ohci.c 93.7 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/bitops.h>
22
#include <linux/bug.h>
23
#include <linux/compiler.h>
24
#include <linux/delay.h>
S
Stefan Richter 已提交
25
#include <linux/device.h>
A
Andrew Morton 已提交
26
#include <linux/dma-mapping.h>
27
#include <linux/firewire.h>
S
Stefan Richter 已提交
28
#include <linux/firewire-constants.h>
29 30
#include <linux/init.h>
#include <linux/interrupt.h>
S
Stefan Richter 已提交
31
#include <linux/io.h>
32
#include <linux/kernel.h>
S
Stefan Richter 已提交
33
#include <linux/list.h>
A
Al Viro 已提交
34
#include <linux/mm.h>
35
#include <linux/module.h>
36
#include <linux/moduleparam.h>
37
#include <linux/mutex.h>
38
#include <linux/pci.h>
39
#include <linux/pci_ids.h>
40
#include <linux/slab.h>
S
Stefan Richter 已提交
41
#include <linux/spinlock.h>
S
Stefan Richter 已提交
42
#include <linux/string.h>
43
#include <linux/time.h>
44
#include <linux/vmalloc.h>
A
Andrew Morton 已提交
45

S
Stefan Richter 已提交
46
#include <asm/byteorder.h>
S
Stefan Richter 已提交
47
#include <asm/page.h>
48
#include <asm/system.h>
49

50 51 52 53
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

54 55
#include "core.h"
#include "ohci.h"
56

57 58 59 60 61 62 63 64 65 66 67 68 69
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
70 71 72 73 74 75 76 77 78 79

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

80 81 82 83
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
84

85 86 87 88 89 90 91 92
#define AR_BUFFER_SIZE	(32*1024)
#define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
/* we need at least two pages for proper list management */
#define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)

#define MAX_ASYNC_PAYLOAD	4096
#define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
#define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
93

94 95
struct ar_context {
	struct fw_ohci *ohci;
96 97 98 99
	struct page *pages[AR_BUFFERS];
	void *buffer;
	struct descriptor *descriptors;
	dma_addr_t descriptors_bus;
100
	void *pointer;
101
	unsigned int last_buffer_index;
102
	u32 regs;
103 104 105
	struct tasklet_struct tasklet;
};

106 107 108 109 110
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
111 112 113 114 115 116 117 118 119 120 121 122 123

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

124
struct context {
S
Stefan Richter 已提交
125
	struct fw_ohci *ohci;
126
	u32 regs;
127
	int total_allocation;
128
	bool running;
129
	bool flushing;
S
Stefan Richter 已提交
130

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
	 * The last descriptor in the DMA program.  It contains the branch
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
155 156 157

	descriptor_callback_t callback;

S
Stefan Richter 已提交
158
	struct tasklet_struct tasklet;
159 160
};

161 162 163 164 165 166
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
167 168 169

struct iso_context {
	struct fw_iso_context base;
170
	struct context context;
171
	int excess_bytes;
172 173
	void *header;
	size_t header_length;
174 175 176

	u8 sync;
	u8 tags;
177 178 179 180 181 182 183 184
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

	__iomem char *registers;
185
	int node_id;
186
	int generation;
187
	int request_generation;	/* for timestamping incoming requests */
188
	unsigned quirks;
189
	unsigned int pri_req_max;
190
	u32 bus_time;
191
	bool is_root;
192
	bool csr_state_setclear_abdicate;
193 194
	int n_ir;
	int n_it;
195 196 197 198
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
199 200
	spinlock_t lock;

201 202
	struct mutex phy_reg_mutex;

203 204 205
	void *misc_buffer;
	dma_addr_t misc_buffer_bus;

206 207
	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
208 209
	struct context at_request_ctx;
	struct context at_response_ctx;
210

211
	u32 it_context_support;
212
	u32 it_context_mask;     /* unoccupied IT contexts */
213
	struct iso_context *it_context_list;
214
	u64 ir_context_channels; /* unoccupied channels */
215
	u32 ir_context_support;
216
	u32 ir_context_mask;     /* unoccupied IR contexts */
217
	struct iso_context *ir_context_list;
218 219
	u64 mc_channels; /* channels in use by the multichannel IR context */
	bool mc_allocated;
220 221 222 223 224 225 226 227 228 229 230 231

	__be32    *config_rom;
	dma_addr_t config_rom_bus;
	__be32    *next_config_rom;
	dma_addr_t next_config_rom_bus;
	__be32     next_header;

	__le32    *self_id_cpu;
	dma_addr_t self_id_bus;
	struct tasklet_struct bus_reset_tasklet;

	u32 self_id_buffer[512];
232 233
};

A
Adrian Bunk 已提交
234
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
235 236 237 238
{
	return container_of(card, struct fw_ohci, card);
}

239 240 241 242 243 244
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
245 246 247 248 249 250

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

251
#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
252 253 254 255 256 257 258
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
259
#define OHCI_TCODE_PHY_PACKET		0x0e
260
#define OHCI_VERSION_1_1		0x010010
261

262 263
static char ohci_driver_name[] = KBUILD_MODNAME;

264
#define PCI_DEVICE_ID_AGERE_FW643	0x5901
265
#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
266 267
#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009

268 269 270
#define QUIRK_CYCLE_TIMER		1
#define QUIRK_RESET_PACKET		2
#define QUIRK_BE_HEADERS		4
271
#define QUIRK_NO_1394A			8
272
#define QUIRK_NO_MSI			16
273 274 275

/* In case of multiple matches in ohci_quirks[], only the first one is used. */
static const struct {
276
	unsigned short vendor, device, revision, flags;
277
} ohci_quirks[] = {
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
		QUIRK_BE_HEADERS},

	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
		QUIRK_NO_MSI},

	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
		QUIRK_NO_MSI},

	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},

	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_RESET_PACKET},

	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
304 305
};

306 307 308 309 310 311 312
/* This overrides anything that was found in ohci_quirks[]. */
static int param_quirks;
module_param_named(quirks, param_quirks, int, 0644);
MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
	", AR/selfID endianess = "	__stringify(QUIRK_BE_HEADERS)
313
	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
314
	", disable MSI = "		__stringify(QUIRK_NO_MSI)
315 316
	")");

317
#define OHCI_PARAM_DEBUG_AT_AR		1
318
#define OHCI_PARAM_DEBUG_SELFIDS	2
319 320
#define OHCI_PARAM_DEBUG_IRQS		4
#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
321

322 323
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG

324 325 326 327
static int param_debug;
module_param_named(debug, param_debug, int, 0644);
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
328 329 330
	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
331 332 333 334
	", or a combination, or all = -1)");

static void log_irqs(u32 evt)
{
335 336 337 338 339 340
	if (likely(!(param_debug &
			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
		return;

	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
	    !(evt & OHCI1394_busReset))
341 342
		return;

343
	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
344 345 346 347 348 349 350 351 352
	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
	    evt & OHCI1394_isochRx		? " IR"			: "",
	    evt & OHCI1394_isochTx		? " IT"			: "",
	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
353
	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
354
	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
355
	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
356
	    evt & OHCI1394_unrecoverableError	? " unrecoverableError"	: "",
357 358 359 360 361
	    evt & OHCI1394_busReset		? " busReset"		: "",
	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
		    OHCI1394_respTxComplete | OHCI1394_isochRx |
		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
362 363
		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
		    OHCI1394_cycleInconsistent |
364
		    OHCI1394_regAccessFail | OHCI1394_busReset)
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
						? " ?"			: "");
}

static const char *speed[] = {
	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
};
static const char *power[] = {
	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
};
static const char port[] = { '.', '-', 'p', 'c', };

static char _p(u32 *s, int shift)
{
	return port[*s >> shift & 3];
}

382
static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
383 384 385 386
{
	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
		return;

387 388
	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
		  self_id_count, generation, node_id);
389 390 391

	for (; self_id_count--; ++s)
		if ((*s & 1 << 23) == 0)
392 393 394 395 396 397
			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
			    "%s gc=%d %s %s%s%s\n",
			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
			    speed[*s >> 14 & 3], *s >> 16 & 63,
			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
398
		else
399 400 401 402
			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
			    *s, *s >> 24 & 63,
			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
}

static const char *evts[] = {
	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
	[0x10] = "-reserved-",		[0x11] = "ack_complete",
	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
	[0x18] = "-reserved-",		[0x19] = "-reserved-",
	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
	[0x20] = "pending/cancelled",
};
static const char *tcodes[] = {
	[0x0] = "QW req",		[0x1] = "BW req",
	[0x2] = "W resp",		[0x3] = "-reserved-",
	[0x4] = "QR req",		[0x5] = "BR req",
	[0x6] = "QR resp",		[0x7] = "BR resp",
	[0x8] = "cycle start",		[0x9] = "Lk req",
	[0xa] = "async stream packet",	[0xb] = "Lk resp",
	[0xc] = "-reserved-",		[0xd] = "-reserved-",
	[0xe] = "link internal",	[0xf] = "-reserved-",
};

static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
{
	int tcode = header[0] >> 4 & 0xf;
	char specific[12];

	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
		return;

	if (unlikely(evt >= ARRAY_SIZE(evts)))
			evt = 0x1f;

446
	if (evt == OHCI1394_evt_bus_reset) {
447 448
		fw_notify("A%c evt_bus_reset, generation %d\n",
		    dir, (header[2] >> 16) & 0xff);
449 450 451
		return;
	}

452 453 454 455 456 457 458 459 460 461 462 463 464 465
	switch (tcode) {
	case 0x0: case 0x6: case 0x8:
		snprintf(specific, sizeof(specific), " = %08x",
			 be32_to_cpu((__force __be32)header[3]));
		break;
	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
		snprintf(specific, sizeof(specific), " %x,%x",
			 header[3] >> 16, header[3] & 0xffff);
		break;
	default:
		specific[0] = '\0';
	}

	switch (tcode) {
466
	case 0xa:
467
		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
468
		break;
469 470 471 472
	case 0xe:
		fw_notify("A%c %s, PHY %08x %08x\n",
			  dir, evts[evt], header[1], header[2]);
		break;
473
	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
474 475 476 477 478 479
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s, %04x%08x%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
480 481
		break;
	default:
482 483 484 485 486 487
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], specific);
488 489 490 491 492
	}
}

#else

493 494 495 496
#define param_debug 0
static inline void log_irqs(u32 evt) {}
static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
497 498 499

#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */

A
Adrian Bunk 已提交
500
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
501 502 503 504
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
505
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
506 507 508 509
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
510
static inline void flush_writes(const struct fw_ohci *ohci)
511 512 513 514 515
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

516
static int read_phy_reg(struct fw_ohci *ohci, int addr)
517
{
518
	u32 val;
519
	int i;
520 521

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
522
	for (i = 0; i < 3 + 100; i++) {
523 524 525 526
		val = reg_read(ohci, OHCI1394_PhyControl);
		if (val & OHCI1394_PhyControl_ReadDone)
			return OHCI1394_PhyControl_ReadData(val);

527 528 529 530 531 532
		/*
		 * Try a few times without waiting.  Sleeping is necessary
		 * only when the link/PHY interface is busy.
		 */
		if (i >= 3)
			msleep(1);
533
	}
534
	fw_error("failed to read phy reg\n");
535

536 537
	return -EBUSY;
}
538

539 540 541
static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
{
	int i;
542 543

	reg_write(ohci, OHCI1394_PhyControl,
544
		  OHCI1394_PhyControl_Write(addr, val));
545
	for (i = 0; i < 3 + 100; i++) {
546 547 548
		val = reg_read(ohci, OHCI1394_PhyControl);
		if (!(val & OHCI1394_PhyControl_WritePending))
			return 0;
549

550 551
		if (i >= 3)
			msleep(1);
552 553 554 555
	}
	fw_error("failed to write phy reg\n");

	return -EBUSY;
556 557
}

558 559
static int update_phy_reg(struct fw_ohci *ohci, int addr,
			  int clear_bits, int set_bits)
560
{
561
	int ret = read_phy_reg(ohci, addr);
562 563
	if (ret < 0)
		return ret;
564

565 566 567 568 569 570 571
	/*
	 * The interrupt status bits are cleared by writing a one bit.
	 * Avoid clearing them unless explicitly requested in set_bits.
	 */
	if (addr == 5)
		clear_bits |= PHY_INT_STATUS_BITS;

572
	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
573 574
}

575
static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
576
{
577
	int ret;
578

579
	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
580 581
	if (ret < 0)
		return ret;
582

583
	return read_phy_reg(ohci, addr);
584 585
}

586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
static int ohci_read_phy_reg(struct fw_card *card, int addr)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = read_phy_reg(ohci, addr);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
}

static int ohci_update_phy_reg(struct fw_card *card, int addr,
			       int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
609 610
}

611 612 613 614 615 616
static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
{
	return page_private(ctx->pages[i]);
}

static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
617
{
618
	struct descriptor *d;
619

620 621 622 623
	d = &ctx->descriptors[index];
	d->branch_address  &= cpu_to_le32(~0xf);
	d->res_count       =  cpu_to_le16(PAGE_SIZE);
	d->transfer_status =  0;
624

625
	wmb(); /* finish init of new descriptors before branch_address update */
626 627 628 629
	d = &ctx->descriptors[ctx->last_buffer_index];
	d->branch_address  |= cpu_to_le32(1);

	ctx->last_buffer_index = index;
630

631
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
632
	flush_writes(ctx->ohci);
633 634
}

635
static void ar_context_release(struct ar_context *ctx)
636
{
637
	unsigned int i;
638

639 640
	if (ctx->buffer)
		vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
641

642 643 644 645 646 647 648
	for (i = 0; i < AR_BUFFERS; i++)
		if (ctx->pages[i]) {
			dma_unmap_page(ctx->ohci->card.device,
				       ar_buffer_bus(ctx, i),
				       PAGE_SIZE, DMA_FROM_DEVICE);
			__free_page(ctx->pages[i]);
		}
649 650
}

651
static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
652
{
653 654 655
	if (reg_read(ctx->ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
		reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
		flush_writes(ctx->ohci);
656

657
		fw_error("AR error: %s; DMA stopped\n", error_msg);
658
	}
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
	/* FIXME: restart? */
}

static inline unsigned int ar_next_buffer_index(unsigned int index)
{
	return (index + 1) % AR_BUFFERS;
}

static inline unsigned int ar_prev_buffer_index(unsigned int index)
{
	return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
}

static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
{
	return ar_next_buffer_index(ctx->last_buffer_index);
}

/*
 * We search for the buffer that contains the last AR packet DMA data written
 * by the controller.
 */
static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
						 unsigned int *buffer_offset)
{
	unsigned int i, next_i, last = ctx->last_buffer_index;
	__le16 res_count, next_res_count;

	i = ar_first_buffer_index(ctx);
	res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);

	/* A buffer that is not yet completely filled must be the last one. */
	while (i != last && res_count == 0) {

		/* Peek at the next descriptor. */
		next_i = ar_next_buffer_index(i);
		rmb(); /* read descriptors in order */
		next_res_count = ACCESS_ONCE(
				ctx->descriptors[next_i].res_count);
		/*
		 * If the next descriptor is still empty, we must stop at this
		 * descriptor.
		 */
		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
			/*
			 * The exception is when the DMA data for one packet is
			 * split over three buffers; in this case, the middle
			 * buffer's descriptor might be never updated by the
			 * controller and look still empty, and we have to peek
			 * at the third one.
			 */
			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
				next_i = ar_next_buffer_index(next_i);
				rmb();
				next_res_count = ACCESS_ONCE(
					ctx->descriptors[next_i].res_count);
				if (next_res_count != cpu_to_le16(PAGE_SIZE))
					goto next_buffer_is_active;
			}

			break;
		}

next_buffer_is_active:
		i = next_i;
		res_count = next_res_count;
	}

	rmb(); /* read res_count before the DMA data */

	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
	if (*buffer_offset > PAGE_SIZE) {
		*buffer_offset = 0;
		ar_context_abort(ctx, "corrupted descriptor");
	}

	return i;
}

static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
				    unsigned int end_buffer_index,
				    unsigned int end_buffer_offset)
{
	unsigned int i;

	i = ar_first_buffer_index(ctx);
	while (i != end_buffer_index) {
		dma_sync_single_for_cpu(ctx->ohci->card.device,
					ar_buffer_bus(ctx, i),
					PAGE_SIZE, DMA_FROM_DEVICE);
		i = ar_next_buffer_index(i);
	}
	if (end_buffer_offset > 0)
		dma_sync_single_for_cpu(ctx->ohci->card.device,
					ar_buffer_bus(ctx, i),
					end_buffer_offset, DMA_FROM_DEVICE);
755 756
}

757 758
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
759
	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
760 761 762 763
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

764
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
765 766
{
	struct fw_ohci *ohci = ctx->ohci;
767 768
	struct fw_packet p;
	u32 status, length, tcode;
769
	int evt;
770

771 772 773
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
774 775 776 777 778

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
779
		p.header[3] = (__force __u32) buffer[3];
780
		p.header_length = 16;
781
		p.payload_length = 0;
782 783 784
		break;

	case TCODE_READ_BLOCK_REQUEST :
785
		p.header[3] = cond_le32_to_cpu(buffer[3]);
786 787 788 789 790
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
791 792 793
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
794
		p.header[3] = cond_le32_to_cpu(buffer[3]);
795
		p.header_length = 16;
796
		p.payload_length = p.header[3] >> 16;
797 798 799 800
		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
			ar_context_abort(ctx, "invalid packet length");
			return NULL;
		}
801 802 803 804
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
805
	case OHCI_TCODE_PHY_PACKET:
806
		p.header_length = 12;
807
		p.payload_length = 0;
808
		break;
809 810

	default:
811 812
		ar_context_abort(ctx, "invalid tcode");
		return NULL;
813
	}
814

815 816 817 818
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
819
	status = cond_le32_to_cpu(buffer[length]);
820
	evt    = (status >> 16) & 0x1f;
821

822
	p.ack        = evt - 16;
823 824 825
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
826

827
	log_ar_at_event('R', p.speed, p.header, evt);
828

829
	/*
830 831 832 833 834 835 836 837 838
	 * Several controllers, notably from NEC and VIA, forget to
	 * write ack_complete status at PHY packet reception.
	 */
	if (evt == OHCI1394_evt_no_status &&
	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
		p.ack = ACK_COMPLETE;

	/*
	 * The OHCI bus reset handler synthesizes a PHY packet with
839 840 841 842 843
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
844
	 * request.
845 846 847 848
	 *
	 * Alas some chips sometimes emit bus reset packets with a
	 * wrong generation.  We set the correct generation for these
	 * at a slightly incorrect time (in bus_reset_tasklet).
849
	 */
850
	if (evt == OHCI1394_evt_bus_reset) {
851
		if (!(ohci->quirks & QUIRK_RESET_PACKET))
852 853
			ohci->request_generation = (p.header[2] >> 16) & 0xff;
	} else if (ctx == &ohci->ar_request_ctx) {
854
		fw_core_handle_request(&ohci->card, &p);
855
	} else {
856
		fw_core_handle_response(&ohci->card, &p);
857
	}
858

859 860
	return buffer + length + 1;
}
861

862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
{
	void *next;

	while (p < end) {
		next = handle_ar_packet(ctx, p);
		if (!next)
			return p;
		p = next;
	}

	return p;
}

static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
{
	unsigned int i;

	i = ar_first_buffer_index(ctx);
	while (i != end_buffer) {
		dma_sync_single_for_device(ctx->ohci->card.device,
					   ar_buffer_bus(ctx, i),
					   PAGE_SIZE, DMA_FROM_DEVICE);
		ar_context_link_page(ctx, i);
		i = ar_next_buffer_index(i);
	}
}

890 891 892
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
893 894
	unsigned int end_buffer_index, end_buffer_offset;
	void *p, *end;
895

896 897 898
	p = ctx->pointer;
	if (!p)
		return;
899

900 901 902 903
	end_buffer_index = ar_search_last_active_buffer(ctx,
							&end_buffer_offset);
	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
904

905
	if (end_buffer_index < ar_first_buffer_index(ctx)) {
906
		/*
907 908 909 910
		 * The filled part of the overall buffer wraps around; handle
		 * all packets up to the buffer end here.  If the last packet
		 * wraps around, its tail will be visible after the buffer end
		 * because the buffer start pages are mapped there again.
911
		 */
912 913 914 915 916 917 918
		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
		p = handle_ar_packets(ctx, p, buffer_end);
		if (p < buffer_end)
			goto error;
		/* adjust p to point back into the actual buffer */
		p -= AR_BUFFERS * PAGE_SIZE;
	}
919

920 921 922 923 924 925
	p = handle_ar_packets(ctx, p, end);
	if (p != end) {
		if (p > end)
			ar_context_abort(ctx, "inconsistent descriptor");
		goto error;
	}
926

927 928
	ctx->pointer = p;
	ar_recycle_buffers(ctx, end_buffer_index);
929

930
	return;
931

932 933
error:
	ctx->pointer = NULL;
934 935
}

936 937
static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
			   unsigned int descriptors_offset, u32 regs)
938
{
939 940 941 942
	unsigned int i;
	dma_addr_t dma_addr;
	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
	struct descriptor *d;
943

944 945
	ctx->regs        = regs;
	ctx->ohci        = ohci;
946 947
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
	for (i = 0; i < AR_BUFFERS; i++) {
		ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
		if (!ctx->pages[i])
			goto out_of_memory;
		dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
					0, PAGE_SIZE, DMA_FROM_DEVICE);
		if (dma_mapping_error(ohci->card.device, dma_addr)) {
			__free_page(ctx->pages[i]);
			ctx->pages[i] = NULL;
			goto out_of_memory;
		}
		set_page_private(ctx->pages[i], dma_addr);
	}

	for (i = 0; i < AR_BUFFERS; i++)
		pages[i]              = ctx->pages[i];
	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
		pages[AR_BUFFERS + i] = ctx->pages[i];
	ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
967
				 -1, PAGE_KERNEL);
968 969 970
	if (!ctx->buffer)
		goto out_of_memory;

971 972
	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
973 974 975 976 977 978 979 980 981 982 983

	for (i = 0; i < AR_BUFFERS; i++) {
		d = &ctx->descriptors[i];
		d->req_count      = cpu_to_le16(PAGE_SIZE);
		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						DESCRIPTOR_STATUS |
						DESCRIPTOR_BRANCH_ALWAYS);
		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
			ar_next_buffer_index(i) * sizeof(struct descriptor));
	}
984

985
	return 0;
986 987 988 989 990

out_of_memory:
	ar_context_release(ctx);

	return -ENOMEM;
991 992 993 994
}

static void ar_context_run(struct ar_context *ctx)
{
995 996 997 998
	unsigned int i;

	for (i = 0; i < AR_BUFFERS; i++)
		ar_context_link_page(ctx, i);
999

1000
	ctx->pointer = ctx->buffer;
1001

1002
	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1003
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1004
	flush_writes(ctx->ohci);
1005
}
S
Stefan Richter 已提交
1006

1007
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
{
	int b, key;

	b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
	key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;

	/* figure out which descriptor the branch address goes in */
	if (z == 2 && (b == 3 || key == 2))
		return d;
	else
		return d + z - 1;
}

1021 1022 1023 1024 1025 1026
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
1027
	struct descriptor_buffer *desc;
1028

1029 1030 1031
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
1032
	while (last->branch_address != 0) {
1033
		struct descriptor_buffer *old_desc = desc;
1034 1035
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
1036 1037 1038 1039 1040 1041 1042 1043 1044
		address &= ~0xf;

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1045
		last = find_branch_descriptor(d, z);
1046 1047 1048 1049

		if (!ctx->callback(ctx, d, last))
			break;

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
1060 1061 1062
	}
}

1063 1064 1065 1066
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
1067
static int context_add_buffer(struct context *ctx)
1068 1069
{
	struct descriptor_buffer *desc;
1070
	dma_addr_t uninitialized_var(bus_addr);
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

1096 1097
static int context_init(struct context *ctx, struct fw_ohci *ohci,
			u32 regs, descriptor_callback_t callback)
1098 1099 1100
{
	ctx->ohci = ohci;
	ctx->regs = regs;
1101 1102 1103 1104
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
1105 1106
		return -ENOMEM;

1107 1108 1109
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

1110 1111 1112
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

1113 1114
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
1115
	 * branch address and looks like it's been sent.  That way we
1116
	 * have a descriptor to append DMA programs to.
1117
	 */
1118 1119 1120 1121 1122 1123
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
1124 1125 1126 1127

	return 0;
}

1128
static void context_release(struct context *ctx)
1129 1130
{
	struct fw_card *card = &ctx->ohci->card;
1131
	struct descriptor_buffer *desc, *tmp;
1132

1133 1134 1135 1136
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
1137 1138
}

1139
/* Must be called with ohci->lock held */
1140 1141
static struct descriptor *context_get_descriptors(struct context *ctx,
						  int z, dma_addr_t *d_bus)
1142
{
1143 1144 1145 1146 1147 1148 1149 1150 1151
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
1152

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
1163

1164
	d = desc->buffer + desc->used / sizeof(*d);
1165
	memset(d, 0, z * sizeof(*d));
1166
	*d_bus = desc->buffer_bus + desc->used;
1167 1168 1169 1170

	return d;
}

1171
static void context_run(struct context *ctx, u32 extra)
1172 1173 1174
{
	struct fw_ohci *ohci = ctx->ohci;

1175
	reg_write(ohci, COMMAND_PTR(ctx->regs),
1176
		  le32_to_cpu(ctx->last->branch_address));
1177 1178
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1179
	ctx->running = true;
1180 1181 1182 1183 1184 1185 1186
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
1187
	struct descriptor_buffer *desc = ctx->buffer_tail;
1188

1189
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1190

1191
	desc->used += (z + extra) * sizeof(*d);
1192 1193

	wmb(); /* finish init of new descriptors before branch_address update */
1194 1195
	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev = find_branch_descriptor(d, z);
1196

1197
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1198 1199 1200 1201 1202 1203
	flush_writes(ctx->ohci);
}

static void context_stop(struct context *ctx)
{
	u32 reg;
1204
	int i;
1205

1206
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1207
	ctx->running = false;
1208
	flush_writes(ctx->ohci);
1209

1210
	for (i = 0; i < 10; i++) {
1211
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1212
		if ((reg & CONTEXT_ACTIVE) == 0)
1213
			return;
1214

1215
		mdelay(1);
1216
	}
1217
	fw_error("Error: DMA context still active (0x%08x)\n", reg);
1218
}
1219

1220
struct driver_data {
1221
	u8 inline_data[8];
1222 1223
	struct fw_packet *packet;
};
1224

1225 1226
/*
 * This function apppends a packet to the DMA queue for transmission.
1227
 * Must always be called with the ochi->lock held to ensure proper
1228 1229
 * generation handling and locking around packet queue manipulation.
 */
1230 1231
static int at_context_queue_packet(struct context *ctx,
				   struct fw_packet *packet)
1232 1233
{
	struct fw_ohci *ohci = ctx->ohci;
1234
	dma_addr_t d_bus, uninitialized_var(payload_bus);
1235 1236 1237
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
1238 1239
	int z, tcode;

1240 1241 1242 1243
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1244 1245
	}

1246
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1247 1248
	d[0].res_count = cpu_to_le16(packet->timestamp);

1249 1250
	/*
	 * The DMA format for asyncronous link packets is different
1251
	 * from the IEEE1394 layout, so shift the fields around
1252
	 * accordingly.
1253
	 */
1254

1255
	tcode = (packet->header[0] >> 4) & 0x0f;
1256
	header = (__le32 *) &d[1];
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_WRITE_BLOCK_REQUEST:
	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
	case TCODE_READ_BLOCK_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
1267 1268 1269 1270 1271
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
1272 1273

		if (TCODE_IS_BLOCK_PACKET(tcode))
1274
			header[3] = cpu_to_le32(packet->header[3]);
1275
		else
1276 1277 1278
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
1279 1280
		break;

1281
	case TCODE_LINK_INTERNAL:
1282 1283
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
1284 1285
		header[1] = cpu_to_le32(packet->header[1]);
		header[2] = cpu_to_le32(packet->header[2]);
1286
		d[0].req_count = cpu_to_le16(12);
S
Stefan Richter 已提交
1287

1288
		if (is_ping_packet(&packet->header[1]))
S
Stefan Richter 已提交
1289
			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1290 1291
		break;

1292
	case TCODE_STREAM_DATA:
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
		d[0].req_count = cpu_to_le16(8);
		break;

	default:
		/* BUG(); */
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1303 1304
	}

1305
	BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1306 1307
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
1308
	packet->driver_data = driver_data;
1309

1310
	if (packet->payload_length > 0) {
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
		if (packet->payload_length > sizeof(driver_data->inline_data)) {
			payload_bus = dma_map_single(ohci->card.device,
						     packet->payload,
						     packet->payload_length,
						     DMA_TO_DEVICE);
			if (dma_mapping_error(ohci->card.device, payload_bus)) {
				packet->ack = RCODE_SEND_ERROR;
				return -1;
			}
			packet->payload_bus	= payload_bus;
			packet->payload_mapped	= true;
		} else {
			memcpy(driver_data->inline_data, packet->payload,
			       packet->payload_length);
			payload_bus = d_bus + 3 * sizeof(*d);
1326 1327 1328 1329 1330 1331
		}

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
1332
	} else {
1333 1334
		last = &d[0];
		z = 2;
1335 1336
	}

1337 1338 1339
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
1340

1341 1342
	/* FIXME: Document how the locking works. */
	if (ohci->generation != packet->generation) {
1343
		if (packet->payload_mapped)
1344 1345
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
1346 1347 1348 1349 1350
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
1351

1352
	if (!ctx->running)
1353 1354 1355
		context_run(ctx, 0);

	return 0;
1356 1357
}

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
static void at_context_flush(struct context *ctx)
{
	tasklet_disable(&ctx->tasklet);

	ctx->flushing = true;
	context_tasklet((unsigned long)ctx);
	ctx->flushing = false;

	tasklet_enable(&ctx->tasklet);
}

1369 1370 1371
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1372
{
1373
	struct driver_data *driver_data;
1374
	struct fw_packet *packet;
1375
	struct fw_ohci *ohci = context->ohci;
1376 1377
	int evt;

1378
	if (last->transfer_status == 0 && !context->flushing)
1379 1380
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
1381

1382 1383 1384 1385 1386
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
1387

1388
	if (packet->payload_mapped)
1389
		dma_unmap_single(ohci->card.device, packet->payload_bus,
1390 1391
				 packet->payload_length, DMA_TO_DEVICE);

1392 1393
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
1394

1395 1396
	log_ar_at_event('T', packet->speed, packet->header, evt);

1397 1398 1399 1400 1401
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
1402

1403
	case OHCI1394_evt_flushed:
1404 1405 1406 1407
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
1408 1409
		packet->ack = RCODE_GENERATION;
		break;
1410

1411
	case OHCI1394_evt_missing_ack:
1412 1413 1414 1415 1416 1417 1418 1419 1420
		if (context->flushing)
			packet->ack = RCODE_GENERATION;
		else {
			/*
			 * Using a valid (current) generation count, but the
			 * node is not on the bus or not sending acks.
			 */
			packet->ack = RCODE_NO_ACK;
		}
1421
		break;
1422

1423 1424 1425 1426 1427 1428 1429 1430 1431
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
1432

1433 1434 1435 1436 1437 1438 1439
	case OHCI1394_evt_no_status:
		if (context->flushing) {
			packet->ack = RCODE_GENERATION;
			break;
		}
		/* fall through */

1440 1441 1442 1443
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
1444

1445
	packet->callback(packet, &ohci->card, packet->ack);
1446

1447
	return 1;
1448 1449
}

1450 1451 1452 1453 1454
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1455

1456 1457
static void handle_local_rom(struct fw_ohci *ohci,
			     struct fw_packet *packet, u32 csr)
1458 1459 1460 1461
{
	struct fw_packet response;
	int tcode, length, i;

1462
	tcode = HEADER_GET_TCODE(packet->header[0]);
1463
	if (TCODE_IS_BLOCK_PACKET(tcode))
1464
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

1483 1484
static void handle_local_lock(struct fw_ohci *ohci,
			      struct fw_packet *packet, u32 csr)
1485 1486
{
	struct fw_packet response;
1487
	int tcode, length, ext_tcode, sel, try;
1488 1489 1490
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

1491 1492
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1493
	payload = packet->payload;
1494
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
	for (try = 0; try < 20; try++)
		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
			lock_old = cpu_to_be32(reg_read(ohci,
							OHCI1394_CSRData));
			fw_fill_response(&response, packet->header,
					 RCODE_COMPLETE,
					 &lock_old, sizeof(lock_old));
			goto out;
		}

	fw_error("swap not done (CSR lock timeout)\n");
	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1526 1527 1528 1529 1530

 out:
	fw_core_handle_response(&ohci->card, &response);
}

1531
static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1532
{
1533
	u64 offset, csr;
1534

1535 1536 1537 1538
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1539 1540 1541

	offset =
		((unsigned long long)
1542
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
1563 1564 1565 1566 1567

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1568
}
1569

1570
static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1571 1572
{
	unsigned long flags;
1573
	int ret;
1574 1575 1576

	spin_lock_irqsave(&ctx->ohci->lock, flags);

1577
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1578
	    ctx->ohci->generation == packet->generation) {
1579 1580 1581
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
1582
	}
1583

1584
	ret = at_context_queue_packet(ctx, packet);
1585 1586
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

1587
	if (ret < 0)
1588
		packet->callback(packet, &ctx->ohci->card, packet->ack);
1589

1590 1591
}

1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
static void detect_dead_context(struct fw_ohci *ohci,
				const char *name, unsigned int regs)
{
	u32 ctl;

	ctl = reg_read(ohci, CONTROL_SET(regs));
	if (ctl & CONTEXT_DEAD) {
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG
		fw_error("DMA context %s has stopped, error code: %s\n",
			 name, evts[ctl & 0x1f]);
#else
		fw_error("DMA context %s has stopped, error code: %#x\n",
			 name, ctl & 0x1f);
#endif
	}
}

static void handle_dead_contexts(struct fw_ohci *ohci)
{
	unsigned int i;
	char name[8];

	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
	for (i = 0; i < 32; ++i) {
		if (!(ohci->it_context_support & (1 << i)))
			continue;
		sprintf(name, "IT%u", i);
		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
	}
	for (i = 0; i < 32; ++i) {
		if (!(ohci->ir_context_support & (1 << i)))
			continue;
		sprintf(name, "IR%u", i);
		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
	}
	/* TODO: maybe try to flush and restart the dead contexts */
}

1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
static u32 cycle_timer_ticks(u32 cycle_timer)
{
	u32 ticks;

	ticks = cycle_timer & 0xfff;
	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
	ticks += (3072 * 8000) * (cycle_timer >> 25);

	return ticks;
}

/*
 * Some controllers exhibit one or more of the following bugs when updating the
 * iso cycle timer register:
 *  - When the lowest six bits are wrapping around to zero, a read that happens
 *    at the same time will return garbage in the lowest ten bits.
 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
 *    not incremented for about 60 ns.
 *  - Occasionally, the entire register reads zero.
 *
 * To catch these, we read the register three times and ensure that the
 * difference between each two consecutive reads is approximately the same, i.e.
 * less than twice the other.  Furthermore, any negative difference indicates an
 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
 * execute, so we have enough precision to compute the ratio of the differences.)
 */
static u32 get_cycle_time(struct fw_ohci *ohci)
{
	u32 c0, c1, c2;
	u32 t0, t1, t2;
	s32 diff01, diff12;
	int i;

	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);

	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
		i = 0;
		c1 = c2;
		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		do {
			c0 = c1;
			c1 = c2;
			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
			t0 = cycle_timer_ticks(c0);
			t1 = cycle_timer_ticks(c1);
			t2 = cycle_timer_ticks(c2);
			diff01 = t1 - t0;
			diff12 = t2 - t1;
		} while ((diff01 <= 0 || diff12 <= 0 ||
			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
			 && i++ < 20);
	}

	return c2;
}

/*
 * This function has to be called at least every 64 seconds.  The bus_time
 * field stores not only the upper 25 bits of the BUS_TIME register but also
 * the most significant bit of the cycle timer in bit 6 so that we can detect
 * changes in this bit.
 */
static u32 update_bus_time(struct fw_ohci *ohci)
{
	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;

	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
		ohci->bus_time += 0x40;

	return ohci->bus_time | cycle_time_seconds;
}

1705 1706 1707
static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
1708
	int self_id_count, i, j, reg;
1709 1710
	int generation, new_generation;
	unsigned long flags;
1711 1712
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1713
	bool is_new_root;
1714 1715 1716

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1717
		fw_notify("node ID not valid, new bus reset in progress\n");
1718 1719
		return;
	}
1720 1721 1722 1723 1724 1725
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1726

1727 1728 1729 1730 1731 1732
	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
	if (!(ohci->is_root && is_new_root))
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	ohci->is_root = is_new_root;

1733 1734 1735 1736 1737
	reg = reg_read(ohci, OHCI1394_SelfIDCount);
	if (reg & OHCI1394_SelfIDCount_selfIDError) {
		fw_notify("inconsistent self IDs\n");
		return;
	}
1738 1739
	/*
	 * The count in the SelfIDCount register is the number of
1740 1741
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1742 1743
	 * bit extra to get the actual number of self IDs.
	 */
1744 1745
	self_id_count = (reg >> 3) & 0xff;
	if (self_id_count == 0 || self_id_count > 252) {
1746 1747 1748
		fw_notify("inconsistent self IDs\n");
		return;
	}
1749
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1750
	rmb();
1751 1752

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1753 1754 1755 1756
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
			fw_notify("inconsistent self IDs\n");
			return;
		}
1757 1758
		ohci->self_id_buffer[j] =
				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1759
	}
1760
	rmb();
1761

1762 1763
	/*
	 * Check the consistency of the self IDs we just read.  The
1764 1765 1766 1767 1768 1769 1770 1771 1772
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1773 1774
	 * of self IDs.
	 */
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

1786
	ohci->generation = -1; /* prevent AT packet queueing */
1787 1788
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1789 1790 1791

	spin_unlock_irqrestore(&ohci->lock, flags);

1792 1793 1794 1795 1796
	/*
	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
	 * packets in the AT queues and software needs to drain them.
	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
	 */
1797 1798 1799 1800 1801 1802
	at_context_flush(&ohci->at_request_ctx);
	at_context_flush(&ohci->at_response_ctx);

	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
1803 1804
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

1805
	if (ohci->quirks & QUIRK_RESET_PACKET)
1806 1807
		ohci->request_generation = generation;

1808 1809
	/*
	 * This next bit is unrelated to the AT context stuff but we
1810 1811 1812 1813
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
T
Thomas Weber 已提交
1814
	 * next_config_rom pointer so a new update can take place.
1815
	 */
1816 1817

	if (ohci->next_config_rom != NULL) {
1818 1819 1820 1821
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1822 1823 1824 1825
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1826 1827
		/*
		 * Restore config_rom image and manually update
1828 1829
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1830 1831
		 * do that last.
		 */
1832 1833
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
1834 1835 1836
		ohci->config_rom[0] = ohci->next_header;
		reg_write(ohci, OHCI1394_ConfigROMhdr,
			  be32_to_cpu(ohci->next_header));
1837 1838
	}

1839 1840 1841 1842 1843
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif

1844 1845
	spin_unlock_irqrestore(&ohci->lock, flags);

1846 1847 1848 1849
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1850 1851
	log_selfids(ohci->node_id, generation,
		    self_id_count, ohci->self_id_buffer);
1852

1853
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1854 1855 1856
				 self_id_count, ohci->self_id_buffer,
				 ohci->csr_state_setclear_abdicate);
	ohci->csr_state_setclear_abdicate = false;
1857 1858 1859 1860 1861
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1862
	u32 event, iso_event;
1863 1864 1865 1866
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1867
	if (!event || !~event)
1868 1869
		return IRQ_NONE;

1870 1871 1872 1873 1874 1875
	/*
	 * busReset and postedWriteErr must not be cleared yet
	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
	 */
	reg_write(ohci, OHCI1394_IntEventClear,
		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
1876
	log_irqs(event);
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
	if (event & OHCI1394_isochRx) {
		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

		while (iso_event) {
			i = ffs(iso_event) - 1;
			tasklet_schedule(
				&ohci->ir_context_list[i].context.tasklet);
			iso_event &= ~(1 << i);
		}
1903 1904
	}

1905 1906 1907
	if (event & OHCI1394_isochTx) {
		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1908

1909 1910 1911 1912 1913 1914
		while (iso_event) {
			i = ffs(iso_event) - 1;
			tasklet_schedule(
				&ohci->it_context_list[i].context.tasklet);
			iso_event &= ~(1 << i);
		}
1915 1916
	}

1917 1918 1919 1920
	if (unlikely(event & OHCI1394_regAccessFail))
		fw_error("Register access failure - "
			 "please notify linux1394-devel@lists.sf.net\n");

1921 1922 1923 1924 1925
	if (unlikely(event & OHCI1394_postedWriteErr)) {
		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
		reg_write(ohci, OHCI1394_IntEventClear,
			  OHCI1394_postedWriteErr);
1926
		fw_error("PCI posted write error\n");
1927
	}
1928

1929 1930 1931 1932 1933 1934 1935
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
			fw_notify("isochronous cycle too long\n");
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
	if (unlikely(event & OHCI1394_cycleInconsistent)) {
		/*
		 * We need to clear this event bit in order to make
		 * cycleMatch isochronous I/O work.  In theory we should
		 * stop active cycleMatch iso contexts now and restart
		 * them at least two cycles later.  (FIXME?)
		 */
		if (printk_ratelimit())
			fw_notify("isochronous cycle inconsistent\n");
	}

1947 1948 1949
	if (unlikely(event & OHCI1394_unrecoverableError))
		handle_dead_contexts(ohci);

1950 1951 1952 1953
	if (event & OHCI1394_cycle64Seconds) {
		spin_lock(&ohci->lock);
		update_bus_time(ohci);
		spin_unlock(&ohci->lock);
1954 1955
	} else
		flush_writes(ohci);
1956

1957 1958 1959
	return IRQ_HANDLED;
}

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

1976 1977 1978 1979 1980 1981 1982 1983 1984
static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
{
	size_t size = length * 4;

	memcpy(dest, src, size);
	if (size < CONFIG_ROM_SIZE)
		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
}

1985 1986 1987
static int configure_1394a_enhancements(struct fw_ohci *ohci)
{
	bool enable_1394a;
1988
	int ret, clear, set, offset;
1989 1990 1991 1992 1993 1994 1995 1996

	/* Check if the driver should configure link and PHY. */
	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
	      OHCI1394_HCControl_programPhyEnable))
		return 0;

	/* Paranoia: check whether the PHY supports 1394a, too. */
	enable_1394a = false;
1997 1998 1999 2000 2001 2002 2003 2004
	ret = read_phy_reg(ohci, 2);
	if (ret < 0)
		return ret;
	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
		ret = read_paged_phy_reg(ohci, 1, 8);
		if (ret < 0)
			return ret;
		if (ret >= 1)
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
			enable_1394a = true;
	}

	if (ohci->quirks & QUIRK_NO_1394A)
		enable_1394a = false;

	/* Configure PHY and link consistently. */
	if (enable_1394a) {
		clear = 0;
		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
	} else {
		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
		set = 0;
	}
2019
	ret = update_phy_reg(ohci, 5, clear, set);
2020 2021
	if (ret < 0)
		return ret;
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035

	if (enable_1394a)
		offset = OHCI1394_HCControlSet;
	else
		offset = OHCI1394_HCControlClear;
	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);

	/* Clean up: configuration has been taken care of. */
	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_programPhyEnable);

	return 0;
}

2036 2037
static int ohci_enable(struct fw_card *card,
		       const __be32 *config_rom, size_t length)
2038 2039 2040
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);
2041
	u32 lps, seconds, version, irqs;
2042
	int i, ret;
2043

2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
2054 2055
	 * full link enabled.  However, with some cards (well, at least
	 * a JMicron PCIe card), we have to try again sometimes.
2056 2057 2058 2059 2060
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071

	for (lps = 0, i = 0; !lps && i < 3; i++) {
		msleep(50);
		lps = reg_read(ohci, OHCI1394_HCControlSet) &
		      OHCI1394_HCControl_LPS;
	}

	if (!lps) {
		fw_error("Failed to set Link Power Status\n");
		return -EIO;
	}
2072 2073 2074 2075

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

2076
	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2077 2078 2079 2080 2081 2082 2083
	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2084 2085
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
		  (200 << 16));
2086

2087 2088 2089 2090
	seconds = lower_32_bits(get_seconds());
	reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
	ohci->bus_time = seconds & ~0x3f;

2091 2092 2093 2094
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	if (version >= OHCI_VERSION_1_1) {
		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
			  0xfffffffe);
2095
		card->broadcast_channel_auto_allocated = true;
2096 2097
	}

2098 2099 2100 2101
	/* Get implemented bits of the priority arbitration request counter. */
	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
	reg_write(ohci, OHCI1394_FairnessControl, 0);
2102
	card->priority_budget_implemented = ohci->pri_req_max != 0;
2103 2104 2105 2106 2107

	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);

2108 2109 2110
	ret = configure_1394a_enhancements(ohci);
	if (ret < 0)
		return ret;
2111

2112
	/* Activate link_on bit and contender bit in our self ID packets.*/
2113 2114 2115
	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
	if (ret < 0)
		return ret;
2116

2117 2118
	/*
	 * When the link is not yet enabled, the atomic config rom
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

2136 2137 2138 2139 2140 2141 2142
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
2143

2144
		copy_config_rom(ohci->next_config_rom, config_rom, length);
2145 2146 2147 2148 2149 2150 2151 2152
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
2153

2154
	ohci->next_header = ohci->next_config_rom[0];
2155 2156
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2157 2158
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
2159 2160 2161 2162
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

2163 2164
	if (!(ohci->quirks & QUIRK_NO_MSI))
		pci_enable_msi(dev);
2165
	if (request_irq(dev->irq, irq_handler,
2166 2167 2168 2169
			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
			ohci_driver_name, ohci)) {
		fw_error("Failed to allocate interrupt %d.\n", dev->irq);
		pci_disable_msi(dev);
2170 2171 2172 2173 2174
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

2175 2176 2177 2178 2179 2180
	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		OHCI1394_RQPkt | OHCI1394_RSPkt |
		OHCI1394_isochTx | OHCI1394_isochRx |
		OHCI1394_postedWriteErr |
		OHCI1394_selfIDComplete |
		OHCI1394_regAccessFail |
2181
		OHCI1394_cycle64Seconds |
2182 2183 2184
		OHCI1394_cycleInconsistent |
		OHCI1394_unrecoverableError |
		OHCI1394_cycleTooLong |
2185 2186 2187 2188 2189
		OHCI1394_masterIntEnable;
	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
		irqs |= OHCI1394_busReset;
	reg_write(ohci, OHCI1394_IntMaskSet, irqs);

2190 2191 2192
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
2193 2194 2195 2196 2197 2198 2199

	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_rcvPhyPkt);

	ar_context_run(&ohci->ar_request_ctx);
	ar_context_run(&ohci->ar_response_ctx); /* also flushes writes */
2200

2201 2202
	/* We are ready to go, reset bus to finish initialization. */
	fw_schedule_bus_reset(&ohci->card, false, true);
2203 2204 2205 2206

	return 0;
}

2207
static int ohci_set_config_rom(struct fw_card *card,
2208
			       const __be32 *config_rom, size_t length)
2209 2210 2211
{
	struct fw_ohci *ohci;
	unsigned long flags;
2212
	int ret = -EBUSY;
2213
	__be32 *next_config_rom;
2214
	dma_addr_t uninitialized_var(next_config_rom_bus);
2215 2216 2217

	ohci = fw_ohci(card);

2218 2219
	/*
	 * When the OHCI controller is enabled, the config rom update
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;

2257
		copy_config_rom(ohci->next_config_rom, config_rom, length);
2258 2259 2260 2261 2262 2263

		ohci->next_header = config_rom[0];
		ohci->next_config_rom[0] = 0;

		reg_write(ohci, OHCI1394_ConfigROMmap,
			  ohci->next_config_rom_bus);
2264
		ret = 0;
2265 2266 2267 2268
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

2269 2270
	/*
	 * Now initiate a bus reset to have the changes take
2271 2272 2273
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
2274 2275
	 * takes effect.
	 */
2276
	if (ret == 0)
2277
		fw_schedule_bus_reset(&ohci->card, true, true);
2278 2279 2280
	else
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);
2281

2282
	return ret;
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

2299 2300 2301
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
2302 2303
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
2304
	int ret = -ENOENT;
2305

2306
	tasklet_disable(&ctx->tasklet);
2307

2308 2309
	if (packet->ack != 0)
		goto out;
2310

2311
	if (packet->payload_mapped)
2312 2313 2314
		dma_unmap_single(ohci->card.device, packet->payload_bus,
				 packet->payload_length, DMA_TO_DEVICE);

2315
	log_ar_at_event('T', packet->speed, packet->header, 0x20);
2316 2317 2318
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
2319
	ret = 0;
2320 2321
 out:
	tasklet_enable(&ctx->tasklet);
2322

2323
	return ret;
2324 2325
}

2326 2327
static int ohci_enable_phys_dma(struct fw_card *card,
				int node_id, int generation)
2328
{
2329 2330 2331
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	return 0;
#else
2332 2333
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
2334
	int n, ret = 0;
2335

2336 2337 2338 2339
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
2340 2341 2342 2343

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
2344
		ret = -ESTALE;
2345 2346 2347
		goto out;
	}

2348 2349 2350 2351
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
2352 2353 2354 2355 2356 2357 2358

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

2359 2360
	flush_writes(ohci);
 out:
2361
	spin_unlock_irqrestore(&ohci->lock, flags);
2362 2363

	return ret;
2364
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2365
}
S
Stefan Richter 已提交
2366

2367
static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2368
{
2369
	struct fw_ohci *ohci = fw_ohci(card);
2370 2371
	unsigned long flags;
	u32 value;
2372 2373

	switch (csr_offset) {
2374 2375 2376 2377 2378
	case CSR_STATE_CLEAR:
	case CSR_STATE_SET:
		if (ohci->is_root &&
		    (reg_read(ohci, OHCI1394_LinkControlSet) &
		     OHCI1394_LinkControl_cycleMaster))
2379
			value = CSR_STATE_BIT_CMSTR;
2380
		else
2381 2382 2383
			value = 0;
		if (ohci->csr_state_setclear_abdicate)
			value |= CSR_STATE_BIT_ABDICATE;
2384

2385
		return value;
2386

2387 2388 2389
	case CSR_NODE_IDS:
		return reg_read(ohci, OHCI1394_NodeID) << 16;

2390 2391 2392
	case CSR_CYCLE_TIME:
		return get_cycle_time(ohci);

2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
	case CSR_BUS_TIME:
		/*
		 * We might be called just after the cycle timer has wrapped
		 * around but just before the cycle64Seconds handler, so we
		 * better check here, too, if the bus time needs to be updated.
		 */
		spin_lock_irqsave(&ohci->lock, flags);
		value = update_bus_time(ohci);
		spin_unlock_irqrestore(&ohci->lock, flags);
		return value;

2404 2405 2406 2407
	case CSR_BUSY_TIMEOUT:
		value = reg_read(ohci, OHCI1394_ATRetries);
		return (value >> 4) & 0x0ffff00f;

2408 2409 2410 2411
	case CSR_PRIORITY_BUDGET:
		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
			(ohci->pri_req_max << 8);

2412 2413 2414 2415
	default:
		WARN_ON(1);
		return 0;
	}
2416 2417
}

2418
static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2419 2420
{
	struct fw_ohci *ohci = fw_ohci(card);
2421
	unsigned long flags;
2422

2423
	switch (csr_offset) {
2424 2425 2426 2427 2428 2429
	case CSR_STATE_CLEAR:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlClear,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2430 2431
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = false;
2432
		break;
2433

2434 2435 2436 2437 2438 2439
	case CSR_STATE_SET:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlSet,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2440 2441
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = true;
2442
		break;
2443

2444 2445 2446 2447 2448
	case CSR_NODE_IDS:
		reg_write(ohci, OHCI1394_NodeID, value >> 16);
		flush_writes(ohci);
		break;

2449 2450 2451 2452 2453 2454 2455
	case CSR_CYCLE_TIME:
		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
		reg_write(ohci, OHCI1394_IntEventSet,
			  OHCI1394_cycleInconsistent);
		flush_writes(ohci);
		break;

2456 2457 2458 2459 2460 2461
	case CSR_BUS_TIME:
		spin_lock_irqsave(&ohci->lock, flags);
		ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
		spin_unlock_irqrestore(&ohci->lock, flags);
		break;

2462 2463 2464 2465 2466 2467 2468
	case CSR_BUSY_TIMEOUT:
		value = (value & 0xf) | ((value & 0xf) << 4) |
			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
		reg_write(ohci, OHCI1394_ATRetries, value);
		flush_writes(ohci);
		break;

2469 2470 2471 2472 2473
	case CSR_PRIORITY_BUDGET:
		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
		flush_writes(ohci);
		break;

2474 2475 2476 2477
	default:
		WARN_ON(1);
		break;
	}
2478 2479
}

2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
static void copy_iso_headers(struct iso_context *ctx, void *p)
{
	int i = ctx->header_length;

	if (i + ctx->base.header_size > PAGE_SIZE)
		return;

	/*
	 * The iso header is byteswapped to little endian by
	 * the controller, but the remaining header quadlets
	 * are big endian.  We want to present all the headers
	 * as big endian, so we have to swap the first quadlet.
	 */
	if (ctx->base.header_size > 0)
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
	if (ctx->base.header_size > 4)
		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
	if (ctx->base.header_size > 8)
		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
	ctx->header_length += ctx->base.header_size;
}

2502 2503 2504 2505 2506 2507
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2508
	struct descriptor *pd;
2509
	__le32 *ir_header;
2510
	void *p;
2511

2512
	for (pd = d; pd <= last; pd++)
2513 2514 2515
		if (pd->transfer_status)
			break;
	if (pd > last)
2516 2517 2518
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

2519 2520
	p = last + 1;
	copy_iso_headers(ctx, p);
2521

2522 2523
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) p;
2524 2525 2526 2527
		ctx->base.callback.sc(&ctx->base,
				      le32_to_cpu(ir_header[0]) & 0xffff,
				      ctx->header_length, ctx->header,
				      ctx->base.callback_data);
2528 2529 2530 2531 2532 2533
		ctx->header_length = 0;
	}

	return 1;
}

2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
/* d == last because each descriptor block is only a single descriptor. */
static int handle_ir_buffer_fill(struct context *context,
				 struct descriptor *d,
				 struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);

	if (!last->transfer_status)
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
		ctx->base.callback.mc(&ctx->base,
				      le32_to_cpu(last->data_address) +
				      le16_to_cpu(last->req_count) -
				      le16_to_cpu(last->res_count),
				      ctx->base.callback_data);

	return 1;
}

2556 2557 2558
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
2559
{
2560 2561
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2562 2563
	int i;
	struct descriptor *pd;
S
Stefan Richter 已提交
2564

2565 2566 2567 2568 2569
	for (pd = d; pd <= last; pd++)
		if (pd->transfer_status)
			break;
	if (pd > last)
		/* Descriptor(s) not done yet, stop iteration */
2570 2571
		return 0;

2572 2573 2574 2575 2576 2577 2578 2579 2580
	i = ctx->header_length;
	if (i + 4 < PAGE_SIZE) {
		/* Present this value as big-endian to match the receive code */
		*(__be32 *)(ctx->header + i) = cpu_to_be32(
				((u32)le16_to_cpu(pd->transfer_status) << 16) |
				le16_to_cpu(pd->res_count));
		ctx->header_length += 4;
	}
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2581 2582 2583
		ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
				      ctx->header_length, ctx->header,
				      ctx->base.callback_data);
2584 2585
		ctx->header_length = 0;
	}
2586
	return 1;
2587 2588
}

2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
{
	u32 hi = channels >> 32, lo = channels;

	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
	mmiowb();
	ohci->mc_channels = channels;
}

2601
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2602
				int type, int channel, size_t header_size)
2603 2604
{
	struct fw_ohci *ohci = fw_ohci(card);
2605 2606 2607 2608
	struct iso_context *uninitialized_var(ctx);
	descriptor_callback_t uninitialized_var(callback);
	u64 *uninitialized_var(channels);
	u32 *uninitialized_var(mask), uninitialized_var(regs);
2609
	unsigned long flags;
2610
	int index, ret = -EBUSY;
2611

2612
	spin_lock_irqsave(&ohci->lock, flags);
2613

2614 2615 2616
	switch (type) {
	case FW_ISO_CONTEXT_TRANSMIT:
		mask     = &ohci->it_context_mask;
2617
		callback = handle_it_packet;
2618 2619 2620 2621 2622 2623 2624 2625 2626
		index    = ffs(*mask) - 1;
		if (index >= 0) {
			*mask &= ~(1 << index);
			regs = OHCI1394_IsoXmitContextBase(index);
			ctx  = &ohci->it_context_list[index];
		}
		break;

	case FW_ISO_CONTEXT_RECEIVE:
2627
		channels = &ohci->ir_context_channels;
2628
		mask     = &ohci->ir_context_mask;
2629
		callback = handle_ir_packet_per_buffer;
2630 2631 2632 2633 2634 2635 2636 2637
		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
		if (index >= 0) {
			*channels &= ~(1ULL << channel);
			*mask     &= ~(1 << index);
			regs = OHCI1394_IsoRcvContextBase(index);
			ctx  = &ohci->ir_context_list[index];
		}
		break;
2638

2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		mask     = &ohci->ir_context_mask;
		callback = handle_ir_buffer_fill;
		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
		if (index >= 0) {
			ohci->mc_allocated = true;
			*mask &= ~(1 << index);
			regs = OHCI1394_IsoRcvContextBase(index);
			ctx  = &ohci->ir_context_list[index];
		}
		break;

	default:
		index = -1;
		ret = -ENOSYS;
2654
	}
2655

2656 2657 2658
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
2659
		return ERR_PTR(ret);
S
Stefan Richter 已提交
2660

2661
	memset(ctx, 0, sizeof(*ctx));
2662 2663
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
2664 2665
	if (ctx->header == NULL) {
		ret = -ENOMEM;
2666
		goto out;
2667
	}
2668 2669
	ret = context_init(&ctx->context, ohci, regs, callback);
	if (ret < 0)
2670
		goto out_with_header;
2671

2672 2673 2674
	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
		set_multichannel_mask(ohci, 0);

2675
	return &ctx->base;
2676 2677 2678 2679 2680

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690

	switch (type) {
	case FW_ISO_CONTEXT_RECEIVE:
		*channels |= 1ULL << channel;
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		ohci->mc_allocated = false;
		break;
	}
2691
	*mask |= 1 << index;
2692

2693 2694
	spin_unlock_irqrestore(&ohci->lock, flags);

2695
	return ERR_PTR(ret);
2696 2697
}

2698 2699
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
2700
{
S
Stefan Richter 已提交
2701
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2702
	struct fw_ohci *ohci = ctx->context.ohci;
2703
	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2704 2705
	int index;

2706 2707 2708 2709
	/* the controller cannot start without any queued packets */
	if (ctx->context.last->branch_address == 0)
		return -ENODATA;

2710 2711
	switch (ctx->base.type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2712
		index = ctx - ohci->it_context_list;
2713 2714 2715
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2716
				(cycle & 0x7fff) << 16;
2717

2718 2719
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2720
		context_run(&ctx->context, match);
2721 2722 2723 2724 2725 2726
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
		/* fall through */
	case FW_ISO_CONTEXT_RECEIVE:
2727
		index = ctx - ohci->ir_context_list;
2728 2729 2730 2731 2732
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
2733

2734 2735
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2736
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2737
		context_run(&ctx->context, control);
2738 2739 2740 2741

		ctx->sync = sync;
		ctx->tags = tags;

2742
		break;
2743
	}
2744 2745 2746 2747

	return 0;
}

2748 2749 2750
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2751
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2752 2753
	int index;

2754 2755
	switch (ctx->base.type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2756 2757
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2758 2759 2760 2761
		break;

	case FW_ISO_CONTEXT_RECEIVE:
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2762 2763
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2764
		break;
2765 2766 2767
	}
	flush_writes(ohci);
	context_stop(&ctx->context);
2768
	tasklet_kill(&ctx->context.tasklet);
2769 2770 2771 2772

	return 0;
}

2773 2774 2775
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2776
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2777 2778 2779
	unsigned long flags;
	int index;

2780 2781
	ohci_stop_iso(base);
	context_release(&ctx->context);
2782
	free_page((unsigned long)ctx->header);
2783

2784 2785
	spin_lock_irqsave(&ohci->lock, flags);

2786 2787
	switch (base->type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2788 2789
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
2790 2791 2792
		break;

	case FW_ISO_CONTEXT_RECEIVE:
2793 2794
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
2795
		ohci->ir_context_channels |= 1ULL << base->channel;
2796 2797 2798 2799 2800 2801 2802 2803 2804
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
		ohci->ir_context_channels |= ohci->mc_channels;
		ohci->mc_channels = 0;
		ohci->mc_allocated = false;
		break;
2805 2806 2807 2808 2809
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
	unsigned long flags;
	int ret;

	switch (base->type) {
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:

		spin_lock_irqsave(&ohci->lock, flags);

		/* Don't allow multichannel to grab other contexts' channels. */
		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
			*channels = ohci->ir_context_channels;
			ret = -EBUSY;
		} else {
			set_multichannel_mask(ohci, *channels);
			ret = 0;
		}

		spin_unlock_irqrestore(&ohci->lock, flags);

		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

2840 2841 2842 2843 2844 2845 2846 2847
#ifdef CONFIG_PM
static void ohci_resume_iso_dma(struct fw_ohci *ohci)
{
	int i;
	struct iso_context *ctx;

	for (i = 0 ; i < ohci->n_ir ; i++) {
		ctx = &ohci->ir_context_list[i];
2848
		if (ctx->context.running)
2849 2850 2851 2852 2853
			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
	}

	for (i = 0 ; i < ohci->n_it ; i++) {
		ctx = &ohci->it_context_list[i];
2854
		if (ctx->context.running)
2855 2856 2857 2858 2859
			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
	}
}
#endif

2860 2861 2862 2863
static int queue_iso_transmit(struct iso_context *ctx,
			      struct fw_iso_packet *packet,
			      struct fw_iso_buffer *buffer,
			      unsigned long payload)
2864
{
2865
	struct descriptor *d, *last, *pd;
2866 2867
	struct fw_iso_packet *p;
	__le32 *header;
2868
	dma_addr_t d_bus, page_bus;
2869 2870
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
2871
	int page, end_page, i, length, offset;
2872 2873

	p = packet;
2874
	payload_index = payload;
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
2893
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2894

2895 2896 2897
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
2898 2899

	if (!p->skip) {
2900
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2901
		d[0].req_count = cpu_to_le16(8);
2902 2903 2904 2905 2906 2907 2908 2909
		/*
		 * Link the skip address to this descriptor itself.  This causes
		 * a context to skip a cycle whenever lost cycles or FIFO
		 * overruns occur, without dropping the data.  The application
		 * should then decide whether this is an error condition or not.
		 * FIXME:  Make the context's cycle-lost behaviour configurable?
		 */
		d[0].branch_address = cpu_to_le32(d_bus | z);
2910 2911

		header = (__le32 *) &d[1];
2912 2913 2914 2915 2916
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
2917
		header[1] =
2918
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2919 2920 2921 2922 2923
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
2924
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
2937 2938 2939

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
2940 2941 2942 2943 2944

		payload_index += length;
	}

	if (p->interrupt)
2945
		irq = DESCRIPTOR_IRQ_ALWAYS;
2946
	else
2947
		irq = DESCRIPTOR_NO_IRQ;
2948

2949
	last = z == 2 ? d : d + z - 1;
2950 2951 2952
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
2953
				     irq);
2954

2955
	context_append(&ctx->context, d, z, header_z);
2956 2957 2958

	return 0;
}
S
Stefan Richter 已提交
2959

2960 2961 2962 2963
static int queue_iso_packet_per_buffer(struct iso_context *ctx,
				       struct fw_iso_packet *packet,
				       struct fw_iso_buffer *buffer,
				       unsigned long payload)
2964
{
2965
	struct descriptor *d, *pd;
2966 2967
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
2968 2969
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
2970 2971

	/*
2972 2973
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
2974
	 */
2975
	packet_count = packet->header_length / ctx->base.header_size;
2976
	header_size  = max(ctx->base.header_size, (size_t)8);
2977 2978 2979 2980 2981

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
2982
	payload_per_buffer = packet->payload_length / packet_count;
2983 2984 2985

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
2986
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2987
		d = context_get_descriptors(&ctx->context,
2988
				z + header_z, &d_bus);
2989 2990 2991
		if (d == NULL)
			return -ENOMEM;

2992 2993
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
2994
		if (packet->skip && i == 0)
2995
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2996 2997
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
2998
		d->transfer_status = 0;
2999 3000
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

3001
		rest = payload_per_buffer;
3002
		pd = d;
3003
		for (j = 1; j < z; j++) {
3004
			pd++;
3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
3024 3025 3026
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
3027
		if (packet->interrupt && i == packet_count - 1)
3028 3029 3030 3031 3032 3033 3034 3035
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
static int queue_iso_buffer_fill(struct iso_context *ctx,
				 struct fw_iso_packet *packet,
				 struct fw_iso_buffer *buffer,
				 unsigned long payload)
{
	struct descriptor *d;
	dma_addr_t d_bus, page_bus;
	int page, offset, rest, z, i, length;

	page   = payload >> PAGE_SHIFT;
	offset = payload & ~PAGE_MASK;
	rest   = packet->payload_length;

	/* We need one descriptor for each page in the buffer. */
	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);

	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
		return -EFAULT;

	for (i = 0; i < z; i++) {
		d = context_get_descriptors(&ctx->context, 1, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
					 DESCRIPTOR_BRANCH_ALWAYS);
		if (packet->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
		if (packet->interrupt && i == z - 1)
			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		if (offset + rest < PAGE_SIZE)
			length = rest;
		else
			length = PAGE_SIZE - offset;
		d->req_count = cpu_to_le16(length);
		d->res_count = d->req_count;
		d->transfer_status = 0;

		page_bus = page_private(buffer->pages[page]);
		d->data_address = cpu_to_le32(page_bus + offset);

		rest -= length;
		offset = 0;
		page++;

		context_append(&ctx->context, d, 1, 0);
	}

	return 0;
}

3088 3089 3090 3091
static int ohci_queue_iso(struct fw_iso_context *base,
			  struct fw_iso_packet *packet,
			  struct fw_iso_buffer *buffer,
			  unsigned long payload)
3092
{
3093
	struct iso_context *ctx = container_of(base, struct iso_context, base);
3094
	unsigned long flags;
3095
	int ret = -ENOSYS;
3096

3097
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
	switch (base->type) {
	case FW_ISO_CONTEXT_TRANSMIT:
		ret = queue_iso_transmit(ctx, packet, buffer, payload);
		break;
	case FW_ISO_CONTEXT_RECEIVE:
		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
		break;
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
		break;
	}
3109 3110
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

3111
	return ret;
3112 3113
}

3114
static const struct fw_card_driver ohci_driver = {
3115
	.enable			= ohci_enable,
3116
	.read_phy_reg		= ohci_read_phy_reg,
3117 3118 3119 3120
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
3121
	.cancel_packet		= ohci_cancel_packet,
3122
	.enable_phys_dma	= ohci_enable_phys_dma,
3123 3124
	.read_csr		= ohci_read_csr,
	.write_csr		= ohci_write_csr,
3125 3126 3127

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
3128
	.set_iso_channels	= ohci_set_iso_channels,
3129
	.queue_iso		= ohci_queue_iso,
3130
	.start_iso		= ohci_start_iso,
3131
	.stop_iso		= ohci_stop_iso,
3132 3133
};

3134
#ifdef CONFIG_PPC_PMAC
3135
static void pmac_ohci_on(struct pci_dev *dev)
3136
{
3137 3138 3139 3140 3141 3142 3143 3144
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
3145 3146
}

3147
static void pmac_ohci_off(struct pci_dev *dev)
3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
{
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
}
#else
3159 3160
static inline void pmac_ohci_on(struct pci_dev *dev) {}
static inline void pmac_ohci_off(struct pci_dev *dev) {}
3161 3162
#endif /* CONFIG_PPC_PMAC */

3163 3164
static int __devinit pci_probe(struct pci_dev *dev,
			       const struct pci_device_id *ent)
3165 3166
{
	struct fw_ohci *ohci;
3167
	u32 bus_options, max_receive, link_speed, version;
3168
	u64 guid;
3169
	int i, err;
3170 3171
	size_t size;

3172
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3173
	if (ohci == NULL) {
3174 3175
		err = -ENOMEM;
		goto fail;
3176 3177 3178 3179
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

3180
	pmac_ohci_on(dev);
3181

3182 3183
	err = pci_enable_device(dev);
	if (err) {
3184
		fw_error("Failed to enable OHCI hardware\n");
3185
		goto fail_free;
3186 3187 3188 3189 3190 3191 3192
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);
3193
	mutex_init(&ohci->phy_reg_mutex);
3194 3195 3196 3197

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

3198 3199
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
3200
		fw_error("MMIO resource unavailable\n");
3201
		goto fail_disable;
3202 3203 3204 3205 3206
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
3207 3208
		err = -ENXIO;
		goto fail_iomem;
3209 3210
	}

3211
	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3212 3213 3214 3215 3216
		if ((ohci_quirks[i].vendor == dev->vendor) &&
		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
		     ohci_quirks[i].device == dev->device) &&
		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
		     ohci_quirks[i].revision >= dev->revision)) {
3217 3218 3219
			ohci->quirks = ohci_quirks[i].flags;
			break;
		}
3220 3221
	if (param_quirks)
		ohci->quirks = param_quirks;
3222

3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
	/*
	 * Because dma_alloc_coherent() allocates at least one page,
	 * we save space by using a common buffer for the AR request/
	 * response descriptors and the self IDs buffer.
	 */
	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
	ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
					       PAGE_SIZE,
					       &ohci->misc_buffer_bus,
					       GFP_KERNEL);
	if (!ohci->misc_buffer) {
		err = -ENOMEM;
		goto fail_iounmap;
	}

	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3240 3241
			      OHCI1394_AsReqRcvContextControlSet);
	if (err < 0)
3242
		goto fail_misc_buf;
3243

3244
	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3245 3246 3247
			      OHCI1394_AsRspRcvContextControlSet);
	if (err < 0)
		goto fail_arreq_ctx;
3248

3249 3250 3251 3252
	err = context_init(&ohci->at_request_ctx, ohci,
			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
	if (err < 0)
		goto fail_arrsp_ctx;
3253

3254 3255 3256 3257
	err = context_init(&ohci->at_response_ctx, ohci,
			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
	if (err < 0)
		goto fail_atreq_ctx;
3258 3259

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3260
	ohci->ir_context_channels = ~0ULL;
3261
	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3262
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3263
	ohci->ir_context_mask = ohci->ir_context_support;
3264 3265
	ohci->n_ir = hweight32(ohci->ir_context_mask);
	size = sizeof(struct iso_context) * ohci->n_ir;
3266
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3267 3268

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3269
	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3270
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3271
	ohci->it_context_mask = ohci->it_context_support;
3272 3273
	ohci->n_it = hweight32(ohci->it_context_mask);
	size = sizeof(struct iso_context) * ohci->n_it;
3274
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3275 3276

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3277
		err = -ENOMEM;
3278
		goto fail_contexts;
3279 3280
	}

3281 3282
	ohci->self_id_cpu = ohci->misc_buffer     + PAGE_SIZE/2;
	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3283 3284 3285 3286 3287 3288 3289

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

3290
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3291
	if (err)
3292
		goto fail_contexts;
3293

3294 3295 3296 3297
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
		  "%d IR + %d IT contexts, quirks 0x%x\n",
		  dev_name(&dev->dev), version >> 16, version & 0xff,
3298
		  ohci->n_ir, ohci->n_it, ohci->quirks);
3299

3300
	return 0;
3301

3302
 fail_contexts:
3303
	kfree(ohci->ir_context_list);
3304 3305
	kfree(ohci->it_context_list);
	context_release(&ohci->at_response_ctx);
3306
 fail_atreq_ctx:
3307
	context_release(&ohci->at_request_ctx);
3308
 fail_arrsp_ctx:
3309
	ar_context_release(&ohci->ar_response_ctx);
3310
 fail_arreq_ctx:
3311
	ar_context_release(&ohci->ar_request_ctx);
3312 3313 3314
 fail_misc_buf:
	dma_free_coherent(ohci->card.device, PAGE_SIZE,
			  ohci->misc_buffer, ohci->misc_buffer_bus);
3315
 fail_iounmap:
3316 3317 3318 3319 3320
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
3321
 fail_free:
3322
	kfree(ohci);
3323
	pmac_ohci_off(dev);
3324 3325 3326
 fail:
	if (err == -ENOMEM)
		fw_error("Out of memory\n");
3327 3328

	return err;
3329 3330 3331 3332 3333 3334 3335
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
3336 3337
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
3338 3339
	fw_core_remove_card(&ohci->card);

3340 3341 3342 3343
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
3344 3345 3346

	software_reset(ohci);
	free_irq(dev->irq, ohci);
3347 3348 3349 3350 3351 3352 3353 3354 3355

	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->next_config_rom, ohci->next_config_rom_bus);
	if (ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
	ar_context_release(&ohci->ar_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
3356 3357
	dma_free_coherent(ohci->card.device, PAGE_SIZE,
			  ohci->misc_buffer, ohci->misc_buffer_bus);
3358 3359
	context_release(&ohci->at_request_ctx);
	context_release(&ohci->at_response_ctx);
3360 3361
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
3362
	pci_disable_msi(dev);
3363 3364 3365
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
3366
	kfree(ohci);
3367
	pmac_ohci_off(dev);
3368

3369 3370 3371
	fw_notify("Removed fw-ohci device.\n");
}

3372
#ifdef CONFIG_PM
3373
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3374
{
3375
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3376 3377 3378
	int err;

	software_reset(ohci);
3379
	free_irq(dev->irq, ohci);
3380
	pci_disable_msi(dev);
3381
	err = pci_save_state(dev);
3382
	if (err) {
3383
		fw_error("pci_save_state failed\n");
3384 3385
		return err;
	}
3386
	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3387 3388
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
3389
	pmac_ohci_off(dev);
3390

3391 3392 3393
	return 0;
}

3394
static int pci_resume(struct pci_dev *dev)
3395
{
3396
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3397 3398
	int err;

3399
	pmac_ohci_on(dev);
3400 3401 3402
	pci_set_power_state(dev, PCI_D0);
	pci_restore_state(dev);
	err = pci_enable_device(dev);
3403
	if (err) {
3404
		fw_error("pci_enable_device failed\n");
3405 3406 3407
		return err;
	}

3408 3409 3410 3411 3412 3413 3414
	/* Some systems don't setup GUID register on resume from ram  */
	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
					!reg_read(ohci, OHCI1394_GUIDHi)) {
		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
	}

3415 3416 3417 3418 3419
	err = ohci_enable(&ohci->card, NULL, 0);
	if (err)
		return err;

	ohci_resume_iso_dma(ohci);
3420

3421
	return 0;
3422 3423 3424
}
#endif

3425
static const struct pci_device_id pci_table[] = {
3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
3437 3438 3439 3440
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
3441 3442 3443 3444 3445 3446
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

3447 3448 3449 3450 3451
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);