct ar_context *ctx)
{
	struct ar_buffer *ab, *ab_next;
	size_t offset;
	dma_addr_t ab_bus;

	for (ab = ctx->current_buffer; ab; ab = ab_next) {
		ab_next = ab->next;
		offset = offsetof(struct ar_buffer, data);
		ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
		dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
				  ab, ab_bus);
	}
}

624 625
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
626
	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
627 628 629 630
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

631
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
632 633
{
	struct fw_ohci *ohci = ctx->ohci;
634 635
	struct fw_packet p;
	u32 status, length, tcode;
636
	int evt;
637

638 639 640
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
641 642 643 644 645

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
646
		p.header[3] = (__force __u32) buffer[3];
647
		p.header_length = 16;
648
		p.payload_length = 0;
649 650 651
		break;

	case TCODE_READ_BLOCK_REQUEST :
652
		p.header[3] = cond_le32_to_cpu(buffer[3]);
653 654 655 656 657
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
658 659 660
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
661
		p.header[3] = cond_le32_to_cpu(buffer[3]);
662
		p.header_length = 16;
663
		p.payload_length = p.header[3] >> 16;
664 665 666 667
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
668
	case OHCI_TCODE_PHY_PACKET:
669
		p.header_length = 12;
670
		p.payload_length = 0;
671
		break;
672 673 674 675 676

	default:
		/* FIXME: Stop context, discard everything, and restart? */
		p.header_length = 0;
		p.payload_length = 0;
677
	}
678

679 680 681 682
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
683
	status = cond_le32_to_cpu(buffer[length]);
684
	evt    = (status >> 16) & 0x1f;
685

686
	p.ack        = evt - 16;
687 688 689
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
690

691
	log_ar_at_event('R', p.speed, p.header, evt);
692

693 694
	/*
	 * The OHCI bus reset handler synthesizes a phy packet with
695 696 697 698 699
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
700
	 * request.
701 702 703 704
	 *
	 * Alas some chips sometimes emit bus reset packets with a
	 * wrong generation.  We set the correct generation for these
	 * at a slightly incorrect time (in bus_reset_tasklet).
705
	 */
706
	if (evt == OHCI1394_evt_bus_reset) {
707
		if (!(ohci->quirks & QUIRK_RESET_PACKET))
708 709
			ohci->request_generation = (p.header[2] >> 16) & 0xff;
	} else if (ctx == &ohci->ar_request_ctx) {
710
		fw_core_handle_request(&ohci->card, &p);
711
	} else {
712
		fw_core_handle_response(&ohci->card, &p);
713
	}
714

715 716
	return buffer + length + 1;
}
717

718 719 720 721 722 723 724 725 726 727 728 729 730
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
	struct fw_ohci *ohci = ctx->ohci;
	struct ar_buffer *ab;
	struct descriptor *d;
	void *buffer, *end;

	ab = ctx->current_buffer;
	d = &ab->descriptor;

	if (d->res_count == 0) {
		size_t size, rest, offset;
731 732
		dma_addr_t start_bus;
		void *start;
733

734 735
		/*
		 * This descriptor is finished and we may have a
736
		 * packet split across this and the next buffer. We
737 738
		 * reuse the page for reassembling the split packet.
		 */
739 740

		offset = offsetof(struct ar_buffer, data);
741 742
		start = buffer = ab;
		start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
743 744 745 746 747 748 749 750 751 752 753 754 755 756

		ab = ab->next;
		d = &ab->descriptor;
		size = buffer + PAGE_SIZE - ctx->pointer;
		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
		memmove(buffer, ctx->pointer, size);
		memcpy(buffer + size, ab->data, rest);
		ctx->current_buffer = ab;
		ctx->pointer = (void *) ab->data + rest;
		end = buffer + size + rest;

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);

757
		dma_free_coherent(ohci->card.device, PAGE_SIZE,
758
				  start, start_bus);
759 760 761 762 763 764 765 766 767
		ar_context_add_page(ctx);
	} else {
		buffer = ctx->pointer;
		ctx->pointer = end =
			(void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);
	}
768 769
}

770 771
static int ar_context_init(struct ar_context *ctx,
			   struct fw_ohci *ohci, u32 regs)
772
{
773
	struct ar_buffer ab;
774

775 776 777
	ctx->regs        = regs;
	ctx->ohci        = ohci;
	ctx->last_buffer = &ab;
778 779
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

780 781 782 783 784
	ar_context_add_page(ctx);
	ar_context_add_page(ctx);
	ctx->current_buffer = ab.next;
	ctx->pointer = ctx->current_buffer->data;

785 786 787 788 789 790 791 792 793 794
	return 0;
}

static void ar_context_run(struct ar_context *ctx)
{
	struct ar_buffer *ab = ctx->current_buffer;
	dma_addr_t ab_bus;
	size_t offset;

	offset = offsetof(struct ar_buffer, data);
795
	ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
796 797

	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
798
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
799
	flush_writes(ctx->ohci);
800
}
S
Stefan Richter 已提交
801

802
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
803 804 805 806 807 808 809 810 811 812 813 814 815
{
	int b, key;

	b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
	key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;

	/* figure out which descriptor the branch address goes in */
	if (z == 2 && (b == 3 || key == 2))
		return d;
	else
		return d + z - 1;
}

816 817 818 819 820 821
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
822
	struct descriptor_buffer *desc;
823

824 825 826
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
827
	while (last->branch_address != 0) {
828
		struct descriptor_buffer *old_desc = desc;
829 830
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
831 832 833 834 835 836 837 838 839
		address &= ~0xf;

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
840
		last = find_branch_descriptor(d, z);
841 842 843 844

		if (!ctx->callback(ctx, d, last))
			break;

845 846 847 848 849 850 851 852 853 854
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
855 856 857
	}
}

858 859 860 861
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
862
static int context_add_buffer(struct context *ctx)
863 864
{
	struct descriptor_buffer *desc;
865
	dma_addr_t uninitialized_var(bus_addr);
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

891 892
static int context_init(struct context *ctx, struct fw_ohci *ohci,
			u32 regs, descriptor_callback_t callback)
893 894 895
{
	ctx->ohci = ohci;
	ctx->regs = regs;
896 897 898 899
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
900 901
		return -ENOMEM;

902 903 904
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

905 906 907
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

908 909
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
910
	 * branch address and looks like it's been sent.  That way we
911
	 * have a descriptor to append DMA programs to.
912
	 */
913 914 915 916 917 918
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
919 920 921 922

	return 0;
}

923
static void context_release(struct context *ctx)
924 925
{
	struct fw_card *card = &ctx->ohci->card;
926
	struct descriptor_buffer *desc, *tmp;
927

928 929 930 931
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
932 933
}

934
/* Must be called with ohci->lock held */
935 936
static struct descriptor *context_get_descriptors(struct context *ctx,
						  int z, dma_addr_t *d_bus)
937
{
938 939 940 941 942 943 944 945 946
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
947

948 949 950 951 952 953 954 955 956 957
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
958

959
	d = desc->buffer + desc->used / sizeof(*d);
960
	memset(d, 0, z * sizeof(*d));
961
	*d_bus = desc->buffer_bus + desc->used;
962 963 964 965

	return d;
}

966
static void context_run(struct context *ctx, u32 extra)
967 968 969
{
	struct fw_ohci *ohci = ctx->ohci;

970
	reg_write(ohci, COMMAND_PTR(ctx->regs),
971
		  le32_to_cpu(ctx->last->branch_address));
972 973
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
974 975 976 977 978 979 980
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
981
	struct descriptor_buffer *desc = ctx->buffer_tail;
982

983
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
984

985
	desc->used += (z + extra) * sizeof(*d);
986 987

	wmb(); /* finish init of new descriptors before branch_address update */
988 989
	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev = find_branch_descriptor(d, z);
990

991
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
992 993 994 995 996 997
	flush_writes(ctx->ohci);
}

static void context_stop(struct context *ctx)
{
	u32 reg;
998
	int i;
999

1000
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1001
	flush_writes(ctx->ohci);
1002

1003
	for (i = 0; i < 10; i++) {
1004
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1005
		if ((reg & CONTEXT_ACTIVE) == 0)
1006
			return;
1007

1008
		mdelay(1);
1009
	}
1010
	fw_error("Error: DMA context still active (0x%08x)\n", reg);
1011
}
1012

1013 1014 1015
struct driver_data {
	struct fw_packet *packet;
};
1016

1017 1018
/*
 * This function apppends a packet to the DMA queue for transmission.
1019
 * Must always be called with the ochi->lock held to ensure proper
1020 1021
 * generation handling and locking around packet queue manipulation.
 */
1022 1023
static int at_context_queue_packet(struct context *ctx,
				   struct fw_packet *packet)
1024 1025
{
	struct fw_ohci *ohci = ctx->ohci;
1026
	dma_addr_t d_bus, uninitialized_var(payload_bus);
1027 1028 1029
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
1030
	int z, tcode;
1031
	u32 reg;
1032

1033 1034 1035 1036
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1037 1038
	}

1039
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1040 1041
	d[0].res_count = cpu_to_le16(packet->timestamp);

1042 1043
	/*
	 * The DMA format for asyncronous link packets is different
1044 1045
	 * from the IEEE1394 layout, so shift the fields around
	 * accordingly.  If header_length is 8, it's a PHY packet, to
1046 1047
	 * which we need to prepend an extra quadlet.
	 */
1048 1049

	header = (__le32 *) &d[1];
1050 1051 1052
	switch (packet->header_length) {
	case 16:
	case 12:
1053 1054 1055 1056 1057
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
1058 1059 1060

		tcode = (packet->header[0] >> 4) & 0x0f;
		if (TCODE_IS_BLOCK_PACKET(tcode))
1061
			header[3] = cpu_to_le32(packet->header[3]);
1062
		else
1063 1064 1065
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
1066 1067 1068
		break;

	case 8:
1069 1070 1071 1072 1073
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0]);
		header[2] = cpu_to_le32(packet->header[1]);
		d[0].req_count = cpu_to_le16(12);
S
Stefan Richter 已提交
1074 1075 1076

		if (is_ping_packet(packet->header))
			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
		break;

	case 4:
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
		d[0].req_count = cpu_to_le16(8);
		break;

	default:
		/* BUG(); */
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1090 1091
	}

1092 1093
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
1094
	packet->driver_data = driver_data;
1095

1096 1097 1098 1099
	if (packet->payload_length > 0) {
		payload_bus =
			dma_map_single(ohci->card.device, packet->payload,
				       packet->payload_length, DMA_TO_DEVICE);
1100
		if (dma_mapping_error(ohci->card.device, payload_bus)) {
1101 1102 1103
			packet->ack = RCODE_SEND_ERROR;
			return -1;
		}
1104 1105
		packet->payload_bus	= payload_bus;
		packet->payload_mapped	= true;
1106 1107 1108 1109 1110

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
1111
	} else {
1112 1113
		last = &d[0];
		z = 2;
1114 1115
	}

1116 1117 1118
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
1119

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
	/*
	 * If the controller and packet generations don't match, we need to
	 * bail out and try again.  If IntEvent.busReset is set, the AT context
	 * is halted, so appending to the context and trying to run it is
	 * futile.  Most controllers do the right thing and just flush the AT
	 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
	 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
	 * up stalling out.  So we just bail out in software and try again
	 * later, and everyone is happy.
	 * FIXME: Document how the locking works.
	 */
	if (ohci->generation != packet->generation ||
	    reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1133
		if (packet->payload_mapped)
1134 1135
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
1136 1137 1138 1139 1140
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
1141

1142
	/* If the context isn't already running, start it up. */
1143
	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1144
	if ((reg & CONTEXT_RUN) == 0)
1145 1146 1147
		context_run(ctx, 0);

	return 0;
1148 1149
}

1150 1151 1152
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1153
{
1154
	struct driver_data *driver_data;
1155
	struct fw_packet *packet;
1156
	struct fw_ohci *ohci = context->ohci;
1157 1158
	int evt;

1159 1160 1161
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
1162

1163 1164 1165 1166 1167
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
1168

1169
	if (packet->payload_mapped)
1170
		dma_unmap_single(ohci->card.device, packet->payload_bus,
1171 1172
				 packet->payload_length, DMA_TO_DEVICE);

1173 1174
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
1175

1176 1177
	log_ar_at_event('T', packet->speed, packet->header, evt);

1178 1179 1180 1181 1182
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
1183

1184
	case OHCI1394_evt_flushed:
1185 1186 1187 1188
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
1189 1190
		packet->ack = RCODE_GENERATION;
		break;
1191

1192
	case OHCI1394_evt_missing_ack:
1193 1194 1195 1196
		/*
		 * Using a valid (current) generation count, but the
		 * node is not on the bus or not sending acks.
		 */
1197 1198
		packet->ack = RCODE_NO_ACK;
		break;
1199

1200 1201 1202 1203 1204 1205 1206 1207 1208
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
1209

1210 1211 1212 1213
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
1214

1215
	packet->callback(packet, &ohci->card, packet->ack);
1216

1217
	return 1;
1218 1219
}

1220 1221 1222 1223 1224
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1225

1226 1227
static void handle_local_rom(struct fw_ohci *ohci,
			     struct fw_packet *packet, u32 csr)
1228 1229 1230 1231
{
	struct fw_packet response;
	int tcode, length, i;

1232
	tcode = HEADER_GET_TCODE(packet->header[0]);
1233
	if (TCODE_IS_BLOCK_PACKET(tcode))
1234
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

1253 1254
static void handle_local_lock(struct fw_ohci *ohci,
			      struct fw_packet *packet, u32 csr)
1255 1256 1257 1258 1259 1260
{
	struct fw_packet response;
	int tcode, length, ext_tcode, sel;
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

1261 1262
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1263
	payload = packet->payload;
1264
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

	if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
		lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
	else
		fw_notify("swap not done yet\n");

	fw_fill_response(&response, packet->header,
1290
			 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1291 1292 1293 1294
 out:
	fw_core_handle_response(&ohci->card, &response);
}

1295
static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1296 1297 1298 1299
{
	u64 offset;
	u32 csr;

1300 1301 1302 1303
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1304 1305 1306

	offset =
		((unsigned long long)
1307
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
1328 1329 1330 1331 1332

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1333
}
1334

1335
static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1336 1337
{
	unsigned long flags;
1338
	int ret;
1339 1340 1341

	spin_lock_irqsave(&ctx->ohci->lock, flags);

1342
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1343
	    ctx->ohci->generation == packet->generation) {
1344 1345 1346
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
1347
	}
1348

1349
	ret = at_context_queue_packet(ctx, packet);
1350 1351
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

1352
	if (ret < 0)
1353
		packet->callback(packet, &ctx->ohci->card, packet->ack);
1354

1355 1356
}

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
static u32 cycle_timer_ticks(u32 cycle_timer)
{
	u32 ticks;

	ticks = cycle_timer & 0xfff;
	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
	ticks += (3072 * 8000) * (cycle_timer >> 25);

	return ticks;
}

/*
 * Some controllers exhibit one or more of the following bugs when updating the
 * iso cycle timer register:
 *  - When the lowest six bits are wrapping around to zero, a read that happens
 *    at the same time will return garbage in the lowest ten bits.
 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
 *    not incremented for about 60 ns.
 *  - Occasionally, the entire register reads zero.
 *
 * To catch these, we read the register three times and ensure that the
 * difference between each two consecutive reads is approximately the same, i.e.
 * less than twice the other.  Furthermore, any negative difference indicates an
 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
 * execute, so we have enough precision to compute the ratio of the differences.)
 */
static u32 get_cycle_time(struct fw_ohci *ohci)
{
	u32 c0, c1, c2;
	u32 t0, t1, t2;
	s32 diff01, diff12;
	int i;

	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);

	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
		i = 0;
		c1 = c2;
		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		do {
			c0 = c1;
			c1 = c2;
			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
			t0 = cycle_timer_ticks(c0);
			t1 = cycle_timer_ticks(c1);
			t2 = cycle_timer_ticks(c2);
			diff01 = t1 - t0;
			diff12 = t2 - t1;
		} while ((diff01 <= 0 || diff12 <= 0 ||
			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
			 && i++ < 20);
	}

	return c2;
}

/*
 * This function has to be called at least every 64 seconds.  The bus_time
 * field stores not only the upper 25 bits of the BUS_TIME register but also
 * the most significant bit of the cycle timer in bit 6 so that we can detect
 * changes in this bit.
 */
static u32 update_bus_time(struct fw_ohci *ohci)
{
	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;

	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
		ohci->bus_time += 0x40;

	return ohci->bus_time | cycle_time_seconds;
}

1429 1430 1431
static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
1432
	int self_id_count, i, j, reg;
1433 1434
	int generation, new_generation;
	unsigned long flags;
1435 1436
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1437
	bool is_new_root;
1438 1439 1440

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1441
		fw_notify("node ID not valid, new bus reset in progress\n");
1442 1443
		return;
	}
1444 1445 1446 1447 1448 1449
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1450

1451 1452 1453 1454 1455 1456
	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
	if (!(ohci->is_root && is_new_root))
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	ohci->is_root = is_new_root;

1457 1458 1459 1460 1461
	reg = reg_read(ohci, OHCI1394_SelfIDCount);
	if (reg & OHCI1394_SelfIDCount_selfIDError) {
		fw_notify("inconsistent self IDs\n");
		return;
	}
1462 1463
	/*
	 * The count in the SelfIDCount register is the number of
1464 1465
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1466 1467
	 * bit extra to get the actual number of self IDs.
	 */
1468 1469
	self_id_count = (reg >> 3) & 0xff;
	if (self_id_count == 0 || self_id_count > 252) {
1470 1471 1472
		fw_notify("inconsistent self IDs\n");
		return;
	}
1473
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1474
	rmb();
1475 1476

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1477 1478 1479 1480
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
			fw_notify("inconsistent self IDs\n");
			return;
		}
1481 1482
		ohci->self_id_buffer[j] =
				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1483
	}
1484
	rmb();
1485

1486 1487
	/*
	 * Check the consistency of the self IDs we just read.  The
1488 1489 1490 1491 1492 1493 1494 1495 1496
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1497 1498
	 * of self IDs.
	 */
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
1511 1512
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1513 1514
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

1515
	if (ohci->quirks & QUIRK_RESET_PACKET)
1516 1517
		ohci->request_generation = generation;

1518 1519
	/*
	 * This next bit is unrelated to the AT context stuff but we
1520 1521 1522 1523
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
1524 1525
	 * next_config_rom pointer so a new udpate can take place.
	 */
1526 1527

	if (ohci->next_config_rom != NULL) {
1528 1529 1530 1531
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1532 1533 1534 1535
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1536 1537
		/*
		 * Restore config_rom image and manually update
1538 1539
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1540 1541
		 * do that last.
		 */
1542 1543
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
1544 1545 1546
		ohci->config_rom[0] = ohci->next_header;
		reg_write(ohci, OHCI1394_ConfigROMhdr,
			  be32_to_cpu(ohci->next_header));
1547 1548
	}

1549 1550 1551 1552 1553
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif

1554 1555
	spin_unlock_irqrestore(&ohci->lock, flags);

1556 1557 1558 1559
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1560 1561
	log_selfids(ohci->node_id, generation,
		    self_id_count, ohci->self_id_buffer);
1562

1563
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1564 1565 1566
				 self_id_count, ohci->self_id_buffer,
				 ohci->csr_state_setclear_abdicate);
	ohci->csr_state_setclear_abdicate = false;
1567 1568 1569 1570 1571
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1572
	u32 event, iso_event;
1573 1574 1575 1576
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1577
	if (!event || !~event)
1578 1579
		return IRQ_NONE;

1580 1581
	/* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
	reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1582
	log_irqs(event);
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1599
	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1600 1601 1602 1603
	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1604
		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1605 1606 1607
		iso_event &= ~(1 << i);
	}

1608
	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1609 1610 1611 1612
	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1613
		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1614 1615 1616
		iso_event &= ~(1 << i);
	}

1617 1618 1619 1620
	if (unlikely(event & OHCI1394_regAccessFail))
		fw_error("Register access failure - "
			 "please notify linux1394-devel@lists.sf.net\n");

1621 1622 1623
	if (unlikely(event & OHCI1394_postedWriteErr))
		fw_error("PCI posted write error\n");

1624 1625 1626 1627 1628 1629 1630
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
			fw_notify("isochronous cycle too long\n");
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
	if (unlikely(event & OHCI1394_cycleInconsistent)) {
		/*
		 * We need to clear this event bit in order to make
		 * cycleMatch isochronous I/O work.  In theory we should
		 * stop active cycleMatch iso contexts now and restart
		 * them at least two cycles later.  (FIXME?)
		 */
		if (printk_ratelimit())
			fw_notify("isochronous cycle inconsistent\n");
	}

1642 1643 1644 1645 1646 1647
	if (event & OHCI1394_cycle64Seconds) {
		spin_lock(&ohci->lock);
		update_bus_time(ohci);
		spin_unlock(&ohci->lock);
	}

1648 1649 1650
	return IRQ_HANDLED;
}

1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

1667 1668 1669 1670 1671 1672 1673 1674 1675
static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
{
	size_t size = length * 4;

	memcpy(dest, src, size);
	if (size < CONFIG_ROM_SIZE)
		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
}

1676 1677 1678
static int configure_1394a_enhancements(struct fw_ohci *ohci)
{
	bool enable_1394a;
1679
	int ret, clear, set, offset;
1680 1681 1682 1683 1684 1685 1686 1687

	/* Check if the driver should configure link and PHY. */
	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
	      OHCI1394_HCControl_programPhyEnable))
		return 0;

	/* Paranoia: check whether the PHY supports 1394a, too. */
	enable_1394a = false;
1688 1689 1690 1691 1692 1693 1694 1695
	ret = read_phy_reg(ohci, 2);
	if (ret < 0)
		return ret;
	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
		ret = read_paged_phy_reg(ohci, 1, 8);
		if (ret < 0)
			return ret;
		if (ret >= 1)
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
			enable_1394a = true;
	}

	if (ohci->quirks & QUIRK_NO_1394A)
		enable_1394a = false;

	/* Configure PHY and link consistently. */
	if (enable_1394a) {
		clear = 0;
		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
	} else {
		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
		set = 0;
	}
1710
	ret = update_phy_reg(ohci, 5, clear, set);
1711 1712
	if (ret < 0)
		return ret;
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726

	if (enable_1394a)
		offset = OHCI1394_HCControlSet;
	else
		offset = OHCI1394_HCControlClear;
	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);

	/* Clean up: configuration has been taken care of. */
	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_programPhyEnable);

	return 0;
}

1727 1728
static int ohci_enable(struct fw_card *card,
		       const __be32 *config_rom, size_t length)
1729 1730 1731
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);
1732
	u32 lps, seconds, version, irqs;
1733
	int i, ret;
1734

1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
1745 1746
	 * full link enabled.  However, with some cards (well, at least
	 * a JMicron PCIe card), we have to try again sometimes.
1747 1748 1749 1750 1751
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762

	for (lps = 0, i = 0; !lps && i < 3; i++) {
		msleep(50);
		lps = reg_read(ohci, OHCI1394_HCControlSet) &
		      OHCI1394_HCControl_LPS;
	}

	if (!lps) {
		fw_error("Failed to set Link Power Status\n");
		return -EIO;
	}
1763 1764 1765 1766

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

1767
	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1768 1769
	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
1770
		  OHCI1394_LinkControl_rcvPhyPkt |
1771 1772 1773 1774 1775 1776
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1777 1778
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
		  (200 << 16));
1779

1780 1781 1782 1783
	seconds = lower_32_bits(get_seconds());
	reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
	ohci->bus_time = seconds & ~0x3f;

1784 1785 1786 1787
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	if (version >= OHCI_VERSION_1_1) {
		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
			  0xfffffffe);
1788
		card->broadcast_channel_auto_allocated = true;
1789 1790
	}

1791 1792 1793 1794
	/* Get implemented bits of the priority arbitration request counter. */
	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
	reg_write(ohci, OHCI1394_FairnessControl, 0);
1795
	card->priority_budget_implemented = ohci->pri_req_max != 0;
1796

1797 1798 1799 1800 1801 1802 1803
	ar_context_run(&ohci->ar_request_ctx);
	ar_context_run(&ohci->ar_response_ctx);

	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);

1804 1805 1806
	ret = configure_1394a_enhancements(ohci);
	if (ret < 0)
		return ret;
1807

1808
	/* Activate link_on bit and contender bit in our self ID packets.*/
1809 1810 1811
	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
	if (ret < 0)
		return ret;
1812

1813 1814
	/*
	 * When the link is not yet enabled, the atomic config rom
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

1832 1833 1834 1835 1836 1837 1838
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
1839

1840
		copy_config_rom(ohci->next_config_rom, config_rom, length);
1841 1842 1843 1844 1845 1846 1847 1848
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
1849

1850
	ohci->next_header = ohci->next_config_rom[0];
1851 1852
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1853 1854
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
1855 1856 1857 1858
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

1859 1860
	if (!(ohci->quirks & QUIRK_NO_MSI))
		pci_enable_msi(dev);
1861
	if (request_irq(dev->irq, irq_handler,
1862 1863 1864 1865
			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
			ohci_driver_name, ohci)) {
		fw_error("Failed to allocate interrupt %d.\n", dev->irq);
		pci_disable_msi(dev);
1866 1867 1868 1869 1870
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

1871 1872 1873 1874 1875 1876
	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		OHCI1394_RQPkt | OHCI1394_RSPkt |
		OHCI1394_isochTx | OHCI1394_isochRx |
		OHCI1394_postedWriteErr |
		OHCI1394_selfIDComplete |
		OHCI1394_regAccessFail |
1877
		OHCI1394_cycle64Seconds |
1878 1879 1880 1881 1882 1883
		OHCI1394_cycleInconsistent | OHCI1394_cycleTooLong |
		OHCI1394_masterIntEnable;
	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
		irqs |= OHCI1394_busReset;
	reg_write(ohci, OHCI1394_IntMaskSet, irqs);

1884 1885 1886 1887 1888
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
	flush_writes(ohci);

1889 1890
	/* We are ready to go, reset bus to finish initialization. */
	fw_schedule_bus_reset(&ohci->card, false, true);
1891 1892 1893 1894

	return 0;
}

1895
static int ohci_set_config_rom(struct fw_card *card,
1896
			       const __be32 *config_rom, size_t length)
1897 1898 1899
{
	struct fw_ohci *ohci;
	unsigned long flags;
1900
	int ret = -EBUSY;
1901
	__be32 *next_config_rom;
1902
	dma_addr_t uninitialized_var(next_config_rom_bus);
1903 1904 1905

	ohci = fw_ohci(card);

1906 1907
	/*
	 * When the OHCI controller is enabled, the config rom update
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;

1945
		copy_config_rom(ohci->next_config_rom, config_rom, length);
1946 1947 1948 1949 1950 1951

		ohci->next_header = config_rom[0];
		ohci->next_config_rom[0] = 0;

		reg_write(ohci, OHCI1394_ConfigROMmap,
			  ohci->next_config_rom_bus);
1952
		ret = 0;
1953 1954 1955 1956
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

1957 1958
	/*
	 * Now initiate a bus reset to have the changes take
1959 1960 1961
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
1962 1963
	 * takes effect.
	 */
1964
	if (ret == 0)
1965
		fw_schedule_bus_reset(&ohci->card, true, true);
1966 1967 1968
	else
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);
1969

1970
	return ret;
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

1987 1988 1989
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
1990 1991
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
1992
	int ret = -ENOENT;
1993

1994
	tasklet_disable(&ctx->tasklet);
1995

1996 1997
	if (packet->ack != 0)
		goto out;
1998

1999
	if (packet->payload_mapped)
2000 2001 2002
		dma_unmap_single(ohci->card.device, packet->payload_bus,
				 packet->payload_length, DMA_TO_DEVICE);

2003
	log_ar_at_event('T', packet->speed, packet->header, 0x20);
2004 2005 2006
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
2007
	ret = 0;
2008 2009
 out:
	tasklet_enable(&ctx->tasklet);
2010

2011
	return ret;
2012 2013
}

2014 2015
static int ohci_enable_phys_dma(struct fw_card *card,
				int node_id, int generation)
2016
{
2017 2018 2019
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	return 0;
#else
2020 2021
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
2022
	int n, ret = 0;
2023

2024 2025 2026 2027
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
2028 2029 2030 2031

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
2032
		ret = -ESTALE;
2033 2034 2035
		goto out;
	}

2036 2037 2038 2039
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
2040 2041 2042 2043 2044 2045 2046

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

2047 2048
	flush_writes(ohci);
 out:
2049
	spin_unlock_irqrestore(&ohci->lock, flags);
2050 2051

	return ret;
2052
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2053
}
S
Stefan Richter 已提交
2054

2055
static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2056 2057
{
	struct fw_ohci *ohci = fw_ohci(card);
2058 2059
	unsigned long flags;
	u32 value;
2060 2061

	switch (csr_offset) {
2062 2063 2064 2065 2066
	case CSR_STATE_CLEAR:
	case CSR_STATE_SET:
		if (ohci->is_root &&
		    (reg_read(ohci, OHCI1394_LinkControlSet) &
		     OHCI1394_LinkControl_cycleMaster))
2067
			value = CSR_STATE_BIT_CMSTR;
2068
		else
2069 2070 2071 2072 2073
			value = 0;
		if (ohci->csr_state_setclear_abdicate)
			value |= CSR_STATE_BIT_ABDICATE;

		return value;
2074

2075 2076 2077
	case CSR_NODE_IDS:
		return reg_read(ohci, OHCI1394_NodeID) << 16;

2078 2079 2080
	case CSR_CYCLE_TIME:
		return get_cycle_time(ohci);

2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
	case CSR_BUS_TIME:
		/*
		 * We might be called just after the cycle timer has wrapped
		 * around but just before the cycle64Seconds handler, so we
		 * better check here, too, if the bus time needs to be updated.
		 */
		spin_lock_irqsave(&ohci->lock, flags);
		value = update_bus_time(ohci);
		spin_unlock_irqrestore(&ohci->lock, flags);
		return value;

2092 2093 2094 2095
	case CSR_BUSY_TIMEOUT:
		value = reg_read(ohci, OHCI1394_ATRetries);
		return (value >> 4) & 0x0ffff00f;

2096 2097 2098 2099
	case CSR_PRIORITY_BUDGET:
		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
			(ohci->pri_req_max << 8);

2100 2101 2102 2103 2104 2105
	default:
		WARN_ON(1);
		return 0;
	}
}

2106
static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2107 2108
{
	struct fw_ohci *ohci = fw_ohci(card);
2109
	unsigned long flags;
2110 2111

	switch (csr_offset) {
2112 2113 2114 2115 2116 2117
	case CSR_STATE_CLEAR:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlClear,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2118 2119
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = false;
2120 2121 2122 2123 2124 2125 2126 2127
		break;

	case CSR_STATE_SET:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlSet,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2128 2129
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = true;
2130 2131
		break;

2132 2133 2134 2135 2136
	case CSR_NODE_IDS:
		reg_write(ohci, OHCI1394_NodeID, value >> 16);
		flush_writes(ohci);
		break;

2137 2138 2139 2140 2141 2142 2143
	case CSR_CYCLE_TIME:
		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
		reg_write(ohci, OHCI1394_IntEventSet,
			  OHCI1394_cycleInconsistent);
		flush_writes(ohci);
		break;

2144 2145 2146 2147 2148 2149
	case CSR_BUS_TIME:
		spin_lock_irqsave(&ohci->lock, flags);
		ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
		spin_unlock_irqrestore(&ohci->lock, flags);
		break;

2150 2151 2152 2153 2154 2155 2156
	case CSR_BUSY_TIMEOUT:
		value = (value & 0xf) | ((value & 0xf) << 4) |
			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
		reg_write(ohci, OHCI1394_ATRetries, value);
		flush_writes(ohci);
		break;

2157 2158 2159 2160 2161
	case CSR_PRIORITY_BUDGET:
		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
		flush_writes(ohci);
		break;

2162 2163 2164 2165 2166 2167
	default:
		WARN_ON(1);
		break;
	}
}

2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
static void copy_iso_headers(struct iso_context *ctx, void *p)
{
	int i = ctx->header_length;

	if (i + ctx->base.header_size > PAGE_SIZE)
		return;

	/*
	 * The iso header is byteswapped to little endian by
	 * the controller, but the remaining header quadlets
	 * are big endian.  We want to present all the headers
	 * as big endian, so we have to swap the first quadlet.
	 */
	if (ctx->base.header_size > 0)
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
	if (ctx->base.header_size > 4)
		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
	if (ctx->base.header_size > 8)
		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
	ctx->header_length += ctx->base.header_size;
}

2190 2191 2192 2193 2194 2195
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2196
	struct descriptor *pd;
2197
	__le32 *ir_header;
2198
	void *p;
2199

2200 2201 2202 2203 2204
	for (pd = d; pd <= last; pd++) {
		if (pd->transfer_status)
			break;
	}
	if (pd > last)
2205 2206 2207
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

2208 2209
	p = last + 1;
	copy_iso_headers(ctx, p);
2210

2211 2212
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) p;
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
		ctx->base.callback(&ctx->base,
				   le32_to_cpu(ir_header[0]) & 0xffff,
				   ctx->header_length, ctx->header,
				   ctx->base.callback_data);
		ctx->header_length = 0;
	}

	return 1;
}

2223 2224 2225
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
2226
{
2227 2228
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2229 2230
	int i;
	struct descriptor *pd;
S
Stefan Richter 已提交
2231

2232 2233 2234 2235 2236
	for (pd = d; pd <= last; pd++)
		if (pd->transfer_status)
			break;
	if (pd > last)
		/* Descriptor(s) not done yet, stop iteration */
2237 2238
		return 0;

2239 2240 2241 2242 2243 2244 2245 2246 2247
	i = ctx->header_length;
	if (i + 4 < PAGE_SIZE) {
		/* Present this value as big-endian to match the receive code */
		*(__be32 *)(ctx->header + i) = cpu_to_be32(
				((u32)le16_to_cpu(pd->transfer_status) << 16) |
				le16_to_cpu(pd->res_count));
		ctx->header_length += 4;
	}
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2248
		ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
2249 2250 2251 2252
				   ctx->header_length, ctx->header,
				   ctx->base.callback_data);
		ctx->header_length = 0;
	}
2253
	return 1;
2254 2255
}

2256
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2257
				int type, int channel, size_t header_size)
2258 2259 2260
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct iso_context *ctx, *list;
2261
	descriptor_callback_t callback;
2262
	u64 *channels, dont_care = ~0ULL;
2263
	u32 *mask, regs;
2264
	unsigned long flags;
2265
	int index, ret = -ENOMEM;
2266 2267

	if (type == FW_ISO_CONTEXT_TRANSMIT) {
2268
		channels = &dont_care;
2269 2270
		mask = &ohci->it_context_mask;
		list = ohci->it_context_list;
2271
		callback = handle_it_packet;
2272
	} else {
2273
		channels = &ohci->ir_context_channels;
S
Stefan Richter 已提交
2274 2275
		mask = &ohci->ir_context_mask;
		list = ohci->ir_context_list;
2276
		callback = handle_ir_packet_per_buffer;
2277 2278 2279
	}

	spin_lock_irqsave(&ohci->lock, flags);
2280 2281 2282
	index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
	if (index >= 0) {
		*channels &= ~(1ULL << channel);
2283
		*mask &= ~(1 << index);
2284
	}
2285 2286 2287 2288 2289
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
		return ERR_PTR(-EBUSY);

S
Stefan Richter 已提交
2290 2291 2292 2293 2294
	if (type == FW_ISO_CONTEXT_TRANSMIT)
		regs = OHCI1394_IsoXmitContextBase(index);
	else
		regs = OHCI1394_IsoRcvContextBase(index);

2295
	ctx = &list[index];
2296
	memset(ctx, 0, sizeof(*ctx));
2297 2298 2299 2300 2301
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
	if (ctx->header == NULL)
		goto out;

2302 2303
	ret = context_init(&ctx->context, ohci, regs, callback);
	if (ret < 0)
2304
		goto out_with_header;
2305 2306

	return &ctx->base;
2307 2308 2309 2310 2311

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
2312
	*channels |= 1ULL << channel;
2313 2314 2315
	*mask |= 1 << index;
	spin_unlock_irqrestore(&ohci->lock, flags);

2316
	return ERR_PTR(ret);
2317 2318
}

2319 2320
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
2321
{
S
Stefan Richter 已提交
2322
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2323
	struct fw_ohci *ohci = ctx->context.ohci;
2324
	u32 control, match;
2325 2326
	int index;

2327 2328
	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
2329 2330 2331
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2332
				(cycle & 0x7fff) << 16;
2333

2334 2335
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2336
		context_run(&ctx->context, match);
2337 2338
	} else {
		index = ctx - ohci->ir_context_list;
2339
		control = IR_CONTEXT_ISOCH_HEADER;
2340 2341 2342 2343 2344
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
2345

2346 2347
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2348
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2349
		context_run(&ctx->context, control);
2350
	}
2351 2352 2353 2354

	return 0;
}

2355 2356 2357
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2358
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
	int index;

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
	} else {
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
	}
	flush_writes(ohci);
	context_stop(&ctx->context);

	return 0;
}

2374 2375 2376
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2377
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2378 2379 2380
	unsigned long flags;
	int index;

2381 2382
	ohci_stop_iso(base);
	context_release(&ctx->context);
2383
	free_page((unsigned long)ctx->header);
2384

2385 2386 2387 2388 2389 2390 2391 2392
	spin_lock_irqsave(&ohci->lock, flags);

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
	} else {
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
2393
		ohci->ir_context_channels |= 1ULL << base->channel;
2394 2395 2396 2397 2398
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

2399 2400 2401 2402
static int ohci_queue_iso_transmit(struct fw_iso_context *base,
				   struct fw_iso_packet *packet,
				   struct fw_iso_buffer *buffer,
				   unsigned long payload)
2403
{
S
Stefan Richter 已提交
2404
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2405
	struct descriptor *d, *last, *pd;
2406 2407
	struct fw_iso_packet *p;
	__le32 *header;
2408
	dma_addr_t d_bus, page_bus;
2409 2410
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
2411
	int page, end_page, i, length, offset;
2412 2413

	p = packet;
2414
	payload_index = payload;
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
2433
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2434

2435 2436 2437
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
2438 2439

	if (!p->skip) {
2440
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2441
		d[0].req_count = cpu_to_le16(8);
2442 2443 2444 2445 2446 2447 2448 2449
		/*
		 * Link the skip address to this descriptor itself.  This causes
		 * a context to skip a cycle whenever lost cycles or FIFO
		 * overruns occur, without dropping the data.  The application
		 * should then decide whether this is an error condition or not.
		 * FIXME:  Make the context's cycle-lost behaviour configurable?
		 */
		d[0].branch_address = cpu_to_le32(d_bus | z);
2450 2451

		header = (__le32 *) &d[1];
2452 2453 2454 2455 2456
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
2457
		header[1] =
2458
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2459 2460 2461 2462 2463
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
2464
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
2477 2478 2479

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
2480 2481 2482 2483 2484

		payload_index += length;
	}

	if (p->interrupt)
2485
		irq = DESCRIPTOR_IRQ_ALWAYS;
2486
	else
2487
		irq = DESCRIPTOR_NO_IRQ;
2488

2489
	last = z == 2 ? d : d + z - 1;
2490 2491 2492
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
2493
				     irq);
2494

2495
	context_append(&ctx->context, d, z, header_z);
2496 2497 2498

	return 0;
}
S
Stefan Richter 已提交
2499

2500 2501 2502 2503
static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
					struct fw_iso_packet *packet,
					struct fw_iso_buffer *buffer,
					unsigned long payload)
2504 2505
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2506
	struct descriptor *d, *pd;
2507
	struct fw_iso_packet *p = packet;
2508 2509
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
2510 2511
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
2512 2513

	/*
2514 2515
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
2516 2517
	 */
	packet_count = p->header_length / ctx->base.header_size;
2518
	header_size  = max(ctx->base.header_size, (size_t)8);
2519 2520 2521 2522 2523

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
2524
	payload_per_buffer = p->payload_length / packet_count;
2525 2526 2527

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
2528
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2529
		d = context_get_descriptors(&ctx->context,
2530
				z + header_z, &d_bus);
2531 2532 2533
		if (d == NULL)
			return -ENOMEM;

2534 2535 2536 2537
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
		if (p->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2538 2539
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
2540
		d->transfer_status = 0;
2541 2542
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

2543
		rest = payload_per_buffer;
2544
		pd = d;
2545
		for (j = 1; j < z; j++) {
2546
			pd++;
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
2566 2567 2568
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
2569
		if (p->interrupt && i == packet_count - 1)
2570 2571 2572 2573 2574 2575 2576 2577
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

2578 2579 2580 2581
static int ohci_queue_iso(struct fw_iso_context *base,
			  struct fw_iso_packet *packet,
			  struct fw_iso_buffer *buffer,
			  unsigned long payload)
2582
{
2583
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2584
	unsigned long flags;
2585
	int ret;
2586

2587
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2588
	if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2589
		ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2590
	else
2591 2592
		ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
							buffer, payload);
2593 2594
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

2595
	return ret;
2596 2597
}

2598
static const struct fw_card_driver ohci_driver = {
2599
	.enable			= ohci_enable,
2600
	.read_phy_reg		= ohci_read_phy_reg,
2601 2602 2603 2604
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
2605
	.cancel_packet		= ohci_cancel_packet,
2606
	.enable_phys_dma	= ohci_enable_phys_dma,
2607 2608
	.read_csr		= ohci_read_csr,
	.write_csr		= ohci_write_csr,
2609 2610 2611 2612

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
	.queue_iso		= ohci_queue_iso,
2613
	.start_iso		= ohci_start_iso,
2614
	.stop_iso		= ohci_stop_iso,
2615 2616
};

2617
#ifdef CONFIG_PPC_PMAC
2618
static void pmac_ohci_on(struct pci_dev *dev)
2619
{
2620 2621 2622 2623 2624 2625 2626 2627
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
2628 2629
}

2630
static void pmac_ohci_off(struct pci_dev *dev)
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
{
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
}
#else
2642 2643
static inline void pmac_ohci_on(struct pci_dev *dev) {}
static inline void pmac_ohci_off(struct pci_dev *dev) {}
2644 2645
#endif /* CONFIG_PPC_PMAC */

2646 2647
static int __devinit pci_probe(struct pci_dev *dev,
			       const struct pci_device_id *ent)
2648 2649
{
	struct fw_ohci *ohci;
2650
	u32 bus_options, max_receive, link_speed, version, link_enh;
2651
	u64 guid;
2652
	int i, err, n_ir, n_it;
2653 2654
	size_t size;

2655
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2656
	if (ohci == NULL) {
2657 2658
		err = -ENOMEM;
		goto fail;
2659 2660 2661 2662
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

2663
	pmac_ohci_on(dev);
2664

2665 2666
	err = pci_enable_device(dev);
	if (err) {
2667
		fw_error("Failed to enable OHCI hardware\n");
2668
		goto fail_free;
2669 2670 2671 2672 2673 2674 2675
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);
2676
	mutex_init(&ohci->phy_reg_mutex);
2677 2678 2679 2680

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

2681 2682
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
2683
		fw_error("MMIO resource unavailable\n");
2684
		goto fail_disable;
2685 2686 2687 2688 2689
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
2690 2691
		err = -ENXIO;
		goto fail_iomem;
2692 2693
	}

2694 2695 2696 2697 2698 2699 2700
	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
		if (ohci_quirks[i].vendor == dev->vendor &&
		    (ohci_quirks[i].device == dev->device ||
		     ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
			ohci->quirks = ohci_quirks[i].flags;
			break;
		}
2701 2702
	if (param_quirks)
		ohci->quirks = param_quirks;
2703

2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
	/* TI OHCI-Lynx and compatible: set recommended configuration bits. */
	if (dev->vendor == PCI_VENDOR_ID_TI) {
		pci_read_config_dword(dev, PCI_CFG_TI_LinkEnh, &link_enh);

		/* adjust latency of ATx FIFO: use 1.7 KB threshold */
		link_enh &= ~TI_LinkEnh_atx_thresh_mask;
		link_enh |= TI_LinkEnh_atx_thresh_1_7K;

		/* use priority arbitration for asynchronous responses */
		link_enh |= TI_LinkEnh_enab_unfair;

		/* required for aPhyEnhanceEnable to work */
		link_enh |= TI_LinkEnh_enab_accel;

		pci_write_config_dword(dev, PCI_CFG_TI_LinkEnh, link_enh);
	}

2721 2722 2723 2724 2725 2726
	ar_context_init(&ohci->ar_request_ctx, ohci,
			OHCI1394_AsReqRcvContextControlSet);

	ar_context_init(&ohci->ar_response_ctx, ohci,
			OHCI1394_AsRspRcvContextControlSet);

2727
	context_init(&ohci->at_request_ctx, ohci,
2728
		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2729

2730
	context_init(&ohci->at_response_ctx, ohci,
2731
		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2732 2733

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2734 2735
	ohci->ir_context_channels = ~0ULL;
	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2736
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2737 2738
	n_ir = hweight32(ohci->ir_context_mask);
	size = sizeof(struct iso_context) * n_ir;
2739
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2740 2741

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2742
	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2743
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2744 2745
	n_it = hweight32(ohci->it_context_mask);
	size = sizeof(struct iso_context) * n_it;
2746
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2747 2748

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2749
		err = -ENOMEM;
2750
		goto fail_contexts;
2751 2752 2753 2754 2755 2756 2757 2758
	}

	/* self-id dma buffer allocation */
	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
					       SELF_ID_BUF_SIZE,
					       &ohci->self_id_bus,
					       GFP_KERNEL);
	if (ohci->self_id_cpu == NULL) {
2759
		err = -ENOMEM;
2760
		goto fail_contexts;
2761 2762 2763 2764 2765 2766 2767 2768
	}

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

2769
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2770
	if (err)
2771
		goto fail_self_id;
2772

2773 2774 2775 2776 2777
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
		  "%d IR + %d IT contexts, quirks 0x%x\n",
		  dev_name(&dev->dev), version >> 16, version & 0xff,
		  n_ir, n_it, ohci->quirks);
2778

2779
	return 0;
2780 2781 2782 2783

 fail_self_id:
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
2784
 fail_contexts:
2785
	kfree(ohci->ir_context_list);
2786 2787 2788 2789 2790
	kfree(ohci->it_context_list);
	context_release(&ohci->at_response_ctx);
	context_release(&ohci->at_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	ar_context_release(&ohci->ar_request_ctx);
2791 2792 2793 2794 2795
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
2796 2797
 fail_free:
	kfree(&ohci->card);
2798
	pmac_ohci_off(dev);
2799 2800 2801
 fail:
	if (err == -ENOMEM)
		fw_error("Out of memory\n");
2802 2803

	return err;
2804 2805 2806 2807 2808 2809 2810
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
2811 2812
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
2813 2814
	fw_core_remove_card(&ohci->card);

2815 2816 2817 2818
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
2819 2820 2821

	software_reset(ohci);
	free_irq(dev->irq, ohci);
2822 2823 2824 2825 2826 2827 2828

	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->next_config_rom, ohci->next_config_rom_bus);
	if (ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
2829 2830
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
2831 2832 2833 2834
	ar_context_release(&ohci->ar_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	context_release(&ohci->at_request_ctx);
	context_release(&ohci->at_response_ctx);
2835 2836
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
2837
	pci_disable_msi(dev);
2838 2839 2840
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
2841
	kfree(&ohci->card);
2842
	pmac_ohci_off(dev);
2843

2844 2845 2846
	fw_notify("Removed fw-ohci device.\n");
}

2847
#ifdef CONFIG_PM
2848
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2849
{
2850
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2851 2852 2853
	int err;

	software_reset(ohci);
2854
	free_irq(dev->irq, ohci);
2855
	pci_disable_msi(dev);
2856
	err = pci_save_state(dev);
2857
	if (err) {
2858
		fw_error("pci_save_state failed\n");
2859 2860
		return err;
	}
2861
	err = pci_set_power_state(dev, pci_choose_state(dev, state));
2862 2863
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
2864
	pmac_ohci_off(dev);
2865

2866 2867 2868
	return 0;
}

2869
static int pci_resume(struct pci_dev *dev)
2870
{
2871
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2872 2873
	int err;

2874
	pmac_ohci_on(dev);
2875 2876 2877
	pci_set_power_state(dev, PCI_D0);
	pci_restore_state(dev);
	err = pci_enable_device(dev);
2878
	if (err) {
2879
		fw_error("pci_enable_device failed\n");
2880 2881 2882
		return err;
	}

2883
	return ohci_enable(&ohci->card, NULL, 0);
2884 2885 2886
}
#endif

2887
static const struct pci_device_id pci_table[] = {
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
2899 2900 2901 2902
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
2903 2904 2905 2906 2907 2908
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

2909 2910 2911 2912 2913
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);