ohci.c 76.0 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/compiler.h>
22
#include <linux/delay.h>
S
Stefan Richter 已提交
23
#include <linux/device.h>
A
Andrew Morton 已提交
24
#include <linux/dma-mapping.h>
25
#include <linux/firewire.h>
S
Stefan Richter 已提交
26
#include <linux/firewire-constants.h>
S
Stefan Richter 已提交
27
#include <linux/gfp.h>
28 29
#include <linux/init.h>
#include <linux/interrupt.h>
S
Stefan Richter 已提交
30
#include <linux/io.h>
31
#include <linux/kernel.h>
S
Stefan Richter 已提交
32
#include <linux/list.h>
A
Al Viro 已提交
33
#include <linux/mm.h>
34
#include <linux/module.h>
35
#include <linux/moduleparam.h>
36
#include <linux/pci.h>
37
#include <linux/pci_ids.h>
S
Stefan Richter 已提交
38
#include <linux/spinlock.h>
S
Stefan Richter 已提交
39
#include <linux/string.h>
A
Andrew Morton 已提交
40

41
#include <asm/atomic.h>
S
Stefan Richter 已提交
42
#include <asm/byteorder.h>
S
Stefan Richter 已提交
43
#include <asm/page.h>
44
#include <asm/system.h>
45

46 47 48 49
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

50 51
#include "core.h"
#include "ohci.h"
52

53 54 55 56 57 58 59 60 61 62 63 64 65
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
66 67 68 69 70 71 72 73 74 75

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

76 77 78 79 80 81 82 83 84 85 86 87 88 89
struct db_descriptor {
	__le16 first_size;
	__le16 control;
	__le16 second_req_count;
	__le16 first_req_count;
	__le32 branch_address;
	__le16 second_res_count;
	__le16 first_res_count;
	__le32 reserved0;
	__le32 first_buffer;
	__le32 second_buffer;
	__le32 reserved1;
} __attribute__((aligned(16)));

90 91 92 93
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
94

95
struct ar_buffer {
96
	struct descriptor descriptor;
97 98 99
	struct ar_buffer *next;
	__le32 data[0];
};
100

101 102 103 104 105
struct ar_context {
	struct fw_ohci *ohci;
	struct ar_buffer *current_buffer;
	struct ar_buffer *last_buffer;
	void *pointer;
106
	u32 regs;
107 108 109
	struct tasklet_struct tasklet;
};

110 111 112 113 114
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
115 116 117 118 119 120 121 122 123 124 125 126 127

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

128
struct context {
S
Stefan Richter 已提交
129
	struct fw_ohci *ohci;
130
	u32 regs;
131
	int total_allocation;
S
Stefan Richter 已提交
132

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
	 * The last descriptor in the DMA program.  It contains the branch
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
157 158 159

	descriptor_callback_t callback;

S
Stefan Richter 已提交
160
	struct tasklet_struct tasklet;
161 162
};

163 164 165 166 167 168
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
169 170 171

struct iso_context {
	struct fw_iso_context base;
172
	struct context context;
173
	int excess_bytes;
174 175
	void *header;
	size_t header_length;
176 177 178 179 180 181 182 183 184 185 186
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

	__iomem char *registers;
	dma_addr_t self_id_bus;
	__le32 *self_id_cpu;
	struct tasklet_struct bus_reset_tasklet;
187
	int node_id;
188
	int generation;
189
	int request_generation;	/* for timestamping incoming requests */
190
	atomic_t bus_seconds;
191 192

	bool use_dualbuffer;
193
	bool old_uninorth;
194
	bool bus_reset_packet_quirk;
195
	bool iso_cycle_timer_quirk;
196

197 198 199 200
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
201 202 203 204 205 206 207 208
	spinlock_t lock;
	u32 self_id_buffer[512];

	/* Config rom buffers */
	__be32 *config_rom;
	dma_addr_t config_rom_bus;
	__be32 *next_config_rom;
	dma_addr_t next_config_rom_bus;
209
	__be32 next_header;
210 211 212

	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
213 214
	struct context at_request_ctx;
	struct context at_response_ctx;
215 216 217

	u32 it_context_mask;
	struct iso_context *it_context_list;
218
	u64 ir_context_channels;
219 220 221 222
	u32 ir_context_mask;
	struct iso_context *ir_context_list;
};

A
Adrian Bunk 已提交
223
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
224 225 226 227
{
	return container_of(card, struct fw_ohci, card);
}

228 229 230 231 232 233
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
234 235 236 237 238 239

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

240
#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
241 242 243 244 245 246 247
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
248
#define OHCI_TCODE_PHY_PACKET		0x0e
249
#define OHCI_VERSION_1_1		0x010010
250

251 252
static char ohci_driver_name[] = KBUILD_MODNAME;

253 254
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG

255
#define OHCI_PARAM_DEBUG_AT_AR		1
256
#define OHCI_PARAM_DEBUG_SELFIDS	2
257 258
#define OHCI_PARAM_DEBUG_IRQS		4
#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
259 260 261 262 263

static int param_debug;
module_param_named(debug, param_debug, int, 0644);
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
264 265 266
	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
267 268 269 270
	", or a combination, or all = -1)");

static void log_irqs(u32 evt)
{
271 272 273 274 275 276
	if (likely(!(param_debug &
			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
		return;

	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
	    !(evt & OHCI1394_busReset))
277 278
		return;

279
	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
280 281 282 283 284 285 286 287 288 289
	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
	    evt & OHCI1394_isochRx		? " IR"			: "",
	    evt & OHCI1394_isochTx		? " IT"			: "",
	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
290
	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
291 292 293 294 295 296 297
	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
	    evt & OHCI1394_busReset		? " busReset"		: "",
	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
		    OHCI1394_respTxComplete | OHCI1394_isochRx |
		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
298
		    OHCI1394_cycleInconsistent |
299
		    OHCI1394_regAccessFail | OHCI1394_busReset)
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
						? " ?"			: "");
}

static const char *speed[] = {
	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
};
static const char *power[] = {
	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
};
static const char port[] = { '.', '-', 'p', 'c', };

static char _p(u32 *s, int shift)
{
	return port[*s >> shift & 3];
}

317
static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
318 319 320 321
{
	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
		return;

322 323
	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
		  self_id_count, generation, node_id);
324 325 326

	for (; self_id_count--; ++s)
		if ((*s & 1 << 23) == 0)
327 328 329 330 331 332
			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
			    "%s gc=%d %s %s%s%s\n",
			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
			    speed[*s >> 14 & 3], *s >> 16 & 63,
			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
333
		else
334 335 336 337
			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
			    *s, *s >> 24 & 63,
			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
}

static const char *evts[] = {
	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
	[0x10] = "-reserved-",		[0x11] = "ack_complete",
	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
	[0x18] = "-reserved-",		[0x19] = "-reserved-",
	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
	[0x20] = "pending/cancelled",
};
static const char *tcodes[] = {
	[0x0] = "QW req",		[0x1] = "BW req",
	[0x2] = "W resp",		[0x3] = "-reserved-",
	[0x4] = "QR req",		[0x5] = "BR req",
	[0x6] = "QR resp",		[0x7] = "BR resp",
	[0x8] = "cycle start",		[0x9] = "Lk req",
	[0xa] = "async stream packet",	[0xb] = "Lk resp",
	[0xc] = "-reserved-",		[0xd] = "-reserved-",
	[0xe] = "link internal",	[0xf] = "-reserved-",
};
static const char *phys[] = {
	[0x0] = "phy config packet",	[0x1] = "link-on packet",
	[0x2] = "self-id packet",	[0x3] = "-reserved-",
};

static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
{
	int tcode = header[0] >> 4 & 0xf;
	char specific[12];

	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
		return;

	if (unlikely(evt >= ARRAY_SIZE(evts)))
			evt = 0x1f;

385
	if (evt == OHCI1394_evt_bus_reset) {
386 387
		fw_notify("A%c evt_bus_reset, generation %d\n",
		    dir, (header[2] >> 16) & 0xff);
388 389 390
		return;
	}

391
	if (header[0] == ~header[1]) {
392 393
		fw_notify("A%c %s, %s, %08x\n",
		    dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
		return;
	}

	switch (tcode) {
	case 0x0: case 0x6: case 0x8:
		snprintf(specific, sizeof(specific), " = %08x",
			 be32_to_cpu((__force __be32)header[3]));
		break;
	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
		snprintf(specific, sizeof(specific), " %x,%x",
			 header[3] >> 16, header[3] & 0xffff);
		break;
	default:
		specific[0] = '\0';
	}

	switch (tcode) {
	case 0xe: case 0xa:
412
		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
413 414
		break;
	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
415 416 417 418 419 420
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s, %04x%08x%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
421 422
		break;
	default:
423 424 425 426 427 428
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], specific);
429 430 431 432 433 434
	}
}

#else

#define log_irqs(evt)
435
#define log_selfids(node_id, generation, self_id_count, sid)
436 437 438 439
#define log_ar_at_event(dir, speed, header, evt)

#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */

A
Adrian Bunk 已提交
440
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
441 442 443 444
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
445
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
446 447 448 449
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
450
static inline void flush_writes(const struct fw_ohci *ohci)
451 452 453 454 455
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

456 457
static int ohci_update_phy_reg(struct fw_card *card, int addr,
			       int clear_bits, int set_bits)
458 459 460 461 462
{
	struct fw_ohci *ohci = fw_ohci(card);
	u32 val, old;

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
463
	flush_writes(ohci);
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
	msleep(2);
	val = reg_read(ohci, OHCI1394_PhyControl);
	if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
		fw_error("failed to set phy reg bits.\n");
		return -EBUSY;
	}

	old = OHCI1394_PhyControl_ReadData(val);
	old = (old & ~clear_bits) | set_bits;
	reg_write(ohci, OHCI1394_PhyControl,
		  OHCI1394_PhyControl_Write(addr, old));

	return 0;
}

479
static int ar_context_add_page(struct ar_context *ctx)
480
{
481 482
	struct device *dev = ctx->ohci->card.device;
	struct ar_buffer *ab;
483
	dma_addr_t uninitialized_var(ab_bus);
484 485
	size_t offset;

486
	ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
487 488 489
	if (ab == NULL)
		return -ENOMEM;

490
	ab->next = NULL;
491
	memset(&ab->descriptor, 0, sizeof(ab->descriptor));
492 493 494
	ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						    DESCRIPTOR_STATUS |
						    DESCRIPTOR_BRANCH_ALWAYS);
495 496 497 498 499 500
	offset = offsetof(struct ar_buffer, data);
	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.branch_address = 0;

501
	ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
502 503 504
	ctx->last_buffer->next = ab;
	ctx->last_buffer = ab;

505
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
506
	flush_writes(ctx->ohci);
507 508

	return 0;
509 510
}

511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
static void ar_context_release(struct ar_context *ctx)
{
	struct ar_buffer *ab, *ab_next;
	size_t offset;
	dma_addr_t ab_bus;

	for (ab = ctx->current_buffer; ab; ab = ab_next) {
		ab_next = ab->next;
		offset = offsetof(struct ar_buffer, data);
		ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
		dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
				  ab, ab_bus);
	}
}

526 527 528 529 530 531 532
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
	(ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

533
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
534 535
{
	struct fw_ohci *ohci = ctx->ohci;
536 537
	struct fw_packet p;
	u32 status, length, tcode;
538
	int evt;
539

540 541 542
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
543 544 545 546 547

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
548
		p.header[3] = (__force __u32) buffer[3];
549
		p.header_length = 16;
550
		p.payload_length = 0;
551 552 553
		break;

	case TCODE_READ_BLOCK_REQUEST :
554
		p.header[3] = cond_le32_to_cpu(buffer[3]);
555 556 557 558 559
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
560 561 562
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
563
		p.header[3] = cond_le32_to_cpu(buffer[3]);
564
		p.header_length = 16;
565
		p.payload_length = p.header[3] >> 16;
566 567 568 569
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
570
	case OHCI_TCODE_PHY_PACKET:
571
		p.header_length = 12;
572
		p.payload_length = 0;
573
		break;
574 575 576 577 578

	default:
		/* FIXME: Stop context, discard everything, and restart? */
		p.header_length = 0;
		p.payload_length = 0;
579
	}
580

581 582 583 584
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
585
	status = cond_le32_to_cpu(buffer[length]);
586
	evt    = (status >> 16) & 0x1f;
587

588
	p.ack        = evt - 16;
589 590 591
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
592

593
	log_ar_at_event('R', p.speed, p.header, evt);
594

595 596
	/*
	 * The OHCI bus reset handler synthesizes a phy packet with
597 598 599 600 601
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
602
	 * request.
603 604 605 606
	 *
	 * Alas some chips sometimes emit bus reset packets with a
	 * wrong generation.  We set the correct generation for these
	 * at a slightly incorrect time (in bus_reset_tasklet).
607
	 */
608 609 610 611
	if (evt == OHCI1394_evt_bus_reset) {
		if (!ohci->bus_reset_packet_quirk)
			ohci->request_generation = (p.header[2] >> 16) & 0xff;
	} else if (ctx == &ohci->ar_request_ctx) {
612
		fw_core_handle_request(&ohci->card, &p);
613
	} else {
614
		fw_core_handle_response(&ohci->card, &p);
615
	}
616

617 618
	return buffer + length + 1;
}
619

620 621 622 623 624 625 626 627 628 629 630 631 632
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
	struct fw_ohci *ohci = ctx->ohci;
	struct ar_buffer *ab;
	struct descriptor *d;
	void *buffer, *end;

	ab = ctx->current_buffer;
	d = &ab->descriptor;

	if (d->res_count == 0) {
		size_t size, rest, offset;
633 634
		dma_addr_t start_bus;
		void *start;
635

636 637
		/*
		 * This descriptor is finished and we may have a
638
		 * packet split across this and the next buffer. We
639 640
		 * reuse the page for reassembling the split packet.
		 */
641 642

		offset = offsetof(struct ar_buffer, data);
643 644
		start = buffer = ab;
		start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
645 646 647 648 649 650 651 652 653 654 655 656 657 658

		ab = ab->next;
		d = &ab->descriptor;
		size = buffer + PAGE_SIZE - ctx->pointer;
		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
		memmove(buffer, ctx->pointer, size);
		memcpy(buffer + size, ab->data, rest);
		ctx->current_buffer = ab;
		ctx->pointer = (void *) ab->data + rest;
		end = buffer + size + rest;

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);

659
		dma_free_coherent(ohci->card.device, PAGE_SIZE,
660
				  start, start_bus);
661 662 663 664 665 666 667 668 669
		ar_context_add_page(ctx);
	} else {
		buffer = ctx->pointer;
		ctx->pointer = end =
			(void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);
	}
670 671
}

672 673
static int ar_context_init(struct ar_context *ctx,
			   struct fw_ohci *ohci, u32 regs)
674
{
675
	struct ar_buffer ab;
676

677 678 679
	ctx->regs        = regs;
	ctx->ohci        = ohci;
	ctx->last_buffer = &ab;
680 681
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

682 683 684 685 686
	ar_context_add_page(ctx);
	ar_context_add_page(ctx);
	ctx->current_buffer = ab.next;
	ctx->pointer = ctx->current_buffer->data;

687 688 689 690 691 692 693 694 695 696
	return 0;
}

static void ar_context_run(struct ar_context *ctx)
{
	struct ar_buffer *ab = ctx->current_buffer;
	dma_addr_t ab_bus;
	size_t offset;

	offset = offsetof(struct ar_buffer, data);
697
	ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
698 699

	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
700
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
701
	flush_writes(ctx->ohci);
702
}
S
Stefan Richter 已提交
703

704
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
705 706 707 708 709 710 711 712 713 714 715 716 717
{
	int b, key;

	b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
	key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;

	/* figure out which descriptor the branch address goes in */
	if (z == 2 && (b == 3 || key == 2))
		return d;
	else
		return d + z - 1;
}

718 719 720 721 722 723
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
724
	struct descriptor_buffer *desc;
725

726 727 728
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
729
	while (last->branch_address != 0) {
730
		struct descriptor_buffer *old_desc = desc;
731 732
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
733 734 735 736 737 738 739 740 741
		address &= ~0xf;

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
742
		last = find_branch_descriptor(d, z);
743 744 745 746

		if (!ctx->callback(ctx, d, last))
			break;

747 748 749 750 751 752 753 754 755 756
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
757 758 759
	}
}

760 761 762 763
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
764
static int context_add_buffer(struct context *ctx)
765 766
{
	struct descriptor_buffer *desc;
767
	dma_addr_t uninitialized_var(bus_addr);
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

793 794
static int context_init(struct context *ctx, struct fw_ohci *ohci,
			u32 regs, descriptor_callback_t callback)
795 796 797
{
	ctx->ohci = ohci;
	ctx->regs = regs;
798 799 800 801
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
802 803
		return -ENOMEM;

804 805 806
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

807 808 809
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

810 811
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
812
	 * branch address and looks like it's been sent.  That way we
813
	 * have a descriptor to append DMA programs to.
814
	 */
815 816 817 818 819 820
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
821 822 823 824

	return 0;
}

825
static void context_release(struct context *ctx)
826 827
{
	struct fw_card *card = &ctx->ohci->card;
828
	struct descriptor_buffer *desc, *tmp;
829

830 831 832 833
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
834 835
}

836
/* Must be called with ohci->lock held */
837 838
static struct descriptor *context_get_descriptors(struct context *ctx,
						  int z, dma_addr_t *d_bus)
839
{
840 841 842 843 844 845 846 847 848
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
849

850 851 852 853 854 855 856 857 858 859
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
860

861
	d = desc->buffer + desc->used / sizeof(*d);
862
	memset(d, 0, z * sizeof(*d));
863
	*d_bus = desc->buffer_bus + desc->used;
864 865 866 867

	return d;
}

868
static void context_run(struct context *ctx, u32 extra)
869 870 871
{
	struct fw_ohci *ohci = ctx->ohci;

872
	reg_write(ohci, COMMAND_PTR(ctx->regs),
873
		  le32_to_cpu(ctx->last->branch_address));
874 875
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
876 877 878 879 880 881 882
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
883
	struct descriptor_buffer *desc = ctx->buffer_tail;
884

885
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
886

887 888 889
	desc->used += (z + extra) * sizeof(*d);
	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev = find_branch_descriptor(d, z);
890

891
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
892 893 894 895 896 897
	flush_writes(ctx->ohci);
}

static void context_stop(struct context *ctx)
{
	u32 reg;
898
	int i;
899

900
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
901
	flush_writes(ctx->ohci);
902

903
	for (i = 0; i < 10; i++) {
904
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
905
		if ((reg & CONTEXT_ACTIVE) == 0)
906
			return;
907

908
		mdelay(1);
909
	}
910
	fw_error("Error: DMA context still active (0x%08x)\n", reg);
911
}
912

913 914 915
struct driver_data {
	struct fw_packet *packet;
};
916

917 918
/*
 * This function apppends a packet to the DMA queue for transmission.
919
 * Must always be called with the ochi->lock held to ensure proper
920 921
 * generation handling and locking around packet queue manipulation.
 */
922 923
static int at_context_queue_packet(struct context *ctx,
				   struct fw_packet *packet)
924 925
{
	struct fw_ohci *ohci = ctx->ohci;
926
	dma_addr_t d_bus, uninitialized_var(payload_bus);
927 928 929
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
930
	int z, tcode;
931
	u32 reg;
932

933 934 935 936
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
937 938
	}

939
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
940 941
	d[0].res_count = cpu_to_le16(packet->timestamp);

942 943
	/*
	 * The DMA format for asyncronous link packets is different
944 945
	 * from the IEEE1394 layout, so shift the fields around
	 * accordingly.  If header_length is 8, it's a PHY packet, to
946 947
	 * which we need to prepend an extra quadlet.
	 */
948 949

	header = (__le32 *) &d[1];
950 951 952
	switch (packet->header_length) {
	case 16:
	case 12:
953 954 955 956 957
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
958 959 960

		tcode = (packet->header[0] >> 4) & 0x0f;
		if (TCODE_IS_BLOCK_PACKET(tcode))
961
			header[3] = cpu_to_le32(packet->header[3]);
962
		else
963 964 965
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
966 967 968
		break;

	case 8:
969 970 971 972 973
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0]);
		header[2] = cpu_to_le32(packet->header[1]);
		d[0].req_count = cpu_to_le16(12);
974 975 976 977 978 979 980 981 982 983 984 985 986
		break;

	case 4:
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
		d[0].req_count = cpu_to_le16(8);
		break;

	default:
		/* BUG(); */
		packet->ack = RCODE_SEND_ERROR;
		return -1;
987 988
	}

989 990
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
991
	packet->driver_data = driver_data;
992

993 994 995 996
	if (packet->payload_length > 0) {
		payload_bus =
			dma_map_single(ohci->card.device, packet->payload,
				       packet->payload_length, DMA_TO_DEVICE);
997
		if (dma_mapping_error(ohci->card.device, payload_bus)) {
998 999 1000
			packet->ack = RCODE_SEND_ERROR;
			return -1;
		}
1001 1002
		packet->payload_bus	= payload_bus;
		packet->payload_mapped	= true;
1003 1004 1005 1006 1007

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
1008
	} else {
1009 1010
		last = &d[0];
		z = 2;
1011 1012
	}

1013 1014 1015
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
1016

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
	/*
	 * If the controller and packet generations don't match, we need to
	 * bail out and try again.  If IntEvent.busReset is set, the AT context
	 * is halted, so appending to the context and trying to run it is
	 * futile.  Most controllers do the right thing and just flush the AT
	 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
	 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
	 * up stalling out.  So we just bail out in software and try again
	 * later, and everyone is happy.
	 * FIXME: Document how the locking works.
	 */
	if (ohci->generation != packet->generation ||
	    reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1030
		if (packet->payload_mapped)
1031 1032
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
1033 1034 1035 1036 1037
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
1038

1039
	/* If the context isn't already running, start it up. */
1040
	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1041
	if ((reg & CONTEXT_RUN) == 0)
1042 1043 1044
		context_run(ctx, 0);

	return 0;
1045 1046
}

1047 1048 1049
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1050
{
1051
	struct driver_data *driver_data;
1052
	struct fw_packet *packet;
1053
	struct fw_ohci *ohci = context->ohci;
1054 1055
	int evt;

1056 1057 1058
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
1059

1060 1061 1062 1063 1064
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
1065

1066
	if (packet->payload_mapped)
1067
		dma_unmap_single(ohci->card.device, packet->payload_bus,
1068 1069
				 packet->payload_length, DMA_TO_DEVICE);

1070 1071
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
1072

1073 1074
	log_ar_at_event('T', packet->speed, packet->header, evt);

1075 1076 1077 1078 1079
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
1080

1081
	case OHCI1394_evt_flushed:
1082 1083 1084 1085
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
1086 1087
		packet->ack = RCODE_GENERATION;
		break;
1088

1089
	case OHCI1394_evt_missing_ack:
1090 1091 1092 1093
		/*
		 * Using a valid (current) generation count, but the
		 * node is not on the bus or not sending acks.
		 */
1094 1095
		packet->ack = RCODE_NO_ACK;
		break;
1096

1097 1098 1099 1100 1101 1102 1103 1104 1105
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
1106

1107 1108 1109 1110
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
1111

1112
	packet->callback(packet, &ohci->card, packet->ack);
1113

1114
	return 1;
1115 1116
}

1117 1118 1119 1120 1121
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1122

1123 1124
static void handle_local_rom(struct fw_ohci *ohci,
			     struct fw_packet *packet, u32 csr)
1125 1126 1127 1128
{
	struct fw_packet response;
	int tcode, length, i;

1129
	tcode = HEADER_GET_TCODE(packet->header[0]);
1130
	if (TCODE_IS_BLOCK_PACKET(tcode))
1131
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

1150 1151
static void handle_local_lock(struct fw_ohci *ohci,
			      struct fw_packet *packet, u32 csr)
1152 1153 1154 1155 1156 1157
{
	struct fw_packet response;
	int tcode, length, ext_tcode, sel;
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

1158 1159
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1160
	payload = packet->payload;
1161
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

	if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
		lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
	else
		fw_notify("swap not done yet\n");

	fw_fill_response(&response, packet->header,
1187
			 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1188 1189 1190 1191
 out:
	fw_core_handle_response(&ohci->card, &response);
}

1192
static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1193 1194 1195 1196
{
	u64 offset;
	u32 csr;

1197 1198 1199 1200
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1201 1202 1203

	offset =
		((unsigned long long)
1204
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
1225 1226 1227 1228 1229

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1230
}
1231

1232
static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1233 1234
{
	unsigned long flags;
1235
	int ret;
1236 1237 1238

	spin_lock_irqsave(&ctx->ohci->lock, flags);

1239
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1240
	    ctx->ohci->generation == packet->generation) {
1241 1242 1243
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
1244
	}
1245

1246
	ret = at_context_queue_packet(ctx, packet);
1247 1248
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

1249
	if (ret < 0)
1250
		packet->callback(packet, &ctx->ohci->card, packet->ack);
1251

1252 1253 1254 1255 1256
}

static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
1257
	int self_id_count, i, j, reg;
1258 1259
	int generation, new_generation;
	unsigned long flags;
1260 1261
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1262 1263 1264

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1265
		fw_notify("node ID not valid, new bus reset in progress\n");
1266 1267
		return;
	}
1268 1269 1270 1271 1272 1273
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1274

1275 1276 1277 1278 1279
	reg = reg_read(ohci, OHCI1394_SelfIDCount);
	if (reg & OHCI1394_SelfIDCount_selfIDError) {
		fw_notify("inconsistent self IDs\n");
		return;
	}
1280 1281
	/*
	 * The count in the SelfIDCount register is the number of
1282 1283
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1284 1285
	 * bit extra to get the actual number of self IDs.
	 */
1286 1287
	self_id_count = (reg >> 3) & 0xff;
	if (self_id_count == 0 || self_id_count > 252) {
1288 1289 1290
		fw_notify("inconsistent self IDs\n");
		return;
	}
1291
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1292
	rmb();
1293 1294

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1295 1296 1297 1298
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
			fw_notify("inconsistent self IDs\n");
			return;
		}
1299 1300
		ohci->self_id_buffer[j] =
				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1301
	}
1302
	rmb();
1303

1304 1305
	/*
	 * Check the consistency of the self IDs we just read.  The
1306 1307 1308 1309 1310 1311 1312 1313 1314
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1315 1316
	 * of self IDs.
	 */
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
1329 1330
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1331 1332
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

1333 1334 1335
	if (ohci->bus_reset_packet_quirk)
		ohci->request_generation = generation;

1336 1337
	/*
	 * This next bit is unrelated to the AT context stuff but we
1338 1339 1340 1341
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
1342 1343
	 * next_config_rom pointer so a new udpate can take place.
	 */
1344 1345

	if (ohci->next_config_rom != NULL) {
1346 1347 1348 1349
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1350 1351 1352 1353
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1354 1355
		/*
		 * Restore config_rom image and manually update
1356 1357
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1358 1359
		 * do that last.
		 */
1360 1361
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
1362 1363 1364
		ohci->config_rom[0] = ohci->next_header;
		reg_write(ohci, OHCI1394_ConfigROMhdr,
			  be32_to_cpu(ohci->next_header));
1365 1366
	}

1367 1368 1369 1370 1371
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif

1372 1373
	spin_unlock_irqrestore(&ohci->lock, flags);

1374 1375 1376 1377
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1378 1379
	log_selfids(ohci->node_id, generation,
		    self_id_count, ohci->self_id_buffer);
1380

1381
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1382 1383 1384 1385 1386 1387
				 self_id_count, ohci->self_id_buffer);
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1388
	u32 event, iso_event, cycle_time;
1389 1390 1391 1392
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1393
	if (!event || !~event)
1394 1395
		return IRQ_NONE;

1396 1397
	/* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
	reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1398
	log_irqs(event);
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1415
	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1416 1417 1418 1419
	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1420
		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1421 1422 1423
		iso_event &= ~(1 << i);
	}

1424
	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1425 1426 1427 1428
	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1429
		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1430 1431 1432
		iso_event &= ~(1 << i);
	}

1433 1434 1435 1436
	if (unlikely(event & OHCI1394_regAccessFail))
		fw_error("Register access failure - "
			 "please notify linux1394-devel@lists.sf.net\n");

1437 1438 1439
	if (unlikely(event & OHCI1394_postedWriteErr))
		fw_error("PCI posted write error\n");

1440 1441 1442 1443 1444 1445 1446
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
			fw_notify("isochronous cycle too long\n");
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
	if (unlikely(event & OHCI1394_cycleInconsistent)) {
		/*
		 * We need to clear this event bit in order to make
		 * cycleMatch isochronous I/O work.  In theory we should
		 * stop active cycleMatch iso contexts now and restart
		 * them at least two cycles later.  (FIXME?)
		 */
		if (printk_ratelimit())
			fw_notify("isochronous cycle inconsistent\n");
	}

1458 1459 1460
	if (event & OHCI1394_cycle64Seconds) {
		cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		if ((cycle_time & 0x80000000) == 0)
1461
			atomic_inc(&ohci->bus_seconds);
1462 1463
	}

1464 1465 1466
	return IRQ_HANDLED;
}

1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
{
	size_t size = length * 4;

	memcpy(dest, src, size);
	if (size < CONFIG_ROM_SIZE)
		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
}

static int ohci_enable(struct fw_card *card,
		       const __be32 *config_rom, size_t length)
1494 1495 1496
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);
1497 1498
	u32 lps;
	int i;
1499

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
1510 1511
	 * full link enabled.  However, with some cards (well, at least
	 * a JMicron PCIe card), we have to try again sometimes.
1512 1513 1514 1515 1516
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527

	for (lps = 0, i = 0; !lps && i < 3; i++) {
		msleep(50);
		lps = reg_read(ohci, OHCI1394_HCControlSet) &
		      OHCI1394_HCControl_LPS;
	}

	if (!lps) {
		fw_error("Failed to set Link Power Status\n");
		return -EIO;
	}
1528 1529 1530 1531

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

1532
	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1533 1534
	reg_write(ohci, OHCI1394_LinkControlClear,
		  OHCI1394_LinkControl_rcvPhyPkt);
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));

	ar_context_run(&ohci->ar_request_ctx);
	ar_context_run(&ohci->ar_response_ctx);

	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskSet,
		  OHCI1394_selfIDComplete |
		  OHCI1394_RQPkt | OHCI1394_RSPkt |
		  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		  OHCI1394_isochRx | OHCI1394_isochTx |
1556
		  OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1557
		  OHCI1394_cycleInconsistent |
1558 1559
		  OHCI1394_cycle64Seconds | OHCI1394_regAccessFail |
		  OHCI1394_masterIntEnable);
1560 1561
	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1562 1563 1564 1565 1566 1567

	/* Activate link_on bit and contender bit in our self ID packets.*/
	if (ohci_update_phy_reg(card, 4, 0,
				PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
		return -EIO;

1568 1569
	/*
	 * When the link is not yet enabled, the atomic config rom
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

1587 1588 1589 1590 1591 1592 1593
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
1594

1595
		copy_config_rom(ohci->next_config_rom, config_rom, length);
1596 1597 1598 1599 1600 1601 1602 1603
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
1604

1605
	ohci->next_header = ohci->next_config_rom[0];
1606 1607
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1608 1609
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
1610 1611 1612 1613 1614
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

	if (request_irq(dev->irq, irq_handler,
1615
			IRQF_SHARED, ohci_driver_name, ohci)) {
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
		fw_error("Failed to allocate shared interrupt %d.\n",
			 dev->irq);
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
	flush_writes(ohci);

1628 1629 1630 1631
	/*
	 * We are ready to go, initiate bus reset to finish the
	 * initialization.
	 */
1632 1633 1634 1635 1636 1637

	fw_core_initiate_bus_reset(&ohci->card, 1);

	return 0;
}

1638
static int ohci_set_config_rom(struct fw_card *card,
1639
			       const __be32 *config_rom, size_t length)
1640 1641 1642
{
	struct fw_ohci *ohci;
	unsigned long flags;
1643
	int ret = -EBUSY;
1644
	__be32 *next_config_rom;
1645
	dma_addr_t uninitialized_var(next_config_rom_bus);
1646 1647 1648

	ohci = fw_ohci(card);

1649 1650
	/*
	 * When the OHCI controller is enabled, the config rom update
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;

1688
		copy_config_rom(ohci->next_config_rom, config_rom, length);
1689 1690 1691 1692 1693 1694

		ohci->next_header = config_rom[0];
		ohci->next_config_rom[0] = 0;

		reg_write(ohci, OHCI1394_ConfigROMmap,
			  ohci->next_config_rom_bus);
1695
		ret = 0;
1696 1697 1698 1699
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

1700 1701
	/*
	 * Now initiate a bus reset to have the changes take
1702 1703 1704
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
1705 1706
	 * takes effect.
	 */
1707
	if (ret == 0)
1708
		fw_core_initiate_bus_reset(&ohci->card, 1);
1709 1710 1711
	else
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);
1712

1713
	return ret;
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

1730 1731 1732
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
1733 1734
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
1735
	int ret = -ENOENT;
1736

1737
	tasklet_disable(&ctx->tasklet);
1738

1739 1740
	if (packet->ack != 0)
		goto out;
1741

1742
	if (packet->payload_mapped)
1743 1744 1745
		dma_unmap_single(ohci->card.device, packet->payload_bus,
				 packet->payload_length, DMA_TO_DEVICE);

1746
	log_ar_at_event('T', packet->speed, packet->header, 0x20);
1747 1748 1749
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
1750
	ret = 0;
1751 1752
 out:
	tasklet_enable(&ctx->tasklet);
1753

1754
	return ret;
1755 1756
}

1757 1758
static int ohci_enable_phys_dma(struct fw_card *card,
				int node_id, int generation)
1759
{
1760 1761 1762
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	return 0;
#else
1763 1764
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
1765
	int n, ret = 0;
1766

1767 1768 1769 1770
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
1771 1772 1773 1774

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
1775
		ret = -ESTALE;
1776 1777 1778
		goto out;
	}

1779 1780 1781 1782
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
1783 1784 1785 1786 1787 1788 1789

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

1790 1791
	flush_writes(ohci);
 out:
1792
	spin_unlock_irqrestore(&ohci->lock, flags);
1793 1794

	return ret;
1795
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1796
}
S
Stefan Richter 已提交
1797

1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
static inline u32 cycle_timer_ticks(u32 cycle_timer)
{
	u32 ticks;

	ticks = cycle_timer & 0xfff;
	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
	ticks += (3072 * 8000) * (cycle_timer >> 25);
	return ticks;
}

1808
static u64 ohci_get_bus_time(struct fw_card *card)
1809 1810
{
	struct fw_ohci *ohci = fw_ohci(card);
1811 1812 1813
	u32 c0, c1, c2;
	u32 t0, t1, t2;
	s32 diff01, diff12;
1814 1815
	u64 bus_time;

1816 1817 1818 1819
	if (!ohci->iso_cycle_timer_quirk) {
		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
	} else {
		/*
1820 1821 1822
		 * Some controllers exhibit one or more of the following bugs
		 * when updating the iso cycle timer register:
		 *  - When the lowest six bits are wrapping around to zero,
1823 1824
		 *    a read that happens at the same time will return garbage
		 *    in the lowest ten bits.
1825
		 *  - When the cycleOffset field wraps around to zero, the
1826
		 *    cycleCount field is not incremented for about 60 ns.
1827
		 *  - Occasionally, the entire register reads zero.
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
		 *
		 * To catch these, we read the register three times and ensure
		 * that the difference between each two consecutive reads is
		 * approximately the same, i.e., less than twice the other.
		 * Furthermore, any negative difference indicates an error.
		 * (A PCI read should take at least 20 ticks of the 24.576 MHz
		 * timer to execute, so we have enough precision to compute the
		 * ratio of the differences.)
		 */
		do {
			c0 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
			c1 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
			t0 = cycle_timer_ticks(c0);
			t1 = cycle_timer_ticks(c1);
			t2 = cycle_timer_ticks(c2);
			diff01 = t1 - t0;
			diff12 = t2 - t1;
		} while (diff01 <= 0 || diff12 <= 0 ||
			 diff01 / diff12 >= 2 || diff12 / diff01 >= 2);
	}
	bus_time = ((u64)atomic_read(&ohci->bus_seconds) << 32) | c2;
1850 1851 1852 1853

	return bus_time;
}

1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
static void copy_iso_headers(struct iso_context *ctx, void *p)
{
	int i = ctx->header_length;

	if (i + ctx->base.header_size > PAGE_SIZE)
		return;

	/*
	 * The iso header is byteswapped to little endian by
	 * the controller, but the remaining header quadlets
	 * are big endian.  We want to present all the headers
	 * as big endian, so we have to swap the first quadlet.
	 */
	if (ctx->base.header_size > 0)
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
	if (ctx->base.header_size > 4)
		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
	if (ctx->base.header_size > 8)
		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
	ctx->header_length += ctx->base.header_size;
}

1876 1877 1878
static int handle_ir_dualbuffer_packet(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
1879
{
1880 1881 1882
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
	struct db_descriptor *db = (struct db_descriptor *) d;
1883
	__le32 *ir_header;
1884
	size_t header_length;
1885
	void *p, *end;
1886

S
Stefan Richter 已提交
1887
	if (db->first_res_count != 0 && db->second_res_count != 0) {
1888 1889 1890 1891 1892 1893
		if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
			/* This descriptor isn't done yet, stop iteration. */
			return 0;
		}
		ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
	}
1894

1895 1896 1897 1898 1899
	header_length = le16_to_cpu(db->first_req_count) -
		le16_to_cpu(db->first_res_count);

	p = db + 1;
	end = p + header_length;
1900 1901
	while (p < end) {
		copy_iso_headers(ctx, p);
1902
		ctx->excess_bytes +=
S
Stefan Richter 已提交
1903
			(le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff;
1904
		p += max(ctx->base.header_size, (size_t)8);
1905
	}
1906

1907 1908 1909
	ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
		le16_to_cpu(db->second_res_count);

1910
	if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1911 1912 1913
		ir_header = (__le32 *) (db + 1);
		ctx->base.callback(&ctx->base,
				   le32_to_cpu(ir_header[0]) & 0xffff,
1914
				   ctx->header_length, ctx->header,
1915
				   ctx->base.callback_data);
1916 1917
		ctx->header_length = 0;
	}
1918

1919
	return 1;
1920 1921
}

1922 1923 1924 1925 1926 1927
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
1928
	struct descriptor *pd;
1929
	__le32 *ir_header;
1930
	void *p;
1931

1932 1933 1934 1935 1936
	for (pd = d; pd <= last; pd++) {
		if (pd->transfer_status)
			break;
	}
	if (pd > last)
1937 1938 1939
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

1940 1941
	p = last + 1;
	copy_iso_headers(ctx, p);
1942

1943 1944
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) p;
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
		ctx->base.callback(&ctx->base,
				   le32_to_cpu(ir_header[0]) & 0xffff,
				   ctx->header_length, ctx->header,
				   ctx->base.callback_data);
		ctx->header_length = 0;
	}

	return 1;
}

1955 1956 1957
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1958
{
1959 1960
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
1961 1962
	int i;
	struct descriptor *pd;
S
Stefan Richter 已提交
1963

1964 1965 1966 1967 1968
	for (pd = d; pd <= last; pd++)
		if (pd->transfer_status)
			break;
	if (pd > last)
		/* Descriptor(s) not done yet, stop iteration */
1969 1970
		return 0;

1971 1972 1973 1974 1975 1976 1977 1978 1979
	i = ctx->header_length;
	if (i + 4 < PAGE_SIZE) {
		/* Present this value as big-endian to match the receive code */
		*(__be32 *)(ctx->header + i) = cpu_to_be32(
				((u32)le16_to_cpu(pd->transfer_status) << 16) |
				le16_to_cpu(pd->res_count));
		ctx->header_length += 4;
	}
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1980
		ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1981 1982 1983 1984
				   ctx->header_length, ctx->header,
				   ctx->base.callback_data);
		ctx->header_length = 0;
	}
1985
	return 1;
1986 1987
}

1988
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
1989
				int type, int channel, size_t header_size)
1990 1991 1992
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct iso_context *ctx, *list;
1993
	descriptor_callback_t callback;
1994
	u64 *channels, dont_care = ~0ULL;
1995
	u32 *mask, regs;
1996
	unsigned long flags;
1997
	int index, ret = -ENOMEM;
1998 1999

	if (type == FW_ISO_CONTEXT_TRANSMIT) {
2000
		channels = &dont_care;
2001 2002
		mask = &ohci->it_context_mask;
		list = ohci->it_context_list;
2003
		callback = handle_it_packet;
2004
	} else {
2005
		channels = &ohci->ir_context_channels;
S
Stefan Richter 已提交
2006 2007
		mask = &ohci->ir_context_mask;
		list = ohci->ir_context_list;
2008
		if (ohci->use_dualbuffer)
2009 2010 2011
			callback = handle_ir_dualbuffer_packet;
		else
			callback = handle_ir_packet_per_buffer;
2012 2013 2014
	}

	spin_lock_irqsave(&ohci->lock, flags);
2015 2016 2017
	index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
	if (index >= 0) {
		*channels &= ~(1ULL << channel);
2018
		*mask &= ~(1 << index);
2019
	}
2020 2021 2022 2023 2024
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
		return ERR_PTR(-EBUSY);

S
Stefan Richter 已提交
2025 2026 2027 2028 2029
	if (type == FW_ISO_CONTEXT_TRANSMIT)
		regs = OHCI1394_IsoXmitContextBase(index);
	else
		regs = OHCI1394_IsoRcvContextBase(index);

2030
	ctx = &list[index];
2031
	memset(ctx, 0, sizeof(*ctx));
2032 2033 2034 2035 2036
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
	if (ctx->header == NULL)
		goto out;

2037 2038
	ret = context_init(&ctx->context, ohci, regs, callback);
	if (ret < 0)
2039
		goto out_with_header;
2040 2041

	return &ctx->base;
2042 2043 2044 2045 2046 2047 2048 2049

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
	*mask |= 1 << index;
	spin_unlock_irqrestore(&ohci->lock, flags);

2050
	return ERR_PTR(ret);
2051 2052
}

2053 2054
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
2055
{
S
Stefan Richter 已提交
2056
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2057
	struct fw_ohci *ohci = ctx->context.ohci;
2058
	u32 control, match;
2059 2060
	int index;

2061 2062
	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
2063 2064 2065
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2066
				(cycle & 0x7fff) << 16;
2067

2068 2069
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2070
		context_run(&ctx->context, match);
2071 2072
	} else {
		index = ctx - ohci->ir_context_list;
2073
		control = IR_CONTEXT_ISOCH_HEADER;
2074
		if (ohci->use_dualbuffer)
2075
			control |= IR_CONTEXT_DUAL_BUFFER_MODE;
2076 2077 2078 2079 2080
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
2081

2082 2083
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2084
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2085
		context_run(&ctx->context, control);
2086
	}
2087 2088 2089 2090

	return 0;
}

2091 2092 2093
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2094
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
	int index;

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
	} else {
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
	}
	flush_writes(ohci);
	context_stop(&ctx->context);

	return 0;
}

2110 2111 2112
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2113
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2114 2115 2116
	unsigned long flags;
	int index;

2117 2118
	ohci_stop_iso(base);
	context_release(&ctx->context);
2119
	free_page((unsigned long)ctx->header);
2120

2121 2122 2123 2124 2125 2126 2127 2128
	spin_lock_irqsave(&ohci->lock, flags);

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
	} else {
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
2129
		ohci->ir_context_channels |= 1ULL << base->channel;
2130 2131 2132 2133 2134
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

2135 2136 2137 2138
static int ohci_queue_iso_transmit(struct fw_iso_context *base,
				   struct fw_iso_packet *packet,
				   struct fw_iso_buffer *buffer,
				   unsigned long payload)
2139
{
S
Stefan Richter 已提交
2140
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2141
	struct descriptor *d, *last, *pd;
2142 2143
	struct fw_iso_packet *p;
	__le32 *header;
2144
	dma_addr_t d_bus, page_bus;
2145 2146
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
2147
	int page, end_page, i, length, offset;
2148

2149 2150 2151 2152
	/*
	 * FIXME: Cycle lost behavior should be configurable: lose
	 * packet, retransmit or terminate..
	 */
2153 2154

	p = packet;
2155
	payload_index = payload;
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
2174
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2175

2176 2177 2178
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
2179 2180

	if (!p->skip) {
2181
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2182 2183 2184
		d[0].req_count = cpu_to_le16(8);

		header = (__le32 *) &d[1];
2185 2186 2187 2188 2189
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
2190
		header[1] =
2191
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2192 2193 2194 2195 2196
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
2197
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
2210 2211 2212

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
2213 2214 2215 2216 2217

		payload_index += length;
	}

	if (p->interrupt)
2218
		irq = DESCRIPTOR_IRQ_ALWAYS;
2219
	else
2220
		irq = DESCRIPTOR_NO_IRQ;
2221

2222
	last = z == 2 ? d : d + z - 1;
2223 2224 2225
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
2226
				     irq);
2227

2228
	context_append(&ctx->context, d, z, header_z);
2229 2230 2231

	return 0;
}
S
Stefan Richter 已提交
2232

2233 2234 2235 2236
static int ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
					     struct fw_iso_packet *packet,
					     struct fw_iso_buffer *buffer,
					     unsigned long payload)
2237 2238 2239 2240 2241 2242 2243
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
	struct db_descriptor *db = NULL;
	struct descriptor *d;
	struct fw_iso_packet *p;
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, length, rest;
2244
	int page, offset, packet_count, header_size;
S
Stefan Richter 已提交
2245

2246 2247 2248 2249
	/*
	 * FIXME: Cycle lost behavior should be configurable: lose
	 * packet, retransmit or terminate..
	 */
2250 2251 2252 2253

	p = packet;
	z = 2;

2254
	/*
2255 2256
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
2257
	 */
2258
	packet_count = p->header_length / ctx->base.header_size;
2259
	header_size = packet_count * max(ctx->base.header_size, (size_t)8);
2260

2261
	/* Get header size in number of descriptors. */
2262
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2263 2264 2265
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
	rest     = p->payload_length;
2266 2267 2268 2269 2270 2271 2272
	/*
	 * The controllers I've tested have not worked correctly when
	 * second_req_count is zero.  Rather than do something we know won't
	 * work, return an error
	 */
	if (rest == 0)
		return -EINVAL;
2273 2274 2275 2276 2277 2278 2279 2280

	while (rest > 0) {
		d = context_get_descriptors(&ctx->context,
					    z + header_z, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		db = (struct db_descriptor *) d;
2281 2282
		db->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_BRANCH_ALWAYS);
2283 2284
		db->first_size =
		    cpu_to_le16(max(ctx->base.header_size, (size_t)8));
2285 2286 2287 2288 2289 2290
		if (p->skip && rest == p->payload_length) {
			db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
			db->first_req_count = db->first_size;
		} else {
			db->first_req_count = cpu_to_le16(header_size);
		}
2291
		db->first_res_count = db->first_req_count;
2292
		db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
S
Stefan Richter 已提交
2293

2294 2295 2296
		if (p->skip && rest == p->payload_length)
			length = 4;
		else if (offset + rest < PAGE_SIZE)
2297 2298 2299 2300
			length = rest;
		else
			length = PAGE_SIZE - offset;

2301 2302
		db->second_req_count = cpu_to_le16(length);
		db->second_res_count = db->second_req_count;
2303 2304 2305
		page_bus = page_private(buffer->pages[page]);
		db->second_buffer = cpu_to_le32(page_bus + offset);

2306
		if (p->interrupt && length == rest)
2307
			db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2308

2309 2310 2311
		context_append(&ctx->context, d, z, header_z);
		offset = (offset + length) & ~PAGE_MASK;
		rest -= length;
2312 2313
		if (offset == 0)
			page++;
2314 2315
	}

2316 2317
	return 0;
}
2318

2319 2320 2321 2322
static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
					struct fw_iso_packet *packet,
					struct fw_iso_buffer *buffer,
					unsigned long payload)
2323 2324
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2325
	struct descriptor *d, *pd;
2326
	struct fw_iso_packet *p = packet;
2327 2328
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
2329 2330
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
2331 2332

	/*
2333 2334
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
2335 2336
	 */
	packet_count = p->header_length / ctx->base.header_size;
2337
	header_size  = max(ctx->base.header_size, (size_t)8);
2338 2339 2340 2341 2342

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
2343
	payload_per_buffer = p->payload_length / packet_count;
2344 2345 2346

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
2347
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2348
		d = context_get_descriptors(&ctx->context,
2349
				z + header_z, &d_bus);
2350 2351 2352
		if (d == NULL)
			return -ENOMEM;

2353 2354 2355 2356
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
		if (p->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2357 2358
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
2359
		d->transfer_status = 0;
2360 2361
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

2362
		rest = payload_per_buffer;
2363
		pd = d;
2364
		for (j = 1; j < z; j++) {
2365
			pd++;
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
2385 2386 2387
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
2388
		if (p->interrupt && i == packet_count - 1)
2389 2390 2391 2392 2393 2394 2395 2396
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

2397 2398 2399 2400
static int ohci_queue_iso(struct fw_iso_context *base,
			  struct fw_iso_packet *packet,
			  struct fw_iso_buffer *buffer,
			  unsigned long payload)
2401
{
2402
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2403
	unsigned long flags;
2404
	int ret;
2405

2406
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2407
	if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2408
		ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2409
	else if (ctx->context.ohci->use_dualbuffer)
2410 2411
		ret = ohci_queue_iso_receive_dualbuffer(base, packet,
							buffer, payload);
2412
	else
2413 2414
		ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
							buffer, payload);
2415 2416
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

2417
	return ret;
2418 2419
}

2420
static const struct fw_card_driver ohci_driver = {
2421 2422 2423 2424 2425
	.enable			= ohci_enable,
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
2426
	.cancel_packet		= ohci_cancel_packet,
2427
	.enable_phys_dma	= ohci_enable_phys_dma,
2428
	.get_bus_time		= ohci_get_bus_time,
2429 2430 2431 2432

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
	.queue_iso		= ohci_queue_iso,
2433
	.start_iso		= ohci_start_iso,
2434
	.stop_iso		= ohci_stop_iso,
2435 2436
};

2437
#ifdef CONFIG_PPC_PMAC
2438 2439
static void ohci_pmac_on(struct pci_dev *dev)
{
2440 2441 2442 2443 2444 2445 2446 2447
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
}

static void ohci_pmac_off(struct pci_dev *dev)
{
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
}
#else
#define ohci_pmac_on(dev)
#define ohci_pmac_off(dev)
2464 2465
#endif /* CONFIG_PPC_PMAC */

2466 2467 2468
#define PCI_VENDOR_ID_AGERE		PCI_VENDOR_ID_ATT
#define PCI_DEVICE_ID_AGERE_FW643	0x5901

2469 2470
static int __devinit pci_probe(struct pci_dev *dev,
			       const struct pci_device_id *ent)
2471 2472
{
	struct fw_ohci *ohci;
2473
	u32 bus_options, max_receive, link_speed, version;
2474 2475 2476 2477
	u64 guid;
	int err;
	size_t size;

2478
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2479
	if (ohci == NULL) {
2480 2481
		err = -ENOMEM;
		goto fail;
2482 2483 2484 2485
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

2486 2487
	ohci_pmac_on(dev);

2488 2489
	err = pci_enable_device(dev);
	if (err) {
2490
		fw_error("Failed to enable OHCI hardware\n");
2491
		goto fail_free;
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

2503 2504
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
2505
		fw_error("MMIO resource unavailable\n");
2506
		goto fail_disable;
2507 2508 2509 2510 2511
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
2512 2513
		err = -ENXIO;
		goto fail_iomem;
2514 2515
	}

2516
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2517 2518
#if 0
	/* FIXME: make it a context option or remove dual-buffer mode */
2519
	ohci->use_dualbuffer = version >= OHCI_VERSION_1_1;
2520
#endif
2521

2522 2523 2524 2525 2526
	/* dual-buffer mode is broken if more than one IR context is active */
	if (dev->vendor == PCI_VENDOR_ID_AGERE &&
	    dev->device == PCI_DEVICE_ID_AGERE_FW643)
		ohci->use_dualbuffer = false;

2527 2528 2529 2530 2531
	/* dual-buffer mode is broken */
	if (dev->vendor == PCI_VENDOR_ID_RICOH &&
	    dev->device == PCI_DEVICE_ID_RICOH_R5C832)
		ohci->use_dualbuffer = false;

2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
/* x86-32 currently doesn't use highmem for dma_alloc_coherent */
#if !defined(CONFIG_X86_32)
	/* dual-buffer mode is broken with descriptor addresses above 2G */
	if (dev->vendor == PCI_VENDOR_ID_TI &&
	    dev->device == PCI_DEVICE_ID_TI_TSB43AB22)
		ohci->use_dualbuffer = false;
#endif

#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
	ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
			     dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
#endif
	ohci->bus_reset_packet_quirk = dev->vendor == PCI_VENDOR_ID_TI;

2546 2547 2548
	ohci->iso_cycle_timer_quirk = dev->vendor == PCI_VENDOR_ID_AL	||
				      dev->vendor == PCI_VENDOR_ID_NEC	||
				      dev->vendor == PCI_VENDOR_ID_VIA;
2549

2550 2551 2552 2553 2554 2555
	ar_context_init(&ohci->ar_request_ctx, ohci,
			OHCI1394_AsReqRcvContextControlSet);

	ar_context_init(&ohci->ar_response_ctx, ohci,
			OHCI1394_AsRspRcvContextControlSet);

2556
	context_init(&ohci->at_request_ctx, ohci,
2557
		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2558

2559
	context_init(&ohci->at_response_ctx, ohci,
2560
		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2561 2562 2563 2564 2565 2566 2567 2568

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2569
	ohci->ir_context_channels = ~0ULL;
2570 2571 2572 2573 2574 2575
	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2576
		err = -ENOMEM;
2577
		goto fail_contexts;
2578 2579 2580 2581 2582 2583 2584 2585
	}

	/* self-id dma buffer allocation */
	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
					       SELF_ID_BUF_SIZE,
					       &ohci->self_id_bus,
					       GFP_KERNEL);
	if (ohci->self_id_cpu == NULL) {
2586
		err = -ENOMEM;
2587
		goto fail_contexts;
2588 2589 2590 2591 2592 2593 2594 2595
	}

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

2596
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2597
	if (err)
2598
		goto fail_self_id;
2599

2600
	fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2601
		  dev_name(&dev->dev), version >> 16, version & 0xff);
2602

2603
	return 0;
2604 2605 2606 2607

 fail_self_id:
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
2608
 fail_contexts:
2609
	kfree(ohci->ir_context_list);
2610 2611 2612 2613 2614
	kfree(ohci->it_context_list);
	context_release(&ohci->at_response_ctx);
	context_release(&ohci->at_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	ar_context_release(&ohci->ar_request_ctx);
2615 2616 2617 2618 2619
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
2620 2621
 fail_free:
	kfree(&ohci->card);
2622
	ohci_pmac_off(dev);
2623 2624 2625
 fail:
	if (err == -ENOMEM)
		fw_error("Out of memory\n");
2626 2627

	return err;
2628 2629 2630 2631 2632 2633 2634
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
2635 2636
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
2637 2638
	fw_core_remove_card(&ohci->card);

2639 2640 2641 2642
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
2643 2644 2645

	software_reset(ohci);
	free_irq(dev->irq, ohci);
2646 2647 2648 2649 2650 2651 2652

	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->next_config_rom, ohci->next_config_rom_bus);
	if (ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
2653 2654
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
2655 2656 2657 2658
	ar_context_release(&ohci->ar_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	context_release(&ohci->at_request_ctx);
	context_release(&ohci->at_response_ctx);
2659 2660 2661 2662 2663
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
2664
	kfree(&ohci->card);
2665
	ohci_pmac_off(dev);
2666

2667 2668 2669
	fw_notify("Removed fw-ohci device.\n");
}

2670
#ifdef CONFIG_PM
2671
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2672
{
2673
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2674 2675 2676
	int err;

	software_reset(ohci);
2677 2678
	free_irq(dev->irq, ohci);
	err = pci_save_state(dev);
2679
	if (err) {
2680
		fw_error("pci_save_state failed\n");
2681 2682
		return err;
	}
2683
	err = pci_set_power_state(dev, pci_choose_state(dev, state));
2684 2685
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
2686
	ohci_pmac_off(dev);
2687

2688 2689 2690
	return 0;
}

2691
static int pci_resume(struct pci_dev *dev)
2692
{
2693
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2694 2695
	int err;

2696 2697 2698 2699
	ohci_pmac_on(dev);
	pci_set_power_state(dev, PCI_D0);
	pci_restore_state(dev);
	err = pci_enable_device(dev);
2700
	if (err) {
2701
		fw_error("pci_enable_device failed\n");
2702 2703 2704
		return err;
	}

2705
	return ohci_enable(&ohci->card, NULL, 0);
2706 2707 2708
}
#endif

2709
static const struct pci_device_id pci_table[] = {
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
2721 2722 2723 2724
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
2725 2726 2727 2728 2729 2730
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

2731 2732 2733 2734 2735
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);