ohci.c 74.6 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/compiler.h>
22
#include <linux/delay.h>
S
Stefan Richter 已提交
23
#include <linux/device.h>
A
Andrew Morton 已提交
24
#include <linux/dma-mapping.h>
25
#include <linux/firewire.h>
S
Stefan Richter 已提交
26
#include <linux/firewire-constants.h>
S
Stefan Richter 已提交
27
#include <linux/gfp.h>
28 29
#include <linux/init.h>
#include <linux/interrupt.h>
S
Stefan Richter 已提交
30
#include <linux/io.h>
31
#include <linux/kernel.h>
S
Stefan Richter 已提交
32
#include <linux/list.h>
A
Al Viro 已提交
33
#include <linux/mm.h>
34
#include <linux/module.h>
35
#include <linux/moduleparam.h>
36
#include <linux/pci.h>
37
#include <linux/pci_ids.h>
S
Stefan Richter 已提交
38
#include <linux/spinlock.h>
S
Stefan Richter 已提交
39
#include <linux/string.h>
A
Andrew Morton 已提交
40

S
Stefan Richter 已提交
41
#include <asm/byteorder.h>
S
Stefan Richter 已提交
42
#include <asm/page.h>
43
#include <asm/system.h>
44

45 46 47 48
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

49 50
#include "core.h"
#include "ohci.h"
51

52 53 54 55 56 57 58 59 60 61 62 63 64
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
65 66 67 68 69 70 71 72 73 74

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

75 76 77 78
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
79

80
struct ar_buffer {
81
	struct descriptor descriptor;
82 83 84
	struct ar_buffer *next;
	__le32 data[0];
};
85

86 87 88 89 90
struct ar_context {
	struct fw_ohci *ohci;
	struct ar_buffer *current_buffer;
	struct ar_buffer *last_buffer;
	void *pointer;
91
	u32 regs;
92 93 94
	struct tasklet_struct tasklet;
};

95 96 97 98 99
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
100 101 102 103 104 105 106 107 108 109 110 111 112

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

113
struct context {
S
Stefan Richter 已提交
114
	struct fw_ohci *ohci;
115
	u32 regs;
116
	int total_allocation;
S
Stefan Richter 已提交
117

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
	 * The last descriptor in the DMA program.  It contains the branch
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
142 143 144

	descriptor_callback_t callback;

S
Stefan Richter 已提交
145
	struct tasklet_struct tasklet;
146 147
};

148 149 150 151 152 153
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
154 155 156

struct iso_context {
	struct fw_iso_context base;
157
	struct context context;
158
	int excess_bytes;
159 160
	void *header;
	size_t header_length;
161 162 163 164 165 166 167 168
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

	__iomem char *registers;
169
	int node_id;
170
	int generation;
171
	int request_generation;	/* for timestamping incoming requests */
172
	unsigned quirks;
173

174 175 176 177
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
178 179 180 181
	spinlock_t lock;

	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
182 183
	struct context at_request_ctx;
	struct context at_response_ctx;
184 185 186

	u32 it_context_mask;
	struct iso_context *it_context_list;
187
	u64 ir_context_channels;
188 189
	u32 ir_context_mask;
	struct iso_context *ir_context_list;
190 191 192 193 194 195 196 197 198 199 200 201

	__be32    *config_rom;
	dma_addr_t config_rom_bus;
	__be32    *next_config_rom;
	dma_addr_t next_config_rom_bus;
	__be32     next_header;

	__le32    *self_id_cpu;
	dma_addr_t self_id_bus;
	struct tasklet_struct bus_reset_tasklet;

	u32 self_id_buffer[512];
202 203
};

A
Adrian Bunk 已提交
204
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
205 206 207 208
{
	return container_of(card, struct fw_ohci, card);
}

209 210 211 212 213 214
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
215 216 217 218 219 220

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

221
#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
222 223 224 225 226 227 228
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
229
#define OHCI_TCODE_PHY_PACKET		0x0e
230
#define OHCI_VERSION_1_1		0x010010
231

232 233
static char ohci_driver_name[] = KBUILD_MODNAME;

234 235
#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009

236 237 238
#define QUIRK_CYCLE_TIMER		1
#define QUIRK_RESET_PACKET		2
#define QUIRK_BE_HEADERS		4
239
#define QUIRK_NO_1394A			8
240 241 242 243 244

/* In case of multiple matches in ohci_quirks[], only the first one is used. */
static const struct {
	unsigned short vendor, device, flags;
} ohci_quirks[] = {
245
	{PCI_VENDOR_ID_TI,	PCI_DEVICE_ID_TI_TSB12LV22, QUIRK_CYCLE_TIMER |
246 247
							    QUIRK_RESET_PACKET |
							    QUIRK_NO_1394A},
248 249 250 251 252 253 254
	{PCI_VENDOR_ID_TI,	PCI_ANY_ID,	QUIRK_RESET_PACKET},
	{PCI_VENDOR_ID_AL,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
	{PCI_VENDOR_ID_NEC,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
	{PCI_VENDOR_ID_VIA,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
	{PCI_VENDOR_ID_APPLE,	PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
};

255 256 257 258 259 260 261
/* This overrides anything that was found in ohci_quirks[]. */
static int param_quirks;
module_param_named(quirks, param_quirks, int, 0644);
MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
	", AR/selfID endianess = "	__stringify(QUIRK_BE_HEADERS)
262
	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
263 264
	")");

265 266
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG

267
#define OHCI_PARAM_DEBUG_AT_AR		1
268
#define OHCI_PARAM_DEBUG_SELFIDS	2
269 270
#define OHCI_PARAM_DEBUG_IRQS		4
#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
271 272 273 274 275

static int param_debug;
module_param_named(debug, param_debug, int, 0644);
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
276 277 278
	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
279 280 281 282
	", or a combination, or all = -1)");

static void log_irqs(u32 evt)
{
283 284 285 286 287 288
	if (likely(!(param_debug &
			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
		return;

	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
	    !(evt & OHCI1394_busReset))
289 290
		return;

291
	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
292 293 294 295 296 297 298 299 300
	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
	    evt & OHCI1394_isochRx		? " IR"			: "",
	    evt & OHCI1394_isochTx		? " IT"			: "",
	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
301
	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
302 303 304 305 306 307
	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
	    evt & OHCI1394_busReset		? " busReset"		: "",
	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
		    OHCI1394_respTxComplete | OHCI1394_isochRx |
		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
308
		    OHCI1394_cycleTooLong | OHCI1394_cycleInconsistent |
309
		    OHCI1394_regAccessFail | OHCI1394_busReset)
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
						? " ?"			: "");
}

static const char *speed[] = {
	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
};
static const char *power[] = {
	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
};
static const char port[] = { '.', '-', 'p', 'c', };

static char _p(u32 *s, int shift)
{
	return port[*s >> shift & 3];
}

327
static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
328 329 330 331
{
	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
		return;

332 333
	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
		  self_id_count, generation, node_id);
334 335 336

	for (; self_id_count--; ++s)
		if ((*s & 1 << 23) == 0)
337 338 339 340 341 342
			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
			    "%s gc=%d %s %s%s%s\n",
			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
			    speed[*s >> 14 & 3], *s >> 16 & 63,
			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
343
		else
344 345 346 347
			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
			    *s, *s >> 24 & 63,
			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
}

static const char *evts[] = {
	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
	[0x10] = "-reserved-",		[0x11] = "ack_complete",
	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
	[0x18] = "-reserved-",		[0x19] = "-reserved-",
	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
	[0x20] = "pending/cancelled",
};
static const char *tcodes[] = {
	[0x0] = "QW req",		[0x1] = "BW req",
	[0x2] = "W resp",		[0x3] = "-reserved-",
	[0x4] = "QR req",		[0x5] = "BR req",
	[0x6] = "QR resp",		[0x7] = "BR resp",
	[0x8] = "cycle start",		[0x9] = "Lk req",
	[0xa] = "async stream packet",	[0xb] = "Lk resp",
	[0xc] = "-reserved-",		[0xd] = "-reserved-",
	[0xe] = "link internal",	[0xf] = "-reserved-",
};
static const char *phys[] = {
	[0x0] = "phy config packet",	[0x1] = "link-on packet",
	[0x2] = "self-id packet",	[0x3] = "-reserved-",
};

static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
{
	int tcode = header[0] >> 4 & 0xf;
	char specific[12];

	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
		return;

	if (unlikely(evt >= ARRAY_SIZE(evts)))
			evt = 0x1f;

395
	if (evt == OHCI1394_evt_bus_reset) {
396 397
		fw_notify("A%c evt_bus_reset, generation %d\n",
		    dir, (header[2] >> 16) & 0xff);
398 399 400
		return;
	}

401
	if (header[0] == ~header[1]) {
402 403
		fw_notify("A%c %s, %s, %08x\n",
		    dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
		return;
	}

	switch (tcode) {
	case 0x0: case 0x6: case 0x8:
		snprintf(specific, sizeof(specific), " = %08x",
			 be32_to_cpu((__force __be32)header[3]));
		break;
	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
		snprintf(specific, sizeof(specific), " %x,%x",
			 header[3] >> 16, header[3] & 0xffff);
		break;
	default:
		specific[0] = '\0';
	}

	switch (tcode) {
	case 0xe: case 0xa:
422
		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
423 424
		break;
	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
425 426 427 428 429 430
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s, %04x%08x%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
431 432
		break;
	default:
433 434 435 436 437 438
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], specific);
439 440 441 442 443 444
	}
}

#else

#define log_irqs(evt)
445
#define log_selfids(node_id, generation, self_id_count, sid)
446 447 448 449
#define log_ar_at_event(dir, speed, header, evt)

#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */

A
Adrian Bunk 已提交
450
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
451 452 453 454
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
455
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
456 457 458 459
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
460
static inline void flush_writes(const struct fw_ohci *ohci)
461 462 463 464 465
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

466
static int read_phy_reg(struct fw_ohci *ohci, int addr)
467
{
468
	u32 val;
469
	int i;
470 471

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
472 473 474 475 476 477
	for (i = 0; i < 10; i++) {
		val = reg_read(ohci, OHCI1394_PhyControl);
		if (val & OHCI1394_PhyControl_ReadDone)
			return OHCI1394_PhyControl_ReadData(val);

		msleep(1);
478
	}
479
	fw_error("failed to read phy reg\n");
480

481 482
	return -EBUSY;
}
483

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
{
	int i;

	reg_write(ohci, OHCI1394_PhyControl,
		  OHCI1394_PhyControl_Write(addr, val));
	for (i = 0; i < 100; i++) {
		val = reg_read(ohci, OHCI1394_PhyControl);
		if (!(val & OHCI1394_PhyControl_WritePending))
			return 0;

		msleep(1);
	}
	fw_error("failed to write phy reg\n");

	return -EBUSY;
500 501 502 503 504 505
}

static int ohci_update_phy_reg(struct fw_card *card, int addr,
			       int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
506
	int ret;
507

508 509 510
	ret = read_phy_reg(ohci, addr);
	if (ret < 0)
		return ret;
511

512 513 514 515 516 517 518
	/*
	 * The interrupt status bits are cleared by writing a one bit.
	 * Avoid clearing them unless explicitly requested in set_bits.
	 */
	if (addr == 5)
		clear_bits |= PHY_INT_STATUS_BITS;

519
	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
520 521
}

522
static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
523
{
524
	int ret;
525

526 527 528
	ret = ohci_update_phy_reg(&ohci->card, 7, PHY_PAGE_SELECT, page << 5);
	if (ret < 0)
		return ret;
529

530
	return read_phy_reg(ohci, addr);
531 532
}

533
static int ar_context_add_page(struct ar_context *ctx)
534
{
535 536
	struct device *dev = ctx->ohci->card.device;
	struct ar_buffer *ab;
537
	dma_addr_t uninitialized_var(ab_bus);
538 539
	size_t offset;

540
	ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
541 542 543
	if (ab == NULL)
		return -ENOMEM;

544
	ab->next = NULL;
545
	memset(&ab->descriptor, 0, sizeof(ab->descriptor));
546 547 548
	ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						    DESCRIPTOR_STATUS |
						    DESCRIPTOR_BRANCH_ALWAYS);
549 550 551 552 553 554
	offset = offsetof(struct ar_buffer, data);
	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.branch_address = 0;

555
	ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
556 557 558
	ctx->last_buffer->next = ab;
	ctx->last_buffer = ab;

559
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
560
	flush_writes(ctx->ohci);
561 562

	return 0;
563 564
}

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
static void ar_context_release(struct ar_context *ctx)
{
	struct ar_buffer *ab, *ab_next;
	size_t offset;
	dma_addr_t ab_bus;

	for (ab = ctx->current_buffer; ab; ab = ab_next) {
		ab_next = ab->next;
		offset = offsetof(struct ar_buffer, data);
		ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
		dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
				  ab, ab_bus);
	}
}

580 581
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
582
	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
583 584 585 586
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

587
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
588 589
{
	struct fw_ohci *ohci = ctx->ohci;
590 591
	struct fw_packet p;
	u32 status, length, tcode;
592
	int evt;
593

594 595 596
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
597 598 599 600 601

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
602
		p.header[3] = (__force __u32) buffer[3];
603
		p.header_length = 16;
604
		p.payload_length = 0;
605 606 607
		break;

	case TCODE_READ_BLOCK_REQUEST :
608
		p.header[3] = cond_le32_to_cpu(buffer[3]);
609 610 611 612 613
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
614 615 616
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
617
		p.header[3] = cond_le32_to_cpu(buffer[3]);
618
		p.header_length = 16;
619
		p.payload_length = p.header[3] >> 16;
620 621 622 623
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
624
	case OHCI_TCODE_PHY_PACKET:
625
		p.header_length = 12;
626
		p.payload_length = 0;
627
		break;
628 629 630 631 632

	default:
		/* FIXME: Stop context, discard everything, and restart? */
		p.header_length = 0;
		p.payload_length = 0;
633
	}
634

635 636 637 638
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
639
	status = cond_le32_to_cpu(buffer[length]);
640
	evt    = (status >> 16) & 0x1f;
641

642
	p.ack        = evt - 16;
643 644 645
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
646

647
	log_ar_at_event('R', p.speed, p.header, evt);
648

649 650
	/*
	 * The OHCI bus reset handler synthesizes a phy packet with
651 652 653 654 655
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
656
	 * request.
657 658 659 660
	 *
	 * Alas some chips sometimes emit bus reset packets with a
	 * wrong generation.  We set the correct generation for these
	 * at a slightly incorrect time (in bus_reset_tasklet).
661
	 */
662
	if (evt == OHCI1394_evt_bus_reset) {
663
		if (!(ohci->quirks & QUIRK_RESET_PACKET))
664 665
			ohci->request_generation = (p.header[2] >> 16) & 0xff;
	} else if (ctx == &ohci->ar_request_ctx) {
666
		fw_core_handle_request(&ohci->card, &p);
667
	} else {
668
		fw_core_handle_response(&ohci->card, &p);
669
	}
670

671 672
	return buffer + length + 1;
}
673

674 675 676 677 678 679 680 681 682 683 684 685 686
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
	struct fw_ohci *ohci = ctx->ohci;
	struct ar_buffer *ab;
	struct descriptor *d;
	void *buffer, *end;

	ab = ctx->current_buffer;
	d = &ab->descriptor;

	if (d->res_count == 0) {
		size_t size, rest, offset;
687 688
		dma_addr_t start_bus;
		void *start;
689

690 691
		/*
		 * This descriptor is finished and we may have a
692
		 * packet split across this and the next buffer. We
693 694
		 * reuse the page for reassembling the split packet.
		 */
695 696

		offset = offsetof(struct ar_buffer, data);
697 698
		start = buffer = ab;
		start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
699 700 701 702 703 704 705 706 707 708 709 710 711 712

		ab = ab->next;
		d = &ab->descriptor;
		size = buffer + PAGE_SIZE - ctx->pointer;
		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
		memmove(buffer, ctx->pointer, size);
		memcpy(buffer + size, ab->data, rest);
		ctx->current_buffer = ab;
		ctx->pointer = (void *) ab->data + rest;
		end = buffer + size + rest;

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);

713
		dma_free_coherent(ohci->card.device, PAGE_SIZE,
714
				  start, start_bus);
715 716 717 718 719 720 721 722 723
		ar_context_add_page(ctx);
	} else {
		buffer = ctx->pointer;
		ctx->pointer = end =
			(void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);
	}
724 725
}

726 727
static int ar_context_init(struct ar_context *ctx,
			   struct fw_ohci *ohci, u32 regs)
728
{
729
	struct ar_buffer ab;
730

731 732 733
	ctx->regs        = regs;
	ctx->ohci        = ohci;
	ctx->last_buffer = &ab;
734 735
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

736 737 738 739 740
	ar_context_add_page(ctx);
	ar_context_add_page(ctx);
	ctx->current_buffer = ab.next;
	ctx->pointer = ctx->current_buffer->data;

741 742 743 744 745 746 747 748 749 750
	return 0;
}

static void ar_context_run(struct ar_context *ctx)
{
	struct ar_buffer *ab = ctx->current_buffer;
	dma_addr_t ab_bus;
	size_t offset;

	offset = offsetof(struct ar_buffer, data);
751
	ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
752 753

	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
754
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
755
	flush_writes(ctx->ohci);
756
}
S
Stefan Richter 已提交
757

758
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
759 760 761 762 763 764 765 766 767 768 769 770 771
{
	int b, key;

	b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
	key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;

	/* figure out which descriptor the branch address goes in */
	if (z == 2 && (b == 3 || key == 2))
		return d;
	else
		return d + z - 1;
}

772 773 774 775 776 777
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
778
	struct descriptor_buffer *desc;
779

780 781 782
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
783
	while (last->branch_address != 0) {
784
		struct descriptor_buffer *old_desc = desc;
785 786
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
787 788 789 790 791 792 793 794 795
		address &= ~0xf;

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
796
		last = find_branch_descriptor(d, z);
797 798 799 800

		if (!ctx->callback(ctx, d, last))
			break;

801 802 803 804 805 806 807 808 809 810
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
811 812 813
	}
}

814 815 816 817
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
818
static int context_add_buffer(struct context *ctx)
819 820
{
	struct descriptor_buffer *desc;
821
	dma_addr_t uninitialized_var(bus_addr);
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

847 848
static int context_init(struct context *ctx, struct fw_ohci *ohci,
			u32 regs, descriptor_callback_t callback)
849 850 851
{
	ctx->ohci = ohci;
	ctx->regs = regs;
852 853 854 855
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
856 857
		return -ENOMEM;

858 859 860
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

861 862 863
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

864 865
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
866
	 * branch address and looks like it's been sent.  That way we
867
	 * have a descriptor to append DMA programs to.
868
	 */
869 870 871 872 873 874
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
875 876 877 878

	return 0;
}

879
static void context_release(struct context *ctx)
880 881
{
	struct fw_card *card = &ctx->ohci->card;
882
	struct descriptor_buffer *desc, *tmp;
883

884 885 886 887
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
888 889
}

890
/* Must be called with ohci->lock held */
891 892
static struct descriptor *context_get_descriptors(struct context *ctx,
						  int z, dma_addr_t *d_bus)
893
{
894 895 896 897 898 899 900 901 902
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
903

904 905 906 907 908 909 910 911 912 913
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
914

915
	d = desc->buffer + desc->used / sizeof(*d);
916
	memset(d, 0, z * sizeof(*d));
917
	*d_bus = desc->buffer_bus + desc->used;
918 919 920 921

	return d;
}

922
static void context_run(struct context *ctx, u32 extra)
923 924 925
{
	struct fw_ohci *ohci = ctx->ohci;

926
	reg_write(ohci, COMMAND_PTR(ctx->regs),
927
		  le32_to_cpu(ctx->last->branch_address));
928 929
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
930 931 932 933 934 935 936
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
937
	struct descriptor_buffer *desc = ctx->buffer_tail;
938

939
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
940

941 942 943
	desc->used += (z + extra) * sizeof(*d);
	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev = find_branch_descriptor(d, z);
944

945
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
946 947 948 949 950 951
	flush_writes(ctx->ohci);
}

static void context_stop(struct context *ctx)
{
	u32 reg;
952
	int i;
953

954
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
955
	flush_writes(ctx->ohci);
956

957
	for (i = 0; i < 10; i++) {
958
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
959
		if ((reg & CONTEXT_ACTIVE) == 0)
960
			return;
961

962
		mdelay(1);
963
	}
964
	fw_error("Error: DMA context still active (0x%08x)\n", reg);
965
}
966

967 968 969
struct driver_data {
	struct fw_packet *packet;
};
970

971 972
/*
 * This function apppends a packet to the DMA queue for transmission.
973
 * Must always be called with the ochi->lock held to ensure proper
974 975
 * generation handling and locking around packet queue manipulation.
 */
976 977
static int at_context_queue_packet(struct context *ctx,
				   struct fw_packet *packet)
978 979
{
	struct fw_ohci *ohci = ctx->ohci;
980
	dma_addr_t d_bus, uninitialized_var(payload_bus);
981 982 983
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
984
	int z, tcode;
985
	u32 reg;
986

987 988 989 990
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
991 992
	}

993
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
994 995
	d[0].res_count = cpu_to_le16(packet->timestamp);

996 997
	/*
	 * The DMA format for asyncronous link packets is different
998 999
	 * from the IEEE1394 layout, so shift the fields around
	 * accordingly.  If header_length is 8, it's a PHY packet, to
1000 1001
	 * which we need to prepend an extra quadlet.
	 */
1002 1003

	header = (__le32 *) &d[1];
1004 1005 1006
	switch (packet->header_length) {
	case 16:
	case 12:
1007 1008 1009 1010 1011
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
1012 1013 1014

		tcode = (packet->header[0] >> 4) & 0x0f;
		if (TCODE_IS_BLOCK_PACKET(tcode))
1015
			header[3] = cpu_to_le32(packet->header[3]);
1016
		else
1017 1018 1019
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
1020 1021 1022
		break;

	case 8:
1023 1024 1025 1026 1027
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0]);
		header[2] = cpu_to_le32(packet->header[1]);
		d[0].req_count = cpu_to_le16(12);
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
		break;

	case 4:
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
		d[0].req_count = cpu_to_le16(8);
		break;

	default:
		/* BUG(); */
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1041 1042
	}

1043 1044
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
1045
	packet->driver_data = driver_data;
1046

1047 1048 1049 1050
	if (packet->payload_length > 0) {
		payload_bus =
			dma_map_single(ohci->card.device, packet->payload,
				       packet->payload_length, DMA_TO_DEVICE);
1051
		if (dma_mapping_error(ohci->card.device, payload_bus)) {
1052 1053 1054
			packet->ack = RCODE_SEND_ERROR;
			return -1;
		}
1055 1056
		packet->payload_bus	= payload_bus;
		packet->payload_mapped	= true;
1057 1058 1059 1060 1061

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
1062
	} else {
1063 1064
		last = &d[0];
		z = 2;
1065 1066
	}

1067 1068 1069
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
1070

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
	/*
	 * If the controller and packet generations don't match, we need to
	 * bail out and try again.  If IntEvent.busReset is set, the AT context
	 * is halted, so appending to the context and trying to run it is
	 * futile.  Most controllers do the right thing and just flush the AT
	 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
	 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
	 * up stalling out.  So we just bail out in software and try again
	 * later, and everyone is happy.
	 * FIXME: Document how the locking works.
	 */
	if (ohci->generation != packet->generation ||
	    reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1084
		if (packet->payload_mapped)
1085 1086
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
1087 1088 1089 1090 1091
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
1092

1093
	/* If the context isn't already running, start it up. */
1094
	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1095
	if ((reg & CONTEXT_RUN) == 0)
1096 1097 1098
		context_run(ctx, 0);

	return 0;
1099 1100
}

1101 1102 1103
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1104
{
1105
	struct driver_data *driver_data;
1106
	struct fw_packet *packet;
1107
	struct fw_ohci *ohci = context->ohci;
1108 1109
	int evt;

1110 1111 1112
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
1113

1114 1115 1116 1117 1118
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
1119

1120
	if (packet->payload_mapped)
1121
		dma_unmap_single(ohci->card.device, packet->payload_bus,
1122 1123
				 packet->payload_length, DMA_TO_DEVICE);

1124 1125
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
1126

1127 1128
	log_ar_at_event('T', packet->speed, packet->header, evt);

1129 1130 1131 1132 1133
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
1134

1135
	case OHCI1394_evt_flushed:
1136 1137 1138 1139
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
1140 1141
		packet->ack = RCODE_GENERATION;
		break;
1142

1143
	case OHCI1394_evt_missing_ack:
1144 1145 1146 1147
		/*
		 * Using a valid (current) generation count, but the
		 * node is not on the bus or not sending acks.
		 */
1148 1149
		packet->ack = RCODE_NO_ACK;
		break;
1150

1151 1152 1153 1154 1155 1156 1157 1158 1159
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
1160

1161 1162 1163 1164
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
1165

1166
	packet->callback(packet, &ohci->card, packet->ack);
1167

1168
	return 1;
1169 1170
}

1171 1172 1173 1174 1175
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1176

1177 1178
static void handle_local_rom(struct fw_ohci *ohci,
			     struct fw_packet *packet, u32 csr)
1179 1180 1181 1182
{
	struct fw_packet response;
	int tcode, length, i;

1183
	tcode = HEADER_GET_TCODE(packet->header[0]);
1184
	if (TCODE_IS_BLOCK_PACKET(tcode))
1185
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

1204 1205
static void handle_local_lock(struct fw_ohci *ohci,
			      struct fw_packet *packet, u32 csr)
1206 1207 1208 1209 1210 1211
{
	struct fw_packet response;
	int tcode, length, ext_tcode, sel;
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

1212 1213
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1214
	payload = packet->payload;
1215
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

	if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
		lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
	else
		fw_notify("swap not done yet\n");

	fw_fill_response(&response, packet->header,
1241
			 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1242 1243 1244 1245
 out:
	fw_core_handle_response(&ohci->card, &response);
}

1246
static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1247 1248 1249 1250
{
	u64 offset;
	u32 csr;

1251 1252 1253 1254
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1255 1256 1257

	offset =
		((unsigned long long)
1258
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
1279 1280 1281 1282 1283

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1284
}
1285

1286
static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1287 1288
{
	unsigned long flags;
1289
	int ret;
1290 1291 1292

	spin_lock_irqsave(&ctx->ohci->lock, flags);

1293
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1294
	    ctx->ohci->generation == packet->generation) {
1295 1296 1297
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
1298
	}
1299

1300
	ret = at_context_queue_packet(ctx, packet);
1301 1302
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

1303
	if (ret < 0)
1304
		packet->callback(packet, &ctx->ohci->card, packet->ack);
1305

1306 1307 1308 1309 1310
}

static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
1311
	int self_id_count, i, j, reg;
1312 1313
	int generation, new_generation;
	unsigned long flags;
1314 1315
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1316 1317 1318

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1319
		fw_notify("node ID not valid, new bus reset in progress\n");
1320 1321
		return;
	}
1322 1323 1324 1325 1326 1327
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1328

1329 1330 1331 1332 1333
	reg = reg_read(ohci, OHCI1394_SelfIDCount);
	if (reg & OHCI1394_SelfIDCount_selfIDError) {
		fw_notify("inconsistent self IDs\n");
		return;
	}
1334 1335
	/*
	 * The count in the SelfIDCount register is the number of
1336 1337
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1338 1339
	 * bit extra to get the actual number of self IDs.
	 */
1340 1341
	self_id_count = (reg >> 3) & 0xff;
	if (self_id_count == 0 || self_id_count > 252) {
1342 1343 1344
		fw_notify("inconsistent self IDs\n");
		return;
	}
1345
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1346
	rmb();
1347 1348

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1349 1350 1351 1352
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
			fw_notify("inconsistent self IDs\n");
			return;
		}
1353 1354
		ohci->self_id_buffer[j] =
				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1355
	}
1356
	rmb();
1357

1358 1359
	/*
	 * Check the consistency of the self IDs we just read.  The
1360 1361 1362 1363 1364 1365 1366 1367 1368
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1369 1370
	 * of self IDs.
	 */
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
1383 1384
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1385 1386
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

1387
	if (ohci->quirks & QUIRK_RESET_PACKET)
1388 1389
		ohci->request_generation = generation;

1390 1391
	/*
	 * This next bit is unrelated to the AT context stuff but we
1392 1393 1394 1395
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
1396 1397
	 * next_config_rom pointer so a new udpate can take place.
	 */
1398 1399

	if (ohci->next_config_rom != NULL) {
1400 1401 1402 1403
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1404 1405 1406 1407
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1408 1409
		/*
		 * Restore config_rom image and manually update
1410 1411
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1412 1413
		 * do that last.
		 */
1414 1415
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
1416 1417 1418
		ohci->config_rom[0] = ohci->next_header;
		reg_write(ohci, OHCI1394_ConfigROMhdr,
			  be32_to_cpu(ohci->next_header));
1419 1420
	}

1421 1422 1423 1424 1425
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif

1426 1427
	spin_unlock_irqrestore(&ohci->lock, flags);

1428 1429 1430 1431
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1432 1433
	log_selfids(ohci->node_id, generation,
		    self_id_count, ohci->self_id_buffer);
1434

1435
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1436 1437 1438 1439 1440 1441
				 self_id_count, ohci->self_id_buffer);
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1442
	u32 event, iso_event;
1443 1444 1445 1446
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1447
	if (!event || !~event)
1448 1449
		return IRQ_NONE;

1450 1451
	/* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
	reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1452
	log_irqs(event);
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1469
	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1470 1471 1472 1473
	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1474
		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1475 1476 1477
		iso_event &= ~(1 << i);
	}

1478
	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1479 1480 1481 1482
	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1483
		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1484 1485 1486
		iso_event &= ~(1 << i);
	}

1487 1488 1489 1490
	if (unlikely(event & OHCI1394_regAccessFail))
		fw_error("Register access failure - "
			 "please notify linux1394-devel@lists.sf.net\n");

1491 1492 1493
	if (unlikely(event & OHCI1394_postedWriteErr))
		fw_error("PCI posted write error\n");

1494 1495 1496 1497 1498 1499 1500
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
			fw_notify("isochronous cycle too long\n");
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
	if (unlikely(event & OHCI1394_cycleInconsistent)) {
		/*
		 * We need to clear this event bit in order to make
		 * cycleMatch isochronous I/O work.  In theory we should
		 * stop active cycleMatch iso contexts now and restart
		 * them at least two cycles later.  (FIXME?)
		 */
		if (printk_ratelimit())
			fw_notify("isochronous cycle inconsistent\n");
	}

1512 1513 1514
	return IRQ_HANDLED;
}

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

1531 1532 1533 1534 1535 1536 1537 1538 1539
static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
{
	size_t size = length * 4;

	memcpy(dest, src, size);
	if (size < CONFIG_ROM_SIZE)
		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
}

1540 1541 1542
static int configure_1394a_enhancements(struct fw_ohci *ohci)
{
	bool enable_1394a;
1543
	int ret, clear, set, offset;
1544 1545 1546 1547 1548 1549 1550 1551

	/* Check if the driver should configure link and PHY. */
	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
	      OHCI1394_HCControl_programPhyEnable))
		return 0;

	/* Paranoia: check whether the PHY supports 1394a, too. */
	enable_1394a = false;
1552 1553 1554 1555 1556 1557 1558 1559
	ret = read_phy_reg(ohci, 2);
	if (ret < 0)
		return ret;
	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
		ret = read_paged_phy_reg(ohci, 1, 8);
		if (ret < 0)
			return ret;
		if (ret >= 1)
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
			enable_1394a = true;
	}

	if (ohci->quirks & QUIRK_NO_1394A)
		enable_1394a = false;

	/* Configure PHY and link consistently. */
	if (enable_1394a) {
		clear = 0;
		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
	} else {
		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
		set = 0;
	}
1574 1575 1576
	ret = ohci_update_phy_reg(&ohci->card, 5, clear, set);
	if (ret < 0)
		return ret;
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590

	if (enable_1394a)
		offset = OHCI1394_HCControlSet;
	else
		offset = OHCI1394_HCControlClear;
	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);

	/* Clean up: configuration has been taken care of. */
	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_programPhyEnable);

	return 0;
}

1591 1592
static int ohci_enable(struct fw_card *card,
		       const __be32 *config_rom, size_t length)
1593 1594 1595
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);
1596
	u32 lps;
1597
	int i, ret;
1598

1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
1609 1610
	 * full link enabled.  However, with some cards (well, at least
	 * a JMicron PCIe card), we have to try again sometimes.
1611 1612 1613 1614 1615
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626

	for (lps = 0, i = 0; !lps && i < 3; i++) {
		msleep(50);
		lps = reg_read(ohci, OHCI1394_HCControlSet) &
		      OHCI1394_HCControl_LPS;
	}

	if (!lps) {
		fw_error("Failed to set Link Power Status\n");
		return -EIO;
	}
1627 1628 1629 1630

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

1631
	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1632 1633
	reg_write(ohci, OHCI1394_LinkControlClear,
		  OHCI1394_LinkControl_rcvPhyPkt);
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));

	ar_context_run(&ohci->ar_request_ctx);
	ar_context_run(&ohci->ar_response_ctx);

	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskSet,
		  OHCI1394_selfIDComplete |
		  OHCI1394_RQPkt | OHCI1394_RSPkt |
		  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		  OHCI1394_isochRx | OHCI1394_isochTx |
1655
		  OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1656
		  OHCI1394_cycleInconsistent | OHCI1394_regAccessFail |
1657
		  OHCI1394_masterIntEnable);
1658 1659
	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1660

1661 1662 1663
	ret = configure_1394a_enhancements(ohci);
	if (ret < 0)
		return ret;
1664

1665
	/* Activate link_on bit and contender bit in our self ID packets.*/
1666 1667 1668
	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
	if (ret < 0)
		return ret;
1669

1670 1671
	/*
	 * When the link is not yet enabled, the atomic config rom
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

1689 1690 1691 1692 1693 1694 1695
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
1696

1697
		copy_config_rom(ohci->next_config_rom, config_rom, length);
1698 1699 1700 1701 1702 1703 1704 1705
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
1706

1707
	ohci->next_header = ohci->next_config_rom[0];
1708 1709
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1710 1711
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
1712 1713 1714 1715 1716
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

	if (request_irq(dev->irq, irq_handler,
1717
			IRQF_SHARED, ohci_driver_name, ohci)) {
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
		fw_error("Failed to allocate shared interrupt %d.\n",
			 dev->irq);
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
	flush_writes(ohci);

1730 1731 1732 1733
	/*
	 * We are ready to go, initiate bus reset to finish the
	 * initialization.
	 */
1734 1735 1736 1737 1738 1739

	fw_core_initiate_bus_reset(&ohci->card, 1);

	return 0;
}

1740
static int ohci_set_config_rom(struct fw_card *card,
1741
			       const __be32 *config_rom, size_t length)
1742 1743 1744
{
	struct fw_ohci *ohci;
	unsigned long flags;
1745
	int ret = -EBUSY;
1746
	__be32 *next_config_rom;
1747
	dma_addr_t uninitialized_var(next_config_rom_bus);
1748 1749 1750

	ohci = fw_ohci(card);

1751 1752
	/*
	 * When the OHCI controller is enabled, the config rom update
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;

1790
		copy_config_rom(ohci->next_config_rom, config_rom, length);
1791 1792 1793 1794 1795 1796

		ohci->next_header = config_rom[0];
		ohci->next_config_rom[0] = 0;

		reg_write(ohci, OHCI1394_ConfigROMmap,
			  ohci->next_config_rom_bus);
1797
		ret = 0;
1798 1799 1800 1801
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

1802 1803
	/*
	 * Now initiate a bus reset to have the changes take
1804 1805 1806
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
1807 1808
	 * takes effect.
	 */
1809
	if (ret == 0)
1810
		fw_core_initiate_bus_reset(&ohci->card, 1);
1811 1812 1813
	else
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);
1814

1815
	return ret;
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

1832 1833 1834
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
1835 1836
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
1837
	int ret = -ENOENT;
1838

1839
	tasklet_disable(&ctx->tasklet);
1840

1841 1842
	if (packet->ack != 0)
		goto out;
1843

1844
	if (packet->payload_mapped)
1845 1846 1847
		dma_unmap_single(ohci->card.device, packet->payload_bus,
				 packet->payload_length, DMA_TO_DEVICE);

1848
	log_ar_at_event('T', packet->speed, packet->header, 0x20);
1849 1850 1851
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
1852
	ret = 0;
1853 1854
 out:
	tasklet_enable(&ctx->tasklet);
1855

1856
	return ret;
1857 1858
}

1859 1860
static int ohci_enable_phys_dma(struct fw_card *card,
				int node_id, int generation)
1861
{
1862 1863 1864
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	return 0;
#else
1865 1866
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
1867
	int n, ret = 0;
1868

1869 1870 1871 1872
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
1873 1874 1875 1876

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
1877
		ret = -ESTALE;
1878 1879 1880
		goto out;
	}

1881 1882 1883 1884
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
1885 1886 1887 1888 1889 1890 1891

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

1892 1893
	flush_writes(ohci);
 out:
1894
	spin_unlock_irqrestore(&ohci->lock, flags);
1895 1896

	return ret;
1897
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1898
}
S
Stefan Richter 已提交
1899

1900
static u32 cycle_timer_ticks(u32 cycle_timer)
1901 1902 1903 1904 1905 1906
{
	u32 ticks;

	ticks = cycle_timer & 0xfff;
	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
	ticks += (3072 * 8000) * (cycle_timer >> 25);
1907

1908 1909 1910
	return ticks;
}

1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
/*
 * Some controllers exhibit one or more of the following bugs when updating the
 * iso cycle timer register:
 *  - When the lowest six bits are wrapping around to zero, a read that happens
 *    at the same time will return garbage in the lowest ten bits.
 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
 *    not incremented for about 60 ns.
 *  - Occasionally, the entire register reads zero.
 *
 * To catch these, we read the register three times and ensure that the
 * difference between each two consecutive reads is approximately the same, i.e.
 * less than twice the other.  Furthermore, any negative difference indicates an
 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
 * execute, so we have enough precision to compute the ratio of the differences.)
 */
1926
static u32 ohci_get_cycle_time(struct fw_card *card)
1927 1928
{
	struct fw_ohci *ohci = fw_ohci(card);
1929 1930 1931
	u32 c0, c1, c2;
	u32 t0, t1, t2;
	s32 diff01, diff12;
1932
	int i;
1933

1934 1935
	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);

1936
	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1937 1938
		i = 0;
		c1 = c2;
1939 1940
		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		do {
1941 1942
			c0 = c1;
			c1 = c2;
1943 1944 1945 1946 1947 1948
			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
			t0 = cycle_timer_ticks(c0);
			t1 = cycle_timer_ticks(c1);
			t2 = cycle_timer_ticks(c2);
			diff01 = t1 - t0;
			diff12 = t2 - t1;
1949 1950 1951
		} while ((diff01 <= 0 || diff12 <= 0 ||
			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
			 && i++ < 20);
1952
	}
1953

1954
	return c2;
1955 1956
}

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
static void copy_iso_headers(struct iso_context *ctx, void *p)
{
	int i = ctx->header_length;

	if (i + ctx->base.header_size > PAGE_SIZE)
		return;

	/*
	 * The iso header is byteswapped to little endian by
	 * the controller, but the remaining header quadlets
	 * are big endian.  We want to present all the headers
	 * as big endian, so we have to swap the first quadlet.
	 */
	if (ctx->base.header_size > 0)
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
	if (ctx->base.header_size > 4)
		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
	if (ctx->base.header_size > 8)
		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
	ctx->header_length += ctx->base.header_size;
}

1979 1980 1981 1982 1983 1984
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
1985
	struct descriptor *pd;
1986
	__le32 *ir_header;
1987
	void *p;
1988

1989 1990 1991 1992 1993
	for (pd = d; pd <= last; pd++) {
		if (pd->transfer_status)
			break;
	}
	if (pd > last)
1994 1995 1996
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

1997 1998
	p = last + 1;
	copy_iso_headers(ctx, p);
1999

2000 2001
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) p;
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
		ctx->base.callback(&ctx->base,
				   le32_to_cpu(ir_header[0]) & 0xffff,
				   ctx->header_length, ctx->header,
				   ctx->base.callback_data);
		ctx->header_length = 0;
	}

	return 1;
}

2012 2013 2014
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
2015
{
2016 2017
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2018 2019
	int i;
	struct descriptor *pd;
S
Stefan Richter 已提交
2020

2021 2022 2023 2024 2025
	for (pd = d; pd <= last; pd++)
		if (pd->transfer_status)
			break;
	if (pd > last)
		/* Descriptor(s) not done yet, stop iteration */
2026 2027
		return 0;

2028 2029 2030 2031 2032 2033 2034 2035 2036
	i = ctx->header_length;
	if (i + 4 < PAGE_SIZE) {
		/* Present this value as big-endian to match the receive code */
		*(__be32 *)(ctx->header + i) = cpu_to_be32(
				((u32)le16_to_cpu(pd->transfer_status) << 16) |
				le16_to_cpu(pd->res_count));
		ctx->header_length += 4;
	}
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2037
		ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
2038 2039 2040 2041
				   ctx->header_length, ctx->header,
				   ctx->base.callback_data);
		ctx->header_length = 0;
	}
2042
	return 1;
2043 2044
}

2045
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2046
				int type, int channel, size_t header_size)
2047 2048 2049
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct iso_context *ctx, *list;
2050
	descriptor_callback_t callback;
2051
	u64 *channels, dont_care = ~0ULL;
2052
	u32 *mask, regs;
2053
	unsigned long flags;
2054
	int index, ret = -ENOMEM;
2055 2056

	if (type == FW_ISO_CONTEXT_TRANSMIT) {
2057
		channels = &dont_care;
2058 2059
		mask = &ohci->it_context_mask;
		list = ohci->it_context_list;
2060
		callback = handle_it_packet;
2061
	} else {
2062
		channels = &ohci->ir_context_channels;
S
Stefan Richter 已提交
2063 2064
		mask = &ohci->ir_context_mask;
		list = ohci->ir_context_list;
2065
		callback = handle_ir_packet_per_buffer;
2066 2067 2068
	}

	spin_lock_irqsave(&ohci->lock, flags);
2069 2070 2071
	index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
	if (index >= 0) {
		*channels &= ~(1ULL << channel);
2072
		*mask &= ~(1 << index);
2073
	}
2074 2075 2076 2077 2078
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
		return ERR_PTR(-EBUSY);

S
Stefan Richter 已提交
2079 2080 2081 2082 2083
	if (type == FW_ISO_CONTEXT_TRANSMIT)
		regs = OHCI1394_IsoXmitContextBase(index);
	else
		regs = OHCI1394_IsoRcvContextBase(index);

2084
	ctx = &list[index];
2085
	memset(ctx, 0, sizeof(*ctx));
2086 2087 2088 2089 2090
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
	if (ctx->header == NULL)
		goto out;

2091 2092
	ret = context_init(&ctx->context, ohci, regs, callback);
	if (ret < 0)
2093
		goto out_with_header;
2094 2095

	return &ctx->base;
2096 2097 2098 2099 2100 2101 2102 2103

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
	*mask |= 1 << index;
	spin_unlock_irqrestore(&ohci->lock, flags);

2104
	return ERR_PTR(ret);
2105 2106
}

2107 2108
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
2109
{
S
Stefan Richter 已提交
2110
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2111
	struct fw_ohci *ohci = ctx->context.ohci;
2112
	u32 control, match;
2113 2114
	int index;

2115 2116
	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
2117 2118 2119
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2120
				(cycle & 0x7fff) << 16;
2121

2122 2123
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2124
		context_run(&ctx->context, match);
2125 2126
	} else {
		index = ctx - ohci->ir_context_list;
2127
		control = IR_CONTEXT_ISOCH_HEADER;
2128 2129 2130 2131 2132
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
2133

2134 2135
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2136
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2137
		context_run(&ctx->context, control);
2138
	}
2139 2140 2141 2142

	return 0;
}

2143 2144 2145
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2146
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
	int index;

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
	} else {
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
	}
	flush_writes(ohci);
	context_stop(&ctx->context);

	return 0;
}

2162 2163 2164
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2165
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2166 2167 2168
	unsigned long flags;
	int index;

2169 2170
	ohci_stop_iso(base);
	context_release(&ctx->context);
2171
	free_page((unsigned long)ctx->header);
2172

2173 2174 2175 2176 2177 2178 2179 2180
	spin_lock_irqsave(&ohci->lock, flags);

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
	} else {
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
2181
		ohci->ir_context_channels |= 1ULL << base->channel;
2182 2183 2184 2185 2186
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

2187 2188 2189 2190
static int ohci_queue_iso_transmit(struct fw_iso_context *base,
				   struct fw_iso_packet *packet,
				   struct fw_iso_buffer *buffer,
				   unsigned long payload)
2191
{
S
Stefan Richter 已提交
2192
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2193
	struct descriptor *d, *last, *pd;
2194 2195
	struct fw_iso_packet *p;
	__le32 *header;
2196
	dma_addr_t d_bus, page_bus;
2197 2198
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
2199
	int page, end_page, i, length, offset;
2200 2201

	p = packet;
2202
	payload_index = payload;
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
2221
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2222

2223 2224 2225
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
2226 2227

	if (!p->skip) {
2228
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2229
		d[0].req_count = cpu_to_le16(8);
2230 2231 2232 2233 2234 2235 2236 2237
		/*
		 * Link the skip address to this descriptor itself.  This causes
		 * a context to skip a cycle whenever lost cycles or FIFO
		 * overruns occur, without dropping the data.  The application
		 * should then decide whether this is an error condition or not.
		 * FIXME:  Make the context's cycle-lost behaviour configurable?
		 */
		d[0].branch_address = cpu_to_le32(d_bus | z);
2238 2239

		header = (__le32 *) &d[1];
2240 2241 2242 2243 2244
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
2245
		header[1] =
2246
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2247 2248 2249 2250 2251
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
2252
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
2265 2266 2267

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
2268 2269 2270 2271 2272

		payload_index += length;
	}

	if (p->interrupt)
2273
		irq = DESCRIPTOR_IRQ_ALWAYS;
2274
	else
2275
		irq = DESCRIPTOR_NO_IRQ;
2276

2277
	last = z == 2 ? d : d + z - 1;
2278 2279 2280
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
2281
				     irq);
2282

2283
	context_append(&ctx->context, d, z, header_z);
2284 2285 2286

	return 0;
}
S
Stefan Richter 已提交
2287

2288 2289 2290 2291
static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
					struct fw_iso_packet *packet,
					struct fw_iso_buffer *buffer,
					unsigned long payload)
2292 2293
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2294
	struct descriptor *d, *pd;
2295
	struct fw_iso_packet *p = packet;
2296 2297
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
2298 2299
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
2300 2301

	/*
2302 2303
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
2304 2305
	 */
	packet_count = p->header_length / ctx->base.header_size;
2306
	header_size  = max(ctx->base.header_size, (size_t)8);
2307 2308 2309 2310 2311

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
2312
	payload_per_buffer = p->payload_length / packet_count;
2313 2314 2315

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
2316
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2317
		d = context_get_descriptors(&ctx->context,
2318
				z + header_z, &d_bus);
2319 2320 2321
		if (d == NULL)
			return -ENOMEM;

2322 2323 2324 2325
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
		if (p->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2326 2327
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
2328
		d->transfer_status = 0;
2329 2330
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

2331
		rest = payload_per_buffer;
2332
		pd = d;
2333
		for (j = 1; j < z; j++) {
2334
			pd++;
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
2354 2355 2356
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
2357
		if (p->interrupt && i == packet_count - 1)
2358 2359 2360 2361 2362 2363 2364 2365
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

2366 2367 2368 2369
static int ohci_queue_iso(struct fw_iso_context *base,
			  struct fw_iso_packet *packet,
			  struct fw_iso_buffer *buffer,
			  unsigned long payload)
2370
{
2371
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2372
	unsigned long flags;
2373
	int ret;
2374

2375
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2376
	if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2377
		ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2378
	else
2379 2380
		ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
							buffer, payload);
2381 2382
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

2383
	return ret;
2384 2385
}

2386
static const struct fw_card_driver ohci_driver = {
2387 2388 2389 2390 2391
	.enable			= ohci_enable,
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
2392
	.cancel_packet		= ohci_cancel_packet,
2393
	.enable_phys_dma	= ohci_enable_phys_dma,
2394
	.get_cycle_time		= ohci_get_cycle_time,
2395 2396 2397 2398

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
	.queue_iso		= ohci_queue_iso,
2399
	.start_iso		= ohci_start_iso,
2400
	.stop_iso		= ohci_stop_iso,
2401 2402
};

2403
#ifdef CONFIG_PPC_PMAC
2404 2405
static void ohci_pmac_on(struct pci_dev *dev)
{
2406 2407 2408 2409 2410 2411 2412 2413
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
}

static void ohci_pmac_off(struct pci_dev *dev)
{
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
}
#else
#define ohci_pmac_on(dev)
#define ohci_pmac_off(dev)
2430 2431
#endif /* CONFIG_PPC_PMAC */

2432 2433
static int __devinit pci_probe(struct pci_dev *dev,
			       const struct pci_device_id *ent)
2434 2435
{
	struct fw_ohci *ohci;
2436
	u32 bus_options, max_receive, link_speed, version, link_enh;
2437
	u64 guid;
2438
	int i, err, n_ir, n_it;
2439 2440
	size_t size;

2441
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2442
	if (ohci == NULL) {
2443 2444
		err = -ENOMEM;
		goto fail;
2445 2446 2447 2448
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

2449 2450
	ohci_pmac_on(dev);

2451 2452
	err = pci_enable_device(dev);
	if (err) {
2453
		fw_error("Failed to enable OHCI hardware\n");
2454
		goto fail_free;
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

2466 2467
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
2468
		fw_error("MMIO resource unavailable\n");
2469
		goto fail_disable;
2470 2471 2472 2473 2474
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
2475 2476
		err = -ENXIO;
		goto fail_iomem;
2477 2478
	}

2479 2480 2481 2482 2483 2484 2485
	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
		if (ohci_quirks[i].vendor == dev->vendor &&
		    (ohci_quirks[i].device == dev->device ||
		     ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
			ohci->quirks = ohci_quirks[i].flags;
			break;
		}
2486 2487
	if (param_quirks)
		ohci->quirks = param_quirks;
2488

2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
	/* TI OHCI-Lynx and compatible: set recommended configuration bits. */
	if (dev->vendor == PCI_VENDOR_ID_TI) {
		pci_read_config_dword(dev, PCI_CFG_TI_LinkEnh, &link_enh);

		/* adjust latency of ATx FIFO: use 1.7 KB threshold */
		link_enh &= ~TI_LinkEnh_atx_thresh_mask;
		link_enh |= TI_LinkEnh_atx_thresh_1_7K;

		/* use priority arbitration for asynchronous responses */
		link_enh |= TI_LinkEnh_enab_unfair;

		/* required for aPhyEnhanceEnable to work */
		link_enh |= TI_LinkEnh_enab_accel;

		pci_write_config_dword(dev, PCI_CFG_TI_LinkEnh, link_enh);
	}

2506 2507 2508 2509 2510 2511
	ar_context_init(&ohci->ar_request_ctx, ohci,
			OHCI1394_AsReqRcvContextControlSet);

	ar_context_init(&ohci->ar_response_ctx, ohci,
			OHCI1394_AsRspRcvContextControlSet);

2512
	context_init(&ohci->at_request_ctx, ohci,
2513
		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2514

2515
	context_init(&ohci->at_response_ctx, ohci,
2516
		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2517 2518

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2519 2520
	ohci->ir_context_channels = ~0ULL;
	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2521
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2522 2523
	n_ir = hweight32(ohci->ir_context_mask);
	size = sizeof(struct iso_context) * n_ir;
2524
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2525 2526

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2527
	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2528
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2529 2530
	n_it = hweight32(ohci->it_context_mask);
	size = sizeof(struct iso_context) * n_it;
2531
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2532 2533

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2534
		err = -ENOMEM;
2535
		goto fail_contexts;
2536 2537 2538 2539 2540 2541 2542 2543
	}

	/* self-id dma buffer allocation */
	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
					       SELF_ID_BUF_SIZE,
					       &ohci->self_id_bus,
					       GFP_KERNEL);
	if (ohci->self_id_cpu == NULL) {
2544
		err = -ENOMEM;
2545
		goto fail_contexts;
2546 2547 2548 2549 2550 2551 2552 2553
	}

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

2554
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2555
	if (err)
2556
		goto fail_self_id;
2557

2558 2559 2560 2561 2562
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
		  "%d IR + %d IT contexts, quirks 0x%x\n",
		  dev_name(&dev->dev), version >> 16, version & 0xff,
		  n_ir, n_it, ohci->quirks);
2563

2564
	return 0;
2565 2566 2567 2568

 fail_self_id:
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
2569
 fail_contexts:
2570
	kfree(ohci->ir_context_list);
2571 2572 2573 2574 2575
	kfree(ohci->it_context_list);
	context_release(&ohci->at_response_ctx);
	context_release(&ohci->at_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	ar_context_release(&ohci->ar_request_ctx);
2576 2577 2578 2579 2580
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
2581 2582
 fail_free:
	kfree(&ohci->card);
2583
	ohci_pmac_off(dev);
2584 2585 2586
 fail:
	if (err == -ENOMEM)
		fw_error("Out of memory\n");
2587 2588

	return err;
2589 2590 2591 2592 2593 2594 2595
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
2596 2597
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
2598 2599
	fw_core_remove_card(&ohci->card);

2600 2601 2602 2603
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
2604 2605 2606

	software_reset(ohci);
	free_irq(dev->irq, ohci);
2607 2608 2609 2610 2611 2612 2613

	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->next_config_rom, ohci->next_config_rom_bus);
	if (ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
2614 2615
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
2616 2617 2618 2619
	ar_context_release(&ohci->ar_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	context_release(&ohci->at_request_ctx);
	context_release(&ohci->at_response_ctx);
2620 2621 2622 2623 2624
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
2625
	kfree(&ohci->card);
2626
	ohci_pmac_off(dev);
2627

2628 2629 2630
	fw_notify("Removed fw-ohci device.\n");
}

2631
#ifdef CONFIG_PM
2632
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2633
{
2634
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2635 2636 2637
	int err;

	software_reset(ohci);
2638 2639
	free_irq(dev->irq, ohci);
	err = pci_save_state(dev);
2640
	if (err) {
2641
		fw_error("pci_save_state failed\n");
2642 2643
		return err;
	}
2644
	err = pci_set_power_state(dev, pci_choose_state(dev, state));
2645 2646
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
2647
	ohci_pmac_off(dev);
2648

2649 2650 2651
	return 0;
}

2652
static int pci_resume(struct pci_dev *dev)
2653
{
2654
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2655 2656
	int err;

2657 2658 2659 2660
	ohci_pmac_on(dev);
	pci_set_power_state(dev, PCI_D0);
	pci_restore_state(dev);
	err = pci_enable_device(dev);
2661
	if (err) {
2662
		fw_error("pci_enable_device failed\n");
2663 2664 2665
		return err;
	}

2666
	return ohci_enable(&ohci->card, NULL, 0);
2667 2668 2669
}
#endif

2670
static const struct pci_device_id pci_table[] = {
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
2682 2683 2684 2685
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
2686 2687 2688 2689 2690 2691
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

2692 2693 2694 2695 2696
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);