ohci.c 95.1 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/bitops.h>
22
#include <linux/bug.h>
23
#include <linux/compiler.h>
24
#include <linux/delay.h>
S
Stefan Richter 已提交
25
#include <linux/device.h>
A
Andrew Morton 已提交
26
#include <linux/dma-mapping.h>
27
#include <linux/firewire.h>
S
Stefan Richter 已提交
28
#include <linux/firewire-constants.h>
29 30
#include <linux/init.h>
#include <linux/interrupt.h>
S
Stefan Richter 已提交
31
#include <linux/io.h>
32
#include <linux/kernel.h>
S
Stefan Richter 已提交
33
#include <linux/list.h>
A
Al Viro 已提交
34
#include <linux/mm.h>
35
#include <linux/module.h>
36
#include <linux/moduleparam.h>
37
#include <linux/mutex.h>
38
#include <linux/pci.h>
39
#include <linux/pci_ids.h>
40
#include <linux/slab.h>
S
Stefan Richter 已提交
41
#include <linux/spinlock.h>
S
Stefan Richter 已提交
42
#include <linux/string.h>
43
#include <linux/time.h>
44
#include <linux/vmalloc.h>
45
#include <linux/workqueue.h>
A
Andrew Morton 已提交
46

S
Stefan Richter 已提交
47
#include <asm/byteorder.h>
S
Stefan Richter 已提交
48
#include <asm/page.h>
49
#include <asm/system.h>
50

51 52 53 54
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

55 56
#include "core.h"
#include "ohci.h"
57

58 59 60 61 62 63 64 65 66 67 68 69 70
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
71 72 73 74 75 76 77 78 79 80

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

81 82 83 84
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
85

86 87 88 89 90 91 92 93
#define AR_BUFFER_SIZE	(32*1024)
#define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
/* we need at least two pages for proper list management */
#define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)

#define MAX_ASYNC_PAYLOAD	4096
#define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
#define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
94

95 96
struct ar_context {
	struct fw_ohci *ohci;
97 98 99 100
	struct page *pages[AR_BUFFERS];
	void *buffer;
	struct descriptor *descriptors;
	dma_addr_t descriptors_bus;
101
	void *pointer;
102
	unsigned int last_buffer_index;
103
	u32 regs;
104 105 106
	struct tasklet_struct tasklet;
};

107 108 109 110 111
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
112 113 114 115 116 117 118 119 120 121 122 123 124

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

125
struct context {
S
Stefan Richter 已提交
126
	struct fw_ohci *ohci;
127
	u32 regs;
128
	int total_allocation;
129
	bool running;
130
	bool flushing;
S
Stefan Richter 已提交
131

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
	 * The last descriptor in the DMA program.  It contains the branch
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
156 157 158

	descriptor_callback_t callback;

S
Stefan Richter 已提交
159
	struct tasklet_struct tasklet;
160 161
};

162 163 164 165 166 167
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
168 169 170

struct iso_context {
	struct fw_iso_context base;
171
	struct context context;
172
	int excess_bytes;
173 174
	void *header;
	size_t header_length;
175 176 177

	u8 sync;
	u8 tags;
178 179 180 181 182 183 184 185
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

	__iomem char *registers;
186
	int node_id;
187
	int generation;
188
	int request_generation;	/* for timestamping incoming requests */
189
	unsigned quirks;
190
	unsigned int pri_req_max;
191
	u32 bus_time;
192
	bool is_root;
193
	bool csr_state_setclear_abdicate;
194 195
	int n_ir;
	int n_it;
196 197 198 199
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
200 201
	spinlock_t lock;

202 203
	struct mutex phy_reg_mutex;

204 205 206
	void *misc_buffer;
	dma_addr_t misc_buffer_bus;

207 208
	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
209 210
	struct context at_request_ctx;
	struct context at_response_ctx;
211

212
	u32 it_context_support;
213
	u32 it_context_mask;     /* unoccupied IT contexts */
214
	struct iso_context *it_context_list;
215
	u64 ir_context_channels; /* unoccupied channels */
216
	u32 ir_context_support;
217
	u32 ir_context_mask;     /* unoccupied IR contexts */
218
	struct iso_context *ir_context_list;
219 220
	u64 mc_channels; /* channels in use by the multichannel IR context */
	bool mc_allocated;
221 222 223 224 225 226 227 228 229

	__be32    *config_rom;
	dma_addr_t config_rom_bus;
	__be32    *next_config_rom;
	dma_addr_t next_config_rom_bus;
	__be32     next_header;

	__le32    *self_id_cpu;
	dma_addr_t self_id_bus;
230
	struct work_struct bus_reset_work;
231 232

	u32 self_id_buffer[512];
233 234
};

A
Adrian Bunk 已提交
235
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
236 237 238 239
{
	return container_of(card, struct fw_ohci, card);
}

240 241 242 243 244 245
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
246 247 248 249 250 251

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

252
#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
253 254 255 256 257 258
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
259
#define OHCI_TCODE_PHY_PACKET		0x0e
260
#define OHCI_VERSION_1_1		0x010010
261

262 263
static char ohci_driver_name[] = KBUILD_MODNAME;

264
#define PCI_DEVICE_ID_AGERE_FW643	0x5901
265
#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
266
#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009
267
#define PCI_VENDOR_ID_PINNACLE_SYSTEMS	0x11bd
268

269 270 271
#define QUIRK_CYCLE_TIMER		1
#define QUIRK_RESET_PACKET		2
#define QUIRK_BE_HEADERS		4
272
#define QUIRK_NO_1394A			8
273
#define QUIRK_NO_MSI			16
274 275 276

/* In case of multiple matches in ohci_quirks[], only the first one is used. */
static const struct {
277
	unsigned short vendor, device, revision, flags;
278
} ohci_quirks[] = {
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
		QUIRK_BE_HEADERS},

	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
		QUIRK_NO_MSI},

	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
		QUIRK_NO_MSI},

	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

294 295 296
	{PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_NO_MSI},

297 298 299 300 301 302 303 304 305 306 307
	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},

	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_RESET_PACKET},

	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
308 309
};

310 311 312 313 314 315 316
/* This overrides anything that was found in ohci_quirks[]. */
static int param_quirks;
module_param_named(quirks, param_quirks, int, 0644);
MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
	", AR/selfID endianess = "	__stringify(QUIRK_BE_HEADERS)
317
	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
318
	", disable MSI = "		__stringify(QUIRK_NO_MSI)
319 320
	")");

321
#define OHCI_PARAM_DEBUG_AT_AR		1
322
#define OHCI_PARAM_DEBUG_SELFIDS	2
323 324
#define OHCI_PARAM_DEBUG_IRQS		4
#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
325

326 327
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG

328 329 330 331
static int param_debug;
module_param_named(debug, param_debug, int, 0644);
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
332 333 334
	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
335 336 337 338
	", or a combination, or all = -1)");

static void log_irqs(u32 evt)
{
339 340 341 342 343 344
	if (likely(!(param_debug &
			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
		return;

	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
	    !(evt & OHCI1394_busReset))
345 346
		return;

347
	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
348 349 350 351 352 353 354 355 356
	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
	    evt & OHCI1394_isochRx		? " IR"			: "",
	    evt & OHCI1394_isochTx		? " IT"			: "",
	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
357
	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
358
	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
359
	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
360
	    evt & OHCI1394_unrecoverableError	? " unrecoverableError"	: "",
361 362 363 364 365
	    evt & OHCI1394_busReset		? " busReset"		: "",
	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
		    OHCI1394_respTxComplete | OHCI1394_isochRx |
		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
366 367
		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
		    OHCI1394_cycleInconsistent |
368
		    OHCI1394_regAccessFail | OHCI1394_busReset)
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
						? " ?"			: "");
}

static const char *speed[] = {
	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
};
static const char *power[] = {
	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
};
static const char port[] = { '.', '-', 'p', 'c', };

static char _p(u32 *s, int shift)
{
	return port[*s >> shift & 3];
}

386
static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
387 388 389 390
{
	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
		return;

391 392
	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
		  self_id_count, generation, node_id);
393 394 395

	for (; self_id_count--; ++s)
		if ((*s & 1 << 23) == 0)
396 397 398 399 400 401
			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
			    "%s gc=%d %s %s%s%s\n",
			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
			    speed[*s >> 14 & 3], *s >> 16 & 63,
			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
402
		else
403 404 405 406
			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
			    *s, *s >> 24 & 63,
			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
}

static const char *evts[] = {
	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
	[0x10] = "-reserved-",		[0x11] = "ack_complete",
	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
	[0x18] = "-reserved-",		[0x19] = "-reserved-",
	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
	[0x20] = "pending/cancelled",
};
static const char *tcodes[] = {
	[0x0] = "QW req",		[0x1] = "BW req",
	[0x2] = "W resp",		[0x3] = "-reserved-",
	[0x4] = "QR req",		[0x5] = "BR req",
	[0x6] = "QR resp",		[0x7] = "BR resp",
	[0x8] = "cycle start",		[0x9] = "Lk req",
	[0xa] = "async stream packet",	[0xb] = "Lk resp",
	[0xc] = "-reserved-",		[0xd] = "-reserved-",
	[0xe] = "link internal",	[0xf] = "-reserved-",
};

static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
{
	int tcode = header[0] >> 4 & 0xf;
	char specific[12];

	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
		return;

	if (unlikely(evt >= ARRAY_SIZE(evts)))
			evt = 0x1f;

450
	if (evt == OHCI1394_evt_bus_reset) {
451 452
		fw_notify("A%c evt_bus_reset, generation %d\n",
		    dir, (header[2] >> 16) & 0xff);
453 454 455
		return;
	}

456 457 458 459 460 461 462 463 464 465 466 467 468 469
	switch (tcode) {
	case 0x0: case 0x6: case 0x8:
		snprintf(specific, sizeof(specific), " = %08x",
			 be32_to_cpu((__force __be32)header[3]));
		break;
	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
		snprintf(specific, sizeof(specific), " %x,%x",
			 header[3] >> 16, header[3] & 0xffff);
		break;
	default:
		specific[0] = '\0';
	}

	switch (tcode) {
470
	case 0xa:
471
		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
472
		break;
473 474 475 476
	case 0xe:
		fw_notify("A%c %s, PHY %08x %08x\n",
			  dir, evts[evt], header[1], header[2]);
		break;
477
	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
478 479 480 481 482 483
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s, %04x%08x%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
484 485
		break;
	default:
486 487 488 489 490 491
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], specific);
492 493 494 495 496
	}
}

#else

497 498 499 500
#define param_debug 0
static inline void log_irqs(u32 evt) {}
static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
501 502 503

#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */

A
Adrian Bunk 已提交
504
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
505 506 507 508
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
509
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
510 511 512 513
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
514
static inline void flush_writes(const struct fw_ohci *ohci)
515 516 517 518 519
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

520 521 522 523 524 525
/*
 * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
 * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
 */
526
static int read_phy_reg(struct fw_ohci *ohci, int addr)
527
{
528
	u32 val;
529
	int i;
530 531

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
532
	for (i = 0; i < 3 + 100; i++) {
533
		val = reg_read(ohci, OHCI1394_PhyControl);
534 535 536
		if (!~val)
			return -ENODEV; /* Card was ejected. */

537 538 539
		if (val & OHCI1394_PhyControl_ReadDone)
			return OHCI1394_PhyControl_ReadData(val);

540 541 542 543 544 545
		/*
		 * Try a few times without waiting.  Sleeping is necessary
		 * only when the link/PHY interface is busy.
		 */
		if (i >= 3)
			msleep(1);
546
	}
547
	fw_error("failed to read phy reg\n");
548

549 550
	return -EBUSY;
}
551

552 553 554
static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
{
	int i;
555 556

	reg_write(ohci, OHCI1394_PhyControl,
557
		  OHCI1394_PhyControl_Write(addr, val));
558
	for (i = 0; i < 3 + 100; i++) {
559
		val = reg_read(ohci, OHCI1394_PhyControl);
560 561 562
		if (!~val)
			return -ENODEV; /* Card was ejected. */

563 564
		if (!(val & OHCI1394_PhyControl_WritePending))
			return 0;
565

566 567
		if (i >= 3)
			msleep(1);
568 569 570 571
	}
	fw_error("failed to write phy reg\n");

	return -EBUSY;
572 573
}

574 575
static int update_phy_reg(struct fw_ohci *ohci, int addr,
			  int clear_bits, int set_bits)
576
{
577
	int ret = read_phy_reg(ohci, addr);
578 579
	if (ret < 0)
		return ret;
580

581 582 583 584 585 586 587
	/*
	 * The interrupt status bits are cleared by writing a one bit.
	 * Avoid clearing them unless explicitly requested in set_bits.
	 */
	if (addr == 5)
		clear_bits |= PHY_INT_STATUS_BITS;

588
	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
589 590
}

591
static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
592
{
593
	int ret;
594

595
	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
596 597
	if (ret < 0)
		return ret;
598

599
	return read_phy_reg(ohci, addr);
600 601
}

602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
static int ohci_read_phy_reg(struct fw_card *card, int addr)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = read_phy_reg(ohci, addr);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
}

static int ohci_update_phy_reg(struct fw_card *card, int addr,
			       int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
625 626
}

627 628 629 630 631 632
static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
{
	return page_private(ctx->pages[i]);
}

static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
633
{
634
	struct descriptor *d;
635

636 637 638 639
	d = &ctx->descriptors[index];
	d->branch_address  &= cpu_to_le32(~0xf);
	d->res_count       =  cpu_to_le16(PAGE_SIZE);
	d->transfer_status =  0;
640

641
	wmb(); /* finish init of new descriptors before branch_address update */
642 643 644 645
	d = &ctx->descriptors[ctx->last_buffer_index];
	d->branch_address  |= cpu_to_le32(1);

	ctx->last_buffer_index = index;
646

647
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
648 649
}

650
static void ar_context_release(struct ar_context *ctx)
651
{
652
	unsigned int i;
653

654 655
	if (ctx->buffer)
		vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
656

657 658 659 660 661 662 663
	for (i = 0; i < AR_BUFFERS; i++)
		if (ctx->pages[i]) {
			dma_unmap_page(ctx->ohci->card.device,
				       ar_buffer_bus(ctx, i),
				       PAGE_SIZE, DMA_FROM_DEVICE);
			__free_page(ctx->pages[i]);
		}
664 665
}

666
static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
667
{
668 669 670
	if (reg_read(ctx->ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
		reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
		flush_writes(ctx->ohci);
671

672
		fw_error("AR error: %s; DMA stopped\n", error_msg);
673
	}
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
	/* FIXME: restart? */
}

static inline unsigned int ar_next_buffer_index(unsigned int index)
{
	return (index + 1) % AR_BUFFERS;
}

static inline unsigned int ar_prev_buffer_index(unsigned int index)
{
	return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
}

static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
{
	return ar_next_buffer_index(ctx->last_buffer_index);
}

/*
 * We search for the buffer that contains the last AR packet DMA data written
 * by the controller.
 */
static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
						 unsigned int *buffer_offset)
{
	unsigned int i, next_i, last = ctx->last_buffer_index;
	__le16 res_count, next_res_count;

	i = ar_first_buffer_index(ctx);
	res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);

	/* A buffer that is not yet completely filled must be the last one. */
	while (i != last && res_count == 0) {

		/* Peek at the next descriptor. */
		next_i = ar_next_buffer_index(i);
		rmb(); /* read descriptors in order */
		next_res_count = ACCESS_ONCE(
				ctx->descriptors[next_i].res_count);
		/*
		 * If the next descriptor is still empty, we must stop at this
		 * descriptor.
		 */
		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
			/*
			 * The exception is when the DMA data for one packet is
			 * split over three buffers; in this case, the middle
			 * buffer's descriptor might be never updated by the
			 * controller and look still empty, and we have to peek
			 * at the third one.
			 */
			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
				next_i = ar_next_buffer_index(next_i);
				rmb();
				next_res_count = ACCESS_ONCE(
					ctx->descriptors[next_i].res_count);
				if (next_res_count != cpu_to_le16(PAGE_SIZE))
					goto next_buffer_is_active;
			}

			break;
		}

next_buffer_is_active:
		i = next_i;
		res_count = next_res_count;
	}

	rmb(); /* read res_count before the DMA data */

	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
	if (*buffer_offset > PAGE_SIZE) {
		*buffer_offset = 0;
		ar_context_abort(ctx, "corrupted descriptor");
	}

	return i;
}

static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
				    unsigned int end_buffer_index,
				    unsigned int end_buffer_offset)
{
	unsigned int i;

	i = ar_first_buffer_index(ctx);
	while (i != end_buffer_index) {
		dma_sync_single_for_cpu(ctx->ohci->card.device,
					ar_buffer_bus(ctx, i),
					PAGE_SIZE, DMA_FROM_DEVICE);
		i = ar_next_buffer_index(i);
	}
	if (end_buffer_offset > 0)
		dma_sync_single_for_cpu(ctx->ohci->card.device,
					ar_buffer_bus(ctx, i),
					end_buffer_offset, DMA_FROM_DEVICE);
770 771
}

772 773
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
774
	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
775 776 777 778
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

779
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
780 781
{
	struct fw_ohci *ohci = ctx->ohci;
782 783
	struct fw_packet p;
	u32 status, length, tcode;
784
	int evt;
785

786 787 788
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
789 790 791 792 793

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
794
		p.header[3] = (__force __u32) buffer[3];
795
		p.header_length = 16;
796
		p.payload_length = 0;
797 798 799
		break;

	case TCODE_READ_BLOCK_REQUEST :
800
		p.header[3] = cond_le32_to_cpu(buffer[3]);
801 802 803 804 805
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
806 807 808
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
809
		p.header[3] = cond_le32_to_cpu(buffer[3]);
810
		p.header_length = 16;
811
		p.payload_length = p.header[3] >> 16;
812 813 814 815
		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
			ar_context_abort(ctx, "invalid packet length");
			return NULL;
		}
816 817 818 819
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
820
	case OHCI_TCODE_PHY_PACKET:
821
		p.header_length = 12;
822
		p.payload_length = 0;
823
		break;
824 825

	default:
826 827
		ar_context_abort(ctx, "invalid tcode");
		return NULL;
828
	}
829

830 831 832 833
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
834
	status = cond_le32_to_cpu(buffer[length]);
835
	evt    = (status >> 16) & 0x1f;
836

837
	p.ack        = evt - 16;
838 839 840
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
841

842
	log_ar_at_event('R', p.speed, p.header, evt);
843

844
	/*
845 846 847 848 849 850 851 852 853
	 * Several controllers, notably from NEC and VIA, forget to
	 * write ack_complete status at PHY packet reception.
	 */
	if (evt == OHCI1394_evt_no_status &&
	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
		p.ack = ACK_COMPLETE;

	/*
	 * The OHCI bus reset handler synthesizes a PHY packet with
854 855 856 857 858
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
859
	 * request.
860 861 862
	 *
	 * Alas some chips sometimes emit bus reset packets with a
	 * wrong generation.  We set the correct generation for these
863
	 * at a slightly incorrect time (in bus_reset_work).
864
	 */
865
	if (evt == OHCI1394_evt_bus_reset) {
866
		if (!(ohci->quirks & QUIRK_RESET_PACKET))
867 868
			ohci->request_generation = (p.header[2] >> 16) & 0xff;
	} else if (ctx == &ohci->ar_request_ctx) {
869
		fw_core_handle_request(&ohci->card, &p);
870
	} else {
871
		fw_core_handle_response(&ohci->card, &p);
872
	}
873

874 875
	return buffer + length + 1;
}
876

877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
{
	void *next;

	while (p < end) {
		next = handle_ar_packet(ctx, p);
		if (!next)
			return p;
		p = next;
	}

	return p;
}

static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
{
	unsigned int i;

	i = ar_first_buffer_index(ctx);
	while (i != end_buffer) {
		dma_sync_single_for_device(ctx->ohci->card.device,
					   ar_buffer_bus(ctx, i),
					   PAGE_SIZE, DMA_FROM_DEVICE);
		ar_context_link_page(ctx, i);
		i = ar_next_buffer_index(i);
	}
}

905 906 907
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
908 909
	unsigned int end_buffer_index, end_buffer_offset;
	void *p, *end;
910

911 912 913
	p = ctx->pointer;
	if (!p)
		return;
914

915 916 917 918
	end_buffer_index = ar_search_last_active_buffer(ctx,
							&end_buffer_offset);
	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
919

920
	if (end_buffer_index < ar_first_buffer_index(ctx)) {
921
		/*
922 923 924 925
		 * The filled part of the overall buffer wraps around; handle
		 * all packets up to the buffer end here.  If the last packet
		 * wraps around, its tail will be visible after the buffer end
		 * because the buffer start pages are mapped there again.
926
		 */
927 928 929 930 931 932 933
		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
		p = handle_ar_packets(ctx, p, buffer_end);
		if (p < buffer_end)
			goto error;
		/* adjust p to point back into the actual buffer */
		p -= AR_BUFFERS * PAGE_SIZE;
	}
934

935 936 937 938 939 940
	p = handle_ar_packets(ctx, p, end);
	if (p != end) {
		if (p > end)
			ar_context_abort(ctx, "inconsistent descriptor");
		goto error;
	}
941

942 943
	ctx->pointer = p;
	ar_recycle_buffers(ctx, end_buffer_index);
944

945
	return;
946

947 948
error:
	ctx->pointer = NULL;
949 950
}

951 952
static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
			   unsigned int descriptors_offset, u32 regs)
953
{
954 955 956 957
	unsigned int i;
	dma_addr_t dma_addr;
	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
	struct descriptor *d;
958

959 960
	ctx->regs        = regs;
	ctx->ohci        = ohci;
961 962
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
	for (i = 0; i < AR_BUFFERS; i++) {
		ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
		if (!ctx->pages[i])
			goto out_of_memory;
		dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
					0, PAGE_SIZE, DMA_FROM_DEVICE);
		if (dma_mapping_error(ohci->card.device, dma_addr)) {
			__free_page(ctx->pages[i]);
			ctx->pages[i] = NULL;
			goto out_of_memory;
		}
		set_page_private(ctx->pages[i], dma_addr);
	}

	for (i = 0; i < AR_BUFFERS; i++)
		pages[i]              = ctx->pages[i];
	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
		pages[AR_BUFFERS + i] = ctx->pages[i];
	ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
982
				 -1, PAGE_KERNEL);
983 984 985
	if (!ctx->buffer)
		goto out_of_memory;

986 987
	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
988 989 990 991 992 993 994 995 996 997 998

	for (i = 0; i < AR_BUFFERS; i++) {
		d = &ctx->descriptors[i];
		d->req_count      = cpu_to_le16(PAGE_SIZE);
		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						DESCRIPTOR_STATUS |
						DESCRIPTOR_BRANCH_ALWAYS);
		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
			ar_next_buffer_index(i) * sizeof(struct descriptor));
	}
999

1000
	return 0;
1001 1002 1003 1004 1005

out_of_memory:
	ar_context_release(ctx);

	return -ENOMEM;
1006 1007 1008 1009
}

static void ar_context_run(struct ar_context *ctx)
{
1010 1011 1012 1013
	unsigned int i;

	for (i = 0; i < AR_BUFFERS; i++)
		ar_context_link_page(ctx, i);
1014

1015
	ctx->pointer = ctx->buffer;
1016

1017
	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1018
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1019
}
S
Stefan Richter 已提交
1020

1021
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1022
{
1023
	__le16 branch;
1024

1025
	branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1026 1027

	/* figure out which descriptor the branch address goes in */
1028
	if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1029 1030 1031 1032 1033
		return d;
	else
		return d + z - 1;
}

1034 1035 1036 1037 1038 1039
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
1040
	struct descriptor_buffer *desc;
1041

1042 1043 1044
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
1045
	while (last->branch_address != 0) {
1046
		struct descriptor_buffer *old_desc = desc;
1047 1048
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
1049 1050 1051 1052 1053 1054 1055 1056 1057
		address &= ~0xf;

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1058
		last = find_branch_descriptor(d, z);
1059 1060 1061 1062

		if (!ctx->callback(ctx, d, last))
			break;

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
1073 1074 1075
	}
}

1076 1077 1078 1079
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
1080
static int context_add_buffer(struct context *ctx)
1081 1082
{
	struct descriptor_buffer *desc;
1083
	dma_addr_t uninitialized_var(bus_addr);
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

1109 1110
static int context_init(struct context *ctx, struct fw_ohci *ohci,
			u32 regs, descriptor_callback_t callback)
1111 1112 1113
{
	ctx->ohci = ohci;
	ctx->regs = regs;
1114 1115 1116 1117
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
1118 1119
		return -ENOMEM;

1120 1121 1122
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

1123 1124 1125
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

1126 1127
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
1128
	 * branch address and looks like it's been sent.  That way we
1129
	 * have a descriptor to append DMA programs to.
1130
	 */
1131 1132 1133 1134 1135 1136
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
1137 1138 1139 1140

	return 0;
}

1141
static void context_release(struct context *ctx)
1142 1143
{
	struct fw_card *card = &ctx->ohci->card;
1144
	struct descriptor_buffer *desc, *tmp;
1145

1146 1147 1148 1149
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
1150 1151
}

1152
/* Must be called with ohci->lock held */
1153 1154
static struct descriptor *context_get_descriptors(struct context *ctx,
						  int z, dma_addr_t *d_bus)
1155
{
1156 1157 1158 1159 1160 1161 1162 1163 1164
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
1165

1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
1176

1177
	d = desc->buffer + desc->used / sizeof(*d);
1178
	memset(d, 0, z * sizeof(*d));
1179
	*d_bus = desc->buffer_bus + desc->used;
1180 1181 1182 1183

	return d;
}

1184
static void context_run(struct context *ctx, u32 extra)
1185 1186 1187
{
	struct fw_ohci *ohci = ctx->ohci;

1188
	reg_write(ohci, COMMAND_PTR(ctx->regs),
1189
		  le32_to_cpu(ctx->last->branch_address));
1190 1191
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1192
	ctx->running = true;
1193 1194 1195 1196 1197 1198 1199
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
1200
	struct descriptor_buffer *desc = ctx->buffer_tail;
1201

1202
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1203

1204
	desc->used += (z + extra) * sizeof(*d);
1205 1206

	wmb(); /* finish init of new descriptors before branch_address update */
1207 1208
	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev = find_branch_descriptor(d, z);
1209 1210 1211 1212 1213
}

static void context_stop(struct context *ctx)
{
	u32 reg;
1214
	int i;
1215

1216
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1217
	ctx->running = false;
1218

1219
	for (i = 0; i < 1000; i++) {
1220
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1221
		if ((reg & CONTEXT_ACTIVE) == 0)
1222
			return;
1223

1224 1225
		if (i)
			udelay(10);
1226
	}
1227
	fw_error("Error: DMA context still active (0x%08x)\n", reg);
1228
}
1229

1230
struct driver_data {
1231
	u8 inline_data[8];
1232 1233
	struct fw_packet *packet;
};
1234

1235 1236
/*
 * This function apppends a packet to the DMA queue for transmission.
1237
 * Must always be called with the ochi->lock held to ensure proper
1238 1239
 * generation handling and locking around packet queue manipulation.
 */
1240 1241
static int at_context_queue_packet(struct context *ctx,
				   struct fw_packet *packet)
1242 1243
{
	struct fw_ohci *ohci = ctx->ohci;
1244
	dma_addr_t d_bus, uninitialized_var(payload_bus);
1245 1246 1247
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
1248 1249
	int z, tcode;

1250 1251 1252 1253
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1254 1255
	}

1256
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1257 1258
	d[0].res_count = cpu_to_le16(packet->timestamp);

1259 1260
	/*
	 * The DMA format for asyncronous link packets is different
1261
	 * from the IEEE1394 layout, so shift the fields around
1262
	 * accordingly.
1263
	 */
1264

1265
	tcode = (packet->header[0] >> 4) & 0x0f;
1266
	header = (__le32 *) &d[1];
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_WRITE_BLOCK_REQUEST:
	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
	case TCODE_READ_BLOCK_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
1277 1278 1279 1280 1281
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
1282 1283

		if (TCODE_IS_BLOCK_PACKET(tcode))
1284
			header[3] = cpu_to_le32(packet->header[3]);
1285
		else
1286 1287 1288
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
1289 1290
		break;

1291
	case TCODE_LINK_INTERNAL:
1292 1293
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
1294 1295
		header[1] = cpu_to_le32(packet->header[1]);
		header[2] = cpu_to_le32(packet->header[2]);
1296
		d[0].req_count = cpu_to_le16(12);
S
Stefan Richter 已提交
1297

1298
		if (is_ping_packet(&packet->header[1]))
S
Stefan Richter 已提交
1299
			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1300 1301
		break;

1302
	case TCODE_STREAM_DATA:
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
		d[0].req_count = cpu_to_le16(8);
		break;

	default:
		/* BUG(); */
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1313 1314
	}

1315
	BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1316 1317
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
1318
	packet->driver_data = driver_data;
1319

1320
	if (packet->payload_length > 0) {
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
		if (packet->payload_length > sizeof(driver_data->inline_data)) {
			payload_bus = dma_map_single(ohci->card.device,
						     packet->payload,
						     packet->payload_length,
						     DMA_TO_DEVICE);
			if (dma_mapping_error(ohci->card.device, payload_bus)) {
				packet->ack = RCODE_SEND_ERROR;
				return -1;
			}
			packet->payload_bus	= payload_bus;
			packet->payload_mapped	= true;
		} else {
			memcpy(driver_data->inline_data, packet->payload,
			       packet->payload_length);
			payload_bus = d_bus + 3 * sizeof(*d);
1336 1337 1338 1339 1340 1341
		}

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
1342
	} else {
1343 1344
		last = &d[0];
		z = 2;
1345 1346
	}

1347 1348 1349
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
1350

1351 1352
	/* FIXME: Document how the locking works. */
	if (ohci->generation != packet->generation) {
1353
		if (packet->payload_mapped)
1354 1355
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
1356 1357 1358 1359 1360
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
1361

1362
	if (ctx->running)
1363
		reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1364
	else
1365 1366 1367
		context_run(ctx, 0);

	return 0;
1368 1369
}

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
static void at_context_flush(struct context *ctx)
{
	tasklet_disable(&ctx->tasklet);

	ctx->flushing = true;
	context_tasklet((unsigned long)ctx);
	ctx->flushing = false;

	tasklet_enable(&ctx->tasklet);
}

1381 1382 1383
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1384
{
1385
	struct driver_data *driver_data;
1386
	struct fw_packet *packet;
1387
	struct fw_ohci *ohci = context->ohci;
1388 1389
	int evt;

1390
	if (last->transfer_status == 0 && !context->flushing)
1391 1392
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
1393

1394 1395 1396 1397 1398
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
1399

1400
	if (packet->payload_mapped)
1401
		dma_unmap_single(ohci->card.device, packet->payload_bus,
1402 1403
				 packet->payload_length, DMA_TO_DEVICE);

1404 1405
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
1406

1407 1408
	log_ar_at_event('T', packet->speed, packet->header, evt);

1409 1410 1411 1412 1413
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
1414

1415
	case OHCI1394_evt_flushed:
1416 1417 1418 1419
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
1420 1421
		packet->ack = RCODE_GENERATION;
		break;
1422

1423
	case OHCI1394_evt_missing_ack:
1424 1425 1426 1427 1428 1429 1430 1431 1432
		if (context->flushing)
			packet->ack = RCODE_GENERATION;
		else {
			/*
			 * Using a valid (current) generation count, but the
			 * node is not on the bus or not sending acks.
			 */
			packet->ack = RCODE_NO_ACK;
		}
1433
		break;
1434

1435 1436 1437 1438 1439 1440 1441 1442 1443
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
1444

1445 1446 1447 1448 1449 1450 1451
	case OHCI1394_evt_no_status:
		if (context->flushing) {
			packet->ack = RCODE_GENERATION;
			break;
		}
		/* fall through */

1452 1453 1454 1455
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
1456

1457
	packet->callback(packet, &ohci->card, packet->ack);
1458

1459
	return 1;
1460 1461
}

1462 1463 1464 1465 1466
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1467

1468 1469
static void handle_local_rom(struct fw_ohci *ohci,
			     struct fw_packet *packet, u32 csr)
1470 1471 1472 1473
{
	struct fw_packet response;
	int tcode, length, i;

1474
	tcode = HEADER_GET_TCODE(packet->header[0]);
1475
	if (TCODE_IS_BLOCK_PACKET(tcode))
1476
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

1495 1496
static void handle_local_lock(struct fw_ohci *ohci,
			      struct fw_packet *packet, u32 csr)
1497 1498
{
	struct fw_packet response;
1499
	int tcode, length, ext_tcode, sel, try;
1500 1501 1502
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

1503 1504
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1505
	payload = packet->payload;
1506
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
	for (try = 0; try < 20; try++)
		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
			lock_old = cpu_to_be32(reg_read(ohci,
							OHCI1394_CSRData));
			fw_fill_response(&response, packet->header,
					 RCODE_COMPLETE,
					 &lock_old, sizeof(lock_old));
			goto out;
		}

	fw_error("swap not done (CSR lock timeout)\n");
	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1538 1539 1540 1541 1542

 out:
	fw_core_handle_response(&ohci->card, &response);
}

1543
static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1544
{
1545
	u64 offset, csr;
1546

1547 1548 1549 1550
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1551 1552 1553

	offset =
		((unsigned long long)
1554
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
1575 1576 1577 1578 1579

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1580
}
1581

1582
static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1583 1584
{
	unsigned long flags;
1585
	int ret;
1586 1587 1588

	spin_lock_irqsave(&ctx->ohci->lock, flags);

1589
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1590
	    ctx->ohci->generation == packet->generation) {
1591 1592 1593
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
1594
	}
1595

1596
	ret = at_context_queue_packet(ctx, packet);
1597 1598
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

1599
	if (ret < 0)
1600
		packet->callback(packet, &ctx->ohci->card, packet->ack);
1601

1602 1603
}

1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
static void detect_dead_context(struct fw_ohci *ohci,
				const char *name, unsigned int regs)
{
	u32 ctl;

	ctl = reg_read(ohci, CONTROL_SET(regs));
	if (ctl & CONTEXT_DEAD) {
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG
		fw_error("DMA context %s has stopped, error code: %s\n",
			 name, evts[ctl & 0x1f]);
#else
		fw_error("DMA context %s has stopped, error code: %#x\n",
			 name, ctl & 0x1f);
#endif
	}
}

static void handle_dead_contexts(struct fw_ohci *ohci)
{
	unsigned int i;
	char name[8];

	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
	for (i = 0; i < 32; ++i) {
		if (!(ohci->it_context_support & (1 << i)))
			continue;
		sprintf(name, "IT%u", i);
		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
	}
	for (i = 0; i < 32; ++i) {
		if (!(ohci->ir_context_support & (1 << i)))
			continue;
		sprintf(name, "IR%u", i);
		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
	}
	/* TODO: maybe try to flush and restart the dead contexts */
}

1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
static u32 cycle_timer_ticks(u32 cycle_timer)
{
	u32 ticks;

	ticks = cycle_timer & 0xfff;
	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
	ticks += (3072 * 8000) * (cycle_timer >> 25);

	return ticks;
}

/*
 * Some controllers exhibit one or more of the following bugs when updating the
 * iso cycle timer register:
 *  - When the lowest six bits are wrapping around to zero, a read that happens
 *    at the same time will return garbage in the lowest ten bits.
 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
 *    not incremented for about 60 ns.
 *  - Occasionally, the entire register reads zero.
 *
 * To catch these, we read the register three times and ensure that the
 * difference between each two consecutive reads is approximately the same, i.e.
 * less than twice the other.  Furthermore, any negative difference indicates an
 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
 * execute, so we have enough precision to compute the ratio of the differences.)
 */
static u32 get_cycle_time(struct fw_ohci *ohci)
{
	u32 c0, c1, c2;
	u32 t0, t1, t2;
	s32 diff01, diff12;
	int i;

	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);

	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
		i = 0;
		c1 = c2;
		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		do {
			c0 = c1;
			c1 = c2;
			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
			t0 = cycle_timer_ticks(c0);
			t1 = cycle_timer_ticks(c1);
			t2 = cycle_timer_ticks(c2);
			diff01 = t1 - t0;
			diff12 = t2 - t1;
		} while ((diff01 <= 0 || diff12 <= 0 ||
			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
			 && i++ < 20);
	}

	return c2;
}

/*
 * This function has to be called at least every 64 seconds.  The bus_time
 * field stores not only the upper 25 bits of the BUS_TIME register but also
 * the most significant bit of the cycle timer in bit 6 so that we can detect
 * changes in this bit.
 */
static u32 update_bus_time(struct fw_ohci *ohci)
{
	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;

	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
		ohci->bus_time += 0x40;

	return ohci->bus_time | cycle_time_seconds;
}

1717
static void bus_reset_work(struct work_struct *work)
1718
{
1719 1720
	struct fw_ohci *ohci =
		container_of(work, struct fw_ohci, bus_reset_work);
1721
	int self_id_count, i, j, reg;
1722 1723
	int generation, new_generation;
	unsigned long flags;
1724 1725
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1726
	bool is_new_root;
1727 1728 1729

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1730
		fw_notify("node ID not valid, new bus reset in progress\n");
1731 1732
		return;
	}
1733 1734 1735 1736 1737 1738
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1739

1740 1741 1742 1743 1744 1745
	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
	if (!(ohci->is_root && is_new_root))
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	ohci->is_root = is_new_root;

1746 1747 1748 1749 1750
	reg = reg_read(ohci, OHCI1394_SelfIDCount);
	if (reg & OHCI1394_SelfIDCount_selfIDError) {
		fw_notify("inconsistent self IDs\n");
		return;
	}
1751 1752
	/*
	 * The count in the SelfIDCount register is the number of
1753 1754
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1755 1756
	 * bit extra to get the actual number of self IDs.
	 */
1757 1758
	self_id_count = (reg >> 3) & 0xff;
	if (self_id_count == 0 || self_id_count > 252) {
1759 1760 1761
		fw_notify("inconsistent self IDs\n");
		return;
	}
1762
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1763
	rmb();
1764 1765

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1766 1767 1768 1769
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
			fw_notify("inconsistent self IDs\n");
			return;
		}
1770 1771
		ohci->self_id_buffer[j] =
				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1772
	}
1773
	rmb();
1774

1775 1776
	/*
	 * Check the consistency of the self IDs we just read.  The
1777 1778 1779 1780 1781 1782 1783 1784 1785
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1786 1787
	 * of self IDs.
	 */
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

1799
	ohci->generation = -1; /* prevent AT packet queueing */
1800 1801
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1802 1803 1804

	spin_unlock_irqrestore(&ohci->lock, flags);

1805 1806 1807 1808 1809
	/*
	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
	 * packets in the AT queues and software needs to drain them.
	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
	 */
1810 1811 1812 1813 1814 1815
	at_context_flush(&ohci->at_request_ctx);
	at_context_flush(&ohci->at_response_ctx);

	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
1816 1817
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

1818
	if (ohci->quirks & QUIRK_RESET_PACKET)
1819 1820
		ohci->request_generation = generation;

1821 1822
	/*
	 * This next bit is unrelated to the AT context stuff but we
1823 1824 1825 1826
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
T
Thomas Weber 已提交
1827
	 * next_config_rom pointer so a new update can take place.
1828
	 */
1829 1830

	if (ohci->next_config_rom != NULL) {
1831 1832 1833 1834
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1835 1836 1837 1838
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1839 1840
		/*
		 * Restore config_rom image and manually update
1841 1842
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1843 1844
		 * do that last.
		 */
1845 1846
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
1847 1848 1849
		ohci->config_rom[0] = ohci->next_header;
		reg_write(ohci, OHCI1394_ConfigROMhdr,
			  be32_to_cpu(ohci->next_header));
1850 1851
	}

1852 1853 1854 1855 1856
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif

1857 1858
	spin_unlock_irqrestore(&ohci->lock, flags);

1859 1860 1861 1862
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1863 1864
	log_selfids(ohci->node_id, generation,
		    self_id_count, ohci->self_id_buffer);
1865

1866
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1867 1868 1869
				 self_id_count, ohci->self_id_buffer,
				 ohci->csr_state_setclear_abdicate);
	ohci->csr_state_setclear_abdicate = false;
1870 1871 1872 1873 1874
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1875
	u32 event, iso_event;
1876 1877 1878 1879
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1880
	if (!event || !~event)
1881 1882
		return IRQ_NONE;

1883 1884 1885 1886 1887 1888
	/*
	 * busReset and postedWriteErr must not be cleared yet
	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
	 */
	reg_write(ohci, OHCI1394_IntEventClear,
		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
1889
	log_irqs(event);
1890 1891

	if (event & OHCI1394_selfIDComplete)
1892
		queue_work(fw_workqueue, &ohci->bus_reset_work);
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
	if (event & OHCI1394_isochRx) {
		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

		while (iso_event) {
			i = ffs(iso_event) - 1;
			tasklet_schedule(
				&ohci->ir_context_list[i].context.tasklet);
			iso_event &= ~(1 << i);
		}
1916 1917
	}

1918 1919 1920
	if (event & OHCI1394_isochTx) {
		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1921

1922 1923 1924 1925 1926 1927
		while (iso_event) {
			i = ffs(iso_event) - 1;
			tasklet_schedule(
				&ohci->it_context_list[i].context.tasklet);
			iso_event &= ~(1 << i);
		}
1928 1929
	}

1930 1931 1932 1933
	if (unlikely(event & OHCI1394_regAccessFail))
		fw_error("Register access failure - "
			 "please notify linux1394-devel@lists.sf.net\n");

1934 1935 1936 1937 1938
	if (unlikely(event & OHCI1394_postedWriteErr)) {
		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
		reg_write(ohci, OHCI1394_IntEventClear,
			  OHCI1394_postedWriteErr);
1939
		fw_error("PCI posted write error\n");
1940
	}
1941

1942 1943 1944 1945 1946 1947 1948
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
			fw_notify("isochronous cycle too long\n");
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
	if (unlikely(event & OHCI1394_cycleInconsistent)) {
		/*
		 * We need to clear this event bit in order to make
		 * cycleMatch isochronous I/O work.  In theory we should
		 * stop active cycleMatch iso contexts now and restart
		 * them at least two cycles later.  (FIXME?)
		 */
		if (printk_ratelimit())
			fw_notify("isochronous cycle inconsistent\n");
	}

1960 1961 1962
	if (unlikely(event & OHCI1394_unrecoverableError))
		handle_dead_contexts(ohci);

1963 1964 1965 1966
	if (event & OHCI1394_cycle64Seconds) {
		spin_lock(&ohci->lock);
		update_bus_time(ohci);
		spin_unlock(&ohci->lock);
1967 1968
	} else
		flush_writes(ohci);
1969

1970 1971 1972
	return IRQ_HANDLED;
}

1973 1974
static int software_reset(struct fw_ohci *ohci)
{
1975
	u32 val;
1976 1977 1978
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1979 1980 1981 1982
	for (i = 0; i < 500; i++) {
		val = reg_read(ohci, OHCI1394_HCControlSet);
		if (!~val)
			return -ENODEV; /* Card was ejected. */
1983

1984
		if (!(val & OHCI1394_HCControl_softReset))
1985
			return 0;
1986

1987 1988 1989 1990 1991 1992
		msleep(1);
	}

	return -EBUSY;
}

1993 1994 1995 1996 1997 1998 1999 2000 2001
static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
{
	size_t size = length * 4;

	memcpy(dest, src, size);
	if (size < CONFIG_ROM_SIZE)
		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
}

2002 2003 2004
static int configure_1394a_enhancements(struct fw_ohci *ohci)
{
	bool enable_1394a;
2005
	int ret, clear, set, offset;
2006 2007 2008 2009 2010 2011 2012 2013

	/* Check if the driver should configure link and PHY. */
	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
	      OHCI1394_HCControl_programPhyEnable))
		return 0;

	/* Paranoia: check whether the PHY supports 1394a, too. */
	enable_1394a = false;
2014 2015 2016 2017 2018 2019 2020 2021
	ret = read_phy_reg(ohci, 2);
	if (ret < 0)
		return ret;
	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
		ret = read_paged_phy_reg(ohci, 1, 8);
		if (ret < 0)
			return ret;
		if (ret >= 1)
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
			enable_1394a = true;
	}

	if (ohci->quirks & QUIRK_NO_1394A)
		enable_1394a = false;

	/* Configure PHY and link consistently. */
	if (enable_1394a) {
		clear = 0;
		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
	} else {
		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
		set = 0;
	}
2036
	ret = update_phy_reg(ohci, 5, clear, set);
2037 2038
	if (ret < 0)
		return ret;
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052

	if (enable_1394a)
		offset = OHCI1394_HCControlSet;
	else
		offset = OHCI1394_HCControlClear;
	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);

	/* Clean up: configuration has been taken care of. */
	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_programPhyEnable);

	return 0;
}

2053 2054
static int ohci_enable(struct fw_card *card,
		       const __be32 *config_rom, size_t length)
2055 2056 2057
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);
2058
	u32 lps, seconds, version, irqs;
2059
	int i, ret;
2060

2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
2071 2072
	 * full link enabled.  However, with some cards (well, at least
	 * a JMicron PCIe card), we have to try again sometimes.
2073 2074 2075 2076 2077
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088

	for (lps = 0, i = 0; !lps && i < 3; i++) {
		msleep(50);
		lps = reg_read(ohci, OHCI1394_HCControlSet) &
		      OHCI1394_HCControl_LPS;
	}

	if (!lps) {
		fw_error("Failed to set Link Power Status\n");
		return -EIO;
	}
2089 2090 2091 2092

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

2093
	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2094 2095 2096 2097 2098 2099 2100
	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2101 2102
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
		  (200 << 16));
2103

2104 2105 2106 2107
	seconds = lower_32_bits(get_seconds());
	reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
	ohci->bus_time = seconds & ~0x3f;

2108 2109 2110 2111
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	if (version >= OHCI_VERSION_1_1) {
		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
			  0xfffffffe);
2112
		card->broadcast_channel_auto_allocated = true;
2113 2114
	}

2115 2116 2117 2118
	/* Get implemented bits of the priority arbitration request counter. */
	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
	reg_write(ohci, OHCI1394_FairnessControl, 0);
2119
	card->priority_budget_implemented = ohci->pri_req_max != 0;
2120 2121 2122 2123 2124

	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);

2125 2126 2127
	ret = configure_1394a_enhancements(ohci);
	if (ret < 0)
		return ret;
2128

2129
	/* Activate link_on bit and contender bit in our self ID packets.*/
2130 2131 2132
	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
	if (ret < 0)
		return ret;
2133

2134 2135
	/*
	 * When the link is not yet enabled, the atomic config rom
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

2153 2154 2155 2156 2157 2158 2159
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
2160

2161
		copy_config_rom(ohci->next_config_rom, config_rom, length);
2162 2163 2164 2165 2166 2167 2168 2169
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
2170

2171
	ohci->next_header = ohci->next_config_rom[0];
2172 2173
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2174 2175
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
2176 2177 2178 2179
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

2180 2181
	if (!(ohci->quirks & QUIRK_NO_MSI))
		pci_enable_msi(dev);
2182
	if (request_irq(dev->irq, irq_handler,
2183 2184 2185 2186
			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
			ohci_driver_name, ohci)) {
		fw_error("Failed to allocate interrupt %d.\n", dev->irq);
		pci_disable_msi(dev);
2187 2188 2189 2190 2191 2192 2193

		if (config_rom) {
			dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					  ohci->next_config_rom,
					  ohci->next_config_rom_bus);
			ohci->next_config_rom = NULL;
		}
2194 2195 2196
		return -EIO;
	}

2197 2198 2199 2200 2201 2202
	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		OHCI1394_RQPkt | OHCI1394_RSPkt |
		OHCI1394_isochTx | OHCI1394_isochRx |
		OHCI1394_postedWriteErr |
		OHCI1394_selfIDComplete |
		OHCI1394_regAccessFail |
2203
		OHCI1394_cycle64Seconds |
2204 2205 2206
		OHCI1394_cycleInconsistent |
		OHCI1394_unrecoverableError |
		OHCI1394_cycleTooLong |
2207 2208 2209 2210 2211
		OHCI1394_masterIntEnable;
	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
		irqs |= OHCI1394_busReset;
	reg_write(ohci, OHCI1394_IntMaskSet, irqs);

2212 2213 2214
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
2215 2216 2217 2218 2219 2220

	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_rcvPhyPkt);

	ar_context_run(&ohci->ar_request_ctx);
2221 2222 2223
	ar_context_run(&ohci->ar_response_ctx);

	flush_writes(ohci);
2224

2225 2226
	/* We are ready to go, reset bus to finish initialization. */
	fw_schedule_bus_reset(&ohci->card, false, true);
2227 2228 2229 2230

	return 0;
}

2231
static int ohci_set_config_rom(struct fw_card *card,
2232
			       const __be32 *config_rom, size_t length)
2233 2234 2235 2236
{
	struct fw_ohci *ohci;
	unsigned long flags;
	__be32 *next_config_rom;
2237
	dma_addr_t uninitialized_var(next_config_rom_bus);
2238 2239 2240

	ohci = fw_ohci(card);

2241 2242
	/*
	 * When the OHCI controller is enabled, the config rom update
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
2265
	 * ohci->next_config_rom to NULL (see bus_reset_work).
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
	/*
	 * If there is not an already pending config_rom update,
	 * push our new allocation into the ohci->next_config_rom
	 * and then mark the local variable as null so that we
	 * won't deallocate the new buffer.
	 *
	 * OTOH, if there is a pending config_rom update, just
	 * use that buffer with the new config_rom data, and
	 * let this routine free the unused DMA allocation.
	 */

2287 2288 2289
	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;
2290 2291
		next_config_rom = NULL;
	}
2292

2293
	copy_config_rom(ohci->next_config_rom, config_rom, length);
2294

2295 2296
	ohci->next_header = config_rom[0];
	ohci->next_config_rom[0] = 0;
2297

2298
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2299 2300 2301

	spin_unlock_irqrestore(&ohci->lock, flags);

2302 2303 2304 2305 2306
	/* If we didn't use the DMA allocation, delete it. */
	if (next_config_rom != NULL)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);

2307 2308
	/*
	 * Now initiate a bus reset to have the changes take
2309 2310 2311
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
2312 2313
	 * takes effect.
	 */
2314

2315 2316 2317
	fw_schedule_bus_reset(&ohci->card, true, true);

	return 0;
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

2334 2335 2336
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
2337 2338
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
2339
	int ret = -ENOENT;
2340

2341
	tasklet_disable(&ctx->tasklet);
2342

2343 2344
	if (packet->ack != 0)
		goto out;
2345

2346
	if (packet->payload_mapped)
2347 2348 2349
		dma_unmap_single(ohci->card.device, packet->payload_bus,
				 packet->payload_length, DMA_TO_DEVICE);

2350
	log_ar_at_event('T', packet->speed, packet->header, 0x20);
2351 2352 2353
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
2354
	ret = 0;
2355 2356
 out:
	tasklet_enable(&ctx->tasklet);
2357

2358
	return ret;
2359 2360
}

2361 2362
static int ohci_enable_phys_dma(struct fw_card *card,
				int node_id, int generation)
2363
{
2364 2365 2366
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	return 0;
#else
2367 2368
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
2369
	int n, ret = 0;
2370

2371 2372 2373 2374
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
2375 2376 2377 2378

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
2379
		ret = -ESTALE;
2380 2381 2382
		goto out;
	}

2383 2384 2385 2386
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
2387 2388 2389 2390 2391 2392 2393

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

2394 2395
	flush_writes(ohci);
 out:
2396
	spin_unlock_irqrestore(&ohci->lock, flags);
2397 2398

	return ret;
2399
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2400
}
S
Stefan Richter 已提交
2401

2402
static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2403
{
2404
	struct fw_ohci *ohci = fw_ohci(card);
2405 2406
	unsigned long flags;
	u32 value;
2407 2408

	switch (csr_offset) {
2409 2410 2411 2412 2413
	case CSR_STATE_CLEAR:
	case CSR_STATE_SET:
		if (ohci->is_root &&
		    (reg_read(ohci, OHCI1394_LinkControlSet) &
		     OHCI1394_LinkControl_cycleMaster))
2414
			value = CSR_STATE_BIT_CMSTR;
2415
		else
2416 2417 2418
			value = 0;
		if (ohci->csr_state_setclear_abdicate)
			value |= CSR_STATE_BIT_ABDICATE;
2419

2420
		return value;
2421

2422 2423 2424
	case CSR_NODE_IDS:
		return reg_read(ohci, OHCI1394_NodeID) << 16;

2425 2426 2427
	case CSR_CYCLE_TIME:
		return get_cycle_time(ohci);

2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
	case CSR_BUS_TIME:
		/*
		 * We might be called just after the cycle timer has wrapped
		 * around but just before the cycle64Seconds handler, so we
		 * better check here, too, if the bus time needs to be updated.
		 */
		spin_lock_irqsave(&ohci->lock, flags);
		value = update_bus_time(ohci);
		spin_unlock_irqrestore(&ohci->lock, flags);
		return value;

2439 2440 2441 2442
	case CSR_BUSY_TIMEOUT:
		value = reg_read(ohci, OHCI1394_ATRetries);
		return (value >> 4) & 0x0ffff00f;

2443 2444 2445 2446
	case CSR_PRIORITY_BUDGET:
		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
			(ohci->pri_req_max << 8);

2447 2448 2449 2450
	default:
		WARN_ON(1);
		return 0;
	}
2451 2452
}

2453
static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2454 2455
{
	struct fw_ohci *ohci = fw_ohci(card);
2456
	unsigned long flags;
2457

2458
	switch (csr_offset) {
2459 2460 2461 2462 2463 2464
	case CSR_STATE_CLEAR:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlClear,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2465 2466
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = false;
2467
		break;
2468

2469 2470 2471 2472 2473 2474
	case CSR_STATE_SET:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlSet,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2475 2476
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = true;
2477
		break;
2478

2479 2480 2481 2482 2483
	case CSR_NODE_IDS:
		reg_write(ohci, OHCI1394_NodeID, value >> 16);
		flush_writes(ohci);
		break;

2484 2485 2486 2487 2488 2489 2490
	case CSR_CYCLE_TIME:
		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
		reg_write(ohci, OHCI1394_IntEventSet,
			  OHCI1394_cycleInconsistent);
		flush_writes(ohci);
		break;

2491 2492 2493 2494 2495 2496
	case CSR_BUS_TIME:
		spin_lock_irqsave(&ohci->lock, flags);
		ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
		spin_unlock_irqrestore(&ohci->lock, flags);
		break;

2497 2498 2499 2500 2501 2502 2503
	case CSR_BUSY_TIMEOUT:
		value = (value & 0xf) | ((value & 0xf) << 4) |
			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
		reg_write(ohci, OHCI1394_ATRetries, value);
		flush_writes(ohci);
		break;

2504 2505 2506 2507 2508
	case CSR_PRIORITY_BUDGET:
		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
		flush_writes(ohci);
		break;

2509 2510 2511 2512
	default:
		WARN_ON(1);
		break;
	}
2513 2514
}

2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
static void copy_iso_headers(struct iso_context *ctx, void *p)
{
	int i = ctx->header_length;

	if (i + ctx->base.header_size > PAGE_SIZE)
		return;

	/*
	 * The iso header is byteswapped to little endian by
	 * the controller, but the remaining header quadlets
	 * are big endian.  We want to present all the headers
	 * as big endian, so we have to swap the first quadlet.
	 */
	if (ctx->base.header_size > 0)
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
	if (ctx->base.header_size > 4)
		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
	if (ctx->base.header_size > 8)
		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
	ctx->header_length += ctx->base.header_size;
}

2537 2538 2539 2540 2541 2542
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2543
	struct descriptor *pd;
2544
	__le32 *ir_header;
2545
	void *p;
2546

2547
	for (pd = d; pd <= last; pd++)
2548 2549 2550
		if (pd->transfer_status)
			break;
	if (pd > last)
2551 2552 2553
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

2554 2555
	p = last + 1;
	copy_iso_headers(ctx, p);
2556

2557 2558
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) p;
2559 2560 2561 2562
		ctx->base.callback.sc(&ctx->base,
				      le32_to_cpu(ir_header[0]) & 0xffff,
				      ctx->header_length, ctx->header,
				      ctx->base.callback_data);
2563 2564 2565 2566 2567 2568
		ctx->header_length = 0;
	}

	return 1;
}

2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
/* d == last because each descriptor block is only a single descriptor. */
static int handle_ir_buffer_fill(struct context *context,
				 struct descriptor *d,
				 struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);

	if (!last->transfer_status)
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
		ctx->base.callback.mc(&ctx->base,
				      le32_to_cpu(last->data_address) +
				      le16_to_cpu(last->req_count) -
				      le16_to_cpu(last->res_count),
				      ctx->base.callback_data);

	return 1;
}

2591 2592 2593
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
2594
{
2595 2596
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2597 2598
	int i;
	struct descriptor *pd;
S
Stefan Richter 已提交
2599

2600 2601 2602 2603 2604
	for (pd = d; pd <= last; pd++)
		if (pd->transfer_status)
			break;
	if (pd > last)
		/* Descriptor(s) not done yet, stop iteration */
2605 2606
		return 0;

2607 2608 2609 2610 2611 2612 2613 2614 2615
	i = ctx->header_length;
	if (i + 4 < PAGE_SIZE) {
		/* Present this value as big-endian to match the receive code */
		*(__be32 *)(ctx->header + i) = cpu_to_be32(
				((u32)le16_to_cpu(pd->transfer_status) << 16) |
				le16_to_cpu(pd->res_count));
		ctx->header_length += 4;
	}
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2616 2617 2618
		ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
				      ctx->header_length, ctx->header,
				      ctx->base.callback_data);
2619 2620
		ctx->header_length = 0;
	}
2621
	return 1;
2622 2623
}

2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
{
	u32 hi = channels >> 32, lo = channels;

	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
	mmiowb();
	ohci->mc_channels = channels;
}

2636
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2637
				int type, int channel, size_t header_size)
2638 2639
{
	struct fw_ohci *ohci = fw_ohci(card);
2640 2641 2642 2643
	struct iso_context *uninitialized_var(ctx);
	descriptor_callback_t uninitialized_var(callback);
	u64 *uninitialized_var(channels);
	u32 *uninitialized_var(mask), uninitialized_var(regs);
2644
	unsigned long flags;
2645
	int index, ret = -EBUSY;
2646

2647
	spin_lock_irqsave(&ohci->lock, flags);
2648

2649 2650 2651
	switch (type) {
	case FW_ISO_CONTEXT_TRANSMIT:
		mask     = &ohci->it_context_mask;
2652
		callback = handle_it_packet;
2653 2654 2655 2656 2657 2658 2659 2660 2661
		index    = ffs(*mask) - 1;
		if (index >= 0) {
			*mask &= ~(1 << index);
			regs = OHCI1394_IsoXmitContextBase(index);
			ctx  = &ohci->it_context_list[index];
		}
		break;

	case FW_ISO_CONTEXT_RECEIVE:
2662
		channels = &ohci->ir_context_channels;
2663
		mask     = &ohci->ir_context_mask;
2664
		callback = handle_ir_packet_per_buffer;
2665 2666 2667 2668 2669 2670 2671 2672
		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
		if (index >= 0) {
			*channels &= ~(1ULL << channel);
			*mask     &= ~(1 << index);
			regs = OHCI1394_IsoRcvContextBase(index);
			ctx  = &ohci->ir_context_list[index];
		}
		break;
2673

2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		mask     = &ohci->ir_context_mask;
		callback = handle_ir_buffer_fill;
		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
		if (index >= 0) {
			ohci->mc_allocated = true;
			*mask &= ~(1 << index);
			regs = OHCI1394_IsoRcvContextBase(index);
			ctx  = &ohci->ir_context_list[index];
		}
		break;

	default:
		index = -1;
		ret = -ENOSYS;
2689
	}
2690

2691 2692 2693
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
2694
		return ERR_PTR(ret);
S
Stefan Richter 已提交
2695

2696
	memset(ctx, 0, sizeof(*ctx));
2697 2698
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
2699 2700
	if (ctx->header == NULL) {
		ret = -ENOMEM;
2701
		goto out;
2702
	}
2703 2704
	ret = context_init(&ctx->context, ohci, regs, callback);
	if (ret < 0)
2705
		goto out_with_header;
2706

2707 2708 2709
	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
		set_multichannel_mask(ohci, 0);

2710
	return &ctx->base;
2711 2712 2713 2714 2715

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725

	switch (type) {
	case FW_ISO_CONTEXT_RECEIVE:
		*channels |= 1ULL << channel;
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		ohci->mc_allocated = false;
		break;
	}
2726
	*mask |= 1 << index;
2727

2728 2729
	spin_unlock_irqrestore(&ohci->lock, flags);

2730
	return ERR_PTR(ret);
2731 2732
}

2733 2734
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
2735
{
S
Stefan Richter 已提交
2736
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2737
	struct fw_ohci *ohci = ctx->context.ohci;
2738
	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2739 2740
	int index;

2741 2742 2743 2744
	/* the controller cannot start without any queued packets */
	if (ctx->context.last->branch_address == 0)
		return -ENODATA;

2745 2746
	switch (ctx->base.type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2747
		index = ctx - ohci->it_context_list;
2748 2749 2750
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2751
				(cycle & 0x7fff) << 16;
2752

2753 2754
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2755
		context_run(&ctx->context, match);
2756 2757 2758 2759 2760 2761
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
		/* fall through */
	case FW_ISO_CONTEXT_RECEIVE:
2762
		index = ctx - ohci->ir_context_list;
2763 2764 2765 2766 2767
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
2768

2769 2770
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2771
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2772
		context_run(&ctx->context, control);
2773 2774 2775 2776

		ctx->sync = sync;
		ctx->tags = tags;

2777
		break;
2778
	}
2779 2780 2781 2782

	return 0;
}

2783 2784 2785
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2786
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2787 2788
	int index;

2789 2790
	switch (ctx->base.type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2791 2792
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2793 2794 2795 2796
		break;

	case FW_ISO_CONTEXT_RECEIVE:
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2797 2798
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2799
		break;
2800 2801 2802
	}
	flush_writes(ohci);
	context_stop(&ctx->context);
2803
	tasklet_kill(&ctx->context.tasklet);
2804 2805 2806 2807

	return 0;
}

2808 2809 2810
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2811
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2812 2813 2814
	unsigned long flags;
	int index;

2815 2816
	ohci_stop_iso(base);
	context_release(&ctx->context);
2817
	free_page((unsigned long)ctx->header);
2818

2819 2820
	spin_lock_irqsave(&ohci->lock, flags);

2821 2822
	switch (base->type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2823 2824
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
2825 2826 2827
		break;

	case FW_ISO_CONTEXT_RECEIVE:
2828 2829
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
2830
		ohci->ir_context_channels |= 1ULL << base->channel;
2831 2832 2833 2834 2835 2836 2837 2838 2839
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
		ohci->ir_context_channels |= ohci->mc_channels;
		ohci->mc_channels = 0;
		ohci->mc_allocated = false;
		break;
2840 2841 2842 2843 2844
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
	unsigned long flags;
	int ret;

	switch (base->type) {
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:

		spin_lock_irqsave(&ohci->lock, flags);

		/* Don't allow multichannel to grab other contexts' channels. */
		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
			*channels = ohci->ir_context_channels;
			ret = -EBUSY;
		} else {
			set_multichannel_mask(ohci, *channels);
			ret = 0;
		}

		spin_unlock_irqrestore(&ohci->lock, flags);

		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

2875 2876 2877 2878 2879 2880 2881 2882
#ifdef CONFIG_PM
static void ohci_resume_iso_dma(struct fw_ohci *ohci)
{
	int i;
	struct iso_context *ctx;

	for (i = 0 ; i < ohci->n_ir ; i++) {
		ctx = &ohci->ir_context_list[i];
2883
		if (ctx->context.running)
2884 2885 2886 2887 2888
			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
	}

	for (i = 0 ; i < ohci->n_it ; i++) {
		ctx = &ohci->it_context_list[i];
2889
		if (ctx->context.running)
2890 2891 2892 2893 2894
			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
	}
}
#endif

2895 2896 2897 2898
static int queue_iso_transmit(struct iso_context *ctx,
			      struct fw_iso_packet *packet,
			      struct fw_iso_buffer *buffer,
			      unsigned long payload)
2899
{
2900
	struct descriptor *d, *last, *pd;
2901 2902
	struct fw_iso_packet *p;
	__le32 *header;
2903
	dma_addr_t d_bus, page_bus;
2904 2905
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
2906
	int page, end_page, i, length, offset;
2907 2908

	p = packet;
2909
	payload_index = payload;
2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
2928
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2929

2930 2931 2932
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
2933 2934

	if (!p->skip) {
2935
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2936
		d[0].req_count = cpu_to_le16(8);
2937 2938 2939 2940 2941 2942 2943 2944
		/*
		 * Link the skip address to this descriptor itself.  This causes
		 * a context to skip a cycle whenever lost cycles or FIFO
		 * overruns occur, without dropping the data.  The application
		 * should then decide whether this is an error condition or not.
		 * FIXME:  Make the context's cycle-lost behaviour configurable?
		 */
		d[0].branch_address = cpu_to_le32(d_bus | z);
2945 2946

		header = (__le32 *) &d[1];
2947 2948 2949 2950 2951
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
2952
		header[1] =
2953
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2954 2955 2956 2957 2958
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
2959
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
2972 2973 2974

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
2975 2976 2977 2978 2979

		payload_index += length;
	}

	if (p->interrupt)
2980
		irq = DESCRIPTOR_IRQ_ALWAYS;
2981
	else
2982
		irq = DESCRIPTOR_NO_IRQ;
2983

2984
	last = z == 2 ? d : d + z - 1;
2985 2986 2987
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
2988
				     irq);
2989

2990
	context_append(&ctx->context, d, z, header_z);
2991 2992 2993

	return 0;
}
S
Stefan Richter 已提交
2994

2995 2996 2997 2998
static int queue_iso_packet_per_buffer(struct iso_context *ctx,
				       struct fw_iso_packet *packet,
				       struct fw_iso_buffer *buffer,
				       unsigned long payload)
2999
{
3000
	struct descriptor *d, *pd;
3001 3002
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
3003 3004
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
3005 3006

	/*
3007 3008
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
3009
	 */
3010
	packet_count = packet->header_length / ctx->base.header_size;
3011
	header_size  = max(ctx->base.header_size, (size_t)8);
3012 3013 3014 3015 3016

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
3017
	payload_per_buffer = packet->payload_length / packet_count;
3018 3019 3020

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
3021
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3022
		d = context_get_descriptors(&ctx->context,
3023
				z + header_z, &d_bus);
3024 3025 3026
		if (d == NULL)
			return -ENOMEM;

3027 3028
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
3029
		if (packet->skip && i == 0)
3030
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3031 3032
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
3033
		d->transfer_status = 0;
3034 3035
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

3036
		rest = payload_per_buffer;
3037
		pd = d;
3038
		for (j = 1; j < z; j++) {
3039
			pd++;
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
3059 3060 3061
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
3062
		if (packet->interrupt && i == packet_count - 1)
3063 3064 3065 3066 3067 3068 3069 3070
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
static int queue_iso_buffer_fill(struct iso_context *ctx,
				 struct fw_iso_packet *packet,
				 struct fw_iso_buffer *buffer,
				 unsigned long payload)
{
	struct descriptor *d;
	dma_addr_t d_bus, page_bus;
	int page, offset, rest, z, i, length;

	page   = payload >> PAGE_SHIFT;
	offset = payload & ~PAGE_MASK;
	rest   = packet->payload_length;

	/* We need one descriptor for each page in the buffer. */
	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);

	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
		return -EFAULT;

	for (i = 0; i < z; i++) {
		d = context_get_descriptors(&ctx->context, 1, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
					 DESCRIPTOR_BRANCH_ALWAYS);
		if (packet->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
		if (packet->interrupt && i == z - 1)
			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		if (offset + rest < PAGE_SIZE)
			length = rest;
		else
			length = PAGE_SIZE - offset;
		d->req_count = cpu_to_le16(length);
		d->res_count = d->req_count;
		d->transfer_status = 0;

		page_bus = page_private(buffer->pages[page]);
		d->data_address = cpu_to_le32(page_bus + offset);

		rest -= length;
		offset = 0;
		page++;

		context_append(&ctx->context, d, 1, 0);
	}

	return 0;
}

3123 3124 3125 3126
static int ohci_queue_iso(struct fw_iso_context *base,
			  struct fw_iso_packet *packet,
			  struct fw_iso_buffer *buffer,
			  unsigned long payload)
3127
{
3128
	struct iso_context *ctx = container_of(base, struct iso_context, base);
3129
	unsigned long flags;
3130
	int ret = -ENOSYS;
3131

3132
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
	switch (base->type) {
	case FW_ISO_CONTEXT_TRANSMIT:
		ret = queue_iso_transmit(ctx, packet, buffer, payload);
		break;
	case FW_ISO_CONTEXT_RECEIVE:
		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
		break;
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
		break;
	}
3144 3145
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

3146
	return ret;
3147 3148
}

3149 3150 3151 3152 3153 3154 3155 3156
static void ohci_flush_queue_iso(struct fw_iso_context *base)
{
	struct context *ctx =
			&container_of(base, struct iso_context, base)->context;

	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
}

3157
static const struct fw_card_driver ohci_driver = {
3158
	.enable			= ohci_enable,
3159
	.read_phy_reg		= ohci_read_phy_reg,
3160 3161 3162 3163
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
3164
	.cancel_packet		= ohci_cancel_packet,
3165
	.enable_phys_dma	= ohci_enable_phys_dma,
3166 3167
	.read_csr		= ohci_read_csr,
	.write_csr		= ohci_write_csr,
3168 3169 3170

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
3171
	.set_iso_channels	= ohci_set_iso_channels,
3172
	.queue_iso		= ohci_queue_iso,
3173
	.flush_queue_iso	= ohci_flush_queue_iso,
3174
	.start_iso		= ohci_start_iso,
3175
	.stop_iso		= ohci_stop_iso,
3176 3177
};

3178
#ifdef CONFIG_PPC_PMAC
3179
static void pmac_ohci_on(struct pci_dev *dev)
3180
{
3181 3182 3183 3184 3185 3186 3187 3188
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
3189 3190
}

3191
static void pmac_ohci_off(struct pci_dev *dev)
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
{
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
}
#else
3203 3204
static inline void pmac_ohci_on(struct pci_dev *dev) {}
static inline void pmac_ohci_off(struct pci_dev *dev) {}
3205 3206
#endif /* CONFIG_PPC_PMAC */

3207 3208
static int __devinit pci_probe(struct pci_dev *dev,
			       const struct pci_device_id *ent)
3209 3210
{
	struct fw_ohci *ohci;
3211
	u32 bus_options, max_receive, link_speed, version;
3212
	u64 guid;
3213
	int i, err;
3214 3215
	size_t size;

3216 3217 3218 3219 3220
	if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
		dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
		return -ENOSYS;
	}

3221
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3222
	if (ohci == NULL) {
3223 3224
		err = -ENOMEM;
		goto fail;
3225 3226 3227 3228
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

3229
	pmac_ohci_on(dev);
3230

3231 3232
	err = pci_enable_device(dev);
	if (err) {
3233
		fw_error("Failed to enable OHCI hardware\n");
3234
		goto fail_free;
3235 3236 3237 3238 3239 3240 3241
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);
3242
	mutex_init(&ohci->phy_reg_mutex);
3243

3244
	INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3245

3246 3247
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
3248
		fw_error("MMIO resource unavailable\n");
3249
		goto fail_disable;
3250 3251 3252 3253 3254
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
3255 3256
		err = -ENXIO;
		goto fail_iomem;
3257 3258
	}

3259
	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3260 3261 3262 3263 3264
		if ((ohci_quirks[i].vendor == dev->vendor) &&
		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
		     ohci_quirks[i].device == dev->device) &&
		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
		     ohci_quirks[i].revision >= dev->revision)) {
3265 3266 3267
			ohci->quirks = ohci_quirks[i].flags;
			break;
		}
3268 3269
	if (param_quirks)
		ohci->quirks = param_quirks;
3270

3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
	/*
	 * Because dma_alloc_coherent() allocates at least one page,
	 * we save space by using a common buffer for the AR request/
	 * response descriptors and the self IDs buffer.
	 */
	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
	ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
					       PAGE_SIZE,
					       &ohci->misc_buffer_bus,
					       GFP_KERNEL);
	if (!ohci->misc_buffer) {
		err = -ENOMEM;
		goto fail_iounmap;
	}

	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3288 3289
			      OHCI1394_AsReqRcvContextControlSet);
	if (err < 0)
3290
		goto fail_misc_buf;
3291

3292
	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3293 3294 3295
			      OHCI1394_AsRspRcvContextControlSet);
	if (err < 0)
		goto fail_arreq_ctx;
3296

3297 3298 3299 3300
	err = context_init(&ohci->at_request_ctx, ohci,
			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
	if (err < 0)
		goto fail_arrsp_ctx;
3301

3302 3303 3304 3305
	err = context_init(&ohci->at_response_ctx, ohci,
			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
	if (err < 0)
		goto fail_atreq_ctx;
3306 3307

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3308
	ohci->ir_context_channels = ~0ULL;
3309
	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3310
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3311
	ohci->ir_context_mask = ohci->ir_context_support;
3312 3313
	ohci->n_ir = hweight32(ohci->ir_context_mask);
	size = sizeof(struct iso_context) * ohci->n_ir;
3314
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3315 3316

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3317
	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3318
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3319
	ohci->it_context_mask = ohci->it_context_support;
3320 3321
	ohci->n_it = hweight32(ohci->it_context_mask);
	size = sizeof(struct iso_context) * ohci->n_it;
3322
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3323 3324

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3325
		err = -ENOMEM;
3326
		goto fail_contexts;
3327 3328
	}

3329 3330
	ohci->self_id_cpu = ohci->misc_buffer     + PAGE_SIZE/2;
	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3331 3332 3333 3334 3335 3336 3337

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

3338
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3339
	if (err)
3340
		goto fail_contexts;
3341

3342 3343 3344 3345
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
		  "%d IR + %d IT contexts, quirks 0x%x\n",
		  dev_name(&dev->dev), version >> 16, version & 0xff,
3346
		  ohci->n_ir, ohci->n_it, ohci->quirks);
3347

3348
	return 0;
3349

3350
 fail_contexts:
3351
	kfree(ohci->ir_context_list);
3352 3353
	kfree(ohci->it_context_list);
	context_release(&ohci->at_response_ctx);
3354
 fail_atreq_ctx:
3355
	context_release(&ohci->at_request_ctx);
3356
 fail_arrsp_ctx:
3357
	ar_context_release(&ohci->ar_response_ctx);
3358
 fail_arreq_ctx:
3359
	ar_context_release(&ohci->ar_request_ctx);
3360 3361 3362
 fail_misc_buf:
	dma_free_coherent(ohci->card.device, PAGE_SIZE,
			  ohci->misc_buffer, ohci->misc_buffer_bus);
3363
 fail_iounmap:
3364 3365 3366 3367 3368
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
3369
 fail_free:
3370
	kfree(ohci);
3371
	pmac_ohci_off(dev);
3372 3373 3374
 fail:
	if (err == -ENOMEM)
		fw_error("Out of memory\n");
3375 3376

	return err;
3377 3378 3379 3380 3381 3382 3383
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
3384 3385
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
3386
	cancel_work_sync(&ohci->bus_reset_work);
3387 3388
	fw_core_remove_card(&ohci->card);

3389 3390 3391 3392
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
3393 3394 3395

	software_reset(ohci);
	free_irq(dev->irq, ohci);
3396 3397 3398 3399 3400 3401 3402 3403 3404

	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->next_config_rom, ohci->next_config_rom_bus);
	if (ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
	ar_context_release(&ohci->ar_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
3405 3406
	dma_free_coherent(ohci->card.device, PAGE_SIZE,
			  ohci->misc_buffer, ohci->misc_buffer_bus);
3407 3408
	context_release(&ohci->at_request_ctx);
	context_release(&ohci->at_response_ctx);
3409 3410
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
3411
	pci_disable_msi(dev);
3412 3413 3414
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
3415
	kfree(ohci);
3416
	pmac_ohci_off(dev);
3417

3418 3419 3420
	fw_notify("Removed fw-ohci device.\n");
}

3421
#ifdef CONFIG_PM
3422
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3423
{
3424
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3425 3426 3427
	int err;

	software_reset(ohci);
3428
	free_irq(dev->irq, ohci);
3429
	pci_disable_msi(dev);
3430
	err = pci_save_state(dev);
3431
	if (err) {
3432
		fw_error("pci_save_state failed\n");
3433 3434
		return err;
	}
3435
	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3436 3437
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
3438
	pmac_ohci_off(dev);
3439

3440 3441 3442
	return 0;
}

3443
static int pci_resume(struct pci_dev *dev)
3444
{
3445
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3446 3447
	int err;

3448
	pmac_ohci_on(dev);
3449 3450 3451
	pci_set_power_state(dev, PCI_D0);
	pci_restore_state(dev);
	err = pci_enable_device(dev);
3452
	if (err) {
3453
		fw_error("pci_enable_device failed\n");
3454 3455 3456
		return err;
	}

3457 3458 3459 3460 3461 3462 3463
	/* Some systems don't setup GUID register on resume from ram  */
	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
					!reg_read(ohci, OHCI1394_GUIDHi)) {
		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
	}

3464 3465 3466 3467 3468
	err = ohci_enable(&ohci->card, NULL, 0);
	if (err)
		return err;

	ohci_resume_iso_dma(ohci);
3469

3470
	return 0;
3471 3472 3473
}
#endif

3474
static const struct pci_device_id pci_table[] = {
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
3486 3487 3488 3489
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
3490 3491 3492 3493 3494 3495
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

3496 3497 3498 3499 3500
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);