ohci.c 70.7 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/compiler.h>
22
#include <linux/delay.h>
S
Stefan Richter 已提交
23
#include <linux/device.h>
A
Andrew Morton 已提交
24
#include <linux/dma-mapping.h>
25
#include <linux/firewire.h>
S
Stefan Richter 已提交
26
#include <linux/firewire-constants.h>
S
Stefan Richter 已提交
27
#include <linux/gfp.h>
28 29
#include <linux/init.h>
#include <linux/interrupt.h>
S
Stefan Richter 已提交
30
#include <linux/io.h>
31
#include <linux/kernel.h>
S
Stefan Richter 已提交
32
#include <linux/list.h>
A
Al Viro 已提交
33
#include <linux/mm.h>
34
#include <linux/module.h>
35
#include <linux/moduleparam.h>
36
#include <linux/pci.h>
37
#include <linux/pci_ids.h>
S
Stefan Richter 已提交
38
#include <linux/spinlock.h>
S
Stefan Richter 已提交
39
#include <linux/string.h>
A
Andrew Morton 已提交
40

S
Stefan Richter 已提交
41
#include <asm/byteorder.h>
S
Stefan Richter 已提交
42
#include <asm/page.h>
43
#include <asm/system.h>
44

45 46 47 48
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

49 50
#include "core.h"
#include "ohci.h"
51

52 53 54 55 56 57 58 59 60 61 62 63 64
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
65 66 67 68 69 70 71 72 73 74

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

75 76 77 78
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
79

80
struct ar_buffer {
81
	struct descriptor descriptor;
82 83 84
	struct ar_buffer *next;
	__le32 data[0];
};
85

86 87 88 89 90
struct ar_context {
	struct fw_ohci *ohci;
	struct ar_buffer *current_buffer;
	struct ar_buffer *last_buffer;
	void *pointer;
91
	u32 regs;
92 93 94
	struct tasklet_struct tasklet;
};

95 96 97 98 99
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
100 101 102 103 104 105 106 107 108 109 110 111 112

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

113
struct context {
S
Stefan Richter 已提交
114
	struct fw_ohci *ohci;
115
	u32 regs;
116
	int total_allocation;
S
Stefan Richter 已提交
117

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
	 * The last descriptor in the DMA program.  It contains the branch
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
142 143 144

	descriptor_callback_t callback;

S
Stefan Richter 已提交
145
	struct tasklet_struct tasklet;
146 147
};

148 149 150 151 152 153
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
154 155 156

struct iso_context {
	struct fw_iso_context base;
157
	struct context context;
158
	int excess_bytes;
159 160
	void *header;
	size_t header_length;
161 162 163 164 165 166 167 168
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

	__iomem char *registers;
169
	int node_id;
170
	int generation;
171
	int request_generation;	/* for timestamping incoming requests */
172

173
	bool old_uninorth;
174
	bool bus_reset_packet_quirk;
175
	bool iso_cycle_timer_quirk;
176

177 178 179 180
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
181 182 183 184
	spinlock_t lock;

	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
185 186
	struct context at_request_ctx;
	struct context at_response_ctx;
187 188 189

	u32 it_context_mask;
	struct iso_context *it_context_list;
190
	u64 ir_context_channels;
191 192
	u32 ir_context_mask;
	struct iso_context *ir_context_list;
193 194 195 196 197 198 199 200 201 202 203 204

	__be32    *config_rom;
	dma_addr_t config_rom_bus;
	__be32    *next_config_rom;
	dma_addr_t next_config_rom_bus;
	__be32     next_header;

	__le32    *self_id_cpu;
	dma_addr_t self_id_bus;
	struct tasklet_struct bus_reset_tasklet;

	u32 self_id_buffer[512];
205 206
};

A
Adrian Bunk 已提交
207
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
208 209 210 211
{
	return container_of(card, struct fw_ohci, card);
}

212 213 214 215 216 217
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
218 219 220 221 222 223

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

224
#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
225 226 227 228 229 230 231
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
232
#define OHCI_TCODE_PHY_PACKET		0x0e
233
#define OHCI_VERSION_1_1		0x010010
234

235 236
static char ohci_driver_name[] = KBUILD_MODNAME;

237 238
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG

239
#define OHCI_PARAM_DEBUG_AT_AR		1
240
#define OHCI_PARAM_DEBUG_SELFIDS	2
241 242
#define OHCI_PARAM_DEBUG_IRQS		4
#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
243 244 245 246 247

static int param_debug;
module_param_named(debug, param_debug, int, 0644);
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
248 249 250
	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
251 252 253 254
	", or a combination, or all = -1)");

static void log_irqs(u32 evt)
{
255 256 257 258 259 260
	if (likely(!(param_debug &
			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
		return;

	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
	    !(evt & OHCI1394_busReset))
261 262
		return;

263
	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
264 265 266 267 268 269 270 271 272
	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
	    evt & OHCI1394_isochRx		? " IR"			: "",
	    evt & OHCI1394_isochTx		? " IT"			: "",
	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
273
	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
274 275 276 277 278 279
	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
	    evt & OHCI1394_busReset		? " busReset"		: "",
	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
		    OHCI1394_respTxComplete | OHCI1394_isochRx |
		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
280
		    OHCI1394_cycleTooLong | OHCI1394_cycleInconsistent |
281
		    OHCI1394_regAccessFail | OHCI1394_busReset)
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
						? " ?"			: "");
}

static const char *speed[] = {
	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
};
static const char *power[] = {
	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
};
static const char port[] = { '.', '-', 'p', 'c', };

static char _p(u32 *s, int shift)
{
	return port[*s >> shift & 3];
}

299
static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
300 301 302 303
{
	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
		return;

304 305
	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
		  self_id_count, generation, node_id);
306 307 308

	for (; self_id_count--; ++s)
		if ((*s & 1 << 23) == 0)
309 310 311 312 313 314
			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
			    "%s gc=%d %s %s%s%s\n",
			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
			    speed[*s >> 14 & 3], *s >> 16 & 63,
			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
315
		else
316 317 318 319
			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
			    *s, *s >> 24 & 63,
			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
}

static const char *evts[] = {
	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
	[0x10] = "-reserved-",		[0x11] = "ack_complete",
	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
	[0x18] = "-reserved-",		[0x19] = "-reserved-",
	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
	[0x20] = "pending/cancelled",
};
static const char *tcodes[] = {
	[0x0] = "QW req",		[0x1] = "BW req",
	[0x2] = "W resp",		[0x3] = "-reserved-",
	[0x4] = "QR req",		[0x5] = "BR req",
	[0x6] = "QR resp",		[0x7] = "BR resp",
	[0x8] = "cycle start",		[0x9] = "Lk req",
	[0xa] = "async stream packet",	[0xb] = "Lk resp",
	[0xc] = "-reserved-",		[0xd] = "-reserved-",
	[0xe] = "link internal",	[0xf] = "-reserved-",
};
static const char *phys[] = {
	[0x0] = "phy config packet",	[0x1] = "link-on packet",
	[0x2] = "self-id packet",	[0x3] = "-reserved-",
};

static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
{
	int tcode = header[0] >> 4 & 0xf;
	char specific[12];

	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
		return;

	if (unlikely(evt >= ARRAY_SIZE(evts)))
			evt = 0x1f;

367
	if (evt == OHCI1394_evt_bus_reset) {
368 369
		fw_notify("A%c evt_bus_reset, generation %d\n",
		    dir, (header[2] >> 16) & 0xff);
370 371 372
		return;
	}

373
	if (header[0] == ~header[1]) {
374 375
		fw_notify("A%c %s, %s, %08x\n",
		    dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
		return;
	}

	switch (tcode) {
	case 0x0: case 0x6: case 0x8:
		snprintf(specific, sizeof(specific), " = %08x",
			 be32_to_cpu((__force __be32)header[3]));
		break;
	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
		snprintf(specific, sizeof(specific), " %x,%x",
			 header[3] >> 16, header[3] & 0xffff);
		break;
	default:
		specific[0] = '\0';
	}

	switch (tcode) {
	case 0xe: case 0xa:
394
		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
395 396
		break;
	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
397 398 399 400 401 402
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s, %04x%08x%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
403 404
		break;
	default:
405 406 407 408 409 410
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], specific);
411 412 413 414 415 416
	}
}

#else

#define log_irqs(evt)
417
#define log_selfids(node_id, generation, self_id_count, sid)
418 419 420 421
#define log_ar_at_event(dir, speed, header, evt)

#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */

A
Adrian Bunk 已提交
422
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
423 424 425 426
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
427
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
428 429 430 431
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
432
static inline void flush_writes(const struct fw_ohci *ohci)
433 434 435 436 437
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

438 439
static int ohci_update_phy_reg(struct fw_card *card, int addr,
			       int clear_bits, int set_bits)
440 441 442 443 444
{
	struct fw_ohci *ohci = fw_ohci(card);
	u32 val, old;

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
445
	flush_writes(ohci);
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
	msleep(2);
	val = reg_read(ohci, OHCI1394_PhyControl);
	if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
		fw_error("failed to set phy reg bits.\n");
		return -EBUSY;
	}

	old = OHCI1394_PhyControl_ReadData(val);
	old = (old & ~clear_bits) | set_bits;
	reg_write(ohci, OHCI1394_PhyControl,
		  OHCI1394_PhyControl_Write(addr, old));

	return 0;
}

461
static int ar_context_add_page(struct ar_context *ctx)
462
{
463 464
	struct device *dev = ctx->ohci->card.device;
	struct ar_buffer *ab;
465
	dma_addr_t uninitialized_var(ab_bus);
466 467
	size_t offset;

468
	ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
469 470 471
	if (ab == NULL)
		return -ENOMEM;

472
	ab->next = NULL;
473
	memset(&ab->descriptor, 0, sizeof(ab->descriptor));
474 475 476
	ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						    DESCRIPTOR_STATUS |
						    DESCRIPTOR_BRANCH_ALWAYS);
477 478 479 480 481 482
	offset = offsetof(struct ar_buffer, data);
	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.branch_address = 0;

483
	ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
484 485 486
	ctx->last_buffer->next = ab;
	ctx->last_buffer = ab;

487
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
488
	flush_writes(ctx->ohci);
489 490

	return 0;
491 492
}

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
static void ar_context_release(struct ar_context *ctx)
{
	struct ar_buffer *ab, *ab_next;
	size_t offset;
	dma_addr_t ab_bus;

	for (ab = ctx->current_buffer; ab; ab = ab_next) {
		ab_next = ab->next;
		offset = offsetof(struct ar_buffer, data);
		ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
		dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
				  ab, ab_bus);
	}
}

508 509 510 511 512 513 514
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
	(ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

515
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
516 517
{
	struct fw_ohci *ohci = ctx->ohci;
518 519
	struct fw_packet p;
	u32 status, length, tcode;
520
	int evt;
521

522 523 524
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
525 526 527 528 529

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
530
		p.header[3] = (__force __u32) buffer[3];
531
		p.header_length = 16;
532
		p.payload_length = 0;
533 534 535
		break;

	case TCODE_READ_BLOCK_REQUEST :
536
		p.header[3] = cond_le32_to_cpu(buffer[3]);
537 538 539 540 541
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
542 543 544
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
545
		p.header[3] = cond_le32_to_cpu(buffer[3]);
546
		p.header_length = 16;
547
		p.payload_length = p.header[3] >> 16;
548 549 550 551
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
552
	case OHCI_TCODE_PHY_PACKET:
553
		p.header_length = 12;
554
		p.payload_length = 0;
555
		break;
556 557 558 559 560

	default:
		/* FIXME: Stop context, discard everything, and restart? */
		p.header_length = 0;
		p.payload_length = 0;
561
	}
562

563 564 565 566
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
567
	status = cond_le32_to_cpu(buffer[length]);
568
	evt    = (status >> 16) & 0x1f;
569

570
	p.ack        = evt - 16;
571 572 573
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
574

575
	log_ar_at_event('R', p.speed, p.header, evt);
576

577 578
	/*
	 * The OHCI bus reset handler synthesizes a phy packet with
579 580 581 582 583
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
584
	 * request.
585 586 587 588
	 *
	 * Alas some chips sometimes emit bus reset packets with a
	 * wrong generation.  We set the correct generation for these
	 * at a slightly incorrect time (in bus_reset_tasklet).
589
	 */
590 591 592 593
	if (evt == OHCI1394_evt_bus_reset) {
		if (!ohci->bus_reset_packet_quirk)
			ohci->request_generation = (p.header[2] >> 16) & 0xff;
	} else if (ctx == &ohci->ar_request_ctx) {
594
		fw_core_handle_request(&ohci->card, &p);
595
	} else {
596
		fw_core_handle_response(&ohci->card, &p);
597
	}
598

599 600
	return buffer + length + 1;
}
601

602 603 604 605 606 607 608 609 610 611 612 613 614
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
	struct fw_ohci *ohci = ctx->ohci;
	struct ar_buffer *ab;
	struct descriptor *d;
	void *buffer, *end;

	ab = ctx->current_buffer;
	d = &ab->descriptor;

	if (d->res_count == 0) {
		size_t size, rest, offset;
615 616
		dma_addr_t start_bus;
		void *start;
617

618 619
		/*
		 * This descriptor is finished and we may have a
620
		 * packet split across this and the next buffer. We
621 622
		 * reuse the page for reassembling the split packet.
		 */
623 624

		offset = offsetof(struct ar_buffer, data);
625 626
		start = buffer = ab;
		start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
627 628 629 630 631 632 633 634 635 636 637 638 639 640

		ab = ab->next;
		d = &ab->descriptor;
		size = buffer + PAGE_SIZE - ctx->pointer;
		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
		memmove(buffer, ctx->pointer, size);
		memcpy(buffer + size, ab->data, rest);
		ctx->current_buffer = ab;
		ctx->pointer = (void *) ab->data + rest;
		end = buffer + size + rest;

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);

641
		dma_free_coherent(ohci->card.device, PAGE_SIZE,
642
				  start, start_bus);
643 644 645 646 647 648 649 650 651
		ar_context_add_page(ctx);
	} else {
		buffer = ctx->pointer;
		ctx->pointer = end =
			(void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);
	}
652 653
}

654 655
static int ar_context_init(struct ar_context *ctx,
			   struct fw_ohci *ohci, u32 regs)
656
{
657
	struct ar_buffer ab;
658

659 660 661
	ctx->regs        = regs;
	ctx->ohci        = ohci;
	ctx->last_buffer = &ab;
662 663
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

664 665 666 667 668
	ar_context_add_page(ctx);
	ar_context_add_page(ctx);
	ctx->current_buffer = ab.next;
	ctx->pointer = ctx->current_buffer->data;

669 670 671 672 673 674 675 676 677 678
	return 0;
}

static void ar_context_run(struct ar_context *ctx)
{
	struct ar_buffer *ab = ctx->current_buffer;
	dma_addr_t ab_bus;
	size_t offset;

	offset = offsetof(struct ar_buffer, data);
679
	ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
680 681

	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
682
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
683
	flush_writes(ctx->ohci);
684
}
S
Stefan Richter 已提交
685

686
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
687 688 689 690 691 692 693 694 695 696 697 698 699
{
	int b, key;

	b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
	key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;

	/* figure out which descriptor the branch address goes in */
	if (z == 2 && (b == 3 || key == 2))
		return d;
	else
		return d + z - 1;
}

700 701 702 703 704 705
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
706
	struct descriptor_buffer *desc;
707

708 709 710
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
711
	while (last->branch_address != 0) {
712
		struct descriptor_buffer *old_desc = desc;
713 714
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
715 716 717 718 719 720 721 722 723
		address &= ~0xf;

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
724
		last = find_branch_descriptor(d, z);
725 726 727 728

		if (!ctx->callback(ctx, d, last))
			break;

729 730 731 732 733 734 735 736 737 738
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
739 740 741
	}
}

742 743 744 745
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
746
static int context_add_buffer(struct context *ctx)
747 748
{
	struct descriptor_buffer *desc;
749
	dma_addr_t uninitialized_var(bus_addr);
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

775 776
static int context_init(struct context *ctx, struct fw_ohci *ohci,
			u32 regs, descriptor_callback_t callback)
777 778 779
{
	ctx->ohci = ohci;
	ctx->regs = regs;
780 781 782 783
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
784 785
		return -ENOMEM;

786 787 788
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

789 790 791
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

792 793
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
794
	 * branch address and looks like it's been sent.  That way we
795
	 * have a descriptor to append DMA programs to.
796
	 */
797 798 799 800 801 802
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
803 804 805 806

	return 0;
}

807
static void context_release(struct context *ctx)
808 809
{
	struct fw_card *card = &ctx->ohci->card;
810
	struct descriptor_buffer *desc, *tmp;
811

812 813 814 815
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
816 817
}

818
/* Must be called with ohci->lock held */
819 820
static struct descriptor *context_get_descriptors(struct context *ctx,
						  int z, dma_addr_t *d_bus)
821
{
822 823 824 825 826 827 828 829 830
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
831

832 833 834 835 836 837 838 839 840 841
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
842

843
	d = desc->buffer + desc->used / sizeof(*d);
844
	memset(d, 0, z * sizeof(*d));
845
	*d_bus = desc->buffer_bus + desc->used;
846 847 848 849

	return d;
}

850
static void context_run(struct context *ctx, u32 extra)
851 852 853
{
	struct fw_ohci *ohci = ctx->ohci;

854
	reg_write(ohci, COMMAND_PTR(ctx->regs),
855
		  le32_to_cpu(ctx->last->branch_address));
856 857
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
858 859 860 861 862 863 864
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
865
	struct descriptor_buffer *desc = ctx->buffer_tail;
866

867
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
868

869 870 871
	desc->used += (z + extra) * sizeof(*d);
	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev = find_branch_descriptor(d, z);
872

873
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
874 875 876 877 878 879
	flush_writes(ctx->ohci);
}

static void context_stop(struct context *ctx)
{
	u32 reg;
880
	int i;
881

882
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
883
	flush_writes(ctx->ohci);
884

885
	for (i = 0; i < 10; i++) {
886
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
887
		if ((reg & CONTEXT_ACTIVE) == 0)
888
			return;
889

890
		mdelay(1);
891
	}
892
	fw_error("Error: DMA context still active (0x%08x)\n", reg);
893
}
894

895 896 897
struct driver_data {
	struct fw_packet *packet;
};
898

899 900
/*
 * This function apppends a packet to the DMA queue for transmission.
901
 * Must always be called with the ochi->lock held to ensure proper
902 903
 * generation handling and locking around packet queue manipulation.
 */
904 905
static int at_context_queue_packet(struct context *ctx,
				   struct fw_packet *packet)
906 907
{
	struct fw_ohci *ohci = ctx->ohci;
908
	dma_addr_t d_bus, uninitialized_var(payload_bus);
909 910 911
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
912
	int z, tcode;
913
	u32 reg;
914

915 916 917 918
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
919 920
	}

921
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
922 923
	d[0].res_count = cpu_to_le16(packet->timestamp);

924 925
	/*
	 * The DMA format for asyncronous link packets is different
926 927
	 * from the IEEE1394 layout, so shift the fields around
	 * accordingly.  If header_length is 8, it's a PHY packet, to
928 929
	 * which we need to prepend an extra quadlet.
	 */
930 931

	header = (__le32 *) &d[1];
932 933 934
	switch (packet->header_length) {
	case 16:
	case 12:
935 936 937 938 939
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
940 941 942

		tcode = (packet->header[0] >> 4) & 0x0f;
		if (TCODE_IS_BLOCK_PACKET(tcode))
943
			header[3] = cpu_to_le32(packet->header[3]);
944
		else
945 946 947
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
948 949 950
		break;

	case 8:
951 952 953 954 955
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0]);
		header[2] = cpu_to_le32(packet->header[1]);
		d[0].req_count = cpu_to_le16(12);
956 957 958 959 960 961 962 963 964 965 966 967 968
		break;

	case 4:
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
		d[0].req_count = cpu_to_le16(8);
		break;

	default:
		/* BUG(); */
		packet->ack = RCODE_SEND_ERROR;
		return -1;
969 970
	}

971 972
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
973
	packet->driver_data = driver_data;
974

975 976 977 978
	if (packet->payload_length > 0) {
		payload_bus =
			dma_map_single(ohci->card.device, packet->payload,
				       packet->payload_length, DMA_TO_DEVICE);
979
		if (dma_mapping_error(ohci->card.device, payload_bus)) {
980 981 982
			packet->ack = RCODE_SEND_ERROR;
			return -1;
		}
983 984
		packet->payload_bus	= payload_bus;
		packet->payload_mapped	= true;
985 986 987 988 989

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
990
	} else {
991 992
		last = &d[0];
		z = 2;
993 994
	}

995 996 997
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
998

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
	/*
	 * If the controller and packet generations don't match, we need to
	 * bail out and try again.  If IntEvent.busReset is set, the AT context
	 * is halted, so appending to the context and trying to run it is
	 * futile.  Most controllers do the right thing and just flush the AT
	 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
	 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
	 * up stalling out.  So we just bail out in software and try again
	 * later, and everyone is happy.
	 * FIXME: Document how the locking works.
	 */
	if (ohci->generation != packet->generation ||
	    reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1012
		if (packet->payload_mapped)
1013 1014
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
1015 1016 1017 1018 1019
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
1020

1021
	/* If the context isn't already running, start it up. */
1022
	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1023
	if ((reg & CONTEXT_RUN) == 0)
1024 1025 1026
		context_run(ctx, 0);

	return 0;
1027 1028
}

1029 1030 1031
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1032
{
1033
	struct driver_data *driver_data;
1034
	struct fw_packet *packet;
1035
	struct fw_ohci *ohci = context->ohci;
1036 1037
	int evt;

1038 1039 1040
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
1041

1042 1043 1044 1045 1046
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
1047

1048
	if (packet->payload_mapped)
1049
		dma_unmap_single(ohci->card.device, packet->payload_bus,
1050 1051
				 packet->payload_length, DMA_TO_DEVICE);

1052 1053
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
1054

1055 1056
	log_ar_at_event('T', packet->speed, packet->header, evt);

1057 1058 1059 1060 1061
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
1062

1063
	case OHCI1394_evt_flushed:
1064 1065 1066 1067
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
1068 1069
		packet->ack = RCODE_GENERATION;
		break;
1070

1071
	case OHCI1394_evt_missing_ack:
1072 1073 1074 1075
		/*
		 * Using a valid (current) generation count, but the
		 * node is not on the bus or not sending acks.
		 */
1076 1077
		packet->ack = RCODE_NO_ACK;
		break;
1078

1079 1080 1081 1082 1083 1084 1085 1086 1087
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
1088

1089 1090 1091 1092
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
1093

1094
	packet->callback(packet, &ohci->card, packet->ack);
1095

1096
	return 1;
1097 1098
}

1099 1100 1101 1102 1103
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1104

1105 1106
static void handle_local_rom(struct fw_ohci *ohci,
			     struct fw_packet *packet, u32 csr)
1107 1108 1109 1110
{
	struct fw_packet response;
	int tcode, length, i;

1111
	tcode = HEADER_GET_TCODE(packet->header[0]);
1112
	if (TCODE_IS_BLOCK_PACKET(tcode))
1113
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

1132 1133
static void handle_local_lock(struct fw_ohci *ohci,
			      struct fw_packet *packet, u32 csr)
1134 1135 1136 1137 1138 1139
{
	struct fw_packet response;
	int tcode, length, ext_tcode, sel;
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

1140 1141
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1142
	payload = packet->payload;
1143
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

	if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
		lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
	else
		fw_notify("swap not done yet\n");

	fw_fill_response(&response, packet->header,
1169
			 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1170 1171 1172 1173
 out:
	fw_core_handle_response(&ohci->card, &response);
}

1174
static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1175 1176 1177 1178
{
	u64 offset;
	u32 csr;

1179 1180 1181 1182
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1183 1184 1185

	offset =
		((unsigned long long)
1186
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
1207 1208 1209 1210 1211

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1212
}
1213

1214
static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1215 1216
{
	unsigned long flags;
1217
	int ret;
1218 1219 1220

	spin_lock_irqsave(&ctx->ohci->lock, flags);

1221
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1222
	    ctx->ohci->generation == packet->generation) {
1223 1224 1225
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
1226
	}
1227

1228
	ret = at_context_queue_packet(ctx, packet);
1229 1230
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

1231
	if (ret < 0)
1232
		packet->callback(packet, &ctx->ohci->card, packet->ack);
1233

1234 1235 1236 1237 1238
}

static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
1239
	int self_id_count, i, j, reg;
1240 1241
	int generation, new_generation;
	unsigned long flags;
1242 1243
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1244 1245 1246

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1247
		fw_notify("node ID not valid, new bus reset in progress\n");
1248 1249
		return;
	}
1250 1251 1252 1253 1254 1255
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1256

1257 1258 1259 1260 1261
	reg = reg_read(ohci, OHCI1394_SelfIDCount);
	if (reg & OHCI1394_SelfIDCount_selfIDError) {
		fw_notify("inconsistent self IDs\n");
		return;
	}
1262 1263
	/*
	 * The count in the SelfIDCount register is the number of
1264 1265
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1266 1267
	 * bit extra to get the actual number of self IDs.
	 */
1268 1269
	self_id_count = (reg >> 3) & 0xff;
	if (self_id_count == 0 || self_id_count > 252) {
1270 1271 1272
		fw_notify("inconsistent self IDs\n");
		return;
	}
1273
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1274
	rmb();
1275 1276

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1277 1278 1279 1280
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
			fw_notify("inconsistent self IDs\n");
			return;
		}
1281 1282
		ohci->self_id_buffer[j] =
				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1283
	}
1284
	rmb();
1285

1286 1287
	/*
	 * Check the consistency of the self IDs we just read.  The
1288 1289 1290 1291 1292 1293 1294 1295 1296
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1297 1298
	 * of self IDs.
	 */
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
1311 1312
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1313 1314
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

1315 1316 1317
	if (ohci->bus_reset_packet_quirk)
		ohci->request_generation = generation;

1318 1319
	/*
	 * This next bit is unrelated to the AT context stuff but we
1320 1321 1322 1323
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
1324 1325
	 * next_config_rom pointer so a new udpate can take place.
	 */
1326 1327

	if (ohci->next_config_rom != NULL) {
1328 1329 1330 1331
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1332 1333 1334 1335
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1336 1337
		/*
		 * Restore config_rom image and manually update
1338 1339
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1340 1341
		 * do that last.
		 */
1342 1343
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
1344 1345 1346
		ohci->config_rom[0] = ohci->next_header;
		reg_write(ohci, OHCI1394_ConfigROMhdr,
			  be32_to_cpu(ohci->next_header));
1347 1348
	}

1349 1350 1351 1352 1353
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif

1354 1355
	spin_unlock_irqrestore(&ohci->lock, flags);

1356 1357 1358 1359
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1360 1361
	log_selfids(ohci->node_id, generation,
		    self_id_count, ohci->self_id_buffer);
1362

1363
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1364 1365 1366 1367 1368 1369
				 self_id_count, ohci->self_id_buffer);
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1370
	u32 event, iso_event;
1371 1372 1373 1374
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1375
	if (!event || !~event)
1376 1377
		return IRQ_NONE;

1378 1379
	/* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
	reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1380
	log_irqs(event);
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1397
	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1398 1399 1400 1401
	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1402
		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1403 1404 1405
		iso_event &= ~(1 << i);
	}

1406
	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1407 1408 1409 1410
	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1411
		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1412 1413 1414
		iso_event &= ~(1 << i);
	}

1415 1416 1417 1418
	if (unlikely(event & OHCI1394_regAccessFail))
		fw_error("Register access failure - "
			 "please notify linux1394-devel@lists.sf.net\n");

1419 1420 1421
	if (unlikely(event & OHCI1394_postedWriteErr))
		fw_error("PCI posted write error\n");

1422 1423 1424 1425 1426 1427 1428
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
			fw_notify("isochronous cycle too long\n");
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	if (unlikely(event & OHCI1394_cycleInconsistent)) {
		/*
		 * We need to clear this event bit in order to make
		 * cycleMatch isochronous I/O work.  In theory we should
		 * stop active cycleMatch iso contexts now and restart
		 * them at least two cycles later.  (FIXME?)
		 */
		if (printk_ratelimit())
			fw_notify("isochronous cycle inconsistent\n");
	}

1440 1441 1442
	return IRQ_HANDLED;
}

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
{
	size_t size = length * 4;

	memcpy(dest, src, size);
	if (size < CONFIG_ROM_SIZE)
		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
}

static int ohci_enable(struct fw_card *card,
		       const __be32 *config_rom, size_t length)
1470 1471 1472
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);
1473 1474
	u32 lps;
	int i;
1475

1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
1486 1487
	 * full link enabled.  However, with some cards (well, at least
	 * a JMicron PCIe card), we have to try again sometimes.
1488 1489 1490 1491 1492
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503

	for (lps = 0, i = 0; !lps && i < 3; i++) {
		msleep(50);
		lps = reg_read(ohci, OHCI1394_HCControlSet) &
		      OHCI1394_HCControl_LPS;
	}

	if (!lps) {
		fw_error("Failed to set Link Power Status\n");
		return -EIO;
	}
1504 1505 1506 1507

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

1508
	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1509 1510
	reg_write(ohci, OHCI1394_LinkControlClear,
		  OHCI1394_LinkControl_rcvPhyPkt);
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));

	ar_context_run(&ohci->ar_request_ctx);
	ar_context_run(&ohci->ar_response_ctx);

	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskSet,
		  OHCI1394_selfIDComplete |
		  OHCI1394_RQPkt | OHCI1394_RSPkt |
		  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		  OHCI1394_isochRx | OHCI1394_isochTx |
1532
		  OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1533
		  OHCI1394_cycleInconsistent | OHCI1394_regAccessFail |
1534
		  OHCI1394_masterIntEnable);
1535 1536
	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1537 1538 1539 1540 1541 1542

	/* Activate link_on bit and contender bit in our self ID packets.*/
	if (ohci_update_phy_reg(card, 4, 0,
				PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
		return -EIO;

1543 1544
	/*
	 * When the link is not yet enabled, the atomic config rom
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

1562 1563 1564 1565 1566 1567 1568
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
1569

1570
		copy_config_rom(ohci->next_config_rom, config_rom, length);
1571 1572 1573 1574 1575 1576 1577 1578
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
1579

1580
	ohci->next_header = ohci->next_config_rom[0];
1581 1582
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1583 1584
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
1585 1586 1587 1588 1589
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

	if (request_irq(dev->irq, irq_handler,
1590
			IRQF_SHARED, ohci_driver_name, ohci)) {
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
		fw_error("Failed to allocate shared interrupt %d.\n",
			 dev->irq);
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
	flush_writes(ohci);

1603 1604 1605 1606
	/*
	 * We are ready to go, initiate bus reset to finish the
	 * initialization.
	 */
1607 1608 1609 1610 1611 1612

	fw_core_initiate_bus_reset(&ohci->card, 1);

	return 0;
}

1613
static int ohci_set_config_rom(struct fw_card *card,
1614
			       const __be32 *config_rom, size_t length)
1615 1616 1617
{
	struct fw_ohci *ohci;
	unsigned long flags;
1618
	int ret = -EBUSY;
1619
	__be32 *next_config_rom;
1620
	dma_addr_t uninitialized_var(next_config_rom_bus);
1621 1622 1623

	ohci = fw_ohci(card);

1624 1625
	/*
	 * When the OHCI controller is enabled, the config rom update
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;

1663
		copy_config_rom(ohci->next_config_rom, config_rom, length);
1664 1665 1666 1667 1668 1669

		ohci->next_header = config_rom[0];
		ohci->next_config_rom[0] = 0;

		reg_write(ohci, OHCI1394_ConfigROMmap,
			  ohci->next_config_rom_bus);
1670
		ret = 0;
1671 1672 1673 1674
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

1675 1676
	/*
	 * Now initiate a bus reset to have the changes take
1677 1678 1679
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
1680 1681
	 * takes effect.
	 */
1682
	if (ret == 0)
1683
		fw_core_initiate_bus_reset(&ohci->card, 1);
1684 1685 1686
	else
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);
1687

1688
	return ret;
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

1705 1706 1707
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
1708 1709
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
1710
	int ret = -ENOENT;
1711

1712
	tasklet_disable(&ctx->tasklet);
1713

1714 1715
	if (packet->ack != 0)
		goto out;
1716

1717
	if (packet->payload_mapped)
1718 1719 1720
		dma_unmap_single(ohci->card.device, packet->payload_bus,
				 packet->payload_length, DMA_TO_DEVICE);

1721
	log_ar_at_event('T', packet->speed, packet->header, 0x20);
1722 1723 1724
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
1725
	ret = 0;
1726 1727
 out:
	tasklet_enable(&ctx->tasklet);
1728

1729
	return ret;
1730 1731
}

1732 1733
static int ohci_enable_phys_dma(struct fw_card *card,
				int node_id, int generation)
1734
{
1735 1736 1737
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	return 0;
#else
1738 1739
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
1740
	int n, ret = 0;
1741

1742 1743 1744 1745
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
1746 1747 1748 1749

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
1750
		ret = -ESTALE;
1751 1752 1753
		goto out;
	}

1754 1755 1756 1757
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
1758 1759 1760 1761 1762 1763 1764

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

1765 1766
	flush_writes(ohci);
 out:
1767
	spin_unlock_irqrestore(&ohci->lock, flags);
1768 1769

	return ret;
1770
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1771
}
S
Stefan Richter 已提交
1772

1773
static u32 cycle_timer_ticks(u32 cycle_timer)
1774 1775 1776 1777 1778 1779
{
	u32 ticks;

	ticks = cycle_timer & 0xfff;
	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
	ticks += (3072 * 8000) * (cycle_timer >> 25);
1780

1781 1782 1783
	return ticks;
}

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
/*
 * Some controllers exhibit one or more of the following bugs when updating the
 * iso cycle timer register:
 *  - When the lowest six bits are wrapping around to zero, a read that happens
 *    at the same time will return garbage in the lowest ten bits.
 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
 *    not incremented for about 60 ns.
 *  - Occasionally, the entire register reads zero.
 *
 * To catch these, we read the register three times and ensure that the
 * difference between each two consecutive reads is approximately the same, i.e.
 * less than twice the other.  Furthermore, any negative difference indicates an
 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
 * execute, so we have enough precision to compute the ratio of the differences.)
 */
1799
static u32 ohci_get_cycle_time(struct fw_card *card)
1800 1801
{
	struct fw_ohci *ohci = fw_ohci(card);
1802 1803 1804
	u32 c0, c1, c2;
	u32 t0, t1, t2;
	s32 diff01, diff12;
1805
	int i;
1806

1807 1808 1809 1810 1811
	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);

	if (ohci->iso_cycle_timer_quirk) {
		i = 0;
		c1 = c2;
1812 1813
		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		do {
1814 1815
			c0 = c1;
			c1 = c2;
1816 1817 1818 1819 1820 1821
			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
			t0 = cycle_timer_ticks(c0);
			t1 = cycle_timer_ticks(c1);
			t2 = cycle_timer_ticks(c2);
			diff01 = t1 - t0;
			diff12 = t2 - t1;
1822 1823 1824
		} while ((diff01 <= 0 || diff12 <= 0 ||
			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
			 && i++ < 20);
1825
	}
1826

1827
	return c2;
1828 1829
}

1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
static void copy_iso_headers(struct iso_context *ctx, void *p)
{
	int i = ctx->header_length;

	if (i + ctx->base.header_size > PAGE_SIZE)
		return;

	/*
	 * The iso header is byteswapped to little endian by
	 * the controller, but the remaining header quadlets
	 * are big endian.  We want to present all the headers
	 * as big endian, so we have to swap the first quadlet.
	 */
	if (ctx->base.header_size > 0)
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
	if (ctx->base.header_size > 4)
		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
	if (ctx->base.header_size > 8)
		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
	ctx->header_length += ctx->base.header_size;
}

1852 1853 1854 1855 1856 1857
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
1858
	struct descriptor *pd;
1859
	__le32 *ir_header;
1860
	void *p;
1861

1862 1863 1864 1865 1866
	for (pd = d; pd <= last; pd++) {
		if (pd->transfer_status)
			break;
	}
	if (pd > last)
1867 1868 1869
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

1870 1871
	p = last + 1;
	copy_iso_headers(ctx, p);
1872

1873 1874
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) p;
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
		ctx->base.callback(&ctx->base,
				   le32_to_cpu(ir_header[0]) & 0xffff,
				   ctx->header_length, ctx->header,
				   ctx->base.callback_data);
		ctx->header_length = 0;
	}

	return 1;
}

1885 1886 1887
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1888
{
1889 1890
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
1891 1892
	int i;
	struct descriptor *pd;
S
Stefan Richter 已提交
1893

1894 1895 1896 1897 1898
	for (pd = d; pd <= last; pd++)
		if (pd->transfer_status)
			break;
	if (pd > last)
		/* Descriptor(s) not done yet, stop iteration */
1899 1900
		return 0;

1901 1902 1903 1904 1905 1906 1907 1908 1909
	i = ctx->header_length;
	if (i + 4 < PAGE_SIZE) {
		/* Present this value as big-endian to match the receive code */
		*(__be32 *)(ctx->header + i) = cpu_to_be32(
				((u32)le16_to_cpu(pd->transfer_status) << 16) |
				le16_to_cpu(pd->res_count));
		ctx->header_length += 4;
	}
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1910
		ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1911 1912 1913 1914
				   ctx->header_length, ctx->header,
				   ctx->base.callback_data);
		ctx->header_length = 0;
	}
1915
	return 1;
1916 1917
}

1918
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
1919
				int type, int channel, size_t header_size)
1920 1921 1922
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct iso_context *ctx, *list;
1923
	descriptor_callback_t callback;
1924
	u64 *channels, dont_care = ~0ULL;
1925
	u32 *mask, regs;
1926
	unsigned long flags;
1927
	int index, ret = -ENOMEM;
1928 1929

	if (type == FW_ISO_CONTEXT_TRANSMIT) {
1930
		channels = &dont_care;
1931 1932
		mask = &ohci->it_context_mask;
		list = ohci->it_context_list;
1933
		callback = handle_it_packet;
1934
	} else {
1935
		channels = &ohci->ir_context_channels;
S
Stefan Richter 已提交
1936 1937
		mask = &ohci->ir_context_mask;
		list = ohci->ir_context_list;
1938
		callback = handle_ir_packet_per_buffer;
1939 1940 1941
	}

	spin_lock_irqsave(&ohci->lock, flags);
1942 1943 1944
	index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
	if (index >= 0) {
		*channels &= ~(1ULL << channel);
1945
		*mask &= ~(1 << index);
1946
	}
1947 1948 1949 1950 1951
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
		return ERR_PTR(-EBUSY);

S
Stefan Richter 已提交
1952 1953 1954 1955 1956
	if (type == FW_ISO_CONTEXT_TRANSMIT)
		regs = OHCI1394_IsoXmitContextBase(index);
	else
		regs = OHCI1394_IsoRcvContextBase(index);

1957
	ctx = &list[index];
1958
	memset(ctx, 0, sizeof(*ctx));
1959 1960 1961 1962 1963
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
	if (ctx->header == NULL)
		goto out;

1964 1965
	ret = context_init(&ctx->context, ohci, regs, callback);
	if (ret < 0)
1966
		goto out_with_header;
1967 1968

	return &ctx->base;
1969 1970 1971 1972 1973 1974 1975 1976

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
	*mask |= 1 << index;
	spin_unlock_irqrestore(&ohci->lock, flags);

1977
	return ERR_PTR(ret);
1978 1979
}

1980 1981
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
1982
{
S
Stefan Richter 已提交
1983
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1984
	struct fw_ohci *ohci = ctx->context.ohci;
1985
	u32 control, match;
1986 1987
	int index;

1988 1989
	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
1990 1991 1992
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1993
				(cycle & 0x7fff) << 16;
1994

1995 1996
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1997
		context_run(&ctx->context, match);
1998 1999
	} else {
		index = ctx - ohci->ir_context_list;
2000
		control = IR_CONTEXT_ISOCH_HEADER;
2001 2002 2003 2004 2005
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
2006

2007 2008
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2009
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2010
		context_run(&ctx->context, control);
2011
	}
2012 2013 2014 2015

	return 0;
}

2016 2017 2018
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2019
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
	int index;

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
	} else {
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
	}
	flush_writes(ohci);
	context_stop(&ctx->context);

	return 0;
}

2035 2036 2037
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2038
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2039 2040 2041
	unsigned long flags;
	int index;

2042 2043
	ohci_stop_iso(base);
	context_release(&ctx->context);
2044
	free_page((unsigned long)ctx->header);
2045

2046 2047 2048 2049 2050 2051 2052 2053
	spin_lock_irqsave(&ohci->lock, flags);

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
	} else {
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
2054
		ohci->ir_context_channels |= 1ULL << base->channel;
2055 2056 2057 2058 2059
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

2060 2061 2062 2063
static int ohci_queue_iso_transmit(struct fw_iso_context *base,
				   struct fw_iso_packet *packet,
				   struct fw_iso_buffer *buffer,
				   unsigned long payload)
2064
{
S
Stefan Richter 已提交
2065
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2066
	struct descriptor *d, *last, *pd;
2067 2068
	struct fw_iso_packet *p;
	__le32 *header;
2069
	dma_addr_t d_bus, page_bus;
2070 2071
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
2072
	int page, end_page, i, length, offset;
2073 2074

	p = packet;
2075
	payload_index = payload;
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
2094
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2095

2096 2097 2098
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
2099 2100

	if (!p->skip) {
2101
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2102
		d[0].req_count = cpu_to_le16(8);
2103 2104 2105 2106 2107 2108 2109 2110
		/*
		 * Link the skip address to this descriptor itself.  This causes
		 * a context to skip a cycle whenever lost cycles or FIFO
		 * overruns occur, without dropping the data.  The application
		 * should then decide whether this is an error condition or not.
		 * FIXME:  Make the context's cycle-lost behaviour configurable?
		 */
		d[0].branch_address = cpu_to_le32(d_bus | z);
2111 2112

		header = (__le32 *) &d[1];
2113 2114 2115 2116 2117
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
2118
		header[1] =
2119
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2120 2121 2122 2123 2124
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
2125
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
2138 2139 2140

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
2141 2142 2143 2144 2145

		payload_index += length;
	}

	if (p->interrupt)
2146
		irq = DESCRIPTOR_IRQ_ALWAYS;
2147
	else
2148
		irq = DESCRIPTOR_NO_IRQ;
2149

2150
	last = z == 2 ? d : d + z - 1;
2151 2152 2153
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
2154
				     irq);
2155

2156
	context_append(&ctx->context, d, z, header_z);
2157 2158 2159

	return 0;
}
S
Stefan Richter 已提交
2160

2161 2162 2163 2164
static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
					struct fw_iso_packet *packet,
					struct fw_iso_buffer *buffer,
					unsigned long payload)
2165 2166
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2167
	struct descriptor *d, *pd;
2168
	struct fw_iso_packet *p = packet;
2169 2170
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
2171 2172
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
2173 2174

	/*
2175 2176
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
2177 2178
	 */
	packet_count = p->header_length / ctx->base.header_size;
2179
	header_size  = max(ctx->base.header_size, (size_t)8);
2180 2181 2182 2183 2184

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
2185
	payload_per_buffer = p->payload_length / packet_count;
2186 2187 2188

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
2189
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2190
		d = context_get_descriptors(&ctx->context,
2191
				z + header_z, &d_bus);
2192 2193 2194
		if (d == NULL)
			return -ENOMEM;

2195 2196 2197 2198
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
		if (p->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2199 2200
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
2201
		d->transfer_status = 0;
2202 2203
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

2204
		rest = payload_per_buffer;
2205
		pd = d;
2206
		for (j = 1; j < z; j++) {
2207
			pd++;
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
2227 2228 2229
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
2230
		if (p->interrupt && i == packet_count - 1)
2231 2232 2233 2234 2235 2236 2237 2238
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

2239 2240 2241 2242
static int ohci_queue_iso(struct fw_iso_context *base,
			  struct fw_iso_packet *packet,
			  struct fw_iso_buffer *buffer,
			  unsigned long payload)
2243
{
2244
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2245
	unsigned long flags;
2246
	int ret;
2247

2248
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2249
	if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2250
		ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2251
	else
2252 2253
		ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
							buffer, payload);
2254 2255
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

2256
	return ret;
2257 2258
}

2259
static const struct fw_card_driver ohci_driver = {
2260 2261 2262 2263 2264
	.enable			= ohci_enable,
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
2265
	.cancel_packet		= ohci_cancel_packet,
2266
	.enable_phys_dma	= ohci_enable_phys_dma,
2267
	.get_cycle_time		= ohci_get_cycle_time,
2268 2269 2270 2271

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
	.queue_iso		= ohci_queue_iso,
2272
	.start_iso		= ohci_start_iso,
2273
	.stop_iso		= ohci_stop_iso,
2274 2275
};

2276
#ifdef CONFIG_PPC_PMAC
2277 2278
static void ohci_pmac_on(struct pci_dev *dev)
{
2279 2280 2281 2282 2283 2284 2285 2286
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
}

static void ohci_pmac_off(struct pci_dev *dev)
{
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
}
#else
#define ohci_pmac_on(dev)
#define ohci_pmac_off(dev)
2303 2304
#endif /* CONFIG_PPC_PMAC */

2305 2306
static int __devinit pci_probe(struct pci_dev *dev,
			       const struct pci_device_id *ent)
2307 2308
{
	struct fw_ohci *ohci;
2309
	u32 bus_options, max_receive, link_speed, version;
2310 2311 2312 2313
	u64 guid;
	int err;
	size_t size;

2314
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2315
	if (ohci == NULL) {
2316 2317
		err = -ENOMEM;
		goto fail;
2318 2319 2320 2321
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

2322 2323
	ohci_pmac_on(dev);

2324 2325
	err = pci_enable_device(dev);
	if (err) {
2326
		fw_error("Failed to enable OHCI hardware\n");
2327
		goto fail_free;
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

2339 2340
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
2341
		fw_error("MMIO resource unavailable\n");
2342
		goto fail_disable;
2343 2344 2345 2346 2347
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
2348 2349
		err = -ENXIO;
		goto fail_iomem;
2350 2351
	}

2352 2353 2354 2355 2356 2357 2358 2359
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;

#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
	ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
			     dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
#endif
	ohci->bus_reset_packet_quirk = dev->vendor == PCI_VENDOR_ID_TI;

2360 2361 2362
	ohci->iso_cycle_timer_quirk = dev->vendor == PCI_VENDOR_ID_AL	||
				      dev->vendor == PCI_VENDOR_ID_NEC	||
				      dev->vendor == PCI_VENDOR_ID_VIA;
2363

2364 2365 2366 2367 2368 2369
	ar_context_init(&ohci->ar_request_ctx, ohci,
			OHCI1394_AsReqRcvContextControlSet);

	ar_context_init(&ohci->ar_response_ctx, ohci,
			OHCI1394_AsRspRcvContextControlSet);

2370
	context_init(&ohci->at_request_ctx, ohci,
2371
		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2372

2373
	context_init(&ohci->at_response_ctx, ohci,
2374
		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2375 2376 2377 2378 2379 2380 2381 2382

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2383
	ohci->ir_context_channels = ~0ULL;
2384 2385 2386 2387 2388 2389
	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2390
		err = -ENOMEM;
2391
		goto fail_contexts;
2392 2393 2394 2395 2396 2397 2398 2399
	}

	/* self-id dma buffer allocation */
	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
					       SELF_ID_BUF_SIZE,
					       &ohci->self_id_bus,
					       GFP_KERNEL);
	if (ohci->self_id_cpu == NULL) {
2400
		err = -ENOMEM;
2401
		goto fail_contexts;
2402 2403 2404 2405 2406 2407 2408 2409
	}

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

2410
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2411
	if (err)
2412
		goto fail_self_id;
2413

2414
	fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2415
		  dev_name(&dev->dev), version >> 16, version & 0xff);
2416

2417
	return 0;
2418 2419 2420 2421

 fail_self_id:
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
2422
 fail_contexts:
2423
	kfree(ohci->ir_context_list);
2424 2425 2426 2427 2428
	kfree(ohci->it_context_list);
	context_release(&ohci->at_response_ctx);
	context_release(&ohci->at_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	ar_context_release(&ohci->ar_request_ctx);
2429 2430 2431 2432 2433
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
2434 2435
 fail_free:
	kfree(&ohci->card);
2436
	ohci_pmac_off(dev);
2437 2438 2439
 fail:
	if (err == -ENOMEM)
		fw_error("Out of memory\n");
2440 2441

	return err;
2442 2443 2444 2445 2446 2447 2448
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
2449 2450
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
2451 2452
	fw_core_remove_card(&ohci->card);

2453 2454 2455 2456
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
2457 2458 2459

	software_reset(ohci);
	free_irq(dev->irq, ohci);
2460 2461 2462 2463 2464 2465 2466

	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->next_config_rom, ohci->next_config_rom_bus);
	if (ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
2467 2468
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
2469 2470 2471 2472
	ar_context_release(&ohci->ar_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	context_release(&ohci->at_request_ctx);
	context_release(&ohci->at_response_ctx);
2473 2474 2475 2476 2477
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
2478
	kfree(&ohci->card);
2479
	ohci_pmac_off(dev);
2480

2481 2482 2483
	fw_notify("Removed fw-ohci device.\n");
}

2484
#ifdef CONFIG_PM
2485
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2486
{
2487
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2488 2489 2490
	int err;

	software_reset(ohci);
2491 2492
	free_irq(dev->irq, ohci);
	err = pci_save_state(dev);
2493
	if (err) {
2494
		fw_error("pci_save_state failed\n");
2495 2496
		return err;
	}
2497
	err = pci_set_power_state(dev, pci_choose_state(dev, state));
2498 2499
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
2500
	ohci_pmac_off(dev);
2501

2502 2503 2504
	return 0;
}

2505
static int pci_resume(struct pci_dev *dev)
2506
{
2507
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2508 2509
	int err;

2510 2511 2512 2513
	ohci_pmac_on(dev);
	pci_set_power_state(dev, PCI_D0);
	pci_restore_state(dev);
	err = pci_enable_device(dev);
2514
	if (err) {
2515
		fw_error("pci_enable_device failed\n");
2516 2517 2518
		return err;
	}

2519
	return ohci_enable(&ohci->card, NULL, 0);
2520 2521 2522
}
#endif

2523
static const struct pci_device_id pci_table[] = {
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
2535 2536 2537 2538
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
2539 2540 2541 2542 2543 2544
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

2545 2546 2547 2548 2549
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);