ohci.c 74.4 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/compiler.h>
22
#include <linux/delay.h>
S
Stefan Richter 已提交
23
#include <linux/device.h>
A
Andrew Morton 已提交
24
#include <linux/dma-mapping.h>
25
#include <linux/firewire.h>
S
Stefan Richter 已提交
26
#include <linux/firewire-constants.h>
S
Stefan Richter 已提交
27
#include <linux/gfp.h>
28 29
#include <linux/init.h>
#include <linux/interrupt.h>
S
Stefan Richter 已提交
30
#include <linux/io.h>
31
#include <linux/kernel.h>
S
Stefan Richter 已提交
32
#include <linux/list.h>
A
Al Viro 已提交
33
#include <linux/mm.h>
34
#include <linux/module.h>
35
#include <linux/moduleparam.h>
36
#include <linux/pci.h>
37
#include <linux/pci_ids.h>
S
Stefan Richter 已提交
38
#include <linux/spinlock.h>
S
Stefan Richter 已提交
39
#include <linux/string.h>
A
Andrew Morton 已提交
40

41
#include <asm/atomic.h>
S
Stefan Richter 已提交
42
#include <asm/byteorder.h>
S
Stefan Richter 已提交
43
#include <asm/page.h>
44
#include <asm/system.h>
45

46 47 48 49
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

50 51
#include "core.h"
#include "ohci.h"
52

53 54 55 56 57 58 59 60 61 62 63 64 65
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
66 67 68 69 70 71 72 73 74 75

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

76 77 78 79 80 81 82 83 84 85 86 87 88 89
struct db_descriptor {
	__le16 first_size;
	__le16 control;
	__le16 second_req_count;
	__le16 first_req_count;
	__le32 branch_address;
	__le16 second_res_count;
	__le16 first_res_count;
	__le32 reserved0;
	__le32 first_buffer;
	__le32 second_buffer;
	__le32 reserved1;
} __attribute__((aligned(16)));

90 91 92 93
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
94

95
struct ar_buffer {
96
	struct descriptor descriptor;
97 98 99
	struct ar_buffer *next;
	__le32 data[0];
};
100

101 102 103 104 105
struct ar_context {
	struct fw_ohci *ohci;
	struct ar_buffer *current_buffer;
	struct ar_buffer *last_buffer;
	void *pointer;
106
	u32 regs;
107 108 109
	struct tasklet_struct tasklet;
};

110 111 112 113 114
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
115 116 117 118 119 120 121 122 123 124 125 126 127

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

128
struct context {
S
Stefan Richter 已提交
129
	struct fw_ohci *ohci;
130
	u32 regs;
131
	int total_allocation;
S
Stefan Richter 已提交
132

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
	 * The last descriptor in the DMA program.  It contains the branch
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
157 158 159

	descriptor_callback_t callback;

S
Stefan Richter 已提交
160
	struct tasklet_struct tasklet;
161 162
};

163 164 165 166 167 168
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
169 170 171

struct iso_context {
	struct fw_iso_context base;
172
	struct context context;
173
	int excess_bytes;
174 175
	void *header;
	size_t header_length;
176 177 178 179 180 181 182 183 184 185 186
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

	__iomem char *registers;
	dma_addr_t self_id_bus;
	__le32 *self_id_cpu;
	struct tasklet_struct bus_reset_tasklet;
187
	int node_id;
188
	int generation;
189
	int request_generation;	/* for timestamping incoming requests */
190
	atomic_t bus_seconds;
191 192

	bool use_dualbuffer;
193
	bool old_uninorth;
194
	bool bus_reset_packet_quirk;
195

196 197 198 199
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
200 201 202 203 204 205 206 207
	spinlock_t lock;
	u32 self_id_buffer[512];

	/* Config rom buffers */
	__be32 *config_rom;
	dma_addr_t config_rom_bus;
	__be32 *next_config_rom;
	dma_addr_t next_config_rom_bus;
208
	__be32 next_header;
209 210 211

	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
212 213
	struct context at_request_ctx;
	struct context at_response_ctx;
214 215 216

	u32 it_context_mask;
	struct iso_context *it_context_list;
217
	u64 ir_context_channels;
218 219 220 221
	u32 ir_context_mask;
	struct iso_context *ir_context_list;
};

A
Adrian Bunk 已提交
222
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
223 224 225 226
{
	return container_of(card, struct fw_ohci, card);
}

227 228 229 230 231 232
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
233 234 235 236 237 238

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

239
#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
240 241 242 243 244 245 246
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
247
#define OHCI_TCODE_PHY_PACKET		0x0e
248
#define OHCI_VERSION_1_1		0x010010
249

250 251
static char ohci_driver_name[] = KBUILD_MODNAME;

252 253
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG

254
#define OHCI_PARAM_DEBUG_AT_AR		1
255
#define OHCI_PARAM_DEBUG_SELFIDS	2
256 257
#define OHCI_PARAM_DEBUG_IRQS		4
#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
258 259 260 261 262

static int param_debug;
module_param_named(debug, param_debug, int, 0644);
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
263 264 265
	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
266 267 268 269
	", or a combination, or all = -1)");

static void log_irqs(u32 evt)
{
270 271 272 273 274 275
	if (likely(!(param_debug &
			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
		return;

	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
	    !(evt & OHCI1394_busReset))
276 277
		return;

278
	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
279 280 281 282 283 284 285 286 287 288
	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
	    evt & OHCI1394_isochRx		? " IR"			: "",
	    evt & OHCI1394_isochTx		? " IT"			: "",
	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
289
	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
290 291 292 293 294 295 296
	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
	    evt & OHCI1394_busReset		? " busReset"		: "",
	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
		    OHCI1394_respTxComplete | OHCI1394_isochRx |
		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
297
		    OHCI1394_cycleInconsistent |
298
		    OHCI1394_regAccessFail | OHCI1394_busReset)
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
						? " ?"			: "");
}

static const char *speed[] = {
	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
};
static const char *power[] = {
	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
};
static const char port[] = { '.', '-', 'p', 'c', };

static char _p(u32 *s, int shift)
{
	return port[*s >> shift & 3];
}

316
static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
317 318 319 320
{
	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
		return;

321 322
	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
		  self_id_count, generation, node_id);
323 324 325

	for (; self_id_count--; ++s)
		if ((*s & 1 << 23) == 0)
326 327 328 329 330 331
			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
			    "%s gc=%d %s %s%s%s\n",
			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
			    speed[*s >> 14 & 3], *s >> 16 & 63,
			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
332
		else
333 334 335 336
			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
			    *s, *s >> 24 & 63,
			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
}

static const char *evts[] = {
	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
	[0x10] = "-reserved-",		[0x11] = "ack_complete",
	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
	[0x18] = "-reserved-",		[0x19] = "-reserved-",
	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
	[0x20] = "pending/cancelled",
};
static const char *tcodes[] = {
	[0x0] = "QW req",		[0x1] = "BW req",
	[0x2] = "W resp",		[0x3] = "-reserved-",
	[0x4] = "QR req",		[0x5] = "BR req",
	[0x6] = "QR resp",		[0x7] = "BR resp",
	[0x8] = "cycle start",		[0x9] = "Lk req",
	[0xa] = "async stream packet",	[0xb] = "Lk resp",
	[0xc] = "-reserved-",		[0xd] = "-reserved-",
	[0xe] = "link internal",	[0xf] = "-reserved-",
};
static const char *phys[] = {
	[0x0] = "phy config packet",	[0x1] = "link-on packet",
	[0x2] = "self-id packet",	[0x3] = "-reserved-",
};

static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
{
	int tcode = header[0] >> 4 & 0xf;
	char specific[12];

	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
		return;

	if (unlikely(evt >= ARRAY_SIZE(evts)))
			evt = 0x1f;

384
	if (evt == OHCI1394_evt_bus_reset) {
385 386
		fw_notify("A%c evt_bus_reset, generation %d\n",
		    dir, (header[2] >> 16) & 0xff);
387 388 389
		return;
	}

390
	if (header[0] == ~header[1]) {
391 392
		fw_notify("A%c %s, %s, %08x\n",
		    dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
		return;
	}

	switch (tcode) {
	case 0x0: case 0x6: case 0x8:
		snprintf(specific, sizeof(specific), " = %08x",
			 be32_to_cpu((__force __be32)header[3]));
		break;
	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
		snprintf(specific, sizeof(specific), " %x,%x",
			 header[3] >> 16, header[3] & 0xffff);
		break;
	default:
		specific[0] = '\0';
	}

	switch (tcode) {
	case 0xe: case 0xa:
411
		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
412 413
		break;
	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
414 415 416 417 418 419
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s, %04x%08x%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
420 421
		break;
	default:
422 423 424 425 426 427
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], specific);
428 429 430 431 432 433
	}
}

#else

#define log_irqs(evt)
434
#define log_selfids(node_id, generation, self_id_count, sid)
435 436 437 438
#define log_ar_at_event(dir, speed, header, evt)

#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */

A
Adrian Bunk 已提交
439
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
440 441 442 443
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
444
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
445 446 447 448
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
449
static inline void flush_writes(const struct fw_ohci *ohci)
450 451 452 453 454
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

455 456
static int ohci_update_phy_reg(struct fw_card *card, int addr,
			       int clear_bits, int set_bits)
457 458 459 460 461
{
	struct fw_ohci *ohci = fw_ohci(card);
	u32 val, old;

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
462
	flush_writes(ohci);
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
	msleep(2);
	val = reg_read(ohci, OHCI1394_PhyControl);
	if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
		fw_error("failed to set phy reg bits.\n");
		return -EBUSY;
	}

	old = OHCI1394_PhyControl_ReadData(val);
	old = (old & ~clear_bits) | set_bits;
	reg_write(ohci, OHCI1394_PhyControl,
		  OHCI1394_PhyControl_Write(addr, old));

	return 0;
}

478
static int ar_context_add_page(struct ar_context *ctx)
479
{
480 481
	struct device *dev = ctx->ohci->card.device;
	struct ar_buffer *ab;
482
	dma_addr_t uninitialized_var(ab_bus);
483 484
	size_t offset;

485
	ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
486 487 488
	if (ab == NULL)
		return -ENOMEM;

489
	ab->next = NULL;
490
	memset(&ab->descriptor, 0, sizeof(ab->descriptor));
491 492 493
	ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						    DESCRIPTOR_STATUS |
						    DESCRIPTOR_BRANCH_ALWAYS);
494 495 496 497 498 499
	offset = offsetof(struct ar_buffer, data);
	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.branch_address = 0;

500
	ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
501 502 503
	ctx->last_buffer->next = ab;
	ctx->last_buffer = ab;

504
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
505
	flush_writes(ctx->ohci);
506 507

	return 0;
508 509
}

510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
static void ar_context_release(struct ar_context *ctx)
{
	struct ar_buffer *ab, *ab_next;
	size_t offset;
	dma_addr_t ab_bus;

	for (ab = ctx->current_buffer; ab; ab = ab_next) {
		ab_next = ab->next;
		offset = offsetof(struct ar_buffer, data);
		ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
		dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
				  ab, ab_bus);
	}
}

525 526 527 528 529 530 531
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
	(ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

532
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
533 534
{
	struct fw_ohci *ohci = ctx->ohci;
535 536
	struct fw_packet p;
	u32 status, length, tcode;
537
	int evt;
538

539 540 541
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
542 543 544 545 546

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
547
		p.header[3] = (__force __u32) buffer[3];
548
		p.header_length = 16;
549
		p.payload_length = 0;
550 551 552
		break;

	case TCODE_READ_BLOCK_REQUEST :
553
		p.header[3] = cond_le32_to_cpu(buffer[3]);
554 555 556 557 558
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
559 560 561
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
562
		p.header[3] = cond_le32_to_cpu(buffer[3]);
563
		p.header_length = 16;
564
		p.payload_length = p.header[3] >> 16;
565 566 567 568
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
569
	case OHCI_TCODE_PHY_PACKET:
570
		p.header_length = 12;
571
		p.payload_length = 0;
572
		break;
573 574 575 576 577

	default:
		/* FIXME: Stop context, discard everything, and restart? */
		p.header_length = 0;
		p.payload_length = 0;
578
	}
579

580 581 582 583
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
584
	status = cond_le32_to_cpu(buffer[length]);
585
	evt    = (status >> 16) & 0x1f;
586

587
	p.ack        = evt - 16;
588 589 590
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
591

592
	log_ar_at_event('R', p.speed, p.header, evt);
593

594 595
	/*
	 * The OHCI bus reset handler synthesizes a phy packet with
596 597 598 599 600
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
601
	 * request.
602 603 604 605
	 *
	 * Alas some chips sometimes emit bus reset packets with a
	 * wrong generation.  We set the correct generation for these
	 * at a slightly incorrect time (in bus_reset_tasklet).
606
	 */
607 608 609 610
	if (evt == OHCI1394_evt_bus_reset) {
		if (!ohci->bus_reset_packet_quirk)
			ohci->request_generation = (p.header[2] >> 16) & 0xff;
	} else if (ctx == &ohci->ar_request_ctx) {
611
		fw_core_handle_request(&ohci->card, &p);
612
	} else {
613
		fw_core_handle_response(&ohci->card, &p);
614
	}
615

616 617
	return buffer + length + 1;
}
618

619 620 621 622 623 624 625 626 627 628 629 630 631
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
	struct fw_ohci *ohci = ctx->ohci;
	struct ar_buffer *ab;
	struct descriptor *d;
	void *buffer, *end;

	ab = ctx->current_buffer;
	d = &ab->descriptor;

	if (d->res_count == 0) {
		size_t size, rest, offset;
632 633
		dma_addr_t start_bus;
		void *start;
634

635 636
		/*
		 * This descriptor is finished and we may have a
637
		 * packet split across this and the next buffer. We
638 639
		 * reuse the page for reassembling the split packet.
		 */
640 641

		offset = offsetof(struct ar_buffer, data);
642 643
		start = buffer = ab;
		start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
644 645 646 647 648 649 650 651 652 653 654 655 656 657

		ab = ab->next;
		d = &ab->descriptor;
		size = buffer + PAGE_SIZE - ctx->pointer;
		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
		memmove(buffer, ctx->pointer, size);
		memcpy(buffer + size, ab->data, rest);
		ctx->current_buffer = ab;
		ctx->pointer = (void *) ab->data + rest;
		end = buffer + size + rest;

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);

658
		dma_free_coherent(ohci->card.device, PAGE_SIZE,
659
				  start, start_bus);
660 661 662 663 664 665 666 667 668
		ar_context_add_page(ctx);
	} else {
		buffer = ctx->pointer;
		ctx->pointer = end =
			(void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);
	}
669 670
}

671 672
static int ar_context_init(struct ar_context *ctx,
			   struct fw_ohci *ohci, u32 regs)
673
{
674
	struct ar_buffer ab;
675

676 677 678
	ctx->regs        = regs;
	ctx->ohci        = ohci;
	ctx->last_buffer = &ab;
679 680
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

681 682 683 684 685
	ar_context_add_page(ctx);
	ar_context_add_page(ctx);
	ctx->current_buffer = ab.next;
	ctx->pointer = ctx->current_buffer->data;

686 687 688 689 690 691 692 693 694 695
	return 0;
}

static void ar_context_run(struct ar_context *ctx)
{
	struct ar_buffer *ab = ctx->current_buffer;
	dma_addr_t ab_bus;
	size_t offset;

	offset = offsetof(struct ar_buffer, data);
696
	ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
697 698

	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
699
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
700
	flush_writes(ctx->ohci);
701
}
S
Stefan Richter 已提交
702

703
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
704 705 706 707 708 709 710 711 712 713 714 715 716
{
	int b, key;

	b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
	key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;

	/* figure out which descriptor the branch address goes in */
	if (z == 2 && (b == 3 || key == 2))
		return d;
	else
		return d + z - 1;
}

717 718 719 720 721 722
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
723
	struct descriptor_buffer *desc;
724

725 726 727
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
728
	while (last->branch_address != 0) {
729
		struct descriptor_buffer *old_desc = desc;
730 731
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
732 733 734 735 736 737 738 739 740
		address &= ~0xf;

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
741
		last = find_branch_descriptor(d, z);
742 743 744 745

		if (!ctx->callback(ctx, d, last))
			break;

746 747 748 749 750 751 752 753 754 755
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
756 757 758
	}
}

759 760 761 762
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
763
static int context_add_buffer(struct context *ctx)
764 765
{
	struct descriptor_buffer *desc;
766
	dma_addr_t uninitialized_var(bus_addr);
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

792 793
static int context_init(struct context *ctx, struct fw_ohci *ohci,
			u32 regs, descriptor_callback_t callback)
794 795 796
{
	ctx->ohci = ohci;
	ctx->regs = regs;
797 798 799 800
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
801 802
		return -ENOMEM;

803 804 805
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

806 807 808
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

809 810
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
811
	 * branch address and looks like it's been sent.  That way we
812
	 * have a descriptor to append DMA programs to.
813
	 */
814 815 816 817 818 819
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
820 821 822 823

	return 0;
}

824
static void context_release(struct context *ctx)
825 826
{
	struct fw_card *card = &ctx->ohci->card;
827
	struct descriptor_buffer *desc, *tmp;
828

829 830 831 832
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
833 834
}

835
/* Must be called with ohci->lock held */
836 837
static struct descriptor *context_get_descriptors(struct context *ctx,
						  int z, dma_addr_t *d_bus)
838
{
839 840 841 842 843 844 845 846 847
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
848

849 850 851 852 853 854 855 856 857 858
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
859

860
	d = desc->buffer + desc->used / sizeof(*d);
861
	memset(d, 0, z * sizeof(*d));
862
	*d_bus = desc->buffer_bus + desc->used;
863 864 865 866

	return d;
}

867
static void context_run(struct context *ctx, u32 extra)
868 869 870
{
	struct fw_ohci *ohci = ctx->ohci;

871
	reg_write(ohci, COMMAND_PTR(ctx->regs),
872
		  le32_to_cpu(ctx->last->branch_address));
873 874
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
875 876 877 878 879 880 881
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
882
	struct descriptor_buffer *desc = ctx->buffer_tail;
883

884
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
885

886 887 888
	desc->used += (z + extra) * sizeof(*d);
	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev = find_branch_descriptor(d, z);
889

890
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
891 892 893 894 895 896
	flush_writes(ctx->ohci);
}

static void context_stop(struct context *ctx)
{
	u32 reg;
897
	int i;
898

899
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
900
	flush_writes(ctx->ohci);
901

902
	for (i = 0; i < 10; i++) {
903
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
904
		if ((reg & CONTEXT_ACTIVE) == 0)
905
			return;
906

907
		mdelay(1);
908
	}
909
	fw_error("Error: DMA context still active (0x%08x)\n", reg);
910
}
911

912 913 914
struct driver_data {
	struct fw_packet *packet;
};
915

916 917
/*
 * This function apppends a packet to the DMA queue for transmission.
918
 * Must always be called with the ochi->lock held to ensure proper
919 920
 * generation handling and locking around packet queue manipulation.
 */
921 922
static int at_context_queue_packet(struct context *ctx,
				   struct fw_packet *packet)
923 924
{
	struct fw_ohci *ohci = ctx->ohci;
925
	dma_addr_t d_bus, uninitialized_var(payload_bus);
926 927 928
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
929
	int z, tcode;
930
	u32 reg;
931

932 933 934 935
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
936 937
	}

938
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
939 940
	d[0].res_count = cpu_to_le16(packet->timestamp);

941 942
	/*
	 * The DMA format for asyncronous link packets is different
943 944
	 * from the IEEE1394 layout, so shift the fields around
	 * accordingly.  If header_length is 8, it's a PHY packet, to
945 946
	 * which we need to prepend an extra quadlet.
	 */
947 948

	header = (__le32 *) &d[1];
949 950 951
	switch (packet->header_length) {
	case 16:
	case 12:
952 953 954 955 956
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
957 958 959

		tcode = (packet->header[0] >> 4) & 0x0f;
		if (TCODE_IS_BLOCK_PACKET(tcode))
960
			header[3] = cpu_to_le32(packet->header[3]);
961
		else
962 963 964
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
965 966 967
		break;

	case 8:
968 969 970 971 972
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0]);
		header[2] = cpu_to_le32(packet->header[1]);
		d[0].req_count = cpu_to_le16(12);
973 974 975 976 977 978 979 980 981 982 983 984 985
		break;

	case 4:
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
		d[0].req_count = cpu_to_le16(8);
		break;

	default:
		/* BUG(); */
		packet->ack = RCODE_SEND_ERROR;
		return -1;
986 987
	}

988 989
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
990
	packet->driver_data = driver_data;
991

992 993 994 995
	if (packet->payload_length > 0) {
		payload_bus =
			dma_map_single(ohci->card.device, packet->payload,
				       packet->payload_length, DMA_TO_DEVICE);
996
		if (dma_mapping_error(ohci->card.device, payload_bus)) {
997 998 999
			packet->ack = RCODE_SEND_ERROR;
			return -1;
		}
1000 1001
		packet->payload_bus	= payload_bus;
		packet->payload_mapped	= true;
1002 1003 1004 1005 1006

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
1007
	} else {
1008 1009
		last = &d[0];
		z = 2;
1010 1011
	}

1012 1013 1014
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
1015

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
	/*
	 * If the controller and packet generations don't match, we need to
	 * bail out and try again.  If IntEvent.busReset is set, the AT context
	 * is halted, so appending to the context and trying to run it is
	 * futile.  Most controllers do the right thing and just flush the AT
	 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
	 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
	 * up stalling out.  So we just bail out in software and try again
	 * later, and everyone is happy.
	 * FIXME: Document how the locking works.
	 */
	if (ohci->generation != packet->generation ||
	    reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1029
		if (packet->payload_mapped)
1030 1031
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
1032 1033 1034 1035 1036
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
1037

1038
	/* If the context isn't already running, start it up. */
1039
	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1040
	if ((reg & CONTEXT_RUN) == 0)
1041 1042 1043
		context_run(ctx, 0);

	return 0;
1044 1045
}

1046 1047 1048
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1049
{
1050
	struct driver_data *driver_data;
1051
	struct fw_packet *packet;
1052
	struct fw_ohci *ohci = context->ohci;
1053 1054
	int evt;

1055 1056 1057
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
1058

1059 1060 1061 1062 1063
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
1064

1065
	if (packet->payload_mapped)
1066
		dma_unmap_single(ohci->card.device, packet->payload_bus,
1067 1068
				 packet->payload_length, DMA_TO_DEVICE);

1069 1070
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
1071

1072 1073
	log_ar_at_event('T', packet->speed, packet->header, evt);

1074 1075 1076 1077 1078
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
1079

1080
	case OHCI1394_evt_flushed:
1081 1082 1083 1084
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
1085 1086
		packet->ack = RCODE_GENERATION;
		break;
1087

1088
	case OHCI1394_evt_missing_ack:
1089 1090 1091 1092
		/*
		 * Using a valid (current) generation count, but the
		 * node is not on the bus or not sending acks.
		 */
1093 1094
		packet->ack = RCODE_NO_ACK;
		break;
1095

1096 1097 1098 1099 1100 1101 1102 1103 1104
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
1105

1106 1107 1108 1109
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
1110

1111
	packet->callback(packet, &ohci->card, packet->ack);
1112

1113
	return 1;
1114 1115
}

1116 1117 1118 1119 1120
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1121

1122 1123
static void handle_local_rom(struct fw_ohci *ohci,
			     struct fw_packet *packet, u32 csr)
1124 1125 1126 1127
{
	struct fw_packet response;
	int tcode, length, i;

1128
	tcode = HEADER_GET_TCODE(packet->header[0]);
1129
	if (TCODE_IS_BLOCK_PACKET(tcode))
1130
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

1149 1150
static void handle_local_lock(struct fw_ohci *ohci,
			      struct fw_packet *packet, u32 csr)
1151 1152 1153 1154 1155 1156
{
	struct fw_packet response;
	int tcode, length, ext_tcode, sel;
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

1157 1158
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1159
	payload = packet->payload;
1160
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

	if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
		lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
	else
		fw_notify("swap not done yet\n");

	fw_fill_response(&response, packet->header,
1186
			 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1187 1188 1189 1190
 out:
	fw_core_handle_response(&ohci->card, &response);
}

1191
static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1192 1193 1194 1195
{
	u64 offset;
	u32 csr;

1196 1197 1198 1199
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1200 1201 1202

	offset =
		((unsigned long long)
1203
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
1224 1225 1226 1227 1228

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1229
}
1230

1231
static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1232 1233
{
	unsigned long flags;
1234
	int ret;
1235 1236 1237

	spin_lock_irqsave(&ctx->ohci->lock, flags);

1238
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1239
	    ctx->ohci->generation == packet->generation) {
1240 1241 1242
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
1243
	}
1244

1245
	ret = at_context_queue_packet(ctx, packet);
1246 1247
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

1248
	if (ret < 0)
1249
		packet->callback(packet, &ctx->ohci->card, packet->ack);
1250

1251 1252 1253 1254 1255
}

static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
1256
	int self_id_count, i, j, reg;
1257 1258
	int generation, new_generation;
	unsigned long flags;
1259 1260
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1261 1262 1263

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1264
		fw_notify("node ID not valid, new bus reset in progress\n");
1265 1266
		return;
	}
1267 1268 1269 1270 1271 1272
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1273

1274 1275 1276 1277 1278
	reg = reg_read(ohci, OHCI1394_SelfIDCount);
	if (reg & OHCI1394_SelfIDCount_selfIDError) {
		fw_notify("inconsistent self IDs\n");
		return;
	}
1279 1280
	/*
	 * The count in the SelfIDCount register is the number of
1281 1282
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1283 1284
	 * bit extra to get the actual number of self IDs.
	 */
1285 1286
	self_id_count = (reg >> 3) & 0xff;
	if (self_id_count == 0 || self_id_count > 252) {
1287 1288 1289
		fw_notify("inconsistent self IDs\n");
		return;
	}
1290
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1291
	rmb();
1292 1293

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1294 1295 1296 1297
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
			fw_notify("inconsistent self IDs\n");
			return;
		}
1298 1299
		ohci->self_id_buffer[j] =
				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1300
	}
1301
	rmb();
1302

1303 1304
	/*
	 * Check the consistency of the self IDs we just read.  The
1305 1306 1307 1308 1309 1310 1311 1312 1313
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1314 1315
	 * of self IDs.
	 */
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
1328 1329
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1330 1331
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

1332 1333 1334
	if (ohci->bus_reset_packet_quirk)
		ohci->request_generation = generation;

1335 1336
	/*
	 * This next bit is unrelated to the AT context stuff but we
1337 1338 1339 1340
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
1341 1342
	 * next_config_rom pointer so a new udpate can take place.
	 */
1343 1344

	if (ohci->next_config_rom != NULL) {
1345 1346 1347 1348
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1349 1350 1351 1352
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1353 1354
		/*
		 * Restore config_rom image and manually update
1355 1356
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1357 1358
		 * do that last.
		 */
1359 1360
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
1361 1362 1363
		ohci->config_rom[0] = ohci->next_header;
		reg_write(ohci, OHCI1394_ConfigROMhdr,
			  be32_to_cpu(ohci->next_header));
1364 1365
	}

1366 1367 1368 1369 1370
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif

1371 1372
	spin_unlock_irqrestore(&ohci->lock, flags);

1373 1374 1375 1376
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1377 1378
	log_selfids(ohci->node_id, generation,
		    self_id_count, ohci->self_id_buffer);
1379

1380
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1381 1382 1383 1384 1385 1386
				 self_id_count, ohci->self_id_buffer);
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1387
	u32 event, iso_event, cycle_time;
1388 1389 1390 1391
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1392
	if (!event || !~event)
1393 1394
		return IRQ_NONE;

1395 1396
	/* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
	reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1397
	log_irqs(event);
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1414
	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1415 1416 1417 1418
	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1419
		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1420 1421 1422
		iso_event &= ~(1 << i);
	}

1423
	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1424 1425 1426 1427
	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1428
		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1429 1430 1431
		iso_event &= ~(1 << i);
	}

1432 1433 1434 1435
	if (unlikely(event & OHCI1394_regAccessFail))
		fw_error("Register access failure - "
			 "please notify linux1394-devel@lists.sf.net\n");

1436 1437 1438
	if (unlikely(event & OHCI1394_postedWriteErr))
		fw_error("PCI posted write error\n");

1439 1440 1441 1442 1443 1444 1445
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
			fw_notify("isochronous cycle too long\n");
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
	if (unlikely(event & OHCI1394_cycleInconsistent)) {
		/*
		 * We need to clear this event bit in order to make
		 * cycleMatch isochronous I/O work.  In theory we should
		 * stop active cycleMatch iso contexts now and restart
		 * them at least two cycles later.  (FIXME?)
		 */
		if (printk_ratelimit())
			fw_notify("isochronous cycle inconsistent\n");
	}

1457 1458 1459
	if (event & OHCI1394_cycle64Seconds) {
		cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		if ((cycle_time & 0x80000000) == 0)
1460
			atomic_inc(&ohci->bus_seconds);
1461 1462
	}

1463 1464 1465
	return IRQ_HANDLED;
}

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
{
	size_t size = length * 4;

	memcpy(dest, src, size);
	if (size < CONFIG_ROM_SIZE)
		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
}

static int ohci_enable(struct fw_card *card,
		       const __be32 *config_rom, size_t length)
1493 1494 1495
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);
1496 1497
	u32 lps;
	int i;
1498

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
1509 1510
	 * full link enabled.  However, with some cards (well, at least
	 * a JMicron PCIe card), we have to try again sometimes.
1511 1512 1513 1514 1515
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526

	for (lps = 0, i = 0; !lps && i < 3; i++) {
		msleep(50);
		lps = reg_read(ohci, OHCI1394_HCControlSet) &
		      OHCI1394_HCControl_LPS;
	}

	if (!lps) {
		fw_error("Failed to set Link Power Status\n");
		return -EIO;
	}
1527 1528 1529 1530

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

1531
	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1532 1533
	reg_write(ohci, OHCI1394_LinkControlClear,
		  OHCI1394_LinkControl_rcvPhyPkt);
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));

	ar_context_run(&ohci->ar_request_ctx);
	ar_context_run(&ohci->ar_response_ctx);

	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskSet,
		  OHCI1394_selfIDComplete |
		  OHCI1394_RQPkt | OHCI1394_RSPkt |
		  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		  OHCI1394_isochRx | OHCI1394_isochTx |
1555
		  OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1556
		  OHCI1394_cycleInconsistent |
1557 1558
		  OHCI1394_cycle64Seconds | OHCI1394_regAccessFail |
		  OHCI1394_masterIntEnable);
1559 1560
	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1561 1562 1563 1564 1565 1566

	/* Activate link_on bit and contender bit in our self ID packets.*/
	if (ohci_update_phy_reg(card, 4, 0,
				PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
		return -EIO;

1567 1568
	/*
	 * When the link is not yet enabled, the atomic config rom
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

1586 1587 1588 1589 1590 1591 1592
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
1593

1594
		copy_config_rom(ohci->next_config_rom, config_rom, length);
1595 1596 1597 1598 1599 1600 1601 1602
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
1603

1604
	ohci->next_header = ohci->next_config_rom[0];
1605 1606
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1607 1608
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
1609 1610 1611 1612 1613
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

	if (request_irq(dev->irq, irq_handler,
1614
			IRQF_SHARED, ohci_driver_name, ohci)) {
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
		fw_error("Failed to allocate shared interrupt %d.\n",
			 dev->irq);
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
	flush_writes(ohci);

1627 1628 1629 1630
	/*
	 * We are ready to go, initiate bus reset to finish the
	 * initialization.
	 */
1631 1632 1633 1634 1635 1636

	fw_core_initiate_bus_reset(&ohci->card, 1);

	return 0;
}

1637
static int ohci_set_config_rom(struct fw_card *card,
1638
			       const __be32 *config_rom, size_t length)
1639 1640 1641
{
	struct fw_ohci *ohci;
	unsigned long flags;
1642
	int ret = -EBUSY;
1643
	__be32 *next_config_rom;
1644
	dma_addr_t uninitialized_var(next_config_rom_bus);
1645 1646 1647

	ohci = fw_ohci(card);

1648 1649
	/*
	 * When the OHCI controller is enabled, the config rom update
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;

1687
		copy_config_rom(ohci->next_config_rom, config_rom, length);
1688 1689 1690 1691 1692 1693

		ohci->next_header = config_rom[0];
		ohci->next_config_rom[0] = 0;

		reg_write(ohci, OHCI1394_ConfigROMmap,
			  ohci->next_config_rom_bus);
1694
		ret = 0;
1695 1696 1697 1698
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

1699 1700
	/*
	 * Now initiate a bus reset to have the changes take
1701 1702 1703
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
1704 1705
	 * takes effect.
	 */
1706
	if (ret == 0)
1707
		fw_core_initiate_bus_reset(&ohci->card, 1);
1708 1709 1710
	else
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);
1711

1712
	return ret;
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

1729 1730 1731
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
1732 1733
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
1734
	int ret = -ENOENT;
1735

1736
	tasklet_disable(&ctx->tasklet);
1737

1738 1739
	if (packet->ack != 0)
		goto out;
1740

1741
	if (packet->payload_mapped)
1742 1743 1744
		dma_unmap_single(ohci->card.device, packet->payload_bus,
				 packet->payload_length, DMA_TO_DEVICE);

1745
	log_ar_at_event('T', packet->speed, packet->header, 0x20);
1746 1747 1748
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
1749
	ret = 0;
1750 1751
 out:
	tasklet_enable(&ctx->tasklet);
1752

1753
	return ret;
1754 1755
}

1756 1757
static int ohci_enable_phys_dma(struct fw_card *card,
				int node_id, int generation)
1758
{
1759 1760 1761
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	return 0;
#else
1762 1763
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
1764
	int n, ret = 0;
1765

1766 1767 1768 1769
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
1770 1771 1772 1773

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
1774
		ret = -ESTALE;
1775 1776 1777
		goto out;
	}

1778 1779 1780 1781
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
1782 1783 1784 1785 1786 1787 1788

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

1789 1790
	flush_writes(ohci);
 out:
1791
	spin_unlock_irqrestore(&ohci->lock, flags);
1792 1793

	return ret;
1794
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1795
}
S
Stefan Richter 已提交
1796

1797
static u64 ohci_get_bus_time(struct fw_card *card)
1798 1799 1800 1801 1802 1803
{
	struct fw_ohci *ohci = fw_ohci(card);
	u32 cycle_time;
	u64 bus_time;

	cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1804
	bus_time = ((u64)atomic_read(&ohci->bus_seconds) << 32) | cycle_time;
1805 1806 1807 1808

	return bus_time;
}

1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
static void copy_iso_headers(struct iso_context *ctx, void *p)
{
	int i = ctx->header_length;

	if (i + ctx->base.header_size > PAGE_SIZE)
		return;

	/*
	 * The iso header is byteswapped to little endian by
	 * the controller, but the remaining header quadlets
	 * are big endian.  We want to present all the headers
	 * as big endian, so we have to swap the first quadlet.
	 */
	if (ctx->base.header_size > 0)
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
	if (ctx->base.header_size > 4)
		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
	if (ctx->base.header_size > 8)
		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
	ctx->header_length += ctx->base.header_size;
}

1831 1832 1833
static int handle_ir_dualbuffer_packet(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
1834
{
1835 1836 1837
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
	struct db_descriptor *db = (struct db_descriptor *) d;
1838
	__le32 *ir_header;
1839
	size_t header_length;
1840
	void *p, *end;
1841

S
Stefan Richter 已提交
1842
	if (db->first_res_count != 0 && db->second_res_count != 0) {
1843 1844 1845 1846 1847 1848
		if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
			/* This descriptor isn't done yet, stop iteration. */
			return 0;
		}
		ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
	}
1849

1850 1851 1852 1853 1854
	header_length = le16_to_cpu(db->first_req_count) -
		le16_to_cpu(db->first_res_count);

	p = db + 1;
	end = p + header_length;
1855 1856
	while (p < end) {
		copy_iso_headers(ctx, p);
1857
		ctx->excess_bytes +=
S
Stefan Richter 已提交
1858
			(le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff;
1859
		p += max(ctx->base.header_size, (size_t)8);
1860
	}
1861

1862 1863 1864
	ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
		le16_to_cpu(db->second_res_count);

1865
	if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1866 1867 1868
		ir_header = (__le32 *) (db + 1);
		ctx->base.callback(&ctx->base,
				   le32_to_cpu(ir_header[0]) & 0xffff,
1869
				   ctx->header_length, ctx->header,
1870
				   ctx->base.callback_data);
1871 1872
		ctx->header_length = 0;
	}
1873

1874
	return 1;
1875 1876
}

1877 1878 1879 1880 1881 1882
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
1883
	struct descriptor *pd;
1884
	__le32 *ir_header;
1885
	void *p;
1886

1887 1888 1889 1890 1891
	for (pd = d; pd <= last; pd++) {
		if (pd->transfer_status)
			break;
	}
	if (pd > last)
1892 1893 1894
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

1895 1896
	p = last + 1;
	copy_iso_headers(ctx, p);
1897

1898 1899
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) p;
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
		ctx->base.callback(&ctx->base,
				   le32_to_cpu(ir_header[0]) & 0xffff,
				   ctx->header_length, ctx->header,
				   ctx->base.callback_data);
		ctx->header_length = 0;
	}

	return 1;
}

1910 1911 1912
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1913
{
1914 1915
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
1916 1917
	int i;
	struct descriptor *pd;
S
Stefan Richter 已提交
1918

1919 1920 1921 1922 1923
	for (pd = d; pd <= last; pd++)
		if (pd->transfer_status)
			break;
	if (pd > last)
		/* Descriptor(s) not done yet, stop iteration */
1924 1925
		return 0;

1926 1927 1928 1929 1930 1931 1932 1933 1934
	i = ctx->header_length;
	if (i + 4 < PAGE_SIZE) {
		/* Present this value as big-endian to match the receive code */
		*(__be32 *)(ctx->header + i) = cpu_to_be32(
				((u32)le16_to_cpu(pd->transfer_status) << 16) |
				le16_to_cpu(pd->res_count));
		ctx->header_length += 4;
	}
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1935
		ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1936 1937 1938 1939
				   ctx->header_length, ctx->header,
				   ctx->base.callback_data);
		ctx->header_length = 0;
	}
1940
	return 1;
1941 1942
}

1943
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
1944
				int type, int channel, size_t header_size)
1945 1946 1947
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct iso_context *ctx, *list;
1948
	descriptor_callback_t callback;
1949
	u64 *channels, dont_care = ~0ULL;
1950
	u32 *mask, regs;
1951
	unsigned long flags;
1952
	int index, ret = -ENOMEM;
1953 1954

	if (type == FW_ISO_CONTEXT_TRANSMIT) {
1955
		channels = &dont_care;
1956 1957
		mask = &ohci->it_context_mask;
		list = ohci->it_context_list;
1958
		callback = handle_it_packet;
1959
	} else {
1960
		channels = &ohci->ir_context_channels;
S
Stefan Richter 已提交
1961 1962
		mask = &ohci->ir_context_mask;
		list = ohci->ir_context_list;
1963
		if (ohci->use_dualbuffer)
1964 1965 1966
			callback = handle_ir_dualbuffer_packet;
		else
			callback = handle_ir_packet_per_buffer;
1967 1968 1969
	}

	spin_lock_irqsave(&ohci->lock, flags);
1970 1971 1972
	index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
	if (index >= 0) {
		*channels &= ~(1ULL << channel);
1973
		*mask &= ~(1 << index);
1974
	}
1975 1976 1977 1978 1979
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
		return ERR_PTR(-EBUSY);

S
Stefan Richter 已提交
1980 1981 1982 1983 1984
	if (type == FW_ISO_CONTEXT_TRANSMIT)
		regs = OHCI1394_IsoXmitContextBase(index);
	else
		regs = OHCI1394_IsoRcvContextBase(index);

1985
	ctx = &list[index];
1986
	memset(ctx, 0, sizeof(*ctx));
1987 1988 1989 1990 1991
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
	if (ctx->header == NULL)
		goto out;

1992 1993
	ret = context_init(&ctx->context, ohci, regs, callback);
	if (ret < 0)
1994
		goto out_with_header;
1995 1996

	return &ctx->base;
1997 1998 1999 2000 2001 2002 2003 2004

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
	*mask |= 1 << index;
	spin_unlock_irqrestore(&ohci->lock, flags);

2005
	return ERR_PTR(ret);
2006 2007
}

2008 2009
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
2010
{
S
Stefan Richter 已提交
2011
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2012
	struct fw_ohci *ohci = ctx->context.ohci;
2013
	u32 control, match;
2014 2015
	int index;

2016 2017
	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
2018 2019 2020
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2021
				(cycle & 0x7fff) << 16;
2022

2023 2024
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2025
		context_run(&ctx->context, match);
2026 2027
	} else {
		index = ctx - ohci->ir_context_list;
2028
		control = IR_CONTEXT_ISOCH_HEADER;
2029
		if (ohci->use_dualbuffer)
2030
			control |= IR_CONTEXT_DUAL_BUFFER_MODE;
2031 2032 2033 2034 2035
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
2036

2037 2038
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2039
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2040
		context_run(&ctx->context, control);
2041
	}
2042 2043 2044 2045

	return 0;
}

2046 2047 2048
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2049
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
	int index;

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
	} else {
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
	}
	flush_writes(ohci);
	context_stop(&ctx->context);

	return 0;
}

2065 2066 2067
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2068
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2069 2070 2071
	unsigned long flags;
	int index;

2072 2073
	ohci_stop_iso(base);
	context_release(&ctx->context);
2074
	free_page((unsigned long)ctx->header);
2075

2076 2077 2078 2079 2080 2081 2082 2083
	spin_lock_irqsave(&ohci->lock, flags);

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
	} else {
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
2084
		ohci->ir_context_channels |= 1ULL << base->channel;
2085 2086 2087 2088 2089
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

2090 2091 2092 2093
static int ohci_queue_iso_transmit(struct fw_iso_context *base,
				   struct fw_iso_packet *packet,
				   struct fw_iso_buffer *buffer,
				   unsigned long payload)
2094
{
S
Stefan Richter 已提交
2095
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2096
	struct descriptor *d, *last, *pd;
2097 2098
	struct fw_iso_packet *p;
	__le32 *header;
2099
	dma_addr_t d_bus, page_bus;
2100 2101
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
2102
	int page, end_page, i, length, offset;
2103

2104 2105 2106 2107
	/*
	 * FIXME: Cycle lost behavior should be configurable: lose
	 * packet, retransmit or terminate..
	 */
2108 2109

	p = packet;
2110
	payload_index = payload;
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
2129
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2130

2131 2132 2133
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
2134 2135

	if (!p->skip) {
2136
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2137 2138 2139
		d[0].req_count = cpu_to_le16(8);

		header = (__le32 *) &d[1];
2140 2141 2142 2143 2144
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
2145
		header[1] =
2146
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2147 2148 2149 2150 2151
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
2152
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
2165 2166 2167

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
2168 2169 2170 2171 2172

		payload_index += length;
	}

	if (p->interrupt)
2173
		irq = DESCRIPTOR_IRQ_ALWAYS;
2174
	else
2175
		irq = DESCRIPTOR_NO_IRQ;
2176

2177
	last = z == 2 ? d : d + z - 1;
2178 2179 2180
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
2181
				     irq);
2182

2183
	context_append(&ctx->context, d, z, header_z);
2184 2185 2186

	return 0;
}
S
Stefan Richter 已提交
2187

2188 2189 2190 2191
static int ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
					     struct fw_iso_packet *packet,
					     struct fw_iso_buffer *buffer,
					     unsigned long payload)
2192 2193 2194 2195 2196 2197 2198
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
	struct db_descriptor *db = NULL;
	struct descriptor *d;
	struct fw_iso_packet *p;
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, length, rest;
2199
	int page, offset, packet_count, header_size;
S
Stefan Richter 已提交
2200

2201 2202 2203 2204
	/*
	 * FIXME: Cycle lost behavior should be configurable: lose
	 * packet, retransmit or terminate..
	 */
2205 2206 2207 2208

	p = packet;
	z = 2;

2209
	/*
2210 2211
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
2212
	 */
2213
	packet_count = p->header_length / ctx->base.header_size;
2214
	header_size = packet_count * max(ctx->base.header_size, (size_t)8);
2215

2216
	/* Get header size in number of descriptors. */
2217
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2218 2219 2220
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
	rest     = p->payload_length;
2221 2222 2223 2224 2225 2226 2227
	/*
	 * The controllers I've tested have not worked correctly when
	 * second_req_count is zero.  Rather than do something we know won't
	 * work, return an error
	 */
	if (rest == 0)
		return -EINVAL;
2228 2229 2230 2231 2232 2233 2234 2235

	while (rest > 0) {
		d = context_get_descriptors(&ctx->context,
					    z + header_z, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		db = (struct db_descriptor *) d;
2236 2237
		db->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_BRANCH_ALWAYS);
2238 2239
		db->first_size =
		    cpu_to_le16(max(ctx->base.header_size, (size_t)8));
2240 2241 2242 2243 2244 2245
		if (p->skip && rest == p->payload_length) {
			db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
			db->first_req_count = db->first_size;
		} else {
			db->first_req_count = cpu_to_le16(header_size);
		}
2246
		db->first_res_count = db->first_req_count;
2247
		db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
S
Stefan Richter 已提交
2248

2249 2250 2251
		if (p->skip && rest == p->payload_length)
			length = 4;
		else if (offset + rest < PAGE_SIZE)
2252 2253 2254 2255
			length = rest;
		else
			length = PAGE_SIZE - offset;

2256 2257
		db->second_req_count = cpu_to_le16(length);
		db->second_res_count = db->second_req_count;
2258 2259 2260
		page_bus = page_private(buffer->pages[page]);
		db->second_buffer = cpu_to_le32(page_bus + offset);

2261
		if (p->interrupt && length == rest)
2262
			db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2263

2264 2265 2266
		context_append(&ctx->context, d, z, header_z);
		offset = (offset + length) & ~PAGE_MASK;
		rest -= length;
2267 2268
		if (offset == 0)
			page++;
2269 2270
	}

2271 2272
	return 0;
}
2273

2274 2275 2276 2277
static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
					struct fw_iso_packet *packet,
					struct fw_iso_buffer *buffer,
					unsigned long payload)
2278 2279
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2280
	struct descriptor *d, *pd;
2281
	struct fw_iso_packet *p = packet;
2282 2283
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
2284 2285
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
2286 2287

	/*
2288 2289
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
2290 2291
	 */
	packet_count = p->header_length / ctx->base.header_size;
2292
	header_size  = max(ctx->base.header_size, (size_t)8);
2293 2294 2295 2296 2297

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
2298
	payload_per_buffer = p->payload_length / packet_count;
2299 2300 2301

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
2302
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2303
		d = context_get_descriptors(&ctx->context,
2304
				z + header_z, &d_bus);
2305 2306 2307
		if (d == NULL)
			return -ENOMEM;

2308 2309 2310 2311
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
		if (p->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2312 2313
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
2314
		d->transfer_status = 0;
2315 2316
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

2317
		rest = payload_per_buffer;
2318
		pd = d;
2319
		for (j = 1; j < z; j++) {
2320
			pd++;
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
2340 2341 2342
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
2343
		if (p->interrupt && i == packet_count - 1)
2344 2345 2346 2347 2348 2349 2350 2351
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

2352 2353 2354 2355
static int ohci_queue_iso(struct fw_iso_context *base,
			  struct fw_iso_packet *packet,
			  struct fw_iso_buffer *buffer,
			  unsigned long payload)
2356
{
2357
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2358
	unsigned long flags;
2359
	int ret;
2360

2361
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2362
	if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2363
		ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2364
	else if (ctx->context.ohci->use_dualbuffer)
2365 2366
		ret = ohci_queue_iso_receive_dualbuffer(base, packet,
							buffer, payload);
2367
	else
2368 2369
		ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
							buffer, payload);
2370 2371
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

2372
	return ret;
2373 2374
}

2375
static const struct fw_card_driver ohci_driver = {
2376 2377 2378 2379 2380
	.enable			= ohci_enable,
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
2381
	.cancel_packet		= ohci_cancel_packet,
2382
	.enable_phys_dma	= ohci_enable_phys_dma,
2383
	.get_bus_time		= ohci_get_bus_time,
2384 2385 2386 2387

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
	.queue_iso		= ohci_queue_iso,
2388
	.start_iso		= ohci_start_iso,
2389
	.stop_iso		= ohci_stop_iso,
2390 2391
};

2392
#ifdef CONFIG_PPC_PMAC
2393 2394
static void ohci_pmac_on(struct pci_dev *dev)
{
2395 2396 2397 2398 2399 2400 2401 2402
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
}

static void ohci_pmac_off(struct pci_dev *dev)
{
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
}
#else
#define ohci_pmac_on(dev)
#define ohci_pmac_off(dev)
2419 2420
#endif /* CONFIG_PPC_PMAC */

2421 2422
#define PCI_VENDOR_ID_AGERE		PCI_VENDOR_ID_ATT
#define PCI_DEVICE_ID_AGERE_FW643	0x5901
2423
#define PCI_DEVICE_ID_TI_TSB43AB23	0x8024
2424

2425 2426
static int __devinit pci_probe(struct pci_dev *dev,
			       const struct pci_device_id *ent)
2427 2428
{
	struct fw_ohci *ohci;
2429
	u32 bus_options, max_receive, link_speed, version;
2430 2431 2432 2433
	u64 guid;
	int err;
	size_t size;

2434
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2435
	if (ohci == NULL) {
2436 2437
		err = -ENOMEM;
		goto fail;
2438 2439 2440 2441
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

2442 2443
	ohci_pmac_on(dev);

2444 2445
	err = pci_enable_device(dev);
	if (err) {
2446
		fw_error("Failed to enable OHCI hardware\n");
2447
		goto fail_free;
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

2459 2460
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
2461
		fw_error("MMIO resource unavailable\n");
2462
		goto fail_disable;
2463 2464 2465 2466 2467
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
2468 2469
		err = -ENXIO;
		goto fail_iomem;
2470 2471
	}

2472
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2473 2474
#if 0
	/* FIXME: make it a context option or remove dual-buffer mode */
2475
	ohci->use_dualbuffer = version >= OHCI_VERSION_1_1;
2476
#endif
2477

2478 2479 2480 2481 2482
	/* dual-buffer mode is broken if more than one IR context is active */
	if (dev->vendor == PCI_VENDOR_ID_AGERE &&
	    dev->device == PCI_DEVICE_ID_AGERE_FW643)
		ohci->use_dualbuffer = false;

2483 2484 2485 2486 2487
	/* dual-buffer mode is broken */
	if (dev->vendor == PCI_VENDOR_ID_RICOH &&
	    dev->device == PCI_DEVICE_ID_RICOH_R5C832)
		ohci->use_dualbuffer = false;

2488 2489 2490 2491
/* x86-32 currently doesn't use highmem for dma_alloc_coherent */
#if !defined(CONFIG_X86_32)
	/* dual-buffer mode is broken with descriptor addresses above 2G */
	if (dev->vendor == PCI_VENDOR_ID_TI &&
2492 2493
	    (dev->device == PCI_DEVICE_ID_TI_TSB43AB22 ||
	     dev->device == PCI_DEVICE_ID_TI_TSB43AB23))
2494 2495 2496 2497 2498 2499 2500 2501 2502
		ohci->use_dualbuffer = false;
#endif

#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
	ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
			     dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
#endif
	ohci->bus_reset_packet_quirk = dev->vendor == PCI_VENDOR_ID_TI;

2503 2504 2505 2506 2507 2508
	ar_context_init(&ohci->ar_request_ctx, ohci,
			OHCI1394_AsReqRcvContextControlSet);

	ar_context_init(&ohci->ar_response_ctx, ohci,
			OHCI1394_AsRspRcvContextControlSet);

2509
	context_init(&ohci->at_request_ctx, ohci,
2510
		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2511

2512
	context_init(&ohci->at_response_ctx, ohci,
2513
		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2514 2515 2516 2517 2518 2519 2520 2521

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2522
	ohci->ir_context_channels = ~0ULL;
2523 2524 2525 2526 2527 2528
	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2529
		err = -ENOMEM;
2530
		goto fail_contexts;
2531 2532 2533 2534 2535 2536 2537 2538
	}

	/* self-id dma buffer allocation */
	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
					       SELF_ID_BUF_SIZE,
					       &ohci->self_id_bus,
					       GFP_KERNEL);
	if (ohci->self_id_cpu == NULL) {
2539
		err = -ENOMEM;
2540
		goto fail_contexts;
2541 2542 2543 2544 2545 2546 2547 2548
	}

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

2549
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2550
	if (err)
2551
		goto fail_self_id;
2552

2553
	fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2554
		  dev_name(&dev->dev), version >> 16, version & 0xff);
2555

2556
	return 0;
2557 2558 2559 2560

 fail_self_id:
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
2561
 fail_contexts:
2562
	kfree(ohci->ir_context_list);
2563 2564 2565 2566 2567
	kfree(ohci->it_context_list);
	context_release(&ohci->at_response_ctx);
	context_release(&ohci->at_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	ar_context_release(&ohci->ar_request_ctx);
2568 2569 2570 2571 2572
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
2573 2574
 fail_free:
	kfree(&ohci->card);
2575
	ohci_pmac_off(dev);
2576 2577 2578
 fail:
	if (err == -ENOMEM)
		fw_error("Out of memory\n");
2579 2580

	return err;
2581 2582 2583 2584 2585 2586 2587
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
2588 2589
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
2590 2591
	fw_core_remove_card(&ohci->card);

2592 2593 2594 2595
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
2596 2597 2598

	software_reset(ohci);
	free_irq(dev->irq, ohci);
2599 2600 2601 2602 2603 2604 2605

	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->next_config_rom, ohci->next_config_rom_bus);
	if (ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
2606 2607
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
2608 2609 2610 2611
	ar_context_release(&ohci->ar_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	context_release(&ohci->at_request_ctx);
	context_release(&ohci->at_response_ctx);
2612 2613 2614 2615 2616
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
2617
	kfree(&ohci->card);
2618
	ohci_pmac_off(dev);
2619

2620 2621 2622
	fw_notify("Removed fw-ohci device.\n");
}

2623
#ifdef CONFIG_PM
2624
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2625
{
2626
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2627 2628 2629
	int err;

	software_reset(ohci);
2630 2631
	free_irq(dev->irq, ohci);
	err = pci_save_state(dev);
2632
	if (err) {
2633
		fw_error("pci_save_state failed\n");
2634 2635
		return err;
	}
2636
	err = pci_set_power_state(dev, pci_choose_state(dev, state));
2637 2638
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
2639
	ohci_pmac_off(dev);
2640

2641 2642 2643
	return 0;
}

2644
static int pci_resume(struct pci_dev *dev)
2645
{
2646
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2647 2648
	int err;

2649 2650 2651 2652
	ohci_pmac_on(dev);
	pci_set_power_state(dev, PCI_D0);
	pci_restore_state(dev);
	err = pci_enable_device(dev);
2653
	if (err) {
2654
		fw_error("pci_enable_device failed\n");
2655 2656 2657
		return err;
	}

2658
	return ohci_enable(&ohci->card, NULL, 0);
2659 2660 2661
}
#endif

2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
static struct pci_device_id pci_table[] = {
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
2674 2675 2676 2677
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
2678 2679 2680 2681 2682 2683
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

2684 2685 2686 2687 2688
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);