ohci.c 94.3 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/bitops.h>
22
#include <linux/bug.h>
23
#include <linux/compiler.h>
24
#include <linux/delay.h>
S
Stefan Richter 已提交
25
#include <linux/device.h>
A
Andrew Morton 已提交
26
#include <linux/dma-mapping.h>
27
#include <linux/firewire.h>
S
Stefan Richter 已提交
28
#include <linux/firewire-constants.h>
29 30
#include <linux/init.h>
#include <linux/interrupt.h>
S
Stefan Richter 已提交
31
#include <linux/io.h>
32
#include <linux/kernel.h>
S
Stefan Richter 已提交
33
#include <linux/list.h>
A
Al Viro 已提交
34
#include <linux/mm.h>
35
#include <linux/module.h>
36
#include <linux/moduleparam.h>
37
#include <linux/mutex.h>
38
#include <linux/pci.h>
39
#include <linux/pci_ids.h>
40
#include <linux/slab.h>
S
Stefan Richter 已提交
41
#include <linux/spinlock.h>
S
Stefan Richter 已提交
42
#include <linux/string.h>
43
#include <linux/time.h>
44
#include <linux/vmalloc.h>
A
Andrew Morton 已提交
45

S
Stefan Richter 已提交
46
#include <asm/byteorder.h>
S
Stefan Richter 已提交
47
#include <asm/page.h>
48
#include <asm/system.h>
49

50 51 52 53
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

54 55
#include "core.h"
#include "ohci.h"
56

57 58 59 60 61 62 63 64 65 66 67 68 69
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
70 71 72 73 74 75 76 77 78 79

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

80 81 82 83
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
84

85 86 87 88 89 90 91 92
#define AR_BUFFER_SIZE	(32*1024)
#define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
/* we need at least two pages for proper list management */
#define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)

#define MAX_ASYNC_PAYLOAD	4096
#define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
#define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
93

94 95
struct ar_context {
	struct fw_ohci *ohci;
96 97 98 99
	struct page *pages[AR_BUFFERS];
	void *buffer;
	struct descriptor *descriptors;
	dma_addr_t descriptors_bus;
100
	void *pointer;
101
	unsigned int last_buffer_index;
102
	u32 regs;
103 104 105
	struct tasklet_struct tasklet;
};

106 107 108 109 110
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
111 112 113 114 115 116 117 118 119 120 121 122 123

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

124
struct context {
S
Stefan Richter 已提交
125
	struct fw_ohci *ohci;
126
	u32 regs;
127
	int total_allocation;
128
	bool running;
129
	bool flushing;
S
Stefan Richter 已提交
130

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
	 * The last descriptor in the DMA program.  It contains the branch
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
155 156 157

	descriptor_callback_t callback;

S
Stefan Richter 已提交
158
	struct tasklet_struct tasklet;
159 160
};

161 162 163 164 165 166
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
167 168 169

struct iso_context {
	struct fw_iso_context base;
170
	struct context context;
171
	int excess_bytes;
172 173
	void *header;
	size_t header_length;
174 175 176

	u8 sync;
	u8 tags;
177 178 179 180 181 182 183 184
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

	__iomem char *registers;
185
	int node_id;
186
	int generation;
187
	int request_generation;	/* for timestamping incoming requests */
188
	unsigned quirks;
189
	unsigned int pri_req_max;
190
	u32 bus_time;
191
	bool is_root;
192
	bool csr_state_setclear_abdicate;
193 194
	int n_ir;
	int n_it;
195 196 197 198
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
199 200
	spinlock_t lock;

201 202
	struct mutex phy_reg_mutex;

203 204 205
	void *misc_buffer;
	dma_addr_t misc_buffer_bus;

206 207
	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
208 209
	struct context at_request_ctx;
	struct context at_response_ctx;
210

211
	u32 it_context_support;
212
	u32 it_context_mask;     /* unoccupied IT contexts */
213
	struct iso_context *it_context_list;
214
	u64 ir_context_channels; /* unoccupied channels */
215
	u32 ir_context_support;
216
	u32 ir_context_mask;     /* unoccupied IR contexts */
217
	struct iso_context *ir_context_list;
218 219
	u64 mc_channels; /* channels in use by the multichannel IR context */
	bool mc_allocated;
220 221 222 223 224 225 226 227 228 229 230 231

	__be32    *config_rom;
	dma_addr_t config_rom_bus;
	__be32    *next_config_rom;
	dma_addr_t next_config_rom_bus;
	__be32     next_header;

	__le32    *self_id_cpu;
	dma_addr_t self_id_bus;
	struct tasklet_struct bus_reset_tasklet;

	u32 self_id_buffer[512];
232 233
};

A
Adrian Bunk 已提交
234
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
235 236 237 238
{
	return container_of(card, struct fw_ohci, card);
}

239 240 241 242 243 244
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
245 246 247 248 249 250

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

251
#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
252 253 254 255 256 257 258
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
259
#define OHCI_TCODE_PHY_PACKET		0x0e
260
#define OHCI_VERSION_1_1		0x010010
261

262 263
static char ohci_driver_name[] = KBUILD_MODNAME;

264
#define PCI_DEVICE_ID_AGERE_FW643	0x5901
265
#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
266 267
#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009

268 269 270
#define QUIRK_CYCLE_TIMER		1
#define QUIRK_RESET_PACKET		2
#define QUIRK_BE_HEADERS		4
271
#define QUIRK_NO_1394A			8
272
#define QUIRK_NO_MSI			16
273 274 275

/* In case of multiple matches in ohci_quirks[], only the first one is used. */
static const struct {
276
	unsigned short vendor, device, revision, flags;
277
} ohci_quirks[] = {
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
		QUIRK_BE_HEADERS},

	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
		QUIRK_NO_MSI},

	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
		QUIRK_NO_MSI},

	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},

	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_RESET_PACKET},

	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
304 305
};

306 307 308 309 310 311 312
/* This overrides anything that was found in ohci_quirks[]. */
static int param_quirks;
module_param_named(quirks, param_quirks, int, 0644);
MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
	", AR/selfID endianess = "	__stringify(QUIRK_BE_HEADERS)
313
	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
314
	", disable MSI = "		__stringify(QUIRK_NO_MSI)
315 316
	")");

317
#define OHCI_PARAM_DEBUG_AT_AR		1
318
#define OHCI_PARAM_DEBUG_SELFIDS	2
319 320
#define OHCI_PARAM_DEBUG_IRQS		4
#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
321

322 323
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG

324 325 326 327
static int param_debug;
module_param_named(debug, param_debug, int, 0644);
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
328 329 330
	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
331 332 333 334
	", or a combination, or all = -1)");

static void log_irqs(u32 evt)
{
335 336 337 338 339 340
	if (likely(!(param_debug &
			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
		return;

	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
	    !(evt & OHCI1394_busReset))
341 342
		return;

343
	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
344 345 346 347 348 349 350 351 352
	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
	    evt & OHCI1394_isochRx		? " IR"			: "",
	    evt & OHCI1394_isochTx		? " IT"			: "",
	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
353
	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
354
	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
355
	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
356
	    evt & OHCI1394_unrecoverableError	? " unrecoverableError"	: "",
357 358 359 360 361
	    evt & OHCI1394_busReset		? " busReset"		: "",
	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
		    OHCI1394_respTxComplete | OHCI1394_isochRx |
		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
362 363
		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
		    OHCI1394_cycleInconsistent |
364
		    OHCI1394_regAccessFail | OHCI1394_busReset)
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
						? " ?"			: "");
}

static const char *speed[] = {
	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
};
static const char *power[] = {
	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
};
static const char port[] = { '.', '-', 'p', 'c', };

static char _p(u32 *s, int shift)
{
	return port[*s >> shift & 3];
}

382
static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
383 384 385 386
{
	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
		return;

387 388
	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
		  self_id_count, generation, node_id);
389 390 391

	for (; self_id_count--; ++s)
		if ((*s & 1 << 23) == 0)
392 393 394 395 396 397
			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
			    "%s gc=%d %s %s%s%s\n",
			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
			    speed[*s >> 14 & 3], *s >> 16 & 63,
			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
398
		else
399 400 401 402
			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
			    *s, *s >> 24 & 63,
			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
}

static const char *evts[] = {
	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
	[0x10] = "-reserved-",		[0x11] = "ack_complete",
	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
	[0x18] = "-reserved-",		[0x19] = "-reserved-",
	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
	[0x20] = "pending/cancelled",
};
static const char *tcodes[] = {
	[0x0] = "QW req",		[0x1] = "BW req",
	[0x2] = "W resp",		[0x3] = "-reserved-",
	[0x4] = "QR req",		[0x5] = "BR req",
	[0x6] = "QR resp",		[0x7] = "BR resp",
	[0x8] = "cycle start",		[0x9] = "Lk req",
	[0xa] = "async stream packet",	[0xb] = "Lk resp",
	[0xc] = "-reserved-",		[0xd] = "-reserved-",
	[0xe] = "link internal",	[0xf] = "-reserved-",
};

static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
{
	int tcode = header[0] >> 4 & 0xf;
	char specific[12];

	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
		return;

	if (unlikely(evt >= ARRAY_SIZE(evts)))
			evt = 0x1f;

446
	if (evt == OHCI1394_evt_bus_reset) {
447 448
		fw_notify("A%c evt_bus_reset, generation %d\n",
		    dir, (header[2] >> 16) & 0xff);
449 450 451
		return;
	}

452 453 454 455 456 457 458 459 460 461 462 463 464 465
	switch (tcode) {
	case 0x0: case 0x6: case 0x8:
		snprintf(specific, sizeof(specific), " = %08x",
			 be32_to_cpu((__force __be32)header[3]));
		break;
	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
		snprintf(specific, sizeof(specific), " %x,%x",
			 header[3] >> 16, header[3] & 0xffff);
		break;
	default:
		specific[0] = '\0';
	}

	switch (tcode) {
466
	case 0xa:
467
		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
468
		break;
469 470 471 472
	case 0xe:
		fw_notify("A%c %s, PHY %08x %08x\n",
			  dir, evts[evt], header[1], header[2]);
		break;
473
	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
474 475 476 477 478 479
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s, %04x%08x%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
480 481
		break;
	default:
482 483 484 485 486 487
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], specific);
488 489 490 491 492
	}
}

#else

493 494 495 496
#define param_debug 0
static inline void log_irqs(u32 evt) {}
static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
497 498 499

#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */

A
Adrian Bunk 已提交
500
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
501 502 503 504
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
505
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
506 507 508 509
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
510
static inline void flush_writes(const struct fw_ohci *ohci)
511 512 513 514 515
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

516
static int read_phy_reg(struct fw_ohci *ohci, int addr)
517
{
518
	u32 val;
519
	int i;
520 521

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
522
	for (i = 0; i < 3 + 100; i++) {
523 524 525 526
		val = reg_read(ohci, OHCI1394_PhyControl);
		if (val & OHCI1394_PhyControl_ReadDone)
			return OHCI1394_PhyControl_ReadData(val);

527 528 529 530 531 532
		/*
		 * Try a few times without waiting.  Sleeping is necessary
		 * only when the link/PHY interface is busy.
		 */
		if (i >= 3)
			msleep(1);
533
	}
534
	fw_error("failed to read phy reg\n");
535

536 537
	return -EBUSY;
}
538

539 540 541
static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
{
	int i;
542 543

	reg_write(ohci, OHCI1394_PhyControl,
544
		  OHCI1394_PhyControl_Write(addr, val));
545
	for (i = 0; i < 3 + 100; i++) {
546 547 548
		val = reg_read(ohci, OHCI1394_PhyControl);
		if (!(val & OHCI1394_PhyControl_WritePending))
			return 0;
549

550 551
		if (i >= 3)
			msleep(1);
552 553 554 555
	}
	fw_error("failed to write phy reg\n");

	return -EBUSY;
556 557
}

558 559
static int update_phy_reg(struct fw_ohci *ohci, int addr,
			  int clear_bits, int set_bits)
560
{
561
	int ret = read_phy_reg(ohci, addr);
562 563
	if (ret < 0)
		return ret;
564

565 566 567 568 569 570 571
	/*
	 * The interrupt status bits are cleared by writing a one bit.
	 * Avoid clearing them unless explicitly requested in set_bits.
	 */
	if (addr == 5)
		clear_bits |= PHY_INT_STATUS_BITS;

572
	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
573 574
}

575
static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
576
{
577
	int ret;
578

579
	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
580 581
	if (ret < 0)
		return ret;
582

583
	return read_phy_reg(ohci, addr);
584 585
}

586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
static int ohci_read_phy_reg(struct fw_card *card, int addr)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = read_phy_reg(ohci, addr);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
}

static int ohci_update_phy_reg(struct fw_card *card, int addr,
			       int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
609 610
}

611 612 613 614 615 616
static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
{
	return page_private(ctx->pages[i]);
}

static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
617
{
618
	struct descriptor *d;
619

620 621 622 623
	d = &ctx->descriptors[index];
	d->branch_address  &= cpu_to_le32(~0xf);
	d->res_count       =  cpu_to_le16(PAGE_SIZE);
	d->transfer_status =  0;
624

625
	wmb(); /* finish init of new descriptors before branch_address update */
626 627 628 629
	d = &ctx->descriptors[ctx->last_buffer_index];
	d->branch_address  |= cpu_to_le32(1);

	ctx->last_buffer_index = index;
630

631
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
632 633
}

634
static void ar_context_release(struct ar_context *ctx)
635
{
636
	unsigned int i;
637

638 639
	if (ctx->buffer)
		vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
640

641 642 643 644 645 646 647
	for (i = 0; i < AR_BUFFERS; i++)
		if (ctx->pages[i]) {
			dma_unmap_page(ctx->ohci->card.device,
				       ar_buffer_bus(ctx, i),
				       PAGE_SIZE, DMA_FROM_DEVICE);
			__free_page(ctx->pages[i]);
		}
648 649
}

650
static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
651
{
652 653 654
	if (reg_read(ctx->ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
		reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
		flush_writes(ctx->ohci);
655

656
		fw_error("AR error: %s; DMA stopped\n", error_msg);
657
	}
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
	/* FIXME: restart? */
}

static inline unsigned int ar_next_buffer_index(unsigned int index)
{
	return (index + 1) % AR_BUFFERS;
}

static inline unsigned int ar_prev_buffer_index(unsigned int index)
{
	return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
}

static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
{
	return ar_next_buffer_index(ctx->last_buffer_index);
}

/*
 * We search for the buffer that contains the last AR packet DMA data written
 * by the controller.
 */
static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
						 unsigned int *buffer_offset)
{
	unsigned int i, next_i, last = ctx->last_buffer_index;
	__le16 res_count, next_res_count;

	i = ar_first_buffer_index(ctx);
	res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);

	/* A buffer that is not yet completely filled must be the last one. */
	while (i != last && res_count == 0) {

		/* Peek at the next descriptor. */
		next_i = ar_next_buffer_index(i);
		rmb(); /* read descriptors in order */
		next_res_count = ACCESS_ONCE(
				ctx->descriptors[next_i].res_count);
		/*
		 * If the next descriptor is still empty, we must stop at this
		 * descriptor.
		 */
		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
			/*
			 * The exception is when the DMA data for one packet is
			 * split over three buffers; in this case, the middle
			 * buffer's descriptor might be never updated by the
			 * controller and look still empty, and we have to peek
			 * at the third one.
			 */
			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
				next_i = ar_next_buffer_index(next_i);
				rmb();
				next_res_count = ACCESS_ONCE(
					ctx->descriptors[next_i].res_count);
				if (next_res_count != cpu_to_le16(PAGE_SIZE))
					goto next_buffer_is_active;
			}

			break;
		}

next_buffer_is_active:
		i = next_i;
		res_count = next_res_count;
	}

	rmb(); /* read res_count before the DMA data */

	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
	if (*buffer_offset > PAGE_SIZE) {
		*buffer_offset = 0;
		ar_context_abort(ctx, "corrupted descriptor");
	}

	return i;
}

static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
				    unsigned int end_buffer_index,
				    unsigned int end_buffer_offset)
{
	unsigned int i;

	i = ar_first_buffer_index(ctx);
	while (i != end_buffer_index) {
		dma_sync_single_for_cpu(ctx->ohci->card.device,
					ar_buffer_bus(ctx, i),
					PAGE_SIZE, DMA_FROM_DEVICE);
		i = ar_next_buffer_index(i);
	}
	if (end_buffer_offset > 0)
		dma_sync_single_for_cpu(ctx->ohci->card.device,
					ar_buffer_bus(ctx, i),
					end_buffer_offset, DMA_FROM_DEVICE);
754 755
}

756 757
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
758
	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
759 760 761 762
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

763
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
764 765
{
	struct fw_ohci *ohci = ctx->ohci;
766 767
	struct fw_packet p;
	u32 status, length, tcode;
768
	int evt;
769

770 771 772
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
773 774 775 776 777

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
778
		p.header[3] = (__force __u32) buffer[3];
779
		p.header_length = 16;
780
		p.payload_length = 0;
781 782 783
		break;

	case TCODE_READ_BLOCK_REQUEST :
784
		p.header[3] = cond_le32_to_cpu(buffer[3]);
785 786 787 788 789
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
790 791 792
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
793
		p.header[3] = cond_le32_to_cpu(buffer[3]);
794
		p.header_length = 16;
795
		p.payload_length = p.header[3] >> 16;
796 797 798 799
		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
			ar_context_abort(ctx, "invalid packet length");
			return NULL;
		}
800 801 802 803
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
804
	case OHCI_TCODE_PHY_PACKET:
805
		p.header_length = 12;
806
		p.payload_length = 0;
807
		break;
808 809

	default:
810 811
		ar_context_abort(ctx, "invalid tcode");
		return NULL;
812
	}
813

814 815 816 817
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
818
	status = cond_le32_to_cpu(buffer[length]);
819
	evt    = (status >> 16) & 0x1f;
820

821
	p.ack        = evt - 16;
822 823 824
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
825

826
	log_ar_at_event('R', p.speed, p.header, evt);
827

828
	/*
829 830 831 832 833 834 835 836 837
	 * Several controllers, notably from NEC and VIA, forget to
	 * write ack_complete status at PHY packet reception.
	 */
	if (evt == OHCI1394_evt_no_status &&
	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
		p.ack = ACK_COMPLETE;

	/*
	 * The OHCI bus reset handler synthesizes a PHY packet with
838 839 840 841 842
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
843
	 * request.
844 845 846 847
	 *
	 * Alas some chips sometimes emit bus reset packets with a
	 * wrong generation.  We set the correct generation for these
	 * at a slightly incorrect time (in bus_reset_tasklet).
848
	 */
849
	if (evt == OHCI1394_evt_bus_reset) {
850
		if (!(ohci->quirks & QUIRK_RESET_PACKET))
851 852
			ohci->request_generation = (p.header[2] >> 16) & 0xff;
	} else if (ctx == &ohci->ar_request_ctx) {
853
		fw_core_handle_request(&ohci->card, &p);
854
	} else {
855
		fw_core_handle_response(&ohci->card, &p);
856
	}
857

858 859
	return buffer + length + 1;
}
860

861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
{
	void *next;

	while (p < end) {
		next = handle_ar_packet(ctx, p);
		if (!next)
			return p;
		p = next;
	}

	return p;
}

static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
{
	unsigned int i;

	i = ar_first_buffer_index(ctx);
	while (i != end_buffer) {
		dma_sync_single_for_device(ctx->ohci->card.device,
					   ar_buffer_bus(ctx, i),
					   PAGE_SIZE, DMA_FROM_DEVICE);
		ar_context_link_page(ctx, i);
		i = ar_next_buffer_index(i);
	}
}

889 890 891
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
892 893
	unsigned int end_buffer_index, end_buffer_offset;
	void *p, *end;
894

895 896 897
	p = ctx->pointer;
	if (!p)
		return;
898

899 900 901 902
	end_buffer_index = ar_search_last_active_buffer(ctx,
							&end_buffer_offset);
	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
903

904
	if (end_buffer_index < ar_first_buffer_index(ctx)) {
905
		/*
906 907 908 909
		 * The filled part of the overall buffer wraps around; handle
		 * all packets up to the buffer end here.  If the last packet
		 * wraps around, its tail will be visible after the buffer end
		 * because the buffer start pages are mapped there again.
910
		 */
911 912 913 914 915 916 917
		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
		p = handle_ar_packets(ctx, p, buffer_end);
		if (p < buffer_end)
			goto error;
		/* adjust p to point back into the actual buffer */
		p -= AR_BUFFERS * PAGE_SIZE;
	}
918

919 920 921 922 923 924
	p = handle_ar_packets(ctx, p, end);
	if (p != end) {
		if (p > end)
			ar_context_abort(ctx, "inconsistent descriptor");
		goto error;
	}
925

926 927
	ctx->pointer = p;
	ar_recycle_buffers(ctx, end_buffer_index);
928

929
	return;
930

931 932
error:
	ctx->pointer = NULL;
933 934
}

935 936
static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
			   unsigned int descriptors_offset, u32 regs)
937
{
938 939 940 941
	unsigned int i;
	dma_addr_t dma_addr;
	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
	struct descriptor *d;
942

943 944
	ctx->regs        = regs;
	ctx->ohci        = ohci;
945 946
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
	for (i = 0; i < AR_BUFFERS; i++) {
		ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
		if (!ctx->pages[i])
			goto out_of_memory;
		dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
					0, PAGE_SIZE, DMA_FROM_DEVICE);
		if (dma_mapping_error(ohci->card.device, dma_addr)) {
			__free_page(ctx->pages[i]);
			ctx->pages[i] = NULL;
			goto out_of_memory;
		}
		set_page_private(ctx->pages[i], dma_addr);
	}

	for (i = 0; i < AR_BUFFERS; i++)
		pages[i]              = ctx->pages[i];
	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
		pages[AR_BUFFERS + i] = ctx->pages[i];
	ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
966
				 -1, PAGE_KERNEL);
967 968 969
	if (!ctx->buffer)
		goto out_of_memory;

970 971
	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
972 973 974 975 976 977 978 979 980 981 982

	for (i = 0; i < AR_BUFFERS; i++) {
		d = &ctx->descriptors[i];
		d->req_count      = cpu_to_le16(PAGE_SIZE);
		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						DESCRIPTOR_STATUS |
						DESCRIPTOR_BRANCH_ALWAYS);
		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
			ar_next_buffer_index(i) * sizeof(struct descriptor));
	}
983

984
	return 0;
985 986 987 988 989

out_of_memory:
	ar_context_release(ctx);

	return -ENOMEM;
990 991 992 993
}

static void ar_context_run(struct ar_context *ctx)
{
994 995 996 997
	unsigned int i;

	for (i = 0; i < AR_BUFFERS; i++)
		ar_context_link_page(ctx, i);
998

999
	ctx->pointer = ctx->buffer;
1000

1001
	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1002
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1003
}
S
Stefan Richter 已提交
1004

1005
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1006
{
1007
	__le16 branch;
1008

1009
	branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1010 1011

	/* figure out which descriptor the branch address goes in */
1012
	if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1013 1014 1015 1016 1017
		return d;
	else
		return d + z - 1;
}

1018 1019 1020 1021 1022 1023
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
1024
	struct descriptor_buffer *desc;
1025

1026 1027 1028
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
1029
	while (last->branch_address != 0) {
1030
		struct descriptor_buffer *old_desc = desc;
1031 1032
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
1033 1034 1035 1036 1037 1038 1039 1040 1041
		address &= ~0xf;

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1042
		last = find_branch_descriptor(d, z);
1043 1044 1045 1046

		if (!ctx->callback(ctx, d, last))
			break;

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
1057 1058 1059
	}
}

1060 1061 1062 1063
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
1064
static int context_add_buffer(struct context *ctx)
1065 1066
{
	struct descriptor_buffer *desc;
1067
	dma_addr_t uninitialized_var(bus_addr);
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

1093 1094
static int context_init(struct context *ctx, struct fw_ohci *ohci,
			u32 regs, descriptor_callback_t callback)
1095 1096 1097
{
	ctx->ohci = ohci;
	ctx->regs = regs;
1098 1099 1100 1101
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
1102 1103
		return -ENOMEM;

1104 1105 1106
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

1107 1108 1109
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

1110 1111
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
1112
	 * branch address and looks like it's been sent.  That way we
1113
	 * have a descriptor to append DMA programs to.
1114
	 */
1115 1116 1117 1118 1119 1120
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
1121 1122 1123 1124

	return 0;
}

1125
static void context_release(struct context *ctx)
1126 1127
{
	struct fw_card *card = &ctx->ohci->card;
1128
	struct descriptor_buffer *desc, *tmp;
1129

1130 1131 1132 1133
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
1134 1135
}

1136
/* Must be called with ohci->lock held */
1137 1138
static struct descriptor *context_get_descriptors(struct context *ctx,
						  int z, dma_addr_t *d_bus)
1139
{
1140 1141 1142 1143 1144 1145 1146 1147 1148
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
1149

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
1160

1161
	d = desc->buffer + desc->used / sizeof(*d);
1162
	memset(d, 0, z * sizeof(*d));
1163
	*d_bus = desc->buffer_bus + desc->used;
1164 1165 1166 1167

	return d;
}

1168
static void context_run(struct context *ctx, u32 extra)
1169 1170 1171
{
	struct fw_ohci *ohci = ctx->ohci;

1172
	reg_write(ohci, COMMAND_PTR(ctx->regs),
1173
		  le32_to_cpu(ctx->last->branch_address));
1174 1175
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1176
	ctx->running = true;
1177 1178 1179 1180 1181 1182 1183
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
1184
	struct descriptor_buffer *desc = ctx->buffer_tail;
1185

1186
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1187

1188
	desc->used += (z + extra) * sizeof(*d);
1189 1190

	wmb(); /* finish init of new descriptors before branch_address update */
1191 1192
	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev = find_branch_descriptor(d, z);
1193 1194 1195 1196 1197
}

static void context_stop(struct context *ctx)
{
	u32 reg;
1198
	int i;
1199

1200
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1201
	ctx->running = false;
1202

1203
	for (i = 0; i < 1000; i++) {
1204
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1205
		if ((reg & CONTEXT_ACTIVE) == 0)
1206
			return;
1207

1208 1209
		if (i)
			udelay(10);
1210
	}
1211
	fw_error("Error: DMA context still active (0x%08x)\n", reg);
1212
}
1213

1214
struct driver_data {
1215
	u8 inline_data[8];
1216 1217
	struct fw_packet *packet;
};
1218

1219 1220
/*
 * This function apppends a packet to the DMA queue for transmission.
1221
 * Must always be called with the ochi->lock held to ensure proper
1222 1223
 * generation handling and locking around packet queue manipulation.
 */
1224 1225
static int at_context_queue_packet(struct context *ctx,
				   struct fw_packet *packet)
1226 1227
{
	struct fw_ohci *ohci = ctx->ohci;
1228
	dma_addr_t d_bus, uninitialized_var(payload_bus);
1229 1230 1231
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
1232 1233
	int z, tcode;

1234 1235 1236 1237
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1238 1239
	}

1240
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1241 1242
	d[0].res_count = cpu_to_le16(packet->timestamp);

1243 1244
	/*
	 * The DMA format for asyncronous link packets is different
1245
	 * from the IEEE1394 layout, so shift the fields around
1246
	 * accordingly.
1247
	 */
1248

1249
	tcode = (packet->header[0] >> 4) & 0x0f;
1250
	header = (__le32 *) &d[1];
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_WRITE_BLOCK_REQUEST:
	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
	case TCODE_READ_BLOCK_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
1261 1262 1263 1264 1265
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
1266 1267

		if (TCODE_IS_BLOCK_PACKET(tcode))
1268
			header[3] = cpu_to_le32(packet->header[3]);
1269
		else
1270 1271 1272
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
1273 1274
		break;

1275
	case TCODE_LINK_INTERNAL:
1276 1277
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
1278 1279
		header[1] = cpu_to_le32(packet->header[1]);
		header[2] = cpu_to_le32(packet->header[2]);
1280
		d[0].req_count = cpu_to_le16(12);
S
Stefan Richter 已提交
1281

1282
		if (is_ping_packet(&packet->header[1]))
S
Stefan Richter 已提交
1283
			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1284 1285
		break;

1286
	case TCODE_STREAM_DATA:
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
		d[0].req_count = cpu_to_le16(8);
		break;

	default:
		/* BUG(); */
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1297 1298
	}

1299
	BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1300 1301
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
1302
	packet->driver_data = driver_data;
1303

1304
	if (packet->payload_length > 0) {
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
		if (packet->payload_length > sizeof(driver_data->inline_data)) {
			payload_bus = dma_map_single(ohci->card.device,
						     packet->payload,
						     packet->payload_length,
						     DMA_TO_DEVICE);
			if (dma_mapping_error(ohci->card.device, payload_bus)) {
				packet->ack = RCODE_SEND_ERROR;
				return -1;
			}
			packet->payload_bus	= payload_bus;
			packet->payload_mapped	= true;
		} else {
			memcpy(driver_data->inline_data, packet->payload,
			       packet->payload_length);
			payload_bus = d_bus + 3 * sizeof(*d);
1320 1321 1322 1323 1324 1325
		}

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
1326
	} else {
1327 1328
		last = &d[0];
		z = 2;
1329 1330
	}

1331 1332 1333
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
1334

1335 1336
	/* FIXME: Document how the locking works. */
	if (ohci->generation != packet->generation) {
1337
		if (packet->payload_mapped)
1338 1339
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
1340 1341 1342 1343 1344
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
1345

1346
	if (ctx->running)
1347
		reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1348
	else
1349 1350 1351
		context_run(ctx, 0);

	return 0;
1352 1353
}

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
static void at_context_flush(struct context *ctx)
{
	tasklet_disable(&ctx->tasklet);

	ctx->flushing = true;
	context_tasklet((unsigned long)ctx);
	ctx->flushing = false;

	tasklet_enable(&ctx->tasklet);
}

1365 1366 1367
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1368
{
1369
	struct driver_data *driver_data;
1370
	struct fw_packet *packet;
1371
	struct fw_ohci *ohci = context->ohci;
1372 1373
	int evt;

1374
	if (last->transfer_status == 0 && !context->flushing)
1375 1376
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
1377

1378 1379 1380 1381 1382
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
1383

1384
	if (packet->payload_mapped)
1385
		dma_unmap_single(ohci->card.device, packet->payload_bus,
1386 1387
				 packet->payload_length, DMA_TO_DEVICE);

1388 1389
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
1390

1391 1392
	log_ar_at_event('T', packet->speed, packet->header, evt);

1393 1394 1395 1396 1397
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
1398

1399
	case OHCI1394_evt_flushed:
1400 1401 1402 1403
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
1404 1405
		packet->ack = RCODE_GENERATION;
		break;
1406

1407
	case OHCI1394_evt_missing_ack:
1408 1409 1410 1411 1412 1413 1414 1415 1416
		if (context->flushing)
			packet->ack = RCODE_GENERATION;
		else {
			/*
			 * Using a valid (current) generation count, but the
			 * node is not on the bus or not sending acks.
			 */
			packet->ack = RCODE_NO_ACK;
		}
1417
		break;
1418

1419 1420 1421 1422 1423 1424 1425 1426 1427
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
1428

1429 1430 1431 1432 1433 1434 1435
	case OHCI1394_evt_no_status:
		if (context->flushing) {
			packet->ack = RCODE_GENERATION;
			break;
		}
		/* fall through */

1436 1437 1438 1439
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
1440

1441
	packet->callback(packet, &ohci->card, packet->ack);
1442

1443
	return 1;
1444 1445
}

1446 1447 1448 1449 1450
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1451

1452 1453
static void handle_local_rom(struct fw_ohci *ohci,
			     struct fw_packet *packet, u32 csr)
1454 1455 1456 1457
{
	struct fw_packet response;
	int tcode, length, i;

1458
	tcode = HEADER_GET_TCODE(packet->header[0]);
1459
	if (TCODE_IS_BLOCK_PACKET(tcode))
1460
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

1479 1480
static void handle_local_lock(struct fw_ohci *ohci,
			      struct fw_packet *packet, u32 csr)
1481 1482
{
	struct fw_packet response;
1483
	int tcode, length, ext_tcode, sel, try;
1484 1485 1486
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

1487 1488
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1489
	payload = packet->payload;
1490
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
	for (try = 0; try < 20; try++)
		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
			lock_old = cpu_to_be32(reg_read(ohci,
							OHCI1394_CSRData));
			fw_fill_response(&response, packet->header,
					 RCODE_COMPLETE,
					 &lock_old, sizeof(lock_old));
			goto out;
		}

	fw_error("swap not done (CSR lock timeout)\n");
	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1522 1523 1524 1525 1526

 out:
	fw_core_handle_response(&ohci->card, &response);
}

1527
static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1528
{
1529
	u64 offset, csr;
1530

1531 1532 1533 1534
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1535 1536 1537

	offset =
		((unsigned long long)
1538
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
1559 1560 1561 1562 1563

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1564
}
1565

1566
static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1567 1568
{
	unsigned long flags;
1569
	int ret;
1570 1571 1572

	spin_lock_irqsave(&ctx->ohci->lock, flags);

1573
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1574
	    ctx->ohci->generation == packet->generation) {
1575 1576 1577
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
1578
	}
1579

1580
	ret = at_context_queue_packet(ctx, packet);
1581 1582
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

1583
	if (ret < 0)
1584
		packet->callback(packet, &ctx->ohci->card, packet->ack);
1585

1586 1587
}

1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
static void detect_dead_context(struct fw_ohci *ohci,
				const char *name, unsigned int regs)
{
	u32 ctl;

	ctl = reg_read(ohci, CONTROL_SET(regs));
	if (ctl & CONTEXT_DEAD) {
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG
		fw_error("DMA context %s has stopped, error code: %s\n",
			 name, evts[ctl & 0x1f]);
#else
		fw_error("DMA context %s has stopped, error code: %#x\n",
			 name, ctl & 0x1f);
#endif
	}
}

static void handle_dead_contexts(struct fw_ohci *ohci)
{
	unsigned int i;
	char name[8];

	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
	for (i = 0; i < 32; ++i) {
		if (!(ohci->it_context_support & (1 << i)))
			continue;
		sprintf(name, "IT%u", i);
		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
	}
	for (i = 0; i < 32; ++i) {
		if (!(ohci->ir_context_support & (1 << i)))
			continue;
		sprintf(name, "IR%u", i);
		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
	}
	/* TODO: maybe try to flush and restart the dead contexts */
}

1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
static u32 cycle_timer_ticks(u32 cycle_timer)
{
	u32 ticks;

	ticks = cycle_timer & 0xfff;
	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
	ticks += (3072 * 8000) * (cycle_timer >> 25);

	return ticks;
}

/*
 * Some controllers exhibit one or more of the following bugs when updating the
 * iso cycle timer register:
 *  - When the lowest six bits are wrapping around to zero, a read that happens
 *    at the same time will return garbage in the lowest ten bits.
 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
 *    not incremented for about 60 ns.
 *  - Occasionally, the entire register reads zero.
 *
 * To catch these, we read the register three times and ensure that the
 * difference between each two consecutive reads is approximately the same, i.e.
 * less than twice the other.  Furthermore, any negative difference indicates an
 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
 * execute, so we have enough precision to compute the ratio of the differences.)
 */
static u32 get_cycle_time(struct fw_ohci *ohci)
{
	u32 c0, c1, c2;
	u32 t0, t1, t2;
	s32 diff01, diff12;
	int i;

	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);

	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
		i = 0;
		c1 = c2;
		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		do {
			c0 = c1;
			c1 = c2;
			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
			t0 = cycle_timer_ticks(c0);
			t1 = cycle_timer_ticks(c1);
			t2 = cycle_timer_ticks(c2);
			diff01 = t1 - t0;
			diff12 = t2 - t1;
		} while ((diff01 <= 0 || diff12 <= 0 ||
			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
			 && i++ < 20);
	}

	return c2;
}

/*
 * This function has to be called at least every 64 seconds.  The bus_time
 * field stores not only the upper 25 bits of the BUS_TIME register but also
 * the most significant bit of the cycle timer in bit 6 so that we can detect
 * changes in this bit.
 */
static u32 update_bus_time(struct fw_ohci *ohci)
{
	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;

	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
		ohci->bus_time += 0x40;

	return ohci->bus_time | cycle_time_seconds;
}

1701 1702 1703
static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
1704
	int self_id_count, i, j, reg;
1705 1706
	int generation, new_generation;
	unsigned long flags;
1707 1708
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1709
	bool is_new_root;
1710 1711 1712

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1713
		fw_notify("node ID not valid, new bus reset in progress\n");
1714 1715
		return;
	}
1716 1717 1718 1719 1720 1721
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1722

1723 1724 1725 1726 1727 1728
	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
	if (!(ohci->is_root && is_new_root))
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	ohci->is_root = is_new_root;

1729 1730 1731 1732 1733
	reg = reg_read(ohci, OHCI1394_SelfIDCount);
	if (reg & OHCI1394_SelfIDCount_selfIDError) {
		fw_notify("inconsistent self IDs\n");
		return;
	}
1734 1735
	/*
	 * The count in the SelfIDCount register is the number of
1736 1737
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1738 1739
	 * bit extra to get the actual number of self IDs.
	 */
1740 1741
	self_id_count = (reg >> 3) & 0xff;
	if (self_id_count == 0 || self_id_count > 252) {
1742 1743 1744
		fw_notify("inconsistent self IDs\n");
		return;
	}
1745
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1746
	rmb();
1747 1748

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1749 1750 1751 1752
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
			fw_notify("inconsistent self IDs\n");
			return;
		}
1753 1754
		ohci->self_id_buffer[j] =
				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1755
	}
1756
	rmb();
1757

1758 1759
	/*
	 * Check the consistency of the self IDs we just read.  The
1760 1761 1762 1763 1764 1765 1766 1767 1768
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1769 1770
	 * of self IDs.
	 */
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

1782
	ohci->generation = -1; /* prevent AT packet queueing */
1783 1784
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1785 1786 1787

	spin_unlock_irqrestore(&ohci->lock, flags);

1788 1789 1790 1791 1792
	/*
	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
	 * packets in the AT queues and software needs to drain them.
	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
	 */
1793 1794 1795 1796 1797 1798
	at_context_flush(&ohci->at_request_ctx);
	at_context_flush(&ohci->at_response_ctx);

	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
1799 1800
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

1801
	if (ohci->quirks & QUIRK_RESET_PACKET)
1802 1803
		ohci->request_generation = generation;

1804 1805
	/*
	 * This next bit is unrelated to the AT context stuff but we
1806 1807 1808 1809
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
T
Thomas Weber 已提交
1810
	 * next_config_rom pointer so a new update can take place.
1811
	 */
1812 1813

	if (ohci->next_config_rom != NULL) {
1814 1815 1816 1817
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1818 1819 1820 1821
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1822 1823
		/*
		 * Restore config_rom image and manually update
1824 1825
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1826 1827
		 * do that last.
		 */
1828 1829
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
1830 1831 1832
		ohci->config_rom[0] = ohci->next_header;
		reg_write(ohci, OHCI1394_ConfigROMhdr,
			  be32_to_cpu(ohci->next_header));
1833 1834
	}

1835 1836 1837 1838 1839
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif

1840 1841
	spin_unlock_irqrestore(&ohci->lock, flags);

1842 1843 1844 1845
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1846 1847
	log_selfids(ohci->node_id, generation,
		    self_id_count, ohci->self_id_buffer);
1848

1849
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1850 1851 1852
				 self_id_count, ohci->self_id_buffer,
				 ohci->csr_state_setclear_abdicate);
	ohci->csr_state_setclear_abdicate = false;
1853 1854 1855 1856 1857
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1858
	u32 event, iso_event;
1859 1860 1861 1862
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1863
	if (!event || !~event)
1864 1865
		return IRQ_NONE;

1866 1867 1868 1869 1870 1871
	/*
	 * busReset and postedWriteErr must not be cleared yet
	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
	 */
	reg_write(ohci, OHCI1394_IntEventClear,
		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
1872
	log_irqs(event);
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
	if (event & OHCI1394_isochRx) {
		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

		while (iso_event) {
			i = ffs(iso_event) - 1;
			tasklet_schedule(
				&ohci->ir_context_list[i].context.tasklet);
			iso_event &= ~(1 << i);
		}
1899 1900
	}

1901 1902 1903
	if (event & OHCI1394_isochTx) {
		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1904

1905 1906 1907 1908 1909 1910
		while (iso_event) {
			i = ffs(iso_event) - 1;
			tasklet_schedule(
				&ohci->it_context_list[i].context.tasklet);
			iso_event &= ~(1 << i);
		}
1911 1912
	}

1913 1914 1915 1916
	if (unlikely(event & OHCI1394_regAccessFail))
		fw_error("Register access failure - "
			 "please notify linux1394-devel@lists.sf.net\n");

1917 1918 1919 1920 1921
	if (unlikely(event & OHCI1394_postedWriteErr)) {
		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
		reg_write(ohci, OHCI1394_IntEventClear,
			  OHCI1394_postedWriteErr);
1922
		fw_error("PCI posted write error\n");
1923
	}
1924

1925 1926 1927 1928 1929 1930 1931
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
			fw_notify("isochronous cycle too long\n");
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
	if (unlikely(event & OHCI1394_cycleInconsistent)) {
		/*
		 * We need to clear this event bit in order to make
		 * cycleMatch isochronous I/O work.  In theory we should
		 * stop active cycleMatch iso contexts now and restart
		 * them at least two cycles later.  (FIXME?)
		 */
		if (printk_ratelimit())
			fw_notify("isochronous cycle inconsistent\n");
	}

1943 1944 1945
	if (unlikely(event & OHCI1394_unrecoverableError))
		handle_dead_contexts(ohci);

1946 1947 1948 1949
	if (event & OHCI1394_cycle64Seconds) {
		spin_lock(&ohci->lock);
		update_bus_time(ohci);
		spin_unlock(&ohci->lock);
1950 1951
	} else
		flush_writes(ohci);
1952

1953 1954 1955
	return IRQ_HANDLED;
}

1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

1972 1973 1974 1975 1976 1977 1978 1979 1980
static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
{
	size_t size = length * 4;

	memcpy(dest, src, size);
	if (size < CONFIG_ROM_SIZE)
		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
}

1981 1982 1983
static int configure_1394a_enhancements(struct fw_ohci *ohci)
{
	bool enable_1394a;
1984
	int ret, clear, set, offset;
1985 1986 1987 1988 1989 1990 1991 1992

	/* Check if the driver should configure link and PHY. */
	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
	      OHCI1394_HCControl_programPhyEnable))
		return 0;

	/* Paranoia: check whether the PHY supports 1394a, too. */
	enable_1394a = false;
1993 1994 1995 1996 1997 1998 1999 2000
	ret = read_phy_reg(ohci, 2);
	if (ret < 0)
		return ret;
	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
		ret = read_paged_phy_reg(ohci, 1, 8);
		if (ret < 0)
			return ret;
		if (ret >= 1)
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
			enable_1394a = true;
	}

	if (ohci->quirks & QUIRK_NO_1394A)
		enable_1394a = false;

	/* Configure PHY and link consistently. */
	if (enable_1394a) {
		clear = 0;
		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
	} else {
		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
		set = 0;
	}
2015
	ret = update_phy_reg(ohci, 5, clear, set);
2016 2017
	if (ret < 0)
		return ret;
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031

	if (enable_1394a)
		offset = OHCI1394_HCControlSet;
	else
		offset = OHCI1394_HCControlClear;
	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);

	/* Clean up: configuration has been taken care of. */
	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_programPhyEnable);

	return 0;
}

2032 2033
static int ohci_enable(struct fw_card *card,
		       const __be32 *config_rom, size_t length)
2034 2035 2036
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);
2037
	u32 lps, seconds, version, irqs;
2038
	int i, ret;
2039

2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
2050 2051
	 * full link enabled.  However, with some cards (well, at least
	 * a JMicron PCIe card), we have to try again sometimes.
2052 2053 2054 2055 2056
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067

	for (lps = 0, i = 0; !lps && i < 3; i++) {
		msleep(50);
		lps = reg_read(ohci, OHCI1394_HCControlSet) &
		      OHCI1394_HCControl_LPS;
	}

	if (!lps) {
		fw_error("Failed to set Link Power Status\n");
		return -EIO;
	}
2068 2069 2070 2071

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

2072
	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2073 2074 2075 2076 2077 2078 2079
	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2080 2081
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
		  (200 << 16));
2082

2083 2084 2085 2086
	seconds = lower_32_bits(get_seconds());
	reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
	ohci->bus_time = seconds & ~0x3f;

2087 2088 2089 2090
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	if (version >= OHCI_VERSION_1_1) {
		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
			  0xfffffffe);
2091
		card->broadcast_channel_auto_allocated = true;
2092 2093
	}

2094 2095 2096 2097
	/* Get implemented bits of the priority arbitration request counter. */
	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
	reg_write(ohci, OHCI1394_FairnessControl, 0);
2098
	card->priority_budget_implemented = ohci->pri_req_max != 0;
2099 2100 2101 2102 2103

	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);

2104 2105 2106
	ret = configure_1394a_enhancements(ohci);
	if (ret < 0)
		return ret;
2107

2108
	/* Activate link_on bit and contender bit in our self ID packets.*/
2109 2110 2111
	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
	if (ret < 0)
		return ret;
2112

2113 2114
	/*
	 * When the link is not yet enabled, the atomic config rom
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

2132 2133 2134 2135 2136 2137 2138
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
2139

2140
		copy_config_rom(ohci->next_config_rom, config_rom, length);
2141 2142 2143 2144 2145 2146 2147 2148
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
2149

2150
	ohci->next_header = ohci->next_config_rom[0];
2151 2152
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2153 2154
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
2155 2156 2157 2158
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

2159 2160
	if (!(ohci->quirks & QUIRK_NO_MSI))
		pci_enable_msi(dev);
2161
	if (request_irq(dev->irq, irq_handler,
2162 2163 2164 2165
			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
			ohci_driver_name, ohci)) {
		fw_error("Failed to allocate interrupt %d.\n", dev->irq);
		pci_disable_msi(dev);
2166 2167 2168 2169 2170
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

2171 2172 2173 2174 2175 2176
	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		OHCI1394_RQPkt | OHCI1394_RSPkt |
		OHCI1394_isochTx | OHCI1394_isochRx |
		OHCI1394_postedWriteErr |
		OHCI1394_selfIDComplete |
		OHCI1394_regAccessFail |
2177
		OHCI1394_cycle64Seconds |
2178 2179 2180
		OHCI1394_cycleInconsistent |
		OHCI1394_unrecoverableError |
		OHCI1394_cycleTooLong |
2181 2182 2183 2184 2185
		OHCI1394_masterIntEnable;
	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
		irqs |= OHCI1394_busReset;
	reg_write(ohci, OHCI1394_IntMaskSet, irqs);

2186 2187 2188
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
2189 2190 2191 2192 2193 2194

	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_rcvPhyPkt);

	ar_context_run(&ohci->ar_request_ctx);
2195 2196 2197
	ar_context_run(&ohci->ar_response_ctx);

	flush_writes(ohci);
2198

2199 2200
	/* We are ready to go, reset bus to finish initialization. */
	fw_schedule_bus_reset(&ohci->card, false, true);
2201 2202 2203 2204

	return 0;
}

2205
static int ohci_set_config_rom(struct fw_card *card,
2206
			       const __be32 *config_rom, size_t length)
2207 2208 2209 2210
{
	struct fw_ohci *ohci;
	unsigned long flags;
	__be32 *next_config_rom;
2211
	dma_addr_t uninitialized_var(next_config_rom_bus);
2212 2213 2214

	ohci = fw_ohci(card);

2215 2216
	/*
	 * When the OHCI controller is enabled, the config rom update
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
	/*
	 * If there is not an already pending config_rom update,
	 * push our new allocation into the ohci->next_config_rom
	 * and then mark the local variable as null so that we
	 * won't deallocate the new buffer.
	 *
	 * OTOH, if there is a pending config_rom update, just
	 * use that buffer with the new config_rom data, and
	 * let this routine free the unused DMA allocation.
	 */

2261 2262 2263
	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;
2264 2265
		next_config_rom = NULL;
	}
2266

2267
	copy_config_rom(ohci->next_config_rom, config_rom, length);
2268

2269 2270
	ohci->next_header = config_rom[0];
	ohci->next_config_rom[0] = 0;
2271

2272
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2273 2274 2275

	spin_unlock_irqrestore(&ohci->lock, flags);

2276 2277 2278 2279 2280
	/* If we didn't use the DMA allocation, delete it. */
	if (next_config_rom != NULL)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);

2281 2282
	/*
	 * Now initiate a bus reset to have the changes take
2283 2284 2285
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
2286 2287
	 * takes effect.
	 */
2288

2289 2290 2291
	fw_schedule_bus_reset(&ohci->card, true, true);

	return 0;
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

2308 2309 2310
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
2311 2312
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
2313
	int ret = -ENOENT;
2314

2315
	tasklet_disable(&ctx->tasklet);
2316

2317 2318
	if (packet->ack != 0)
		goto out;
2319

2320
	if (packet->payload_mapped)
2321 2322 2323
		dma_unmap_single(ohci->card.device, packet->payload_bus,
				 packet->payload_length, DMA_TO_DEVICE);

2324
	log_ar_at_event('T', packet->speed, packet->header, 0x20);
2325 2326 2327
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
2328
	ret = 0;
2329 2330
 out:
	tasklet_enable(&ctx->tasklet);
2331

2332
	return ret;
2333 2334
}

2335 2336
static int ohci_enable_phys_dma(struct fw_card *card,
				int node_id, int generation)
2337
{
2338 2339 2340
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	return 0;
#else
2341 2342
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
2343
	int n, ret = 0;
2344

2345 2346 2347 2348
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
2349 2350 2351 2352

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
2353
		ret = -ESTALE;
2354 2355 2356
		goto out;
	}

2357 2358 2359 2360
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
2361 2362 2363 2364 2365 2366 2367

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

2368 2369
	flush_writes(ohci);
 out:
2370
	spin_unlock_irqrestore(&ohci->lock, flags);
2371 2372

	return ret;
2373
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2374
}
S
Stefan Richter 已提交
2375

2376
static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2377
{
2378
	struct fw_ohci *ohci = fw_ohci(card);
2379 2380
	unsigned long flags;
	u32 value;
2381 2382

	switch (csr_offset) {
2383 2384 2385 2386 2387
	case CSR_STATE_CLEAR:
	case CSR_STATE_SET:
		if (ohci->is_root &&
		    (reg_read(ohci, OHCI1394_LinkControlSet) &
		     OHCI1394_LinkControl_cycleMaster))
2388
			value = CSR_STATE_BIT_CMSTR;
2389
		else
2390 2391 2392
			value = 0;
		if (ohci->csr_state_setclear_abdicate)
			value |= CSR_STATE_BIT_ABDICATE;
2393

2394
		return value;
2395

2396 2397 2398
	case CSR_NODE_IDS:
		return reg_read(ohci, OHCI1394_NodeID) << 16;

2399 2400 2401
	case CSR_CYCLE_TIME:
		return get_cycle_time(ohci);

2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
	case CSR_BUS_TIME:
		/*
		 * We might be called just after the cycle timer has wrapped
		 * around but just before the cycle64Seconds handler, so we
		 * better check here, too, if the bus time needs to be updated.
		 */
		spin_lock_irqsave(&ohci->lock, flags);
		value = update_bus_time(ohci);
		spin_unlock_irqrestore(&ohci->lock, flags);
		return value;

2413 2414 2415 2416
	case CSR_BUSY_TIMEOUT:
		value = reg_read(ohci, OHCI1394_ATRetries);
		return (value >> 4) & 0x0ffff00f;

2417 2418 2419 2420
	case CSR_PRIORITY_BUDGET:
		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
			(ohci->pri_req_max << 8);

2421 2422 2423 2424
	default:
		WARN_ON(1);
		return 0;
	}
2425 2426
}

2427
static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2428 2429
{
	struct fw_ohci *ohci = fw_ohci(card);
2430
	unsigned long flags;
2431

2432
	switch (csr_offset) {
2433 2434 2435 2436 2437 2438
	case CSR_STATE_CLEAR:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlClear,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2439 2440
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = false;
2441
		break;
2442

2443 2444 2445 2446 2447 2448
	case CSR_STATE_SET:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlSet,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2449 2450
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = true;
2451
		break;
2452

2453 2454 2455 2456 2457
	case CSR_NODE_IDS:
		reg_write(ohci, OHCI1394_NodeID, value >> 16);
		flush_writes(ohci);
		break;

2458 2459 2460 2461 2462 2463 2464
	case CSR_CYCLE_TIME:
		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
		reg_write(ohci, OHCI1394_IntEventSet,
			  OHCI1394_cycleInconsistent);
		flush_writes(ohci);
		break;

2465 2466 2467 2468 2469 2470
	case CSR_BUS_TIME:
		spin_lock_irqsave(&ohci->lock, flags);
		ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
		spin_unlock_irqrestore(&ohci->lock, flags);
		break;

2471 2472 2473 2474 2475 2476 2477
	case CSR_BUSY_TIMEOUT:
		value = (value & 0xf) | ((value & 0xf) << 4) |
			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
		reg_write(ohci, OHCI1394_ATRetries, value);
		flush_writes(ohci);
		break;

2478 2479 2480 2481 2482
	case CSR_PRIORITY_BUDGET:
		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
		flush_writes(ohci);
		break;

2483 2484 2485 2486
	default:
		WARN_ON(1);
		break;
	}
2487 2488
}

2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
static void copy_iso_headers(struct iso_context *ctx, void *p)
{
	int i = ctx->header_length;

	if (i + ctx->base.header_size > PAGE_SIZE)
		return;

	/*
	 * The iso header is byteswapped to little endian by
	 * the controller, but the remaining header quadlets
	 * are big endian.  We want to present all the headers
	 * as big endian, so we have to swap the first quadlet.
	 */
	if (ctx->base.header_size > 0)
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
	if (ctx->base.header_size > 4)
		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
	if (ctx->base.header_size > 8)
		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
	ctx->header_length += ctx->base.header_size;
}

2511 2512 2513 2514 2515 2516
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2517
	struct descriptor *pd;
2518
	__le32 *ir_header;
2519
	void *p;
2520

2521
	for (pd = d; pd <= last; pd++)
2522 2523 2524
		if (pd->transfer_status)
			break;
	if (pd > last)
2525 2526 2527
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

2528 2529
	p = last + 1;
	copy_iso_headers(ctx, p);
2530

2531 2532
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) p;
2533 2534 2535 2536
		ctx->base.callback.sc(&ctx->base,
				      le32_to_cpu(ir_header[0]) & 0xffff,
				      ctx->header_length, ctx->header,
				      ctx->base.callback_data);
2537 2538 2539 2540 2541 2542
		ctx->header_length = 0;
	}

	return 1;
}

2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
/* d == last because each descriptor block is only a single descriptor. */
static int handle_ir_buffer_fill(struct context *context,
				 struct descriptor *d,
				 struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);

	if (!last->transfer_status)
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
		ctx->base.callback.mc(&ctx->base,
				      le32_to_cpu(last->data_address) +
				      le16_to_cpu(last->req_count) -
				      le16_to_cpu(last->res_count),
				      ctx->base.callback_data);

	return 1;
}

2565 2566 2567
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
2568
{
2569 2570
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2571 2572
	int i;
	struct descriptor *pd;
S
Stefan Richter 已提交
2573

2574 2575 2576 2577 2578
	for (pd = d; pd <= last; pd++)
		if (pd->transfer_status)
			break;
	if (pd > last)
		/* Descriptor(s) not done yet, stop iteration */
2579 2580
		return 0;

2581 2582 2583 2584 2585 2586 2587 2588 2589
	i = ctx->header_length;
	if (i + 4 < PAGE_SIZE) {
		/* Present this value as big-endian to match the receive code */
		*(__be32 *)(ctx->header + i) = cpu_to_be32(
				((u32)le16_to_cpu(pd->transfer_status) << 16) |
				le16_to_cpu(pd->res_count));
		ctx->header_length += 4;
	}
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2590 2591 2592
		ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
				      ctx->header_length, ctx->header,
				      ctx->base.callback_data);
2593 2594
		ctx->header_length = 0;
	}
2595
	return 1;
2596 2597
}

2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
{
	u32 hi = channels >> 32, lo = channels;

	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
	mmiowb();
	ohci->mc_channels = channels;
}

2610
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2611
				int type, int channel, size_t header_size)
2612 2613
{
	struct fw_ohci *ohci = fw_ohci(card);
2614 2615 2616 2617
	struct iso_context *uninitialized_var(ctx);
	descriptor_callback_t uninitialized_var(callback);
	u64 *uninitialized_var(channels);
	u32 *uninitialized_var(mask), uninitialized_var(regs);
2618
	unsigned long flags;
2619
	int index, ret = -EBUSY;
2620

2621
	spin_lock_irqsave(&ohci->lock, flags);
2622

2623 2624 2625
	switch (type) {
	case FW_ISO_CONTEXT_TRANSMIT:
		mask     = &ohci->it_context_mask;
2626
		callback = handle_it_packet;
2627 2628 2629 2630 2631 2632 2633 2634 2635
		index    = ffs(*mask) - 1;
		if (index >= 0) {
			*mask &= ~(1 << index);
			regs = OHCI1394_IsoXmitContextBase(index);
			ctx  = &ohci->it_context_list[index];
		}
		break;

	case FW_ISO_CONTEXT_RECEIVE:
2636
		channels = &ohci->ir_context_channels;
2637
		mask     = &ohci->ir_context_mask;
2638
		callback = handle_ir_packet_per_buffer;
2639 2640 2641 2642 2643 2644 2645 2646
		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
		if (index >= 0) {
			*channels &= ~(1ULL << channel);
			*mask     &= ~(1 << index);
			regs = OHCI1394_IsoRcvContextBase(index);
			ctx  = &ohci->ir_context_list[index];
		}
		break;
2647

2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		mask     = &ohci->ir_context_mask;
		callback = handle_ir_buffer_fill;
		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
		if (index >= 0) {
			ohci->mc_allocated = true;
			*mask &= ~(1 << index);
			regs = OHCI1394_IsoRcvContextBase(index);
			ctx  = &ohci->ir_context_list[index];
		}
		break;

	default:
		index = -1;
		ret = -ENOSYS;
2663
	}
2664

2665 2666 2667
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
2668
		return ERR_PTR(ret);
S
Stefan Richter 已提交
2669

2670
	memset(ctx, 0, sizeof(*ctx));
2671 2672
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
2673 2674
	if (ctx->header == NULL) {
		ret = -ENOMEM;
2675
		goto out;
2676
	}
2677 2678
	ret = context_init(&ctx->context, ohci, regs, callback);
	if (ret < 0)
2679
		goto out_with_header;
2680

2681 2682 2683
	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
		set_multichannel_mask(ohci, 0);

2684
	return &ctx->base;
2685 2686 2687 2688 2689

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699

	switch (type) {
	case FW_ISO_CONTEXT_RECEIVE:
		*channels |= 1ULL << channel;
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		ohci->mc_allocated = false;
		break;
	}
2700
	*mask |= 1 << index;
2701

2702 2703
	spin_unlock_irqrestore(&ohci->lock, flags);

2704
	return ERR_PTR(ret);
2705 2706
}

2707 2708
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
2709
{
S
Stefan Richter 已提交
2710
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2711
	struct fw_ohci *ohci = ctx->context.ohci;
2712
	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2713 2714
	int index;

2715 2716 2717 2718
	/* the controller cannot start without any queued packets */
	if (ctx->context.last->branch_address == 0)
		return -ENODATA;

2719 2720
	switch (ctx->base.type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2721
		index = ctx - ohci->it_context_list;
2722 2723 2724
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2725
				(cycle & 0x7fff) << 16;
2726

2727 2728
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2729
		context_run(&ctx->context, match);
2730 2731 2732 2733 2734 2735
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
		/* fall through */
	case FW_ISO_CONTEXT_RECEIVE:
2736
		index = ctx - ohci->ir_context_list;
2737 2738 2739 2740 2741
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
2742

2743 2744
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2745
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2746
		context_run(&ctx->context, control);
2747 2748 2749 2750

		ctx->sync = sync;
		ctx->tags = tags;

2751
		break;
2752
	}
2753 2754 2755 2756

	return 0;
}

2757 2758 2759
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2760
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2761 2762
	int index;

2763 2764
	switch (ctx->base.type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2765 2766
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2767 2768 2769 2770
		break;

	case FW_ISO_CONTEXT_RECEIVE:
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2771 2772
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2773
		break;
2774 2775 2776
	}
	flush_writes(ohci);
	context_stop(&ctx->context);
2777
	tasklet_kill(&ctx->context.tasklet);
2778 2779 2780 2781

	return 0;
}

2782 2783 2784
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2785
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2786 2787 2788
	unsigned long flags;
	int index;

2789 2790
	ohci_stop_iso(base);
	context_release(&ctx->context);
2791
	free_page((unsigned long)ctx->header);
2792

2793 2794
	spin_lock_irqsave(&ohci->lock, flags);

2795 2796
	switch (base->type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2797 2798
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
2799 2800 2801
		break;

	case FW_ISO_CONTEXT_RECEIVE:
2802 2803
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
2804
		ohci->ir_context_channels |= 1ULL << base->channel;
2805 2806 2807 2808 2809 2810 2811 2812 2813
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
		ohci->ir_context_channels |= ohci->mc_channels;
		ohci->mc_channels = 0;
		ohci->mc_allocated = false;
		break;
2814 2815 2816 2817 2818
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
	unsigned long flags;
	int ret;

	switch (base->type) {
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:

		spin_lock_irqsave(&ohci->lock, flags);

		/* Don't allow multichannel to grab other contexts' channels. */
		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
			*channels = ohci->ir_context_channels;
			ret = -EBUSY;
		} else {
			set_multichannel_mask(ohci, *channels);
			ret = 0;
		}

		spin_unlock_irqrestore(&ohci->lock, flags);

		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

2849 2850 2851 2852 2853 2854 2855 2856
#ifdef CONFIG_PM
static void ohci_resume_iso_dma(struct fw_ohci *ohci)
{
	int i;
	struct iso_context *ctx;

	for (i = 0 ; i < ohci->n_ir ; i++) {
		ctx = &ohci->ir_context_list[i];
2857
		if (ctx->context.running)
2858 2859 2860 2861 2862
			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
	}

	for (i = 0 ; i < ohci->n_it ; i++) {
		ctx = &ohci->it_context_list[i];
2863
		if (ctx->context.running)
2864 2865 2866 2867 2868
			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
	}
}
#endif

2869 2870 2871 2872
static int queue_iso_transmit(struct iso_context *ctx,
			      struct fw_iso_packet *packet,
			      struct fw_iso_buffer *buffer,
			      unsigned long payload)
2873
{
2874
	struct descriptor *d, *last, *pd;
2875 2876
	struct fw_iso_packet *p;
	__le32 *header;
2877
	dma_addr_t d_bus, page_bus;
2878 2879
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
2880
	int page, end_page, i, length, offset;
2881 2882

	p = packet;
2883
	payload_index = payload;
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
2902
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2903

2904 2905 2906
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
2907 2908

	if (!p->skip) {
2909
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2910
		d[0].req_count = cpu_to_le16(8);
2911 2912 2913 2914 2915 2916 2917 2918
		/*
		 * Link the skip address to this descriptor itself.  This causes
		 * a context to skip a cycle whenever lost cycles or FIFO
		 * overruns occur, without dropping the data.  The application
		 * should then decide whether this is an error condition or not.
		 * FIXME:  Make the context's cycle-lost behaviour configurable?
		 */
		d[0].branch_address = cpu_to_le32(d_bus | z);
2919 2920

		header = (__le32 *) &d[1];
2921 2922 2923 2924 2925
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
2926
		header[1] =
2927
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2928 2929 2930 2931 2932
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
2933
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
2946 2947 2948

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
2949 2950 2951 2952 2953

		payload_index += length;
	}

	if (p->interrupt)
2954
		irq = DESCRIPTOR_IRQ_ALWAYS;
2955
	else
2956
		irq = DESCRIPTOR_NO_IRQ;
2957

2958
	last = z == 2 ? d : d + z - 1;
2959 2960 2961
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
2962
				     irq);
2963

2964
	context_append(&ctx->context, d, z, header_z);
2965 2966 2967

	return 0;
}
S
Stefan Richter 已提交
2968

2969 2970 2971 2972
static int queue_iso_packet_per_buffer(struct iso_context *ctx,
				       struct fw_iso_packet *packet,
				       struct fw_iso_buffer *buffer,
				       unsigned long payload)
2973
{
2974
	struct descriptor *d, *pd;
2975 2976
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
2977 2978
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
2979 2980

	/*
2981 2982
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
2983
	 */
2984
	packet_count = packet->header_length / ctx->base.header_size;
2985
	header_size  = max(ctx->base.header_size, (size_t)8);
2986 2987 2988 2989 2990

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
2991
	payload_per_buffer = packet->payload_length / packet_count;
2992 2993 2994

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
2995
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2996
		d = context_get_descriptors(&ctx->context,
2997
				z + header_z, &d_bus);
2998 2999 3000
		if (d == NULL)
			return -ENOMEM;

3001 3002
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
3003
		if (packet->skip && i == 0)
3004
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3005 3006
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
3007
		d->transfer_status = 0;
3008 3009
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

3010
		rest = payload_per_buffer;
3011
		pd = d;
3012
		for (j = 1; j < z; j++) {
3013
			pd++;
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
3033 3034 3035
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
3036
		if (packet->interrupt && i == packet_count - 1)
3037 3038 3039 3040 3041 3042 3043 3044
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
static int queue_iso_buffer_fill(struct iso_context *ctx,
				 struct fw_iso_packet *packet,
				 struct fw_iso_buffer *buffer,
				 unsigned long payload)
{
	struct descriptor *d;
	dma_addr_t d_bus, page_bus;
	int page, offset, rest, z, i, length;

	page   = payload >> PAGE_SHIFT;
	offset = payload & ~PAGE_MASK;
	rest   = packet->payload_length;

	/* We need one descriptor for each page in the buffer. */
	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);

	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
		return -EFAULT;

	for (i = 0; i < z; i++) {
		d = context_get_descriptors(&ctx->context, 1, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
					 DESCRIPTOR_BRANCH_ALWAYS);
		if (packet->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
		if (packet->interrupt && i == z - 1)
			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		if (offset + rest < PAGE_SIZE)
			length = rest;
		else
			length = PAGE_SIZE - offset;
		d->req_count = cpu_to_le16(length);
		d->res_count = d->req_count;
		d->transfer_status = 0;

		page_bus = page_private(buffer->pages[page]);
		d->data_address = cpu_to_le32(page_bus + offset);

		rest -= length;
		offset = 0;
		page++;

		context_append(&ctx->context, d, 1, 0);
	}

	return 0;
}

3097 3098 3099 3100
static int ohci_queue_iso(struct fw_iso_context *base,
			  struct fw_iso_packet *packet,
			  struct fw_iso_buffer *buffer,
			  unsigned long payload)
3101
{
3102
	struct iso_context *ctx = container_of(base, struct iso_context, base);
3103
	unsigned long flags;
3104
	int ret = -ENOSYS;
3105

3106
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
	switch (base->type) {
	case FW_ISO_CONTEXT_TRANSMIT:
		ret = queue_iso_transmit(ctx, packet, buffer, payload);
		break;
	case FW_ISO_CONTEXT_RECEIVE:
		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
		break;
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
		break;
	}
3118 3119
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

3120
	return ret;
3121 3122
}

3123 3124 3125 3126 3127 3128 3129 3130
static void ohci_flush_queue_iso(struct fw_iso_context *base)
{
	struct context *ctx =
			&container_of(base, struct iso_context, base)->context;

	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
}

3131
static const struct fw_card_driver ohci_driver = {
3132
	.enable			= ohci_enable,
3133
	.read_phy_reg		= ohci_read_phy_reg,
3134 3135 3136 3137
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
3138
	.cancel_packet		= ohci_cancel_packet,
3139
	.enable_phys_dma	= ohci_enable_phys_dma,
3140 3141
	.read_csr		= ohci_read_csr,
	.write_csr		= ohci_write_csr,
3142 3143 3144

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
3145
	.set_iso_channels	= ohci_set_iso_channels,
3146
	.queue_iso		= ohci_queue_iso,
3147
	.flush_queue_iso	= ohci_flush_queue_iso,
3148
	.start_iso		= ohci_start_iso,
3149
	.stop_iso		= ohci_stop_iso,
3150 3151
};

3152
#ifdef CONFIG_PPC_PMAC
3153
static void pmac_ohci_on(struct pci_dev *dev)
3154
{
3155 3156 3157 3158 3159 3160 3161 3162
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
3163 3164
}

3165
static void pmac_ohci_off(struct pci_dev *dev)
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
{
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
}
#else
3177 3178
static inline void pmac_ohci_on(struct pci_dev *dev) {}
static inline void pmac_ohci_off(struct pci_dev *dev) {}
3179 3180
#endif /* CONFIG_PPC_PMAC */

3181 3182
static int __devinit pci_probe(struct pci_dev *dev,
			       const struct pci_device_id *ent)
3183 3184
{
	struct fw_ohci *ohci;
3185
	u32 bus_options, max_receive, link_speed, version;
3186
	u64 guid;
3187
	int i, err;
3188 3189
	size_t size;

3190
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3191
	if (ohci == NULL) {
3192 3193
		err = -ENOMEM;
		goto fail;
3194 3195 3196 3197
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

3198
	pmac_ohci_on(dev);
3199

3200 3201
	err = pci_enable_device(dev);
	if (err) {
3202
		fw_error("Failed to enable OHCI hardware\n");
3203
		goto fail_free;
3204 3205 3206 3207 3208 3209 3210
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);
3211
	mutex_init(&ohci->phy_reg_mutex);
3212 3213 3214 3215

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

3216 3217
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
3218
		fw_error("MMIO resource unavailable\n");
3219
		goto fail_disable;
3220 3221 3222 3223 3224
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
3225 3226
		err = -ENXIO;
		goto fail_iomem;
3227 3228
	}

3229
	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3230 3231 3232 3233 3234
		if ((ohci_quirks[i].vendor == dev->vendor) &&
		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
		     ohci_quirks[i].device == dev->device) &&
		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
		     ohci_quirks[i].revision >= dev->revision)) {
3235 3236 3237
			ohci->quirks = ohci_quirks[i].flags;
			break;
		}
3238 3239
	if (param_quirks)
		ohci->quirks = param_quirks;
3240

3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
	/*
	 * Because dma_alloc_coherent() allocates at least one page,
	 * we save space by using a common buffer for the AR request/
	 * response descriptors and the self IDs buffer.
	 */
	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
	ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
					       PAGE_SIZE,
					       &ohci->misc_buffer_bus,
					       GFP_KERNEL);
	if (!ohci->misc_buffer) {
		err = -ENOMEM;
		goto fail_iounmap;
	}

	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3258 3259
			      OHCI1394_AsReqRcvContextControlSet);
	if (err < 0)
3260
		goto fail_misc_buf;
3261

3262
	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3263 3264 3265
			      OHCI1394_AsRspRcvContextControlSet);
	if (err < 0)
		goto fail_arreq_ctx;
3266

3267 3268 3269 3270
	err = context_init(&ohci->at_request_ctx, ohci,
			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
	if (err < 0)
		goto fail_arrsp_ctx;
3271

3272 3273 3274 3275
	err = context_init(&ohci->at_response_ctx, ohci,
			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
	if (err < 0)
		goto fail_atreq_ctx;
3276 3277

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3278
	ohci->ir_context_channels = ~0ULL;
3279
	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3280
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3281
	ohci->ir_context_mask = ohci->ir_context_support;
3282 3283
	ohci->n_ir = hweight32(ohci->ir_context_mask);
	size = sizeof(struct iso_context) * ohci->n_ir;
3284
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3285 3286

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3287
	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3288
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3289
	ohci->it_context_mask = ohci->it_context_support;
3290 3291
	ohci->n_it = hweight32(ohci->it_context_mask);
	size = sizeof(struct iso_context) * ohci->n_it;
3292
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3293 3294

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3295
		err = -ENOMEM;
3296
		goto fail_contexts;
3297 3298
	}

3299 3300
	ohci->self_id_cpu = ohci->misc_buffer     + PAGE_SIZE/2;
	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3301 3302 3303 3304 3305 3306 3307

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

3308
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3309
	if (err)
3310
		goto fail_contexts;
3311

3312 3313 3314 3315
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
		  "%d IR + %d IT contexts, quirks 0x%x\n",
		  dev_name(&dev->dev), version >> 16, version & 0xff,
3316
		  ohci->n_ir, ohci->n_it, ohci->quirks);
3317

3318
	return 0;
3319

3320
 fail_contexts:
3321
	kfree(ohci->ir_context_list);
3322 3323
	kfree(ohci->it_context_list);
	context_release(&ohci->at_response_ctx);
3324
 fail_atreq_ctx:
3325
	context_release(&ohci->at_request_ctx);
3326
 fail_arrsp_ctx:
3327
	ar_context_release(&ohci->ar_response_ctx);
3328
 fail_arreq_ctx:
3329
	ar_context_release(&ohci->ar_request_ctx);
3330 3331 3332
 fail_misc_buf:
	dma_free_coherent(ohci->card.device, PAGE_SIZE,
			  ohci->misc_buffer, ohci->misc_buffer_bus);
3333
 fail_iounmap:
3334 3335 3336 3337 3338
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
3339
 fail_free:
3340
	kfree(ohci);
3341
	pmac_ohci_off(dev);
3342 3343 3344
 fail:
	if (err == -ENOMEM)
		fw_error("Out of memory\n");
3345 3346

	return err;
3347 3348 3349 3350 3351 3352 3353
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
3354 3355
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
3356 3357
	fw_core_remove_card(&ohci->card);

3358 3359 3360 3361
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
3362 3363 3364

	software_reset(ohci);
	free_irq(dev->irq, ohci);
3365 3366 3367 3368 3369 3370 3371 3372 3373

	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->next_config_rom, ohci->next_config_rom_bus);
	if (ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
	ar_context_release(&ohci->ar_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
3374 3375
	dma_free_coherent(ohci->card.device, PAGE_SIZE,
			  ohci->misc_buffer, ohci->misc_buffer_bus);
3376 3377
	context_release(&ohci->at_request_ctx);
	context_release(&ohci->at_response_ctx);
3378 3379
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
3380
	pci_disable_msi(dev);
3381 3382 3383
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
3384
	kfree(ohci);
3385
	pmac_ohci_off(dev);
3386

3387 3388 3389
	fw_notify("Removed fw-ohci device.\n");
}

3390
#ifdef CONFIG_PM
3391
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3392
{
3393
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3394 3395 3396
	int err;

	software_reset(ohci);
3397
	free_irq(dev->irq, ohci);
3398
	pci_disable_msi(dev);
3399
	err = pci_save_state(dev);
3400
	if (err) {
3401
		fw_error("pci_save_state failed\n");
3402 3403
		return err;
	}
3404
	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3405 3406
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
3407
	pmac_ohci_off(dev);
3408

3409 3410 3411
	return 0;
}

3412
static int pci_resume(struct pci_dev *dev)
3413
{
3414
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3415 3416
	int err;

3417
	pmac_ohci_on(dev);
3418 3419 3420
	pci_set_power_state(dev, PCI_D0);
	pci_restore_state(dev);
	err = pci_enable_device(dev);
3421
	if (err) {
3422
		fw_error("pci_enable_device failed\n");
3423 3424 3425
		return err;
	}

3426 3427 3428 3429 3430 3431 3432
	/* Some systems don't setup GUID register on resume from ram  */
	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
					!reg_read(ohci, OHCI1394_GUIDHi)) {
		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
	}

3433 3434 3435 3436 3437
	err = ohci_enable(&ohci->card, NULL, 0);
	if (err)
		return err;

	ohci_resume_iso_dma(ohci);
3438

3439
	return 0;
3440 3441 3442
}
#endif

3443
static const struct pci_device_id pci_table[] = {
3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
3455 3456 3457 3458
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
3459 3460 3461 3462 3463 3464
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

3465 3466 3467 3468 3469
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);