ohci.c 85.0 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/bug.h>
22
#include <linux/compiler.h>
23
#include <linux/delay.h>
S
Stefan Richter 已提交
24
#include <linux/device.h>
A
Andrew Morton 已提交
25
#include <linux/dma-mapping.h>
26
#include <linux/firewire.h>
S
Stefan Richter 已提交
27
#include <linux/firewire-constants.h>
28 29
#include <linux/init.h>
#include <linux/interrupt.h>
S
Stefan Richter 已提交
30
#include <linux/io.h>
31
#include <linux/kernel.h>
S
Stefan Richter 已提交
32
#include <linux/list.h>
A
Al Viro 已提交
33
#include <linux/mm.h>
34
#include <linux/module.h>
35
#include <linux/moduleparam.h>
36
#include <linux/mutex.h>
37
#include <linux/pci.h>
38
#include <linux/pci_ids.h>
39
#include <linux/slab.h>
S
Stefan Richter 已提交
40
#include <linux/spinlock.h>
S
Stefan Richter 已提交
41
#include <linux/string.h>
42
#include <linux/time.h>
A
Andrew Morton 已提交
43

S
Stefan Richter 已提交
44
#include <asm/byteorder.h>
S
Stefan Richter 已提交
45
#include <asm/page.h>
46
#include <asm/system.h>
47

48 49 50 51
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

52 53
#include "core.h"
#include "ohci.h"
54

55 56 57 58 59 60 61 62 63 64 65 66 67
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
68 69 70 71 72 73 74 75 76 77

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

78 79 80 81
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
82

83
struct ar_buffer {
84
	struct descriptor descriptor;
85 86 87
	struct ar_buffer *next;
	__le32 data[0];
};
88

89 90 91 92 93
struct ar_context {
	struct fw_ohci *ohci;
	struct ar_buffer *current_buffer;
	struct ar_buffer *last_buffer;
	void *pointer;
94
	u32 regs;
95 96 97
	struct tasklet_struct tasklet;
};

98 99 100 101 102
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
103 104 105 106 107 108 109 110 111 112 113 114 115

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

116
struct context {
S
Stefan Richter 已提交
117
	struct fw_ohci *ohci;
118
	u32 regs;
119
	int total_allocation;
S
Stefan Richter 已提交
120

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
	 * The last descriptor in the DMA program.  It contains the branch
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
145 146 147

	descriptor_callback_t callback;

S
Stefan Richter 已提交
148
	struct tasklet_struct tasklet;
149 150
};

151 152 153 154 155 156
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
157 158 159

struct iso_context {
	struct fw_iso_context base;
160
	struct context context;
161
	int excess_bytes;
162 163
	void *header;
	size_t header_length;
164 165 166 167 168 169 170 171
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

	__iomem char *registers;
172
	int node_id;
173
	int generation;
174
	int request_generation;	/* for timestamping incoming requests */
175
	unsigned quirks;
176
	unsigned int pri_req_max;
177
	u32 bus_time;
178
	bool is_root;
179
	bool csr_state_setclear_abdicate;
180

181 182 183 184
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
185 186
	spinlock_t lock;

187 188
	struct mutex phy_reg_mutex;

189 190
	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
191 192
	struct context at_request_ctx;
	struct context at_response_ctx;
193

194
	u32 it_context_mask;     /* unoccupied IT contexts */
195
	struct iso_context *it_context_list;
196 197
	u64 ir_context_channels; /* unoccupied channels */
	u32 ir_context_mask;     /* unoccupied IR contexts */
198
	struct iso_context *ir_context_list;
199 200
	u64 mc_channels; /* channels in use by the multichannel IR context */
	bool mc_allocated;
201 202 203 204 205 206 207 208 209 210 211 212

	__be32    *config_rom;
	dma_addr_t config_rom_bus;
	__be32    *next_config_rom;
	dma_addr_t next_config_rom_bus;
	__be32     next_header;

	__le32    *self_id_cpu;
	dma_addr_t self_id_bus;
	struct tasklet_struct bus_reset_tasklet;

	u32 self_id_buffer[512];
213 214
};

A
Adrian Bunk 已提交
215
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
216 217 218 219
{
	return container_of(card, struct fw_ohci, card);
}

220 221 222 223 224 225
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
226 227 228 229 230 231

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

232
#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
233 234 235 236 237 238 239
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
240
#define OHCI_TCODE_PHY_PACKET		0x0e
241
#define OHCI_VERSION_1_1		0x010010
242

243 244
static char ohci_driver_name[] = KBUILD_MODNAME;

245
#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
246 247
#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009

248 249 250
#define QUIRK_CYCLE_TIMER		1
#define QUIRK_RESET_PACKET		2
#define QUIRK_BE_HEADERS		4
251
#define QUIRK_NO_1394A			8
252
#define QUIRK_NO_MSI			16
253 254 255 256 257

/* In case of multiple matches in ohci_quirks[], only the first one is used. */
static const struct {
	unsigned short vendor, device, flags;
} ohci_quirks[] = {
258
	{PCI_VENDOR_ID_TI,	PCI_DEVICE_ID_TI_TSB12LV22, QUIRK_CYCLE_TIMER |
259 260
							    QUIRK_RESET_PACKET |
							    QUIRK_NO_1394A},
261 262
	{PCI_VENDOR_ID_TI,	PCI_ANY_ID,	QUIRK_RESET_PACKET},
	{PCI_VENDOR_ID_AL,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
263
	{PCI_VENDOR_ID_JMICRON,	PCI_DEVICE_ID_JMICRON_JMB38X_FW, QUIRK_NO_MSI},
264 265 266 267 268
	{PCI_VENDOR_ID_NEC,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
	{PCI_VENDOR_ID_VIA,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
	{PCI_VENDOR_ID_APPLE,	PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
};

269 270 271 272 273 274 275
/* This overrides anything that was found in ohci_quirks[]. */
static int param_quirks;
module_param_named(quirks, param_quirks, int, 0644);
MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
	", AR/selfID endianess = "	__stringify(QUIRK_BE_HEADERS)
276
	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
277
	", disable MSI = "		__stringify(QUIRK_NO_MSI)
278 279
	")");

280
#define OHCI_PARAM_DEBUG_AT_AR		1
281
#define OHCI_PARAM_DEBUG_SELFIDS	2
282 283
#define OHCI_PARAM_DEBUG_IRQS		4
#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
284

285 286
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG

287 288 289 290
static int param_debug;
module_param_named(debug, param_debug, int, 0644);
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
291 292 293
	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
294 295 296 297
	", or a combination, or all = -1)");

static void log_irqs(u32 evt)
{
298 299 300 301 302 303
	if (likely(!(param_debug &
			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
		return;

	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
	    !(evt & OHCI1394_busReset))
304 305
		return;

306
	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
307 308 309 310 311 312 313 314 315
	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
	    evt & OHCI1394_isochRx		? " IR"			: "",
	    evt & OHCI1394_isochTx		? " IT"			: "",
	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
316
	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
317
	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
318 319 320 321 322 323
	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
	    evt & OHCI1394_busReset		? " busReset"		: "",
	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
		    OHCI1394_respTxComplete | OHCI1394_isochRx |
		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
324 325
		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
		    OHCI1394_cycleInconsistent |
326
		    OHCI1394_regAccessFail | OHCI1394_busReset)
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
						? " ?"			: "");
}

static const char *speed[] = {
	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
};
static const char *power[] = {
	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
};
static const char port[] = { '.', '-', 'p', 'c', };

static char _p(u32 *s, int shift)
{
	return port[*s >> shift & 3];
}

344
static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
345 346 347 348
{
	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
		return;

349 350
	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
		  self_id_count, generation, node_id);
351 352 353

	for (; self_id_count--; ++s)
		if ((*s & 1 << 23) == 0)
354 355 356 357 358 359
			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
			    "%s gc=%d %s %s%s%s\n",
			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
			    speed[*s >> 14 & 3], *s >> 16 & 63,
			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
360
		else
361 362 363 364
			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
			    *s, *s >> 24 & 63,
			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
}

static const char *evts[] = {
	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
	[0x10] = "-reserved-",		[0x11] = "ack_complete",
	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
	[0x18] = "-reserved-",		[0x19] = "-reserved-",
	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
	[0x20] = "pending/cancelled",
};
static const char *tcodes[] = {
	[0x0] = "QW req",		[0x1] = "BW req",
	[0x2] = "W resp",		[0x3] = "-reserved-",
	[0x4] = "QR req",		[0x5] = "BR req",
	[0x6] = "QR resp",		[0x7] = "BR resp",
	[0x8] = "cycle start",		[0x9] = "Lk req",
	[0xa] = "async stream packet",	[0xb] = "Lk resp",
	[0xc] = "-reserved-",		[0xd] = "-reserved-",
	[0xe] = "link internal",	[0xf] = "-reserved-",
};
static const char *phys[] = {
	[0x0] = "phy config packet",	[0x1] = "link-on packet",
	[0x2] = "self-id packet",	[0x3] = "-reserved-",
};

static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
{
	int tcode = header[0] >> 4 & 0xf;
	char specific[12];

	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
		return;

	if (unlikely(evt >= ARRAY_SIZE(evts)))
			evt = 0x1f;

412
	if (evt == OHCI1394_evt_bus_reset) {
413 414
		fw_notify("A%c evt_bus_reset, generation %d\n",
		    dir, (header[2] >> 16) & 0xff);
415 416 417
		return;
	}

418
	if (header[0] == ~header[1]) {
419 420
		fw_notify("A%c %s, %s, %08x\n",
		    dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
		return;
	}

	switch (tcode) {
	case 0x0: case 0x6: case 0x8:
		snprintf(specific, sizeof(specific), " = %08x",
			 be32_to_cpu((__force __be32)header[3]));
		break;
	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
		snprintf(specific, sizeof(specific), " %x,%x",
			 header[3] >> 16, header[3] & 0xffff);
		break;
	default:
		specific[0] = '\0';
	}

	switch (tcode) {
	case 0xe: case 0xa:
439
		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
440 441
		break;
	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
442 443 444 445 446 447
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s, %04x%08x%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
448 449
		break;
	default:
450 451 452 453 454 455
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], specific);
456 457 458 459 460
	}
}

#else

461 462 463 464
#define param_debug 0
static inline void log_irqs(u32 evt) {}
static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
465 466 467

#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */

A
Adrian Bunk 已提交
468
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
469 470 471 472
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
473
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
474 475 476 477
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
478
static inline void flush_writes(const struct fw_ohci *ohci)
479 480 481 482 483
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

484
static int read_phy_reg(struct fw_ohci *ohci, int addr)
485
{
486
	u32 val;
487
	int i;
488 489

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
490
	for (i = 0; i < 3 + 100; i++) {
491 492 493 494
		val = reg_read(ohci, OHCI1394_PhyControl);
		if (val & OHCI1394_PhyControl_ReadDone)
			return OHCI1394_PhyControl_ReadData(val);

495 496 497 498 499 500
		/*
		 * Try a few times without waiting.  Sleeping is necessary
		 * only when the link/PHY interface is busy.
		 */
		if (i >= 3)
			msleep(1);
501
	}
502
	fw_error("failed to read phy reg\n");
503

504 505
	return -EBUSY;
}
506

507 508 509
static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
{
	int i;
510 511

	reg_write(ohci, OHCI1394_PhyControl,
512
		  OHCI1394_PhyControl_Write(addr, val));
513
	for (i = 0; i < 3 + 100; i++) {
514 515 516
		val = reg_read(ohci, OHCI1394_PhyControl);
		if (!(val & OHCI1394_PhyControl_WritePending))
			return 0;
517

518 519
		if (i >= 3)
			msleep(1);
520 521 522 523
	}
	fw_error("failed to write phy reg\n");

	return -EBUSY;
524 525
}

526 527
static int update_phy_reg(struct fw_ohci *ohci, int addr,
			  int clear_bits, int set_bits)
528
{
529
	int ret = read_phy_reg(ohci, addr);
530 531
	if (ret < 0)
		return ret;
532

533 534 535 536 537 538 539
	/*
	 * The interrupt status bits are cleared by writing a one bit.
	 * Avoid clearing them unless explicitly requested in set_bits.
	 */
	if (addr == 5)
		clear_bits |= PHY_INT_STATUS_BITS;

540
	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
541 542
}

543
static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
544
{
545
	int ret;
546

547
	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
548 549
	if (ret < 0)
		return ret;
550

551
	return read_phy_reg(ohci, addr);
552 553
}

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
static int ohci_read_phy_reg(struct fw_card *card, int addr)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = read_phy_reg(ohci, addr);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
}

static int ohci_update_phy_reg(struct fw_card *card, int addr,
			       int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
577 578
}

579
static int ar_context_add_page(struct ar_context *ctx)
580
{
581 582
	struct device *dev = ctx->ohci->card.device;
	struct ar_buffer *ab;
583
	dma_addr_t uninitialized_var(ab_bus);
584 585
	size_t offset;

586
	ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
587 588 589
	if (ab == NULL)
		return -ENOMEM;

590
	ab->next = NULL;
591
	memset(&ab->descriptor, 0, sizeof(ab->descriptor));
592 593 594
	ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						    DESCRIPTOR_STATUS |
						    DESCRIPTOR_BRANCH_ALWAYS);
595 596 597 598 599 600
	offset = offsetof(struct ar_buffer, data);
	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.branch_address = 0;

601
	wmb(); /* finish init of new descriptors before branch_address update */
602
	ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
603 604 605
	ctx->last_buffer->next = ab;
	ctx->last_buffer = ab;

606
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
607
	flush_writes(ctx->ohci);
608 609

	return 0;
610 611
}

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
static void ar_context_release(struct ar_context *ctx)
{
	struct ar_buffer *ab, *ab_next;
	size_t offset;
	dma_addr_t ab_bus;

	for (ab = ctx->current_buffer; ab; ab = ab_next) {
		ab_next = ab->next;
		offset = offsetof(struct ar_buffer, data);
		ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
		dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
				  ab, ab_bus);
	}
}

627 628
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
629
	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
630 631 632 633
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

634
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
635 636
{
	struct fw_ohci *ohci = ctx->ohci;
637 638
	struct fw_packet p;
	u32 status, length, tcode;
639
	int evt;
640

641 642 643
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
644 645 646 647 648

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
649
		p.header[3] = (__force __u32) buffer[3];
650
		p.header_length = 16;
651
		p.payload_length = 0;
652 653 654
		break;

	case TCODE_READ_BLOCK_REQUEST :
655
		p.header[3] = cond_le32_to_cpu(buffer[3]);
656 657 658 659 660
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
661 662 663
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
664
		p.header[3] = cond_le32_to_cpu(buffer[3]);
665
		p.header_length = 16;
666
		p.payload_length = p.header[3] >> 16;
667 668 669 670
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
671
	case OHCI_TCODE_PHY_PACKET:
672
		p.header_length = 12;
673
		p.payload_length = 0;
674
		break;
675 676 677 678 679

	default:
		/* FIXME: Stop context, discard everything, and restart? */
		p.header_length = 0;
		p.payload_length = 0;
680
	}
681

682 683 684 685
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
686
	status = cond_le32_to_cpu(buffer[length]);
687
	evt    = (status >> 16) & 0x1f;
688

689
	p.ack        = evt - 16;
690 691 692
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
693

694
	log_ar_at_event('R', p.speed, p.header, evt);
695

696 697
	/*
	 * The OHCI bus reset handler synthesizes a phy packet with
698 699 700 701 702
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
703
	 * request.
704 705 706 707
	 *
	 * Alas some chips sometimes emit bus reset packets with a
	 * wrong generation.  We set the correct generation for these
	 * at a slightly incorrect time (in bus_reset_tasklet).
708
	 */
709
	if (evt == OHCI1394_evt_bus_reset) {
710
		if (!(ohci->quirks & QUIRK_RESET_PACKET))
711 712
			ohci->request_generation = (p.header[2] >> 16) & 0xff;
	} else if (ctx == &ohci->ar_request_ctx) {
713
		fw_core_handle_request(&ohci->card, &p);
714
	} else {
715
		fw_core_handle_response(&ohci->card, &p);
716
	}
717

718 719
	return buffer + length + 1;
}
720

721 722 723 724 725 726 727 728 729 730 731 732 733
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
	struct fw_ohci *ohci = ctx->ohci;
	struct ar_buffer *ab;
	struct descriptor *d;
	void *buffer, *end;

	ab = ctx->current_buffer;
	d = &ab->descriptor;

	if (d->res_count == 0) {
		size_t size, rest, offset;
734 735
		dma_addr_t start_bus;
		void *start;
736

737 738
		/*
		 * This descriptor is finished and we may have a
739
		 * packet split across this and the next buffer. We
740 741
		 * reuse the page for reassembling the split packet.
		 */
742 743

		offset = offsetof(struct ar_buffer, data);
744 745
		start = buffer = ab;
		start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
746 747 748 749 750 751 752 753 754 755 756 757 758 759

		ab = ab->next;
		d = &ab->descriptor;
		size = buffer + PAGE_SIZE - ctx->pointer;
		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
		memmove(buffer, ctx->pointer, size);
		memcpy(buffer + size, ab->data, rest);
		ctx->current_buffer = ab;
		ctx->pointer = (void *) ab->data + rest;
		end = buffer + size + rest;

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);

760
		dma_free_coherent(ohci->card.device, PAGE_SIZE,
761
				  start, start_bus);
762 763 764 765 766 767 768 769 770
		ar_context_add_page(ctx);
	} else {
		buffer = ctx->pointer;
		ctx->pointer = end =
			(void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);
	}
771 772
}

773 774
static int ar_context_init(struct ar_context *ctx,
			   struct fw_ohci *ohci, u32 regs)
775
{
776
	struct ar_buffer ab;
777

778 779 780
	ctx->regs        = regs;
	ctx->ohci        = ohci;
	ctx->last_buffer = &ab;
781 782
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

783 784 785 786 787
	ar_context_add_page(ctx);
	ar_context_add_page(ctx);
	ctx->current_buffer = ab.next;
	ctx->pointer = ctx->current_buffer->data;

788 789 790 791 792 793 794 795 796 797
	return 0;
}

static void ar_context_run(struct ar_context *ctx)
{
	struct ar_buffer *ab = ctx->current_buffer;
	dma_addr_t ab_bus;
	size_t offset;

	offset = offsetof(struct ar_buffer, data);
798
	ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
799 800

	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
801
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
802
	flush_writes(ctx->ohci);
803
}
S
Stefan Richter 已提交
804

805
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
806 807 808 809 810 811 812 813 814 815 816 817 818
{
	int b, key;

	b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
	key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;

	/* figure out which descriptor the branch address goes in */
	if (z == 2 && (b == 3 || key == 2))
		return d;
	else
		return d + z - 1;
}

819 820 821 822 823 824
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
825
	struct descriptor_buffer *desc;
826

827 828 829
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
830
	while (last->branch_address != 0) {
831
		struct descriptor_buffer *old_desc = desc;
832 833
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
834 835 836 837 838 839 840 841 842
		address &= ~0xf;

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
843
		last = find_branch_descriptor(d, z);
844 845 846 847

		if (!ctx->callback(ctx, d, last))
			break;

848 849 850 851 852 853 854 855 856 857
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
858 859 860
	}
}

861 862 863 864
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
865
static int context_add_buffer(struct context *ctx)
866 867
{
	struct descriptor_buffer *desc;
868
	dma_addr_t uninitialized_var(bus_addr);
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

894 895
static int context_init(struct context *ctx, struct fw_ohci *ohci,
			u32 regs, descriptor_callback_t callback)
896 897 898
{
	ctx->ohci = ohci;
	ctx->regs = regs;
899 900 901 902
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
903 904
		return -ENOMEM;

905 906 907
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

908 909 910
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

911 912
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
913
	 * branch address and looks like it's been sent.  That way we
914
	 * have a descriptor to append DMA programs to.
915
	 */
916 917 918 919 920 921
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
922 923 924 925

	return 0;
}

926
static void context_release(struct context *ctx)
927 928
{
	struct fw_card *card = &ctx->ohci->card;
929
	struct descriptor_buffer *desc, *tmp;
930

931 932 933 934
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
935 936
}

937
/* Must be called with ohci->lock held */
938 939
static struct descriptor *context_get_descriptors(struct context *ctx,
						  int z, dma_addr_t *d_bus)
940
{
941 942 943 944 945 946 947 948 949
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
950

951 952 953 954 955 956 957 958 959 960
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
961

962
	d = desc->buffer + desc->used / sizeof(*d);
963
	memset(d, 0, z * sizeof(*d));
964
	*d_bus = desc->buffer_bus + desc->used;
965 966 967 968

	return d;
}

969
static void context_run(struct context *ctx, u32 extra)
970 971 972
{
	struct fw_ohci *ohci = ctx->ohci;

973
	reg_write(ohci, COMMAND_PTR(ctx->regs),
974
		  le32_to_cpu(ctx->last->branch_address));
975 976
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
977 978 979 980 981 982 983
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
984
	struct descriptor_buffer *desc = ctx->buffer_tail;
985

986
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
987

988
	desc->used += (z + extra) * sizeof(*d);
989 990

	wmb(); /* finish init of new descriptors before branch_address update */
991 992
	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev = find_branch_descriptor(d, z);
993

994
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
995 996 997 998 999 1000
	flush_writes(ctx->ohci);
}

static void context_stop(struct context *ctx)
{
	u32 reg;
1001
	int i;
1002

1003
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1004
	flush_writes(ctx->ohci);
1005

1006
	for (i = 0; i < 10; i++) {
1007
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1008
		if ((reg & CONTEXT_ACTIVE) == 0)
1009
			return;
1010

1011
		mdelay(1);
1012
	}
1013
	fw_error("Error: DMA context still active (0x%08x)\n", reg);
1014
}
1015

1016 1017 1018
struct driver_data {
	struct fw_packet *packet;
};
1019

1020 1021
/*
 * This function apppends a packet to the DMA queue for transmission.
1022
 * Must always be called with the ochi->lock held to ensure proper
1023 1024
 * generation handling and locking around packet queue manipulation.
 */
1025 1026
static int at_context_queue_packet(struct context *ctx,
				   struct fw_packet *packet)
1027 1028
{
	struct fw_ohci *ohci = ctx->ohci;
1029
	dma_addr_t d_bus, uninitialized_var(payload_bus);
1030 1031 1032
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
1033
	int z, tcode;
1034
	u32 reg;
1035

1036 1037 1038 1039
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1040 1041
	}

1042
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1043 1044
	d[0].res_count = cpu_to_le16(packet->timestamp);

1045 1046
	/*
	 * The DMA format for asyncronous link packets is different
1047 1048
	 * from the IEEE1394 layout, so shift the fields around
	 * accordingly.  If header_length is 8, it's a PHY packet, to
1049 1050
	 * which we need to prepend an extra quadlet.
	 */
1051 1052

	header = (__le32 *) &d[1];
1053 1054 1055
	switch (packet->header_length) {
	case 16:
	case 12:
1056 1057 1058 1059 1060
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
1061 1062 1063

		tcode = (packet->header[0] >> 4) & 0x0f;
		if (TCODE_IS_BLOCK_PACKET(tcode))
1064
			header[3] = cpu_to_le32(packet->header[3]);
1065
		else
1066 1067 1068
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
1069 1070 1071
		break;

	case 8:
1072 1073 1074 1075 1076
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0]);
		header[2] = cpu_to_le32(packet->header[1]);
		d[0].req_count = cpu_to_le16(12);
S
Stefan Richter 已提交
1077 1078 1079

		if (is_ping_packet(packet->header))
			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
		break;

	case 4:
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
		d[0].req_count = cpu_to_le16(8);
		break;

	default:
		/* BUG(); */
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1093 1094
	}

1095 1096
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
1097
	packet->driver_data = driver_data;
1098

1099 1100 1101 1102
	if (packet->payload_length > 0) {
		payload_bus =
			dma_map_single(ohci->card.device, packet->payload,
				       packet->payload_length, DMA_TO_DEVICE);
1103
		if (dma_mapping_error(ohci->card.device, payload_bus)) {
1104 1105 1106
			packet->ack = RCODE_SEND_ERROR;
			return -1;
		}
1107 1108
		packet->payload_bus	= payload_bus;
		packet->payload_mapped	= true;
1109 1110 1111 1112 1113

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
1114
	} else {
1115 1116
		last = &d[0];
		z = 2;
1117 1118
	}

1119 1120 1121
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
1122

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
	/*
	 * If the controller and packet generations don't match, we need to
	 * bail out and try again.  If IntEvent.busReset is set, the AT context
	 * is halted, so appending to the context and trying to run it is
	 * futile.  Most controllers do the right thing and just flush the AT
	 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
	 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
	 * up stalling out.  So we just bail out in software and try again
	 * later, and everyone is happy.
	 * FIXME: Document how the locking works.
	 */
	if (ohci->generation != packet->generation ||
	    reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1136
		if (packet->payload_mapped)
1137 1138
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
1139 1140 1141 1142 1143
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
1144

1145
	/* If the context isn't already running, start it up. */
1146
	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1147
	if ((reg & CONTEXT_RUN) == 0)
1148 1149 1150
		context_run(ctx, 0);

	return 0;
1151 1152
}

1153 1154 1155
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1156
{
1157
	struct driver_data *driver_data;
1158
	struct fw_packet *packet;
1159
	struct fw_ohci *ohci = context->ohci;
1160 1161
	int evt;

1162 1163 1164
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
1165

1166 1167 1168 1169 1170
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
1171

1172
	if (packet->payload_mapped)
1173
		dma_unmap_single(ohci->card.device, packet->payload_bus,
1174 1175
				 packet->payload_length, DMA_TO_DEVICE);

1176 1177
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
1178

1179 1180
	log_ar_at_event('T', packet->speed, packet->header, evt);

1181 1182 1183 1184 1185
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
1186

1187
	case OHCI1394_evt_flushed:
1188 1189 1190 1191
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
1192 1193
		packet->ack = RCODE_GENERATION;
		break;
1194

1195
	case OHCI1394_evt_missing_ack:
1196 1197 1198 1199
		/*
		 * Using a valid (current) generation count, but the
		 * node is not on the bus or not sending acks.
		 */
1200 1201
		packet->ack = RCODE_NO_ACK;
		break;
1202

1203 1204 1205 1206 1207 1208 1209 1210 1211
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
1212

1213 1214 1215 1216
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
1217

1218
	packet->callback(packet, &ohci->card, packet->ack);
1219

1220
	return 1;
1221 1222
}

1223 1224 1225 1226 1227
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1228

1229 1230
static void handle_local_rom(struct fw_ohci *ohci,
			     struct fw_packet *packet, u32 csr)
1231 1232 1233 1234
{
	struct fw_packet response;
	int tcode, length, i;

1235
	tcode = HEADER_GET_TCODE(packet->header[0]);
1236
	if (TCODE_IS_BLOCK_PACKET(tcode))
1237
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

1256 1257
static void handle_local_lock(struct fw_ohci *ohci,
			      struct fw_packet *packet, u32 csr)
1258 1259
{
	struct fw_packet response;
1260
	int tcode, length, ext_tcode, sel, try;
1261 1262 1263
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

1264 1265
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1266
	payload = packet->payload;
1267
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
	for (try = 0; try < 20; try++)
		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
			lock_old = cpu_to_be32(reg_read(ohci,
							OHCI1394_CSRData));
			fw_fill_response(&response, packet->header,
					 RCODE_COMPLETE,
					 &lock_old, sizeof(lock_old));
			goto out;
		}

	fw_error("swap not done (CSR lock timeout)\n");
	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1299 1300 1301 1302 1303

 out:
	fw_core_handle_response(&ohci->card, &response);
}

1304
static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1305
{
1306
	u64 offset, csr;
1307

1308 1309 1310 1311
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1312 1313 1314

	offset =
		((unsigned long long)
1315
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
1336 1337 1338 1339 1340

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1341
}
1342

1343
static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1344 1345
{
	unsigned long flags;
1346
	int ret;
1347 1348 1349

	spin_lock_irqsave(&ctx->ohci->lock, flags);

1350
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1351
	    ctx->ohci->generation == packet->generation) {
1352 1353 1354
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
1355
	}
1356

1357
	ret = at_context_queue_packet(ctx, packet);
1358 1359
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

1360
	if (ret < 0)
1361
		packet->callback(packet, &ctx->ohci->card, packet->ack);
1362

1363 1364
}

1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
static u32 cycle_timer_ticks(u32 cycle_timer)
{
	u32 ticks;

	ticks = cycle_timer & 0xfff;
	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
	ticks += (3072 * 8000) * (cycle_timer >> 25);

	return ticks;
}

/*
 * Some controllers exhibit one or more of the following bugs when updating the
 * iso cycle timer register:
 *  - When the lowest six bits are wrapping around to zero, a read that happens
 *    at the same time will return garbage in the lowest ten bits.
 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
 *    not incremented for about 60 ns.
 *  - Occasionally, the entire register reads zero.
 *
 * To catch these, we read the register three times and ensure that the
 * difference between each two consecutive reads is approximately the same, i.e.
 * less than twice the other.  Furthermore, any negative difference indicates an
 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
 * execute, so we have enough precision to compute the ratio of the differences.)
 */
static u32 get_cycle_time(struct fw_ohci *ohci)
{
	u32 c0, c1, c2;
	u32 t0, t1, t2;
	s32 diff01, diff12;
	int i;

	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);

	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
		i = 0;
		c1 = c2;
		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		do {
			c0 = c1;
			c1 = c2;
			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
			t0 = cycle_timer_ticks(c0);
			t1 = cycle_timer_ticks(c1);
			t2 = cycle_timer_ticks(c2);
			diff01 = t1 - t0;
			diff12 = t2 - t1;
		} while ((diff01 <= 0 || diff12 <= 0 ||
			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
			 && i++ < 20);
	}

	return c2;
}

/*
 * This function has to be called at least every 64 seconds.  The bus_time
 * field stores not only the upper 25 bits of the BUS_TIME register but also
 * the most significant bit of the cycle timer in bit 6 so that we can detect
 * changes in this bit.
 */
static u32 update_bus_time(struct fw_ohci *ohci)
{
	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;

	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
		ohci->bus_time += 0x40;

	return ohci->bus_time | cycle_time_seconds;
}

1437 1438 1439
static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
1440
	int self_id_count, i, j, reg;
1441 1442
	int generation, new_generation;
	unsigned long flags;
1443 1444
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1445
	bool is_new_root;
1446 1447 1448

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1449
		fw_notify("node ID not valid, new bus reset in progress\n");
1450 1451
		return;
	}
1452 1453 1454 1455 1456 1457
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1458

1459 1460 1461 1462 1463 1464
	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
	if (!(ohci->is_root && is_new_root))
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	ohci->is_root = is_new_root;

1465 1466 1467 1468 1469
	reg = reg_read(ohci, OHCI1394_SelfIDCount);
	if (reg & OHCI1394_SelfIDCount_selfIDError) {
		fw_notify("inconsistent self IDs\n");
		return;
	}
1470 1471
	/*
	 * The count in the SelfIDCount register is the number of
1472 1473
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1474 1475
	 * bit extra to get the actual number of self IDs.
	 */
1476 1477
	self_id_count = (reg >> 3) & 0xff;
	if (self_id_count == 0 || self_id_count > 252) {
1478 1479 1480
		fw_notify("inconsistent self IDs\n");
		return;
	}
1481
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1482
	rmb();
1483 1484

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1485 1486 1487 1488
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
			fw_notify("inconsistent self IDs\n");
			return;
		}
1489 1490
		ohci->self_id_buffer[j] =
				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1491
	}
1492
	rmb();
1493

1494 1495
	/*
	 * Check the consistency of the self IDs we just read.  The
1496 1497 1498 1499 1500 1501 1502 1503 1504
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1505 1506
	 * of self IDs.
	 */
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
1519 1520
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1521 1522
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

1523
	if (ohci->quirks & QUIRK_RESET_PACKET)
1524 1525
		ohci->request_generation = generation;

1526 1527
	/*
	 * This next bit is unrelated to the AT context stuff but we
1528 1529 1530 1531
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
T
Thomas Weber 已提交
1532
	 * next_config_rom pointer so a new update can take place.
1533
	 */
1534 1535

	if (ohci->next_config_rom != NULL) {
1536 1537 1538 1539
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1540 1541 1542 1543
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1544 1545
		/*
		 * Restore config_rom image and manually update
1546 1547
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1548 1549
		 * do that last.
		 */
1550 1551
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
1552 1553 1554
		ohci->config_rom[0] = ohci->next_header;
		reg_write(ohci, OHCI1394_ConfigROMhdr,
			  be32_to_cpu(ohci->next_header));
1555 1556
	}

1557 1558 1559 1560 1561
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif

1562 1563
	spin_unlock_irqrestore(&ohci->lock, flags);

1564 1565 1566 1567
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1568 1569
	log_selfids(ohci->node_id, generation,
		    self_id_count, ohci->self_id_buffer);
1570

1571
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1572 1573 1574
				 self_id_count, ohci->self_id_buffer,
				 ohci->csr_state_setclear_abdicate);
	ohci->csr_state_setclear_abdicate = false;
1575 1576 1577 1578 1579
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1580
	u32 event, iso_event;
1581 1582 1583 1584
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1585
	if (!event || !~event)
1586 1587
		return IRQ_NONE;

1588 1589
	/* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
	reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1590
	log_irqs(event);
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1607
	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1608 1609 1610 1611
	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1612
		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1613 1614 1615
		iso_event &= ~(1 << i);
	}

1616
	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1617 1618 1619 1620
	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1621
		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1622 1623 1624
		iso_event &= ~(1 << i);
	}

1625 1626 1627 1628
	if (unlikely(event & OHCI1394_regAccessFail))
		fw_error("Register access failure - "
			 "please notify linux1394-devel@lists.sf.net\n");

1629 1630 1631
	if (unlikely(event & OHCI1394_postedWriteErr))
		fw_error("PCI posted write error\n");

1632 1633 1634 1635 1636 1637 1638
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
			fw_notify("isochronous cycle too long\n");
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
	if (unlikely(event & OHCI1394_cycleInconsistent)) {
		/*
		 * We need to clear this event bit in order to make
		 * cycleMatch isochronous I/O work.  In theory we should
		 * stop active cycleMatch iso contexts now and restart
		 * them at least two cycles later.  (FIXME?)
		 */
		if (printk_ratelimit())
			fw_notify("isochronous cycle inconsistent\n");
	}

1650 1651 1652 1653 1654 1655
	if (event & OHCI1394_cycle64Seconds) {
		spin_lock(&ohci->lock);
		update_bus_time(ohci);
		spin_unlock(&ohci->lock);
	}

1656 1657 1658
	return IRQ_HANDLED;
}

1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

1675 1676 1677 1678 1679 1680 1681 1682 1683
static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
{
	size_t size = length * 4;

	memcpy(dest, src, size);
	if (size < CONFIG_ROM_SIZE)
		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
}

1684 1685 1686
static int configure_1394a_enhancements(struct fw_ohci *ohci)
{
	bool enable_1394a;
1687
	int ret, clear, set, offset;
1688 1689 1690 1691 1692 1693 1694 1695

	/* Check if the driver should configure link and PHY. */
	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
	      OHCI1394_HCControl_programPhyEnable))
		return 0;

	/* Paranoia: check whether the PHY supports 1394a, too. */
	enable_1394a = false;
1696 1697 1698 1699 1700 1701 1702 1703
	ret = read_phy_reg(ohci, 2);
	if (ret < 0)
		return ret;
	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
		ret = read_paged_phy_reg(ohci, 1, 8);
		if (ret < 0)
			return ret;
		if (ret >= 1)
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
			enable_1394a = true;
	}

	if (ohci->quirks & QUIRK_NO_1394A)
		enable_1394a = false;

	/* Configure PHY and link consistently. */
	if (enable_1394a) {
		clear = 0;
		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
	} else {
		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
		set = 0;
	}
1718
	ret = update_phy_reg(ohci, 5, clear, set);
1719 1720
	if (ret < 0)
		return ret;
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734

	if (enable_1394a)
		offset = OHCI1394_HCControlSet;
	else
		offset = OHCI1394_HCControlClear;
	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);

	/* Clean up: configuration has been taken care of. */
	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_programPhyEnable);

	return 0;
}

1735 1736
static int ohci_enable(struct fw_card *card,
		       const __be32 *config_rom, size_t length)
1737 1738 1739
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);
1740
	u32 lps, seconds, version, irqs;
1741
	int i, ret;
1742

1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
1753 1754
	 * full link enabled.  However, with some cards (well, at least
	 * a JMicron PCIe card), we have to try again sometimes.
1755 1756 1757 1758 1759
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770

	for (lps = 0, i = 0; !lps && i < 3; i++) {
		msleep(50);
		lps = reg_read(ohci, OHCI1394_HCControlSet) &
		      OHCI1394_HCControl_LPS;
	}

	if (!lps) {
		fw_error("Failed to set Link Power Status\n");
		return -EIO;
	}
1771 1772 1773 1774

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

1775
	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1776 1777
	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
1778
		  OHCI1394_LinkControl_rcvPhyPkt |
1779 1780 1781 1782 1783 1784
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1785 1786
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
		  (200 << 16));
1787

1788 1789 1790 1791
	seconds = lower_32_bits(get_seconds());
	reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
	ohci->bus_time = seconds & ~0x3f;

1792 1793 1794 1795
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	if (version >= OHCI_VERSION_1_1) {
		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
			  0xfffffffe);
1796
		card->broadcast_channel_auto_allocated = true;
1797 1798
	}

1799 1800 1801 1802
	/* Get implemented bits of the priority arbitration request counter. */
	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
	reg_write(ohci, OHCI1394_FairnessControl, 0);
1803
	card->priority_budget_implemented = ohci->pri_req_max != 0;
1804 1805 1806 1807 1808 1809 1810 1811

	ar_context_run(&ohci->ar_request_ctx);
	ar_context_run(&ohci->ar_response_ctx);

	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);

1812 1813 1814
	ret = configure_1394a_enhancements(ohci);
	if (ret < 0)
		return ret;
1815

1816
	/* Activate link_on bit and contender bit in our self ID packets.*/
1817 1818 1819
	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
	if (ret < 0)
		return ret;
1820

1821 1822
	/*
	 * When the link is not yet enabled, the atomic config rom
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

1840 1841 1842 1843 1844 1845 1846
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
1847

1848
		copy_config_rom(ohci->next_config_rom, config_rom, length);
1849 1850 1851 1852 1853 1854 1855 1856
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
1857

1858
	ohci->next_header = ohci->next_config_rom[0];
1859 1860
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1861 1862
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
1863 1864 1865 1866
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

1867 1868
	if (!(ohci->quirks & QUIRK_NO_MSI))
		pci_enable_msi(dev);
1869
	if (request_irq(dev->irq, irq_handler,
1870 1871 1872 1873
			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
			ohci_driver_name, ohci)) {
		fw_error("Failed to allocate interrupt %d.\n", dev->irq);
		pci_disable_msi(dev);
1874 1875 1876 1877 1878
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

1879 1880 1881 1882 1883 1884
	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		OHCI1394_RQPkt | OHCI1394_RSPkt |
		OHCI1394_isochTx | OHCI1394_isochRx |
		OHCI1394_postedWriteErr |
		OHCI1394_selfIDComplete |
		OHCI1394_regAccessFail |
1885
		OHCI1394_cycle64Seconds |
1886 1887 1888 1889 1890 1891
		OHCI1394_cycleInconsistent | OHCI1394_cycleTooLong |
		OHCI1394_masterIntEnable;
	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
		irqs |= OHCI1394_busReset;
	reg_write(ohci, OHCI1394_IntMaskSet, irqs);

1892 1893 1894 1895 1896
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
	flush_writes(ohci);

1897 1898
	/* We are ready to go, reset bus to finish initialization. */
	fw_schedule_bus_reset(&ohci->card, false, true);
1899 1900 1901 1902

	return 0;
}

1903
static int ohci_set_config_rom(struct fw_card *card,
1904
			       const __be32 *config_rom, size_t length)
1905 1906 1907
{
	struct fw_ohci *ohci;
	unsigned long flags;
1908
	int ret = -EBUSY;
1909
	__be32 *next_config_rom;
1910
	dma_addr_t uninitialized_var(next_config_rom_bus);
1911 1912 1913

	ohci = fw_ohci(card);

1914 1915
	/*
	 * When the OHCI controller is enabled, the config rom update
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;

1953
		copy_config_rom(ohci->next_config_rom, config_rom, length);
1954 1955 1956 1957 1958 1959

		ohci->next_header = config_rom[0];
		ohci->next_config_rom[0] = 0;

		reg_write(ohci, OHCI1394_ConfigROMmap,
			  ohci->next_config_rom_bus);
1960
		ret = 0;
1961 1962 1963 1964
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

1965 1966
	/*
	 * Now initiate a bus reset to have the changes take
1967 1968 1969
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
1970 1971
	 * takes effect.
	 */
1972
	if (ret == 0)
1973
		fw_schedule_bus_reset(&ohci->card, true, true);
1974 1975 1976
	else
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);
1977

1978
	return ret;
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

1995 1996 1997
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
1998 1999
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
2000
	int ret = -ENOENT;
2001

2002
	tasklet_disable(&ctx->tasklet);
2003

2004 2005
	if (packet->ack != 0)
		goto out;
2006

2007
	if (packet->payload_mapped)
2008 2009 2010
		dma_unmap_single(ohci->card.device, packet->payload_bus,
				 packet->payload_length, DMA_TO_DEVICE);

2011
	log_ar_at_event('T', packet->speed, packet->header, 0x20);
2012 2013 2014
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
2015
	ret = 0;
2016 2017
 out:
	tasklet_enable(&ctx->tasklet);
2018

2019
	return ret;
2020 2021
}

2022 2023
static int ohci_enable_phys_dma(struct fw_card *card,
				int node_id, int generation)
2024
{
2025 2026 2027
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	return 0;
#else
2028 2029
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
2030
	int n, ret = 0;
2031

2032 2033 2034 2035
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
2036 2037 2038 2039

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
2040
		ret = -ESTALE;
2041 2042 2043
		goto out;
	}

2044 2045 2046 2047
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
2048 2049 2050 2051 2052 2053 2054

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

2055 2056
	flush_writes(ohci);
 out:
2057
	spin_unlock_irqrestore(&ohci->lock, flags);
2058 2059

	return ret;
2060
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2061
}
S
Stefan Richter 已提交
2062

2063
static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2064
{
2065
	struct fw_ohci *ohci = fw_ohci(card);
2066 2067
	unsigned long flags;
	u32 value;
2068 2069

	switch (csr_offset) {
2070 2071 2072 2073 2074
	case CSR_STATE_CLEAR:
	case CSR_STATE_SET:
		if (ohci->is_root &&
		    (reg_read(ohci, OHCI1394_LinkControlSet) &
		     OHCI1394_LinkControl_cycleMaster))
2075
			value = CSR_STATE_BIT_CMSTR;
2076
		else
2077 2078 2079
			value = 0;
		if (ohci->csr_state_setclear_abdicate)
			value |= CSR_STATE_BIT_ABDICATE;
2080

2081
		return value;
2082

2083 2084 2085
	case CSR_NODE_IDS:
		return reg_read(ohci, OHCI1394_NodeID) << 16;

2086 2087 2088
	case CSR_CYCLE_TIME:
		return get_cycle_time(ohci);

2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
	case CSR_BUS_TIME:
		/*
		 * We might be called just after the cycle timer has wrapped
		 * around but just before the cycle64Seconds handler, so we
		 * better check here, too, if the bus time needs to be updated.
		 */
		spin_lock_irqsave(&ohci->lock, flags);
		value = update_bus_time(ohci);
		spin_unlock_irqrestore(&ohci->lock, flags);
		return value;

2100 2101 2102 2103
	case CSR_BUSY_TIMEOUT:
		value = reg_read(ohci, OHCI1394_ATRetries);
		return (value >> 4) & 0x0ffff00f;

2104 2105 2106 2107
	case CSR_PRIORITY_BUDGET:
		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
			(ohci->pri_req_max << 8);

2108 2109 2110 2111
	default:
		WARN_ON(1);
		return 0;
	}
2112 2113
}

2114
static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2115 2116
{
	struct fw_ohci *ohci = fw_ohci(card);
2117
	unsigned long flags;
2118

2119
	switch (csr_offset) {
2120 2121 2122 2123 2124 2125
	case CSR_STATE_CLEAR:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlClear,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2126 2127
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = false;
2128
		break;
2129

2130 2131 2132 2133 2134 2135
	case CSR_STATE_SET:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlSet,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2136 2137
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = true;
2138
		break;
2139

2140 2141 2142 2143 2144
	case CSR_NODE_IDS:
		reg_write(ohci, OHCI1394_NodeID, value >> 16);
		flush_writes(ohci);
		break;

2145 2146 2147 2148 2149 2150 2151
	case CSR_CYCLE_TIME:
		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
		reg_write(ohci, OHCI1394_IntEventSet,
			  OHCI1394_cycleInconsistent);
		flush_writes(ohci);
		break;

2152 2153 2154 2155 2156 2157
	case CSR_BUS_TIME:
		spin_lock_irqsave(&ohci->lock, flags);
		ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
		spin_unlock_irqrestore(&ohci->lock, flags);
		break;

2158 2159 2160 2161 2162 2163 2164
	case CSR_BUSY_TIMEOUT:
		value = (value & 0xf) | ((value & 0xf) << 4) |
			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
		reg_write(ohci, OHCI1394_ATRetries, value);
		flush_writes(ohci);
		break;

2165 2166 2167 2168 2169
	case CSR_PRIORITY_BUDGET:
		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
		flush_writes(ohci);
		break;

2170 2171 2172 2173
	default:
		WARN_ON(1);
		break;
	}
2174 2175
}

2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
static void copy_iso_headers(struct iso_context *ctx, void *p)
{
	int i = ctx->header_length;

	if (i + ctx->base.header_size > PAGE_SIZE)
		return;

	/*
	 * The iso header is byteswapped to little endian by
	 * the controller, but the remaining header quadlets
	 * are big endian.  We want to present all the headers
	 * as big endian, so we have to swap the first quadlet.
	 */
	if (ctx->base.header_size > 0)
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
	if (ctx->base.header_size > 4)
		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
	if (ctx->base.header_size > 8)
		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
	ctx->header_length += ctx->base.header_size;
}

2198 2199 2200 2201 2202 2203
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2204
	struct descriptor *pd;
2205
	__le32 *ir_header;
2206
	void *p;
2207

2208
	for (pd = d; pd <= last; pd++)
2209 2210 2211
		if (pd->transfer_status)
			break;
	if (pd > last)
2212 2213 2214
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

2215 2216
	p = last + 1;
	copy_iso_headers(ctx, p);
2217

2218 2219
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) p;
2220 2221 2222 2223
		ctx->base.callback.sc(&ctx->base,
				      le32_to_cpu(ir_header[0]) & 0xffff,
				      ctx->header_length, ctx->header,
				      ctx->base.callback_data);
2224 2225 2226 2227 2228 2229
		ctx->header_length = 0;
	}

	return 1;
}

2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
/* d == last because each descriptor block is only a single descriptor. */
static int handle_ir_buffer_fill(struct context *context,
				 struct descriptor *d,
				 struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);

	if (!last->transfer_status)
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
		ctx->base.callback.mc(&ctx->base,
				      le32_to_cpu(last->data_address) +
				      le16_to_cpu(last->req_count) -
				      le16_to_cpu(last->res_count),
				      ctx->base.callback_data);

	return 1;
}

2252 2253 2254
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
2255
{
2256 2257
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2258 2259
	int i;
	struct descriptor *pd;
S
Stefan Richter 已提交
2260

2261 2262 2263 2264 2265
	for (pd = d; pd <= last; pd++)
		if (pd->transfer_status)
			break;
	if (pd > last)
		/* Descriptor(s) not done yet, stop iteration */
2266 2267
		return 0;

2268 2269 2270 2271 2272 2273 2274 2275 2276
	i = ctx->header_length;
	if (i + 4 < PAGE_SIZE) {
		/* Present this value as big-endian to match the receive code */
		*(__be32 *)(ctx->header + i) = cpu_to_be32(
				((u32)le16_to_cpu(pd->transfer_status) << 16) |
				le16_to_cpu(pd->res_count));
		ctx->header_length += 4;
	}
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2277 2278 2279
		ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
				      ctx->header_length, ctx->header,
				      ctx->base.callback_data);
2280 2281
		ctx->header_length = 0;
	}
2282
	return 1;
2283 2284
}

2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
{
	u32 hi = channels >> 32, lo = channels;

	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
	mmiowb();
	ohci->mc_channels = channels;
}

2297
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2298
				int type, int channel, size_t header_size)
2299 2300
{
	struct fw_ohci *ohci = fw_ohci(card);
2301 2302 2303 2304
	struct iso_context *uninitialized_var(ctx);
	descriptor_callback_t uninitialized_var(callback);
	u64 *uninitialized_var(channels);
	u32 *uninitialized_var(mask), uninitialized_var(regs);
2305
	unsigned long flags;
2306
	int index, ret = -EBUSY;
2307

2308
	spin_lock_irqsave(&ohci->lock, flags);
2309

2310 2311 2312
	switch (type) {
	case FW_ISO_CONTEXT_TRANSMIT:
		mask     = &ohci->it_context_mask;
2313
		callback = handle_it_packet;
2314 2315 2316 2317 2318 2319 2320 2321 2322
		index    = ffs(*mask) - 1;
		if (index >= 0) {
			*mask &= ~(1 << index);
			regs = OHCI1394_IsoXmitContextBase(index);
			ctx  = &ohci->it_context_list[index];
		}
		break;

	case FW_ISO_CONTEXT_RECEIVE:
2323
		channels = &ohci->ir_context_channels;
2324
		mask     = &ohci->ir_context_mask;
2325
		callback = handle_ir_packet_per_buffer;
2326 2327 2328 2329 2330 2331 2332 2333
		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
		if (index >= 0) {
			*channels &= ~(1ULL << channel);
			*mask     &= ~(1 << index);
			regs = OHCI1394_IsoRcvContextBase(index);
			ctx  = &ohci->ir_context_list[index];
		}
		break;
2334

2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		mask     = &ohci->ir_context_mask;
		callback = handle_ir_buffer_fill;
		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
		if (index >= 0) {
			ohci->mc_allocated = true;
			*mask &= ~(1 << index);
			regs = OHCI1394_IsoRcvContextBase(index);
			ctx  = &ohci->ir_context_list[index];
		}
		break;

	default:
		index = -1;
		ret = -ENOSYS;
2350
	}
2351

2352 2353 2354
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
2355
		return ERR_PTR(ret);
S
Stefan Richter 已提交
2356

2357
	memset(ctx, 0, sizeof(*ctx));
2358 2359
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
2360 2361
	if (ctx->header == NULL) {
		ret = -ENOMEM;
2362
		goto out;
2363
	}
2364 2365
	ret = context_init(&ctx->context, ohci, regs, callback);
	if (ret < 0)
2366
		goto out_with_header;
2367

2368 2369 2370
	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
		set_multichannel_mask(ohci, 0);

2371
	return &ctx->base;
2372 2373 2374 2375 2376

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386

	switch (type) {
	case FW_ISO_CONTEXT_RECEIVE:
		*channels |= 1ULL << channel;
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		ohci->mc_allocated = false;
		break;
	}
2387
	*mask |= 1 << index;
2388

2389 2390
	spin_unlock_irqrestore(&ohci->lock, flags);

2391
	return ERR_PTR(ret);
2392 2393
}

2394 2395
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
2396
{
S
Stefan Richter 已提交
2397
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2398
	struct fw_ohci *ohci = ctx->context.ohci;
2399
	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2400 2401
	int index;

2402 2403
	switch (ctx->base.type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2404
		index = ctx - ohci->it_context_list;
2405 2406 2407
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2408
				(cycle & 0x7fff) << 16;
2409

2410 2411
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2412
		context_run(&ctx->context, match);
2413 2414 2415 2416 2417 2418
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
		/* fall through */
	case FW_ISO_CONTEXT_RECEIVE:
2419
		index = ctx - ohci->ir_context_list;
2420 2421 2422 2423 2424
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
2425

2426 2427
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2428
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2429
		context_run(&ctx->context, control);
2430
		break;
2431
	}
2432 2433 2434 2435

	return 0;
}

2436 2437 2438
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2439
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2440 2441
	int index;

2442 2443
	switch (ctx->base.type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2444 2445
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2446 2447 2448 2449
		break;

	case FW_ISO_CONTEXT_RECEIVE:
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2450 2451
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2452
		break;
2453 2454 2455 2456 2457 2458 2459
	}
	flush_writes(ohci);
	context_stop(&ctx->context);

	return 0;
}

2460 2461 2462
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2463
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2464 2465 2466
	unsigned long flags;
	int index;

2467 2468
	ohci_stop_iso(base);
	context_release(&ctx->context);
2469
	free_page((unsigned long)ctx->header);
2470

2471 2472
	spin_lock_irqsave(&ohci->lock, flags);

2473 2474
	switch (base->type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2475 2476
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
2477 2478 2479
		break;

	case FW_ISO_CONTEXT_RECEIVE:
2480 2481
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
2482
		ohci->ir_context_channels |= 1ULL << base->channel;
2483 2484 2485 2486 2487 2488 2489 2490 2491
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
		ohci->ir_context_channels |= ohci->mc_channels;
		ohci->mc_channels = 0;
		ohci->mc_allocated = false;
		break;
2492 2493 2494 2495 2496
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
	unsigned long flags;
	int ret;

	switch (base->type) {
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:

		spin_lock_irqsave(&ohci->lock, flags);

		/* Don't allow multichannel to grab other contexts' channels. */
		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
			*channels = ohci->ir_context_channels;
			ret = -EBUSY;
		} else {
			set_multichannel_mask(ohci, *channels);
			ret = 0;
		}

		spin_unlock_irqrestore(&ohci->lock, flags);

		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

static int queue_iso_transmit(struct iso_context *ctx,
			      struct fw_iso_packet *packet,
			      struct fw_iso_buffer *buffer,
			      unsigned long payload)
2531
{
2532
	struct descriptor *d, *last, *pd;
2533 2534
	struct fw_iso_packet *p;
	__le32 *header;
2535
	dma_addr_t d_bus, page_bus;
2536 2537
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
2538
	int page, end_page, i, length, offset;
2539 2540

	p = packet;
2541
	payload_index = payload;
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
2560
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2561

2562 2563 2564
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
2565 2566

	if (!p->skip) {
2567
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2568
		d[0].req_count = cpu_to_le16(8);
2569 2570 2571 2572 2573 2574 2575 2576
		/*
		 * Link the skip address to this descriptor itself.  This causes
		 * a context to skip a cycle whenever lost cycles or FIFO
		 * overruns occur, without dropping the data.  The application
		 * should then decide whether this is an error condition or not.
		 * FIXME:  Make the context's cycle-lost behaviour configurable?
		 */
		d[0].branch_address = cpu_to_le32(d_bus | z);
2577 2578

		header = (__le32 *) &d[1];
2579 2580 2581 2582 2583
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
2584
		header[1] =
2585
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2586 2587 2588 2589 2590
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
2591
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
2604 2605 2606

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
2607 2608 2609 2610 2611

		payload_index += length;
	}

	if (p->interrupt)
2612
		irq = DESCRIPTOR_IRQ_ALWAYS;
2613
	else
2614
		irq = DESCRIPTOR_NO_IRQ;
2615

2616
	last = z == 2 ? d : d + z - 1;
2617 2618 2619
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
2620
				     irq);
2621

2622
	context_append(&ctx->context, d, z, header_z);
2623 2624 2625

	return 0;
}
S
Stefan Richter 已提交
2626

2627 2628 2629 2630
static int queue_iso_packet_per_buffer(struct iso_context *ctx,
				       struct fw_iso_packet *packet,
				       struct fw_iso_buffer *buffer,
				       unsigned long payload)
2631
{
2632
	struct descriptor *d, *pd;
2633 2634
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
2635 2636
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
2637 2638

	/*
2639 2640
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
2641
	 */
2642
	packet_count = packet->header_length / ctx->base.header_size;
2643
	header_size  = max(ctx->base.header_size, (size_t)8);
2644 2645 2646 2647 2648

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
2649
	payload_per_buffer = packet->payload_length / packet_count;
2650 2651 2652

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
2653
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2654
		d = context_get_descriptors(&ctx->context,
2655
				z + header_z, &d_bus);
2656 2657 2658
		if (d == NULL)
			return -ENOMEM;

2659 2660
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
2661
		if (packet->skip && i == 0)
2662
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2663 2664
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
2665
		d->transfer_status = 0;
2666 2667
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

2668
		rest = payload_per_buffer;
2669
		pd = d;
2670
		for (j = 1; j < z; j++) {
2671
			pd++;
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
2691 2692 2693
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
2694
		if (packet->interrupt && i == packet_count - 1)
2695 2696 2697 2698 2699 2700 2701 2702
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
static int queue_iso_buffer_fill(struct iso_context *ctx,
				 struct fw_iso_packet *packet,
				 struct fw_iso_buffer *buffer,
				 unsigned long payload)
{
	struct descriptor *d;
	dma_addr_t d_bus, page_bus;
	int page, offset, rest, z, i, length;

	page   = payload >> PAGE_SHIFT;
	offset = payload & ~PAGE_MASK;
	rest   = packet->payload_length;

	/* We need one descriptor for each page in the buffer. */
	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);

	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
		return -EFAULT;

	for (i = 0; i < z; i++) {
		d = context_get_descriptors(&ctx->context, 1, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
					 DESCRIPTOR_BRANCH_ALWAYS);
		if (packet->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
		if (packet->interrupt && i == z - 1)
			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		if (offset + rest < PAGE_SIZE)
			length = rest;
		else
			length = PAGE_SIZE - offset;
		d->req_count = cpu_to_le16(length);
		d->res_count = d->req_count;
		d->transfer_status = 0;

		page_bus = page_private(buffer->pages[page]);
		d->data_address = cpu_to_le32(page_bus + offset);

		rest -= length;
		offset = 0;
		page++;

		context_append(&ctx->context, d, 1, 0);
	}

	return 0;
}

2755 2756 2757 2758
static int ohci_queue_iso(struct fw_iso_context *base,
			  struct fw_iso_packet *packet,
			  struct fw_iso_buffer *buffer,
			  unsigned long payload)
2759
{
2760
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2761
	unsigned long flags;
2762
	int ret = -ENOSYS;
2763

2764
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
	switch (base->type) {
	case FW_ISO_CONTEXT_TRANSMIT:
		ret = queue_iso_transmit(ctx, packet, buffer, payload);
		break;
	case FW_ISO_CONTEXT_RECEIVE:
		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
		break;
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
		break;
	}
2776 2777
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

2778
	return ret;
2779 2780
}

2781
static const struct fw_card_driver ohci_driver = {
2782
	.enable			= ohci_enable,
2783
	.read_phy_reg		= ohci_read_phy_reg,
2784 2785 2786 2787
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
2788
	.cancel_packet		= ohci_cancel_packet,
2789
	.enable_phys_dma	= ohci_enable_phys_dma,
2790 2791
	.read_csr		= ohci_read_csr,
	.write_csr		= ohci_write_csr,
2792 2793 2794

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
2795
	.set_iso_channels	= ohci_set_iso_channels,
2796
	.queue_iso		= ohci_queue_iso,
2797
	.start_iso		= ohci_start_iso,
2798
	.stop_iso		= ohci_stop_iso,
2799 2800
};

2801
#ifdef CONFIG_PPC_PMAC
2802
static void pmac_ohci_on(struct pci_dev *dev)
2803
{
2804 2805 2806 2807 2808 2809 2810 2811
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
2812 2813
}

2814
static void pmac_ohci_off(struct pci_dev *dev)
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
{
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
}
#else
2826 2827
static inline void pmac_ohci_on(struct pci_dev *dev) {}
static inline void pmac_ohci_off(struct pci_dev *dev) {}
2828 2829
#endif /* CONFIG_PPC_PMAC */

2830 2831
static int __devinit pci_probe(struct pci_dev *dev,
			       const struct pci_device_id *ent)
2832 2833
{
	struct fw_ohci *ohci;
2834
	u32 bus_options, max_receive, link_speed, version, link_enh;
2835
	u64 guid;
2836
	int i, err, n_ir, n_it;
2837 2838
	size_t size;

2839
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2840
	if (ohci == NULL) {
2841 2842
		err = -ENOMEM;
		goto fail;
2843 2844 2845 2846
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

2847
	pmac_ohci_on(dev);
2848

2849 2850
	err = pci_enable_device(dev);
	if (err) {
2851
		fw_error("Failed to enable OHCI hardware\n");
2852
		goto fail_free;
2853 2854 2855 2856 2857 2858 2859
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);
2860
	mutex_init(&ohci->phy_reg_mutex);
2861 2862 2863 2864

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

2865 2866
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
2867
		fw_error("MMIO resource unavailable\n");
2868
		goto fail_disable;
2869 2870 2871 2872 2873
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
2874 2875
		err = -ENXIO;
		goto fail_iomem;
2876 2877
	}

2878 2879 2880 2881 2882 2883 2884
	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
		if (ohci_quirks[i].vendor == dev->vendor &&
		    (ohci_quirks[i].device == dev->device ||
		     ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
			ohci->quirks = ohci_quirks[i].flags;
			break;
		}
2885 2886
	if (param_quirks)
		ohci->quirks = param_quirks;
2887

2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
	/* TI OHCI-Lynx and compatible: set recommended configuration bits. */
	if (dev->vendor == PCI_VENDOR_ID_TI) {
		pci_read_config_dword(dev, PCI_CFG_TI_LinkEnh, &link_enh);

		/* adjust latency of ATx FIFO: use 1.7 KB threshold */
		link_enh &= ~TI_LinkEnh_atx_thresh_mask;
		link_enh |= TI_LinkEnh_atx_thresh_1_7K;

		/* use priority arbitration for asynchronous responses */
		link_enh |= TI_LinkEnh_enab_unfair;

		/* required for aPhyEnhanceEnable to work */
		link_enh |= TI_LinkEnh_enab_accel;

		pci_write_config_dword(dev, PCI_CFG_TI_LinkEnh, link_enh);
	}

2905 2906 2907 2908 2909 2910
	ar_context_init(&ohci->ar_request_ctx, ohci,
			OHCI1394_AsReqRcvContextControlSet);

	ar_context_init(&ohci->ar_response_ctx, ohci,
			OHCI1394_AsRspRcvContextControlSet);

2911
	context_init(&ohci->at_request_ctx, ohci,
2912
		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2913

2914
	context_init(&ohci->at_response_ctx, ohci,
2915
		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2916 2917

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2918 2919
	ohci->ir_context_channels = ~0ULL;
	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2920
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2921 2922
	n_ir = hweight32(ohci->ir_context_mask);
	size = sizeof(struct iso_context) * n_ir;
2923
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2924 2925

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2926
	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2927
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2928 2929
	n_it = hweight32(ohci->it_context_mask);
	size = sizeof(struct iso_context) * n_it;
2930
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2931 2932

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2933
		err = -ENOMEM;
2934
		goto fail_contexts;
2935 2936 2937 2938 2939 2940 2941 2942
	}

	/* self-id dma buffer allocation */
	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
					       SELF_ID_BUF_SIZE,
					       &ohci->self_id_bus,
					       GFP_KERNEL);
	if (ohci->self_id_cpu == NULL) {
2943
		err = -ENOMEM;
2944
		goto fail_contexts;
2945 2946 2947 2948 2949 2950 2951 2952
	}

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

2953
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2954
	if (err)
2955
		goto fail_self_id;
2956

2957 2958 2959 2960 2961
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
		  "%d IR + %d IT contexts, quirks 0x%x\n",
		  dev_name(&dev->dev), version >> 16, version & 0xff,
		  n_ir, n_it, ohci->quirks);
2962

2963
	return 0;
2964 2965 2966 2967

 fail_self_id:
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
2968
 fail_contexts:
2969
	kfree(ohci->ir_context_list);
2970 2971 2972 2973 2974
	kfree(ohci->it_context_list);
	context_release(&ohci->at_response_ctx);
	context_release(&ohci->at_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	ar_context_release(&ohci->ar_request_ctx);
2975 2976 2977 2978 2979
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
2980 2981
 fail_free:
	kfree(&ohci->card);
2982
	pmac_ohci_off(dev);
2983 2984 2985
 fail:
	if (err == -ENOMEM)
		fw_error("Out of memory\n");
2986 2987

	return err;
2988 2989 2990 2991 2992 2993 2994
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
2995 2996
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
2997 2998
	fw_core_remove_card(&ohci->card);

2999 3000 3001 3002
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
3003 3004 3005

	software_reset(ohci);
	free_irq(dev->irq, ohci);
3006 3007 3008 3009 3010 3011 3012

	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->next_config_rom, ohci->next_config_rom_bus);
	if (ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
3013 3014
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
3015 3016 3017 3018
	ar_context_release(&ohci->ar_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	context_release(&ohci->at_request_ctx);
	context_release(&ohci->at_response_ctx);
3019 3020
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
3021
	pci_disable_msi(dev);
3022 3023 3024
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
3025
	kfree(&ohci->card);
3026
	pmac_ohci_off(dev);
3027

3028 3029 3030
	fw_notify("Removed fw-ohci device.\n");
}

3031
#ifdef CONFIG_PM
3032
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3033
{
3034
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3035 3036 3037
	int err;

	software_reset(ohci);
3038
	free_irq(dev->irq, ohci);
3039
	pci_disable_msi(dev);
3040
	err = pci_save_state(dev);
3041
	if (err) {
3042
		fw_error("pci_save_state failed\n");
3043 3044
		return err;
	}
3045
	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3046 3047
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
3048
	pmac_ohci_off(dev);
3049

3050 3051 3052
	return 0;
}

3053
static int pci_resume(struct pci_dev *dev)
3054
{
3055
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3056 3057
	int err;

3058
	pmac_ohci_on(dev);
3059 3060 3061
	pci_set_power_state(dev, PCI_D0);
	pci_restore_state(dev);
	err = pci_enable_device(dev);
3062
	if (err) {
3063
		fw_error("pci_enable_device failed\n");
3064 3065 3066
		return err;
	}

3067
	return ohci_enable(&ohci->card, NULL, 0);
3068 3069 3070
}
#endif

3071
static const struct pci_device_id pci_table[] = {
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
3083 3084 3085 3086
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
3087 3088 3089 3090 3091 3092
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

3093 3094 3095 3096 3097
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);