ohci.c 102.9 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/bitops.h>
22
#include <linux/bug.h>
23
#include <linux/compiler.h>
24
#include <linux/delay.h>
S
Stefan Richter 已提交
25
#include <linux/device.h>
A
Andrew Morton 已提交
26
#include <linux/dma-mapping.h>
27
#include <linux/firewire.h>
S
Stefan Richter 已提交
28
#include <linux/firewire-constants.h>
29 30
#include <linux/init.h>
#include <linux/interrupt.h>
S
Stefan Richter 已提交
31
#include <linux/io.h>
32
#include <linux/kernel.h>
S
Stefan Richter 已提交
33
#include <linux/list.h>
A
Al Viro 已提交
34
#include <linux/mm.h>
35
#include <linux/module.h>
36
#include <linux/moduleparam.h>
37
#include <linux/mutex.h>
38
#include <linux/pci.h>
39
#include <linux/pci_ids.h>
40
#include <linux/slab.h>
S
Stefan Richter 已提交
41
#include <linux/spinlock.h>
S
Stefan Richter 已提交
42
#include <linux/string.h>
43
#include <linux/time.h>
44
#include <linux/vmalloc.h>
45
#include <linux/workqueue.h>
A
Andrew Morton 已提交
46

S
Stefan Richter 已提交
47
#include <asm/byteorder.h>
S
Stefan Richter 已提交
48
#include <asm/page.h>
49

50 51 52 53
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

54 55
#include "core.h"
#include "ohci.h"
56

57 58 59 60 61 62 63 64 65 66 67 68 69
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
70 71 72 73 74 75 76 77 78 79

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

80 81 82 83
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
84

85 86 87 88 89 90 91 92
#define AR_BUFFER_SIZE	(32*1024)
#define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
/* we need at least two pages for proper list management */
#define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)

#define MAX_ASYNC_PAYLOAD	4096
#define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
#define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
93

94 95
struct ar_context {
	struct fw_ohci *ohci;
96 97 98 99
	struct page *pages[AR_BUFFERS];
	void *buffer;
	struct descriptor *descriptors;
	dma_addr_t descriptors_bus;
100
	void *pointer;
101
	unsigned int last_buffer_index;
102
	u32 regs;
103 104 105
	struct tasklet_struct tasklet;
};

106 107 108 109 110
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
111 112 113 114 115 116 117 118 119 120 121 122 123

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

124
struct context {
S
Stefan Richter 已提交
125
	struct fw_ohci *ohci;
126
	u32 regs;
127
	int total_allocation;
128
	u32 current_bus;
129
	bool running;
130
	bool flushing;
S
Stefan Richter 已提交
131

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
	 * The last descriptor in the DMA program.  It contains the branch
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
156 157 158

	descriptor_callback_t callback;

S
Stefan Richter 已提交
159
	struct tasklet_struct tasklet;
160 161
};

162 163 164 165 166 167
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
168 169 170

struct iso_context {
	struct fw_iso_context base;
171
	struct context context;
172 173
	void *header;
	size_t header_length;
174 175 176
	unsigned long flushing_completions;
	u32 mc_buffer_bus;
	u16 mc_completed;
177
	u16 last_timestamp;
178 179
	u8 sync;
	u8 tags;
180 181 182 183 184 185 186 187
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

	__iomem char *registers;
188
	int node_id;
189
	int generation;
190
	int request_generation;	/* for timestamping incoming requests */
191
	unsigned quirks;
192
	unsigned int pri_req_max;
193
	u32 bus_time;
194
	bool is_root;
195
	bool csr_state_setclear_abdicate;
196 197
	int n_ir;
	int n_it;
198 199 200 201
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
202 203
	spinlock_t lock;

204 205
	struct mutex phy_reg_mutex;

206 207 208
	void *misc_buffer;
	dma_addr_t misc_buffer_bus;

209 210
	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
211 212
	struct context at_request_ctx;
	struct context at_response_ctx;
213

214
	u32 it_context_support;
215
	u32 it_context_mask;     /* unoccupied IT contexts */
216
	struct iso_context *it_context_list;
217
	u64 ir_context_channels; /* unoccupied channels */
218
	u32 ir_context_support;
219
	u32 ir_context_mask;     /* unoccupied IR contexts */
220
	struct iso_context *ir_context_list;
221 222
	u64 mc_channels; /* channels in use by the multichannel IR context */
	bool mc_allocated;
223 224 225 226 227 228 229 230 231

	__be32    *config_rom;
	dma_addr_t config_rom_bus;
	__be32    *next_config_rom;
	dma_addr_t next_config_rom_bus;
	__be32     next_header;

	__le32    *self_id_cpu;
	dma_addr_t self_id_bus;
232
	struct work_struct bus_reset_work;
233 234

	u32 self_id_buffer[512];
235 236
};

A
Adrian Bunk 已提交
237
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
238 239 240 241
{
	return container_of(card, struct fw_ohci, card);
}

242 243 244 245 246 247
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
248 249 250 251 252 253

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

254
#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
255 256 257 258 259 260
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
261
#define OHCI_TCODE_PHY_PACKET		0x0e
262
#define OHCI_VERSION_1_1		0x010010
263

264 265
static char ohci_driver_name[] = KBUILD_MODNAME;

266
#define PCI_DEVICE_ID_AGERE_FW643	0x5901
267
#define PCI_DEVICE_ID_CREATIVE_SB1394	0x4001
268
#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
269
#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009
270 271
#define PCI_DEVICE_ID_TI_TSB12LV26	0x8020
#define PCI_DEVICE_ID_TI_TSB82AA2	0x8025
272
#define PCI_VENDOR_ID_PINNACLE_SYSTEMS	0x11bd
273

274 275 276
#define QUIRK_CYCLE_TIMER		1
#define QUIRK_RESET_PACKET		2
#define QUIRK_BE_HEADERS		4
277
#define QUIRK_NO_1394A			8
278
#define QUIRK_NO_MSI			16
279
#define QUIRK_TI_SLLZ059		32
280 281 282

/* In case of multiple matches in ohci_quirks[], only the first one is used. */
static const struct {
283
	unsigned short vendor, device, revision, flags;
284
} ohci_quirks[] = {
285 286 287 288 289 290 291 292 293
	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
		QUIRK_BE_HEADERS},

	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
		QUIRK_NO_MSI},

294 295 296
	{PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
		QUIRK_RESET_PACKET},

297 298 299 300 301 302
	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
		QUIRK_NO_MSI},

	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

303 304 305
	{PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_NO_MSI},

306
	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
307
		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
308 309 310 311

	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},

312 313 314 315 316 317
	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},

	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},

318 319 320 321 322
	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_RESET_PACKET},

	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
323 324
};

325 326 327 328 329 330 331
/* This overrides anything that was found in ohci_quirks[]. */
static int param_quirks;
module_param_named(quirks, param_quirks, int, 0644);
MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
	", AR/selfID endianess = "	__stringify(QUIRK_BE_HEADERS)
332
	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
333
	", disable MSI = "		__stringify(QUIRK_NO_MSI)
334
	", TI SLLZ059 erratum = "	__stringify(QUIRK_TI_SLLZ059)
335 336
	")");

337
#define OHCI_PARAM_DEBUG_AT_AR		1
338
#define OHCI_PARAM_DEBUG_SELFIDS	2
339 340
#define OHCI_PARAM_DEBUG_IRQS		4
#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
341 342 343 344 345

static int param_debug;
module_param_named(debug, param_debug, int, 0644);
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
346 347 348
	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
349 350
	", or a combination, or all = -1)");

351
static void log_irqs(struct fw_ohci *ohci, u32 evt)
352
{
353 354 355 356 357 358
	if (likely(!(param_debug &
			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
		return;

	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
	    !(evt & OHCI1394_busReset))
359 360
		return;

361 362
	dev_notice(ohci->card.device,
	    "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
363 364 365 366 367 368 369 370 371
	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
	    evt & OHCI1394_isochRx		? " IR"			: "",
	    evt & OHCI1394_isochTx		? " IT"			: "",
	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
372
	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
373
	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
374
	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
375
	    evt & OHCI1394_unrecoverableError	? " unrecoverableError"	: "",
376 377 378 379 380
	    evt & OHCI1394_busReset		? " busReset"		: "",
	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
		    OHCI1394_respTxComplete | OHCI1394_isochRx |
		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
381 382
		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
		    OHCI1394_cycleInconsistent |
383
		    OHCI1394_regAccessFail | OHCI1394_busReset)
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
						? " ?"			: "");
}

static const char *speed[] = {
	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
};
static const char *power[] = {
	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
};
static const char port[] = { '.', '-', 'p', 'c', };

static char _p(u32 *s, int shift)
{
	return port[*s >> shift & 3];
}

401
static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
402
{
403 404
	u32 *s;

405 406 407
	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
		return;

408 409 410
	dev_notice(ohci->card.device,
		   "%d selfIDs, generation %d, local node ID %04x\n",
		   self_id_count, generation, ohci->node_id);
411

412
	for (s = ohci->self_id_buffer; self_id_count--; ++s)
413
		if ((*s & 1 << 23) == 0)
414 415
			dev_notice(ohci->card.device,
			    "selfID 0: %08x, phy %d [%c%c%c] "
416 417 418 419 420
			    "%s gc=%d %s %s%s%s\n",
			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
			    speed[*s >> 14 & 3], *s >> 16 & 63,
			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
421
		else
422 423
			dev_notice(ohci->card.device,
			    "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
424 425 426
			    *s, *s >> 24 & 63,
			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
}

static const char *evts[] = {
	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
	[0x10] = "-reserved-",		[0x11] = "ack_complete",
	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
	[0x18] = "-reserved-",		[0x19] = "-reserved-",
	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
	[0x20] = "pending/cancelled",
};
static const char *tcodes[] = {
	[0x0] = "QW req",		[0x1] = "BW req",
	[0x2] = "W resp",		[0x3] = "-reserved-",
	[0x4] = "QR req",		[0x5] = "BR req",
	[0x6] = "QR resp",		[0x7] = "BR resp",
	[0x8] = "cycle start",		[0x9] = "Lk req",
	[0xa] = "async stream packet",	[0xb] = "Lk resp",
	[0xc] = "-reserved-",		[0xd] = "-reserved-",
	[0xe] = "link internal",	[0xf] = "-reserved-",
};

459 460
static void log_ar_at_event(struct fw_ohci *ohci,
			    char dir, int speed, u32 *header, int evt)
461 462 463 464 465 466 467 468 469 470
{
	int tcode = header[0] >> 4 & 0xf;
	char specific[12];

	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
		return;

	if (unlikely(evt >= ARRAY_SIZE(evts)))
			evt = 0x1f;

471
	if (evt == OHCI1394_evt_bus_reset) {
472 473 474
		dev_notice(ohci->card.device,
			   "A%c evt_bus_reset, generation %d\n",
			   dir, (header[2] >> 16) & 0xff);
475 476 477
		return;
	}

478 479 480 481 482 483 484 485 486 487 488 489 490 491
	switch (tcode) {
	case 0x0: case 0x6: case 0x8:
		snprintf(specific, sizeof(specific), " = %08x",
			 be32_to_cpu((__force __be32)header[3]));
		break;
	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
		snprintf(specific, sizeof(specific), " %x,%x",
			 header[3] >> 16, header[3] & 0xffff);
		break;
	default:
		specific[0] = '\0';
	}

	switch (tcode) {
492
	case 0xa:
493 494 495
		dev_notice(ohci->card.device,
			   "A%c %s, %s\n",
			   dir, evts[evt], tcodes[tcode]);
496
		break;
497
	case 0xe:
498 499 500
		dev_notice(ohci->card.device,
			   "A%c %s, PHY %08x %08x\n",
			   dir, evts[evt], header[1], header[2]);
501
		break;
502
	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
503 504 505 506 507 508 509
		dev_notice(ohci->card.device,
			   "A%c spd %x tl %02x, "
			   "%04x -> %04x, %s, "
			   "%s, %04x%08x%s\n",
			   dir, speed, header[0] >> 10 & 0x3f,
			   header[1] >> 16, header[0] >> 16, evts[evt],
			   tcodes[tcode], header[1] & 0xffff, header[2], specific);
510 511
		break;
	default:
512 513 514 515 516 517 518
		dev_notice(ohci->card.device,
			   "A%c spd %x tl %02x, "
			   "%04x -> %04x, %s, "
			   "%s%s\n",
			   dir, speed, header[0] >> 10 & 0x3f,
			   header[1] >> 16, header[0] >> 16, evts[evt],
			   tcodes[tcode], specific);
519 520 521
	}
}

A
Adrian Bunk 已提交
522
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
523 524 525 526
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
527
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
528 529 530 531
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
532
static inline void flush_writes(const struct fw_ohci *ohci)
533 534 535 536 537
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

538 539 540 541 542 543
/*
 * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
 * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
 */
544
static int read_phy_reg(struct fw_ohci *ohci, int addr)
545
{
546
	u32 val;
547
	int i;
548 549

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
550
	for (i = 0; i < 3 + 100; i++) {
551
		val = reg_read(ohci, OHCI1394_PhyControl);
552 553 554
		if (!~val)
			return -ENODEV; /* Card was ejected. */

555 556 557
		if (val & OHCI1394_PhyControl_ReadDone)
			return OHCI1394_PhyControl_ReadData(val);

558 559 560 561 562 563
		/*
		 * Try a few times without waiting.  Sleeping is necessary
		 * only when the link/PHY interface is busy.
		 */
		if (i >= 3)
			msleep(1);
564
	}
565
	dev_err(ohci->card.device, "failed to read phy reg\n");
566

567 568
	return -EBUSY;
}
569

570 571 572
static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
{
	int i;
573 574

	reg_write(ohci, OHCI1394_PhyControl,
575
		  OHCI1394_PhyControl_Write(addr, val));
576
	for (i = 0; i < 3 + 100; i++) {
577
		val = reg_read(ohci, OHCI1394_PhyControl);
578 579 580
		if (!~val)
			return -ENODEV; /* Card was ejected. */

581 582
		if (!(val & OHCI1394_PhyControl_WritePending))
			return 0;
583

584 585
		if (i >= 3)
			msleep(1);
586
	}
587
	dev_err(ohci->card.device, "failed to write phy reg\n");
588 589

	return -EBUSY;
590 591
}

592 593
static int update_phy_reg(struct fw_ohci *ohci, int addr,
			  int clear_bits, int set_bits)
594
{
595
	int ret = read_phy_reg(ohci, addr);
596 597
	if (ret < 0)
		return ret;
598

599 600 601 602 603 604 605
	/*
	 * The interrupt status bits are cleared by writing a one bit.
	 * Avoid clearing them unless explicitly requested in set_bits.
	 */
	if (addr == 5)
		clear_bits |= PHY_INT_STATUS_BITS;

606
	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
607 608
}

609
static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
610
{
611
	int ret;
612

613
	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
614 615
	if (ret < 0)
		return ret;
616

617
	return read_phy_reg(ohci, addr);
618 619
}

620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
static int ohci_read_phy_reg(struct fw_card *card, int addr)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = read_phy_reg(ohci, addr);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
}

static int ohci_update_phy_reg(struct fw_card *card, int addr,
			       int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
643 644
}

645 646 647 648 649 650
static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
{
	return page_private(ctx->pages[i]);
}

static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
651
{
652
	struct descriptor *d;
653

654 655 656 657
	d = &ctx->descriptors[index];
	d->branch_address  &= cpu_to_le32(~0xf);
	d->res_count       =  cpu_to_le16(PAGE_SIZE);
	d->transfer_status =  0;
658

659
	wmb(); /* finish init of new descriptors before branch_address update */
660 661 662 663
	d = &ctx->descriptors[ctx->last_buffer_index];
	d->branch_address  |= cpu_to_le32(1);

	ctx->last_buffer_index = index;
664

665
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
666 667
}

668
static void ar_context_release(struct ar_context *ctx)
669
{
670
	unsigned int i;
671

672 673
	if (ctx->buffer)
		vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
674

675 676 677 678 679 680 681
	for (i = 0; i < AR_BUFFERS; i++)
		if (ctx->pages[i]) {
			dma_unmap_page(ctx->ohci->card.device,
				       ar_buffer_bus(ctx, i),
				       PAGE_SIZE, DMA_FROM_DEVICE);
			__free_page(ctx->pages[i]);
		}
682 683
}

684
static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
685
{
686
	struct fw_ohci *ohci = ctx->ohci;
687

688 689 690
	if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
		reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
		flush_writes(ohci);
691

692 693
		dev_err(ohci->card.device, "AR error: %s; DMA stopped\n",
			error_msg);
694
	}
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
	/* FIXME: restart? */
}

static inline unsigned int ar_next_buffer_index(unsigned int index)
{
	return (index + 1) % AR_BUFFERS;
}

static inline unsigned int ar_prev_buffer_index(unsigned int index)
{
	return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
}

static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
{
	return ar_next_buffer_index(ctx->last_buffer_index);
}

/*
 * We search for the buffer that contains the last AR packet DMA data written
 * by the controller.
 */
static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
						 unsigned int *buffer_offset)
{
	unsigned int i, next_i, last = ctx->last_buffer_index;
	__le16 res_count, next_res_count;

	i = ar_first_buffer_index(ctx);
	res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);

	/* A buffer that is not yet completely filled must be the last one. */
	while (i != last && res_count == 0) {

		/* Peek at the next descriptor. */
		next_i = ar_next_buffer_index(i);
		rmb(); /* read descriptors in order */
		next_res_count = ACCESS_ONCE(
				ctx->descriptors[next_i].res_count);
		/*
		 * If the next descriptor is still empty, we must stop at this
		 * descriptor.
		 */
		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
			/*
			 * The exception is when the DMA data for one packet is
			 * split over three buffers; in this case, the middle
			 * buffer's descriptor might be never updated by the
			 * controller and look still empty, and we have to peek
			 * at the third one.
			 */
			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
				next_i = ar_next_buffer_index(next_i);
				rmb();
				next_res_count = ACCESS_ONCE(
					ctx->descriptors[next_i].res_count);
				if (next_res_count != cpu_to_le16(PAGE_SIZE))
					goto next_buffer_is_active;
			}

			break;
		}

next_buffer_is_active:
		i = next_i;
		res_count = next_res_count;
	}

	rmb(); /* read res_count before the DMA data */

	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
	if (*buffer_offset > PAGE_SIZE) {
		*buffer_offset = 0;
		ar_context_abort(ctx, "corrupted descriptor");
	}

	return i;
}

static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
				    unsigned int end_buffer_index,
				    unsigned int end_buffer_offset)
{
	unsigned int i;

	i = ar_first_buffer_index(ctx);
	while (i != end_buffer_index) {
		dma_sync_single_for_cpu(ctx->ohci->card.device,
					ar_buffer_bus(ctx, i),
					PAGE_SIZE, DMA_FROM_DEVICE);
		i = ar_next_buffer_index(i);
	}
	if (end_buffer_offset > 0)
		dma_sync_single_for_cpu(ctx->ohci->card.device,
					ar_buffer_bus(ctx, i),
					end_buffer_offset, DMA_FROM_DEVICE);
791 792
}

793 794
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
795
	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
796 797 798 799
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

800
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
801 802
{
	struct fw_ohci *ohci = ctx->ohci;
803 804
	struct fw_packet p;
	u32 status, length, tcode;
805
	int evt;
806

807 808 809
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
810 811 812 813 814

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
815
		p.header[3] = (__force __u32) buffer[3];
816
		p.header_length = 16;
817
		p.payload_length = 0;
818 819 820
		break;

	case TCODE_READ_BLOCK_REQUEST :
821
		p.header[3] = cond_le32_to_cpu(buffer[3]);
822 823 824 825 826
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
827 828 829
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
830
		p.header[3] = cond_le32_to_cpu(buffer[3]);
831
		p.header_length = 16;
832
		p.payload_length = p.header[3] >> 16;
833 834 835 836
		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
			ar_context_abort(ctx, "invalid packet length");
			return NULL;
		}
837 838 839 840
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
841
	case OHCI_TCODE_PHY_PACKET:
842
		p.header_length = 12;
843
		p.payload_length = 0;
844
		break;
845 846

	default:
847 848
		ar_context_abort(ctx, "invalid tcode");
		return NULL;
849
	}
850

851 852 853 854
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
855
	status = cond_le32_to_cpu(buffer[length]);
856
	evt    = (status >> 16) & 0x1f;
857

858
	p.ack        = evt - 16;
859 860 861
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
862

863
	log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
864

865
	/*
866 867 868 869 870 871 872 873 874
	 * Several controllers, notably from NEC and VIA, forget to
	 * write ack_complete status at PHY packet reception.
	 */
	if (evt == OHCI1394_evt_no_status &&
	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
		p.ack = ACK_COMPLETE;

	/*
	 * The OHCI bus reset handler synthesizes a PHY packet with
875 876 877 878 879
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
880
	 * request.
881 882 883
	 *
	 * Alas some chips sometimes emit bus reset packets with a
	 * wrong generation.  We set the correct generation for these
884
	 * at a slightly incorrect time (in bus_reset_work).
885
	 */
886
	if (evt == OHCI1394_evt_bus_reset) {
887
		if (!(ohci->quirks & QUIRK_RESET_PACKET))
888 889
			ohci->request_generation = (p.header[2] >> 16) & 0xff;
	} else if (ctx == &ohci->ar_request_ctx) {
890
		fw_core_handle_request(&ohci->card, &p);
891
	} else {
892
		fw_core_handle_response(&ohci->card, &p);
893
	}
894

895 896
	return buffer + length + 1;
}
897

898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
{
	void *next;

	while (p < end) {
		next = handle_ar_packet(ctx, p);
		if (!next)
			return p;
		p = next;
	}

	return p;
}

static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
{
	unsigned int i;

	i = ar_first_buffer_index(ctx);
	while (i != end_buffer) {
		dma_sync_single_for_device(ctx->ohci->card.device,
					   ar_buffer_bus(ctx, i),
					   PAGE_SIZE, DMA_FROM_DEVICE);
		ar_context_link_page(ctx, i);
		i = ar_next_buffer_index(i);
	}
}

926 927 928
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
929 930
	unsigned int end_buffer_index, end_buffer_offset;
	void *p, *end;
931

932 933 934
	p = ctx->pointer;
	if (!p)
		return;
935

936 937 938 939
	end_buffer_index = ar_search_last_active_buffer(ctx,
							&end_buffer_offset);
	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
940

941
	if (end_buffer_index < ar_first_buffer_index(ctx)) {
942
		/*
943 944 945 946
		 * The filled part of the overall buffer wraps around; handle
		 * all packets up to the buffer end here.  If the last packet
		 * wraps around, its tail will be visible after the buffer end
		 * because the buffer start pages are mapped there again.
947
		 */
948 949 950 951 952 953 954
		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
		p = handle_ar_packets(ctx, p, buffer_end);
		if (p < buffer_end)
			goto error;
		/* adjust p to point back into the actual buffer */
		p -= AR_BUFFERS * PAGE_SIZE;
	}
955

956 957 958 959 960 961
	p = handle_ar_packets(ctx, p, end);
	if (p != end) {
		if (p > end)
			ar_context_abort(ctx, "inconsistent descriptor");
		goto error;
	}
962

963 964
	ctx->pointer = p;
	ar_recycle_buffers(ctx, end_buffer_index);
965

966
	return;
967

968 969
error:
	ctx->pointer = NULL;
970 971
}

972 973
static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
			   unsigned int descriptors_offset, u32 regs)
974
{
975 976 977 978
	unsigned int i;
	dma_addr_t dma_addr;
	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
	struct descriptor *d;
979

980 981
	ctx->regs        = regs;
	ctx->ohci        = ohci;
982 983
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
	for (i = 0; i < AR_BUFFERS; i++) {
		ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
		if (!ctx->pages[i])
			goto out_of_memory;
		dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
					0, PAGE_SIZE, DMA_FROM_DEVICE);
		if (dma_mapping_error(ohci->card.device, dma_addr)) {
			__free_page(ctx->pages[i]);
			ctx->pages[i] = NULL;
			goto out_of_memory;
		}
		set_page_private(ctx->pages[i], dma_addr);
	}

	for (i = 0; i < AR_BUFFERS; i++)
		pages[i]              = ctx->pages[i];
	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
		pages[AR_BUFFERS + i] = ctx->pages[i];
	ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
1003
				 -1, PAGE_KERNEL);
1004 1005 1006
	if (!ctx->buffer)
		goto out_of_memory;

1007 1008
	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019

	for (i = 0; i < AR_BUFFERS; i++) {
		d = &ctx->descriptors[i];
		d->req_count      = cpu_to_le16(PAGE_SIZE);
		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						DESCRIPTOR_STATUS |
						DESCRIPTOR_BRANCH_ALWAYS);
		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
			ar_next_buffer_index(i) * sizeof(struct descriptor));
	}
1020

1021
	return 0;
1022 1023 1024 1025 1026

out_of_memory:
	ar_context_release(ctx);

	return -ENOMEM;
1027 1028 1029 1030
}

static void ar_context_run(struct ar_context *ctx)
{
1031 1032 1033 1034
	unsigned int i;

	for (i = 0; i < AR_BUFFERS; i++)
		ar_context_link_page(ctx, i);
1035

1036
	ctx->pointer = ctx->buffer;
1037

1038
	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1039
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1040
}
S
Stefan Richter 已提交
1041

1042
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1043
{
1044
	__le16 branch;
1045

1046
	branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1047 1048

	/* figure out which descriptor the branch address goes in */
1049
	if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1050 1051 1052 1053 1054
		return d;
	else
		return d + z - 1;
}

1055 1056 1057 1058 1059 1060
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
1061
	struct descriptor_buffer *desc;
1062

1063 1064 1065
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
1066
	while (last->branch_address != 0) {
1067
		struct descriptor_buffer *old_desc = desc;
1068 1069
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
1070
		address &= ~0xf;
1071
		ctx->current_bus = address;
1072 1073 1074 1075 1076 1077 1078 1079

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1080
		last = find_branch_descriptor(d, z);
1081 1082 1083 1084

		if (!ctx->callback(ctx, d, last))
			break;

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
1095 1096 1097
	}
}

1098 1099 1100 1101
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
1102
static int context_add_buffer(struct context *ctx)
1103 1104
{
	struct descriptor_buffer *desc;
1105
	dma_addr_t uninitialized_var(bus_addr);
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

1131 1132
static int context_init(struct context *ctx, struct fw_ohci *ohci,
			u32 regs, descriptor_callback_t callback)
1133 1134 1135
{
	ctx->ohci = ohci;
	ctx->regs = regs;
1136 1137 1138 1139
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
1140 1141
		return -ENOMEM;

1142 1143 1144
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

1145 1146 1147
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

1148 1149
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
1150
	 * branch address and looks like it's been sent.  That way we
1151
	 * have a descriptor to append DMA programs to.
1152
	 */
1153 1154 1155 1156 1157 1158
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
1159 1160 1161 1162

	return 0;
}

1163
static void context_release(struct context *ctx)
1164 1165
{
	struct fw_card *card = &ctx->ohci->card;
1166
	struct descriptor_buffer *desc, *tmp;
1167

1168 1169 1170 1171
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
1172 1173
}

1174
/* Must be called with ohci->lock held */
1175 1176
static struct descriptor *context_get_descriptors(struct context *ctx,
						  int z, dma_addr_t *d_bus)
1177
{
1178 1179 1180 1181 1182 1183 1184 1185 1186
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
1187

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
1198

1199
	d = desc->buffer + desc->used / sizeof(*d);
1200
	memset(d, 0, z * sizeof(*d));
1201
	*d_bus = desc->buffer_bus + desc->used;
1202 1203 1204 1205

	return d;
}

1206
static void context_run(struct context *ctx, u32 extra)
1207 1208 1209
{
	struct fw_ohci *ohci = ctx->ohci;

1210
	reg_write(ohci, COMMAND_PTR(ctx->regs),
1211
		  le32_to_cpu(ctx->last->branch_address));
1212 1213
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1214
	ctx->running = true;
1215 1216 1217 1218 1219 1220 1221
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
1222
	struct descriptor_buffer *desc = ctx->buffer_tail;
1223

1224
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1225

1226
	desc->used += (z + extra) * sizeof(*d);
1227 1228

	wmb(); /* finish init of new descriptors before branch_address update */
1229 1230
	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev = find_branch_descriptor(d, z);
1231 1232 1233 1234
}

static void context_stop(struct context *ctx)
{
1235
	struct fw_ohci *ohci = ctx->ohci;
1236
	u32 reg;
1237
	int i;
1238

1239
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1240
	ctx->running = false;
1241

1242
	for (i = 0; i < 1000; i++) {
1243
		reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1244
		if ((reg & CONTEXT_ACTIVE) == 0)
1245
			return;
1246

1247 1248
		if (i)
			udelay(10);
1249
	}
1250
	dev_err(ohci->card.device, "DMA context still active (0x%08x)\n", reg);
1251
}
1252

1253
struct driver_data {
1254
	u8 inline_data[8];
1255 1256
	struct fw_packet *packet;
};
1257

1258 1259
/*
 * This function apppends a packet to the DMA queue for transmission.
1260
 * Must always be called with the ochi->lock held to ensure proper
1261 1262
 * generation handling and locking around packet queue manipulation.
 */
1263 1264
static int at_context_queue_packet(struct context *ctx,
				   struct fw_packet *packet)
1265 1266
{
	struct fw_ohci *ohci = ctx->ohci;
1267
	dma_addr_t d_bus, uninitialized_var(payload_bus);
1268 1269 1270
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
1271 1272
	int z, tcode;

1273 1274 1275 1276
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1277 1278
	}

1279
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1280 1281
	d[0].res_count = cpu_to_le16(packet->timestamp);

1282 1283
	/*
	 * The DMA format for asyncronous link packets is different
1284
	 * from the IEEE1394 layout, so shift the fields around
1285
	 * accordingly.
1286
	 */
1287

1288
	tcode = (packet->header[0] >> 4) & 0x0f;
1289
	header = (__le32 *) &d[1];
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_WRITE_BLOCK_REQUEST:
	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
	case TCODE_READ_BLOCK_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
1300 1301 1302 1303 1304
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
1305 1306

		if (TCODE_IS_BLOCK_PACKET(tcode))
1307
			header[3] = cpu_to_le32(packet->header[3]);
1308
		else
1309 1310 1311
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
1312 1313
		break;

1314
	case TCODE_LINK_INTERNAL:
1315 1316
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
1317 1318
		header[1] = cpu_to_le32(packet->header[1]);
		header[2] = cpu_to_le32(packet->header[2]);
1319
		d[0].req_count = cpu_to_le16(12);
S
Stefan Richter 已提交
1320

1321
		if (is_ping_packet(&packet->header[1]))
S
Stefan Richter 已提交
1322
			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1323 1324
		break;

1325
	case TCODE_STREAM_DATA:
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
		d[0].req_count = cpu_to_le16(8);
		break;

	default:
		/* BUG(); */
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1336 1337
	}

1338
	BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1339 1340
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
1341
	packet->driver_data = driver_data;
1342

1343
	if (packet->payload_length > 0) {
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
		if (packet->payload_length > sizeof(driver_data->inline_data)) {
			payload_bus = dma_map_single(ohci->card.device,
						     packet->payload,
						     packet->payload_length,
						     DMA_TO_DEVICE);
			if (dma_mapping_error(ohci->card.device, payload_bus)) {
				packet->ack = RCODE_SEND_ERROR;
				return -1;
			}
			packet->payload_bus	= payload_bus;
			packet->payload_mapped	= true;
		} else {
			memcpy(driver_data->inline_data, packet->payload,
			       packet->payload_length);
			payload_bus = d_bus + 3 * sizeof(*d);
1359 1360 1361 1362 1363 1364
		}

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
1365
	} else {
1366 1367
		last = &d[0];
		z = 2;
1368 1369
	}

1370 1371 1372
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
1373

1374 1375
	/* FIXME: Document how the locking works. */
	if (ohci->generation != packet->generation) {
1376
		if (packet->payload_mapped)
1377 1378
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
1379 1380 1381 1382 1383
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
1384

1385
	if (ctx->running)
1386
		reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1387
	else
1388 1389 1390
		context_run(ctx, 0);

	return 0;
1391 1392
}

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
static void at_context_flush(struct context *ctx)
{
	tasklet_disable(&ctx->tasklet);

	ctx->flushing = true;
	context_tasklet((unsigned long)ctx);
	ctx->flushing = false;

	tasklet_enable(&ctx->tasklet);
}

1404 1405 1406
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1407
{
1408
	struct driver_data *driver_data;
1409
	struct fw_packet *packet;
1410
	struct fw_ohci *ohci = context->ohci;
1411 1412
	int evt;

1413
	if (last->transfer_status == 0 && !context->flushing)
1414 1415
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
1416

1417 1418 1419 1420 1421
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
1422

1423
	if (packet->payload_mapped)
1424
		dma_unmap_single(ohci->card.device, packet->payload_bus,
1425 1426
				 packet->payload_length, DMA_TO_DEVICE);

1427 1428
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
1429

1430
	log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1431

1432 1433 1434 1435 1436
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
1437

1438
	case OHCI1394_evt_flushed:
1439 1440 1441 1442
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
1443 1444
		packet->ack = RCODE_GENERATION;
		break;
1445

1446
	case OHCI1394_evt_missing_ack:
1447 1448 1449 1450 1451 1452 1453 1454 1455
		if (context->flushing)
			packet->ack = RCODE_GENERATION;
		else {
			/*
			 * Using a valid (current) generation count, but the
			 * node is not on the bus or not sending acks.
			 */
			packet->ack = RCODE_NO_ACK;
		}
1456
		break;
1457

1458 1459 1460 1461 1462 1463 1464 1465 1466
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
1467

1468 1469 1470 1471 1472 1473 1474
	case OHCI1394_evt_no_status:
		if (context->flushing) {
			packet->ack = RCODE_GENERATION;
			break;
		}
		/* fall through */

1475 1476 1477 1478
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
1479

1480
	packet->callback(packet, &ohci->card, packet->ack);
1481

1482
	return 1;
1483 1484
}

1485 1486 1487 1488 1489
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1490

1491 1492
static void handle_local_rom(struct fw_ohci *ohci,
			     struct fw_packet *packet, u32 csr)
1493 1494 1495 1496
{
	struct fw_packet response;
	int tcode, length, i;

1497
	tcode = HEADER_GET_TCODE(packet->header[0]);
1498
	if (TCODE_IS_BLOCK_PACKET(tcode))
1499
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

1518 1519
static void handle_local_lock(struct fw_ohci *ohci,
			      struct fw_packet *packet, u32 csr)
1520 1521
{
	struct fw_packet response;
1522
	int tcode, length, ext_tcode, sel, try;
1523 1524 1525
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

1526 1527
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1528
	payload = packet->payload;
1529
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
	for (try = 0; try < 20; try++)
		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
			lock_old = cpu_to_be32(reg_read(ohci,
							OHCI1394_CSRData));
			fw_fill_response(&response, packet->header,
					 RCODE_COMPLETE,
					 &lock_old, sizeof(lock_old));
			goto out;
		}

1559
	dev_err(ohci->card.device, "swap not done (CSR lock timeout)\n");
1560
	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1561 1562 1563 1564 1565

 out:
	fw_core_handle_response(&ohci->card, &response);
}

1566
static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1567
{
1568
	u64 offset, csr;
1569

1570 1571 1572 1573
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1574 1575 1576

	offset =
		((unsigned long long)
1577
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
1598 1599 1600 1601 1602

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1603
}
1604

1605
static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1606 1607
{
	unsigned long flags;
1608
	int ret;
1609 1610 1611

	spin_lock_irqsave(&ctx->ohci->lock, flags);

1612
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1613
	    ctx->ohci->generation == packet->generation) {
1614 1615 1616
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
1617
	}
1618

1619
	ret = at_context_queue_packet(ctx, packet);
1620 1621
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

1622
	if (ret < 0)
1623
		packet->callback(packet, &ctx->ohci->card, packet->ack);
1624

1625 1626
}

1627 1628 1629 1630 1631 1632
static void detect_dead_context(struct fw_ohci *ohci,
				const char *name, unsigned int regs)
{
	u32 ctl;

	ctl = reg_read(ohci, CONTROL_SET(regs));
1633
	if (ctl & CONTEXT_DEAD)
1634 1635 1636
		dev_err(ohci->card.device,
			"DMA context %s has stopped, error code: %s\n",
			name, evts[ctl & 0x1f]);
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
}

static void handle_dead_contexts(struct fw_ohci *ohci)
{
	unsigned int i;
	char name[8];

	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
	for (i = 0; i < 32; ++i) {
		if (!(ohci->it_context_support & (1 << i)))
			continue;
		sprintf(name, "IT%u", i);
		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
	}
	for (i = 0; i < 32; ++i) {
		if (!(ohci->ir_context_support & (1 << i)))
			continue;
		sprintf(name, "IR%u", i);
		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
	}
	/* TODO: maybe try to flush and restart the dead contexts */
}

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
static u32 cycle_timer_ticks(u32 cycle_timer)
{
	u32 ticks;

	ticks = cycle_timer & 0xfff;
	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
	ticks += (3072 * 8000) * (cycle_timer >> 25);

	return ticks;
}

/*
 * Some controllers exhibit one or more of the following bugs when updating the
 * iso cycle timer register:
 *  - When the lowest six bits are wrapping around to zero, a read that happens
 *    at the same time will return garbage in the lowest ten bits.
 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
 *    not incremented for about 60 ns.
 *  - Occasionally, the entire register reads zero.
 *
 * To catch these, we read the register three times and ensure that the
 * difference between each two consecutive reads is approximately the same, i.e.
 * less than twice the other.  Furthermore, any negative difference indicates an
 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
 * execute, so we have enough precision to compute the ratio of the differences.)
 */
static u32 get_cycle_time(struct fw_ohci *ohci)
{
	u32 c0, c1, c2;
	u32 t0, t1, t2;
	s32 diff01, diff12;
	int i;

	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);

	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
		i = 0;
		c1 = c2;
		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		do {
			c0 = c1;
			c1 = c2;
			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
			t0 = cycle_timer_ticks(c0);
			t1 = cycle_timer_ticks(c1);
			t2 = cycle_timer_ticks(c2);
			diff01 = t1 - t0;
			diff12 = t2 - t1;
		} while ((diff01 <= 0 || diff12 <= 0 ||
			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
			 && i++ < 20);
	}

	return c2;
}

/*
 * This function has to be called at least every 64 seconds.  The bus_time
 * field stores not only the upper 25 bits of the BUS_TIME register but also
 * the most significant bit of the cycle timer in bit 6 so that we can detect
 * changes in this bit.
 */
static u32 update_bus_time(struct fw_ohci *ohci)
{
	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;

	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
		ohci->bus_time += 0x40;

	return ohci->bus_time | cycle_time_seconds;
}

1735 1736 1737 1738 1739 1740
static int get_status_for_port(struct fw_ohci *ohci, int port_index)
{
	int reg;

	mutex_lock(&ohci->phy_reg_mutex);
	reg = write_phy_reg(ohci, 7, port_index);
1741 1742
	if (reg >= 0)
		reg = read_phy_reg(ohci, 8);
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
	mutex_unlock(&ohci->phy_reg_mutex);
	if (reg < 0)
		return reg;

	switch (reg & 0x0f) {
	case 0x06:
		return 2;	/* is child node (connected to parent node) */
	case 0x0e:
		return 3;	/* is parent node (connected to child node) */
	}
	return 1;		/* not connected */
}

static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
	int self_id_count)
{
	int i;
	u32 entry;
1761

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
	for (i = 0; i < self_id_count; i++) {
		entry = ohci->self_id_buffer[i];
		if ((self_id & 0xff000000) == (entry & 0xff000000))
			return -1;
		if ((self_id & 0xff000000) < (entry & 0xff000000))
			return i;
	}
	return i;
}

/*
1773 1774 1775 1776
 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
 * Construct the selfID from phy register contents.
 * FIXME:  How to determine the selfID.i flag?
1777 1778 1779
 */
static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
{
1780 1781 1782
	int reg, i, pos, status;
	/* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
	u32 self_id = 0x8040c800;
1783 1784 1785

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1786 1787
		dev_notice(ohci->card.device,
			   "node ID not valid, new bus reset in progress\n");
1788 1789 1790 1791
		return -EBUSY;
	}
	self_id |= ((reg & 0x3f) << 24); /* phy ID */

1792
	reg = ohci_read_phy_reg(&ohci->card, 4);
1793 1794 1795 1796
	if (reg < 0)
		return reg;
	self_id |= ((reg & 0x07) << 8); /* power class */

1797
	reg = ohci_read_phy_reg(&ohci->card, 1);
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
	if (reg < 0)
		return reg;
	self_id |= ((reg & 0x3f) << 16); /* gap count */

	for (i = 0; i < 3; i++) {
		status = get_status_for_port(ohci, i);
		if (status < 0)
			return status;
		self_id |= ((status & 0x3) << (6 - (i * 2)));
	}

	pos = get_self_id_pos(ohci, self_id, self_id_count);
	if (pos >= 0) {
		memmove(&(ohci->self_id_buffer[pos+1]),
			&(ohci->self_id_buffer[pos]),
			(self_id_count - pos) * sizeof(*ohci->self_id_buffer));
		ohci->self_id_buffer[pos] = self_id;
		self_id_count++;
	}
	return self_id_count;
}

1820
static void bus_reset_work(struct work_struct *work)
1821
{
1822 1823
	struct fw_ohci *ohci =
		container_of(work, struct fw_ohci, bus_reset_work);
1824 1825
	int self_id_count, generation, new_generation, i, j;
	u32 reg;
1826
	unsigned long flags;
1827 1828
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1829
	bool is_new_root;
1830 1831 1832

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1833 1834
		dev_notice(ohci->card.device,
			   "node ID not valid, new bus reset in progress\n");
1835 1836
		return;
	}
1837
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1838
		dev_notice(ohci->card.device, "malconfigured bus\n");
1839 1840 1841 1842
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1843

1844 1845 1846 1847 1848 1849
	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
	if (!(ohci->is_root && is_new_root))
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	ohci->is_root = is_new_root;

1850 1851
	reg = reg_read(ohci, OHCI1394_SelfIDCount);
	if (reg & OHCI1394_SelfIDCount_selfIDError) {
1852
		dev_notice(ohci->card.device, "inconsistent self IDs\n");
1853 1854
		return;
	}
1855 1856
	/*
	 * The count in the SelfIDCount register is the number of
1857 1858
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1859 1860
	 * bit extra to get the actual number of self IDs.
	 */
1861
	self_id_count = (reg >> 3) & 0xff;
1862 1863

	if (self_id_count > 252) {
1864
		dev_notice(ohci->card.device, "inconsistent self IDs\n");
1865 1866
		return;
	}
1867

1868
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1869
	rmb();
1870 1871

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1872
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1873 1874 1875 1876 1877 1878 1879 1880 1881
			/*
			 * If the invalid data looks like a cycle start packet,
			 * it's likely to be the result of the cycle master
			 * having a wrong gap count.  In this case, the self IDs
			 * so far are valid and should be processed so that the
			 * bus manager can then correct the gap count.
			 */
			if (cond_le32_to_cpu(ohci->self_id_cpu[i])
							== 0xffff008f) {
1882 1883
				dev_notice(ohci->card.device,
					   "ignoring spurious self IDs\n");
1884 1885 1886
				self_id_count = j;
				break;
			} else {
1887 1888
				dev_notice(ohci->card.device,
					   "inconsistent self IDs\n");
1889 1890
				return;
			}
1891
		}
1892 1893
		ohci->self_id_buffer[j] =
				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1894
	}
1895 1896 1897 1898

	if (ohci->quirks & QUIRK_TI_SLLZ059) {
		self_id_count = find_and_insert_self_id(ohci, self_id_count);
		if (self_id_count < 0) {
1899 1900
			dev_notice(ohci->card.device,
				   "could not construct local self ID\n");
1901 1902 1903 1904 1905
			return;
		}
	}

	if (self_id_count == 0) {
1906
		dev_notice(ohci->card.device, "inconsistent self IDs\n");
1907 1908
		return;
	}
1909
	rmb();
1910

1911 1912
	/*
	 * Check the consistency of the self IDs we just read.  The
1913 1914 1915 1916 1917 1918 1919 1920 1921
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1922 1923
	 * of self IDs.
	 */
1924 1925 1926

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
1927 1928
		dev_notice(ohci->card.device,
			   "new bus reset, discarding self ids\n");
1929 1930 1931 1932 1933 1934
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

1935
	ohci->generation = -1; /* prevent AT packet queueing */
1936 1937
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1938 1939 1940

	spin_unlock_irqrestore(&ohci->lock, flags);

1941 1942 1943 1944 1945
	/*
	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
	 * packets in the AT queues and software needs to drain them.
	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
	 */
1946 1947 1948 1949 1950 1951
	at_context_flush(&ohci->at_request_ctx);
	at_context_flush(&ohci->at_response_ctx);

	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
1952 1953
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

1954
	if (ohci->quirks & QUIRK_RESET_PACKET)
1955 1956
		ohci->request_generation = generation;

1957 1958
	/*
	 * This next bit is unrelated to the AT context stuff but we
1959 1960 1961 1962
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
T
Thomas Weber 已提交
1963
	 * next_config_rom pointer so a new update can take place.
1964
	 */
1965 1966

	if (ohci->next_config_rom != NULL) {
1967 1968 1969 1970
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1971 1972 1973 1974
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1975 1976
		/*
		 * Restore config_rom image and manually update
1977 1978
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1979 1980
		 * do that last.
		 */
1981 1982
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
1983 1984 1985
		ohci->config_rom[0] = ohci->next_header;
		reg_write(ohci, OHCI1394_ConfigROMhdr,
			  be32_to_cpu(ohci->next_header));
1986 1987
	}

1988 1989 1990 1991 1992
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif

1993 1994
	spin_unlock_irqrestore(&ohci->lock, flags);

1995 1996 1997 1998
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1999
	log_selfids(ohci, generation, self_id_count);
2000

2001
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2002 2003 2004
				 self_id_count, ohci->self_id_buffer,
				 ohci->csr_state_setclear_abdicate);
	ohci->csr_state_setclear_abdicate = false;
2005 2006 2007 2008 2009
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
2010
	u32 event, iso_event;
2011 2012 2013 2014
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

2015
	if (!event || !~event)
2016 2017
		return IRQ_NONE;

2018 2019 2020 2021 2022 2023
	/*
	 * busReset and postedWriteErr must not be cleared yet
	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
	 */
	reg_write(ohci, OHCI1394_IntEventClear,
		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2024
	log_irqs(ohci, event);
2025 2026

	if (event & OHCI1394_selfIDComplete)
2027
		queue_work(fw_workqueue, &ohci->bus_reset_work);
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
	if (event & OHCI1394_isochRx) {
		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

		while (iso_event) {
			i = ffs(iso_event) - 1;
			tasklet_schedule(
				&ohci->ir_context_list[i].context.tasklet);
			iso_event &= ~(1 << i);
		}
2051 2052
	}

2053 2054 2055
	if (event & OHCI1394_isochTx) {
		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2056

2057 2058 2059 2060 2061 2062
		while (iso_event) {
			i = ffs(iso_event) - 1;
			tasklet_schedule(
				&ohci->it_context_list[i].context.tasklet);
			iso_event &= ~(1 << i);
		}
2063 2064
	}

2065
	if (unlikely(event & OHCI1394_regAccessFail))
2066
		dev_err(ohci->card.device, "register access failure\n");
2067

2068 2069 2070 2071 2072
	if (unlikely(event & OHCI1394_postedWriteErr)) {
		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
		reg_write(ohci, OHCI1394_IntEventClear,
			  OHCI1394_postedWriteErr);
S
Stephan Gatzka 已提交
2073
		if (printk_ratelimit())
2074
			dev_err(ohci->card.device, "PCI posted write error\n");
2075
	}
2076

2077 2078
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
2079 2080
			dev_notice(ohci->card.device,
				   "isochronous cycle too long\n");
2081 2082 2083 2084
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

2085 2086 2087 2088 2089 2090 2091 2092
	if (unlikely(event & OHCI1394_cycleInconsistent)) {
		/*
		 * We need to clear this event bit in order to make
		 * cycleMatch isochronous I/O work.  In theory we should
		 * stop active cycleMatch iso contexts now and restart
		 * them at least two cycles later.  (FIXME?)
		 */
		if (printk_ratelimit())
2093 2094
			dev_notice(ohci->card.device,
				   "isochronous cycle inconsistent\n");
2095 2096
	}

2097 2098 2099
	if (unlikely(event & OHCI1394_unrecoverableError))
		handle_dead_contexts(ohci);

2100 2101 2102 2103
	if (event & OHCI1394_cycle64Seconds) {
		spin_lock(&ohci->lock);
		update_bus_time(ohci);
		spin_unlock(&ohci->lock);
2104 2105
	} else
		flush_writes(ohci);
2106

2107 2108 2109
	return IRQ_HANDLED;
}

2110 2111
static int software_reset(struct fw_ohci *ohci)
{
2112
	u32 val;
2113 2114 2115
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2116 2117 2118 2119
	for (i = 0; i < 500; i++) {
		val = reg_read(ohci, OHCI1394_HCControlSet);
		if (!~val)
			return -ENODEV; /* Card was ejected. */
2120

2121
		if (!(val & OHCI1394_HCControl_softReset))
2122
			return 0;
2123

2124 2125 2126 2127 2128 2129
		msleep(1);
	}

	return -EBUSY;
}

2130 2131 2132 2133 2134 2135 2136 2137 2138
static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
{
	size_t size = length * 4;

	memcpy(dest, src, size);
	if (size < CONFIG_ROM_SIZE)
		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
}

2139 2140 2141
static int configure_1394a_enhancements(struct fw_ohci *ohci)
{
	bool enable_1394a;
2142
	int ret, clear, set, offset;
2143 2144 2145 2146 2147 2148 2149 2150

	/* Check if the driver should configure link and PHY. */
	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
	      OHCI1394_HCControl_programPhyEnable))
		return 0;

	/* Paranoia: check whether the PHY supports 1394a, too. */
	enable_1394a = false;
2151 2152 2153 2154 2155 2156 2157 2158
	ret = read_phy_reg(ohci, 2);
	if (ret < 0)
		return ret;
	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
		ret = read_paged_phy_reg(ohci, 1, 8);
		if (ret < 0)
			return ret;
		if (ret >= 1)
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
			enable_1394a = true;
	}

	if (ohci->quirks & QUIRK_NO_1394A)
		enable_1394a = false;

	/* Configure PHY and link consistently. */
	if (enable_1394a) {
		clear = 0;
		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
	} else {
		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
		set = 0;
	}
2173
	ret = update_phy_reg(ohci, 5, clear, set);
2174 2175
	if (ret < 0)
		return ret;
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189

	if (enable_1394a)
		offset = OHCI1394_HCControlSet;
	else
		offset = OHCI1394_HCControlClear;
	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);

	/* Clean up: configuration has been taken care of. */
	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_programPhyEnable);

	return 0;
}

2190 2191
static int probe_tsb41ba3d(struct fw_ohci *ohci)
{
2192 2193 2194
	/* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
	static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
	int reg, i;
2195 2196 2197 2198

	reg = read_phy_reg(ohci, 2);
	if (reg < 0)
		return reg;
2199 2200
	if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
		return 0;
2201

2202 2203 2204 2205 2206 2207
	for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
		reg = read_paged_phy_reg(ohci, 1, i + 10);
		if (reg < 0)
			return reg;
		if (reg != id[i])
			return 0;
2208
	}
2209
	return 1;
2210 2211
}

2212 2213
static int ohci_enable(struct fw_card *card,
		       const __be32 *config_rom, size_t length)
2214 2215 2216
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);
2217
	u32 lps, seconds, version, irqs;
2218
	int i, ret;
2219

2220
	if (software_reset(ohci)) {
2221
		dev_err(card->device, "failed to reset ohci card\n");
2222 2223 2224 2225 2226 2227 2228 2229
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
2230 2231
	 * full link enabled.  However, with some cards (well, at least
	 * a JMicron PCIe card), we have to try again sometimes.
2232 2233 2234 2235 2236
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
2237 2238 2239 2240 2241 2242 2243 2244

	for (lps = 0, i = 0; !lps && i < 3; i++) {
		msleep(50);
		lps = reg_read(ohci, OHCI1394_HCControlSet) &
		      OHCI1394_HCControl_LPS;
	}

	if (!lps) {
2245
		dev_err(card->device, "failed to set Link Power Status\n");
2246 2247
		return -EIO;
	}
2248

2249
	if (ohci->quirks & QUIRK_TI_SLLZ059) {
2250 2251 2252 2253
		ret = probe_tsb41ba3d(ohci);
		if (ret < 0)
			return ret;
		if (ret)
2254
			dev_notice(card->device, "local TSB41BA3D phy\n");
2255
		else
2256 2257 2258
			ohci->quirks &= ~QUIRK_TI_SLLZ059;
	}

2259 2260 2261
	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

2262
	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2263 2264 2265 2266 2267 2268 2269
	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2270 2271
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
		  (200 << 16));
2272

2273 2274 2275 2276
	seconds = lower_32_bits(get_seconds());
	reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
	ohci->bus_time = seconds & ~0x3f;

2277 2278 2279 2280
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	if (version >= OHCI_VERSION_1_1) {
		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
			  0xfffffffe);
2281
		card->broadcast_channel_auto_allocated = true;
2282 2283
	}

2284 2285 2286 2287
	/* Get implemented bits of the priority arbitration request counter. */
	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
	reg_write(ohci, OHCI1394_FairnessControl, 0);
2288
	card->priority_budget_implemented = ohci->pri_req_max != 0;
2289 2290 2291 2292 2293

	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);

2294 2295 2296
	ret = configure_1394a_enhancements(ohci);
	if (ret < 0)
		return ret;
2297

2298
	/* Activate link_on bit and contender bit in our self ID packets.*/
2299 2300 2301
	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
	if (ret < 0)
		return ret;
2302

2303 2304
	/*
	 * When the link is not yet enabled, the atomic config rom
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

2322 2323 2324 2325 2326 2327 2328
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
2329

2330
		copy_config_rom(ohci->next_config_rom, config_rom, length);
2331 2332 2333 2334 2335 2336 2337 2338
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
2339

2340
	ohci->next_header = ohci->next_config_rom[0];
2341 2342
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2343 2344
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
2345 2346 2347 2348
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

2349 2350
	if (!(ohci->quirks & QUIRK_NO_MSI))
		pci_enable_msi(dev);
2351
	if (request_irq(dev->irq, irq_handler,
2352 2353
			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
			ohci_driver_name, ohci)) {
2354 2355
		dev_err(card->device, "failed to allocate interrupt %d\n",
			dev->irq);
2356
		pci_disable_msi(dev);
2357 2358 2359 2360 2361 2362 2363

		if (config_rom) {
			dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					  ohci->next_config_rom,
					  ohci->next_config_rom_bus);
			ohci->next_config_rom = NULL;
		}
2364 2365 2366
		return -EIO;
	}

2367 2368 2369 2370 2371 2372
	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		OHCI1394_RQPkt | OHCI1394_RSPkt |
		OHCI1394_isochTx | OHCI1394_isochRx |
		OHCI1394_postedWriteErr |
		OHCI1394_selfIDComplete |
		OHCI1394_regAccessFail |
2373
		OHCI1394_cycle64Seconds |
2374 2375 2376
		OHCI1394_cycleInconsistent |
		OHCI1394_unrecoverableError |
		OHCI1394_cycleTooLong |
2377 2378 2379 2380 2381
		OHCI1394_masterIntEnable;
	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
		irqs |= OHCI1394_busReset;
	reg_write(ohci, OHCI1394_IntMaskSet, irqs);

2382 2383 2384
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
2385 2386 2387 2388 2389 2390

	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_rcvPhyPkt);

	ar_context_run(&ohci->ar_request_ctx);
2391 2392 2393
	ar_context_run(&ohci->ar_response_ctx);

	flush_writes(ohci);
2394

2395 2396
	/* We are ready to go, reset bus to finish initialization. */
	fw_schedule_bus_reset(&ohci->card, false, true);
2397 2398 2399 2400

	return 0;
}

2401
static int ohci_set_config_rom(struct fw_card *card,
2402
			       const __be32 *config_rom, size_t length)
2403 2404 2405 2406
{
	struct fw_ohci *ohci;
	unsigned long flags;
	__be32 *next_config_rom;
2407
	dma_addr_t uninitialized_var(next_config_rom_bus);
2408 2409 2410

	ohci = fw_ohci(card);

2411 2412
	/*
	 * When the OHCI controller is enabled, the config rom update
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
2435
	 * ohci->next_config_rom to NULL (see bus_reset_work).
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
	/*
	 * If there is not an already pending config_rom update,
	 * push our new allocation into the ohci->next_config_rom
	 * and then mark the local variable as null so that we
	 * won't deallocate the new buffer.
	 *
	 * OTOH, if there is a pending config_rom update, just
	 * use that buffer with the new config_rom data, and
	 * let this routine free the unused DMA allocation.
	 */

2457 2458 2459
	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;
2460 2461
		next_config_rom = NULL;
	}
2462

2463
	copy_config_rom(ohci->next_config_rom, config_rom, length);
2464

2465 2466
	ohci->next_header = config_rom[0];
	ohci->next_config_rom[0] = 0;
2467

2468
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2469 2470 2471

	spin_unlock_irqrestore(&ohci->lock, flags);

2472 2473 2474 2475 2476
	/* If we didn't use the DMA allocation, delete it. */
	if (next_config_rom != NULL)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);

2477 2478
	/*
	 * Now initiate a bus reset to have the changes take
2479 2480 2481
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
2482 2483
	 * takes effect.
	 */
2484

2485 2486 2487
	fw_schedule_bus_reset(&ohci->card, true, true);

	return 0;
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

2504 2505 2506
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
2507 2508
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
2509
	int ret = -ENOENT;
2510

2511
	tasklet_disable(&ctx->tasklet);
2512

2513 2514
	if (packet->ack != 0)
		goto out;
2515

2516
	if (packet->payload_mapped)
2517 2518 2519
		dma_unmap_single(ohci->card.device, packet->payload_bus,
				 packet->payload_length, DMA_TO_DEVICE);

2520
	log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2521 2522 2523
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
2524
	ret = 0;
2525 2526
 out:
	tasklet_enable(&ctx->tasklet);
2527

2528
	return ret;
2529 2530
}

2531 2532
static int ohci_enable_phys_dma(struct fw_card *card,
				int node_id, int generation)
2533
{
2534 2535 2536
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	return 0;
#else
2537 2538
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
2539
	int n, ret = 0;
2540

2541 2542 2543 2544
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
2545 2546 2547 2548

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
2549
		ret = -ESTALE;
2550 2551 2552
		goto out;
	}

2553 2554 2555 2556
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
2557 2558 2559 2560 2561 2562 2563

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

2564 2565
	flush_writes(ohci);
 out:
2566
	spin_unlock_irqrestore(&ohci->lock, flags);
2567 2568

	return ret;
2569
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2570
}
S
Stefan Richter 已提交
2571

2572
static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2573
{
2574
	struct fw_ohci *ohci = fw_ohci(card);
2575 2576
	unsigned long flags;
	u32 value;
2577 2578

	switch (csr_offset) {
2579 2580 2581 2582 2583
	case CSR_STATE_CLEAR:
	case CSR_STATE_SET:
		if (ohci->is_root &&
		    (reg_read(ohci, OHCI1394_LinkControlSet) &
		     OHCI1394_LinkControl_cycleMaster))
2584
			value = CSR_STATE_BIT_CMSTR;
2585
		else
2586 2587 2588
			value = 0;
		if (ohci->csr_state_setclear_abdicate)
			value |= CSR_STATE_BIT_ABDICATE;
2589

2590
		return value;
2591

2592 2593 2594
	case CSR_NODE_IDS:
		return reg_read(ohci, OHCI1394_NodeID) << 16;

2595 2596 2597
	case CSR_CYCLE_TIME:
		return get_cycle_time(ohci);

2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
	case CSR_BUS_TIME:
		/*
		 * We might be called just after the cycle timer has wrapped
		 * around but just before the cycle64Seconds handler, so we
		 * better check here, too, if the bus time needs to be updated.
		 */
		spin_lock_irqsave(&ohci->lock, flags);
		value = update_bus_time(ohci);
		spin_unlock_irqrestore(&ohci->lock, flags);
		return value;

2609 2610 2611 2612
	case CSR_BUSY_TIMEOUT:
		value = reg_read(ohci, OHCI1394_ATRetries);
		return (value >> 4) & 0x0ffff00f;

2613 2614 2615 2616
	case CSR_PRIORITY_BUDGET:
		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
			(ohci->pri_req_max << 8);

2617 2618 2619 2620
	default:
		WARN_ON(1);
		return 0;
	}
2621 2622
}

2623
static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2624 2625
{
	struct fw_ohci *ohci = fw_ohci(card);
2626
	unsigned long flags;
2627

2628
	switch (csr_offset) {
2629 2630 2631 2632 2633 2634
	case CSR_STATE_CLEAR:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlClear,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2635 2636
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = false;
2637
		break;
2638

2639 2640 2641 2642 2643 2644
	case CSR_STATE_SET:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlSet,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2645 2646
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = true;
2647
		break;
2648

2649 2650 2651 2652 2653
	case CSR_NODE_IDS:
		reg_write(ohci, OHCI1394_NodeID, value >> 16);
		flush_writes(ohci);
		break;

2654 2655 2656 2657 2658 2659 2660
	case CSR_CYCLE_TIME:
		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
		reg_write(ohci, OHCI1394_IntEventSet,
			  OHCI1394_cycleInconsistent);
		flush_writes(ohci);
		break;

2661 2662 2663 2664 2665 2666
	case CSR_BUS_TIME:
		spin_lock_irqsave(&ohci->lock, flags);
		ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
		spin_unlock_irqrestore(&ohci->lock, flags);
		break;

2667 2668 2669 2670 2671 2672 2673
	case CSR_BUSY_TIMEOUT:
		value = (value & 0xf) | ((value & 0xf) << 4) |
			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
		reg_write(ohci, OHCI1394_ATRetries, value);
		flush_writes(ohci);
		break;

2674 2675 2676 2677 2678
	case CSR_PRIORITY_BUDGET:
		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
		flush_writes(ohci);
		break;

2679 2680 2681 2682
	default:
		WARN_ON(1);
		break;
	}
2683 2684
}

2685
static void flush_iso_completions(struct iso_context *ctx)
2686
{
2687 2688 2689 2690 2691
	ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
			      ctx->header_length, ctx->header,
			      ctx->base.callback_data);
	ctx->header_length = 0;
}
2692

2693
static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2694
{
2695
	u32 *ctx_hdr;
2696

2697
	if (ctx->header_length + ctx->base.header_size > PAGE_SIZE)
2698
		flush_iso_completions(ctx);
2699

2700
	ctx_hdr = ctx->header + ctx->header_length;
2701
	ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2702 2703

	/*
2704 2705 2706
	 * The two iso header quadlets are byteswapped to little
	 * endian by the controller, but we want to present them
	 * as big endian for consistency with the bus endianness.
2707 2708
	 */
	if (ctx->base.header_size > 0)
2709
		ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2710
	if (ctx->base.header_size > 4)
2711
		ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2712
	if (ctx->base.header_size > 8)
2713
		memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2714 2715 2716
	ctx->header_length += ctx->base.header_size;
}

2717 2718 2719 2720 2721 2722
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2723
	struct descriptor *pd;
2724
	u32 buffer_dma;
2725

2726
	for (pd = d; pd <= last; pd++)
2727 2728 2729
		if (pd->transfer_status)
			break;
	if (pd > last)
2730 2731 2732
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
	while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
		d++;
		buffer_dma = le32_to_cpu(d->data_address);
		dma_sync_single_range_for_cpu(context->ohci->card.device,
					      buffer_dma & PAGE_MASK,
					      buffer_dma & ~PAGE_MASK,
					      le16_to_cpu(d->req_count),
					      DMA_FROM_DEVICE);
	}

2743
	copy_iso_headers(ctx, (u32 *) (last + 1));
2744

2745 2746
	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
		flush_iso_completions(ctx);
2747 2748 2749 2750

	return 1;
}

2751 2752 2753 2754 2755 2756 2757
/* d == last because each descriptor block is only a single descriptor. */
static int handle_ir_buffer_fill(struct context *context,
				 struct descriptor *d,
				 struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2758
	unsigned int req_count, res_count, completed;
2759
	u32 buffer_dma;
2760

2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
	req_count = le16_to_cpu(last->req_count);
	res_count = le16_to_cpu(ACCESS_ONCE(last->res_count));
	completed = req_count - res_count;
	buffer_dma = le32_to_cpu(last->data_address);

	if (completed > 0) {
		ctx->mc_buffer_bus = buffer_dma;
		ctx->mc_completed = completed;
	}

	if (res_count != 0)
2772 2773 2774
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

2775 2776 2777
	dma_sync_single_range_for_cpu(context->ohci->card.device,
				      buffer_dma & PAGE_MASK,
				      buffer_dma & ~PAGE_MASK,
2778
				      completed, DMA_FROM_DEVICE);
2779

2780
	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2781
		ctx->base.callback.mc(&ctx->base,
2782
				      buffer_dma + completed,
2783
				      ctx->base.callback_data);
2784 2785
		ctx->mc_completed = 0;
	}
2786 2787 2788 2789

	return 1;
}

2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
static void flush_ir_buffer_fill(struct iso_context *ctx)
{
	dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
				      ctx->mc_buffer_bus & PAGE_MASK,
				      ctx->mc_buffer_bus & ~PAGE_MASK,
				      ctx->mc_completed, DMA_FROM_DEVICE);

	ctx->base.callback.mc(&ctx->base,
			      ctx->mc_buffer_bus + ctx->mc_completed,
			      ctx->base.callback_data);
	ctx->mc_completed = 0;
}

2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
static inline void sync_it_packet_for_cpu(struct context *context,
					  struct descriptor *pd)
{
	__le16 control;
	u32 buffer_dma;

	/* only packets beginning with OUTPUT_MORE* have data buffers */
	if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
		return;

	/* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
	pd += 2;

	/*
	 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
	 * data buffer is in the context program's coherent page and must not
	 * be synced.
	 */
	if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
	    (context->current_bus          & PAGE_MASK)) {
		if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
			return;
		pd++;
	}

	do {
		buffer_dma = le32_to_cpu(pd->data_address);
		dma_sync_single_range_for_cpu(context->ohci->card.device,
					      buffer_dma & PAGE_MASK,
					      buffer_dma & ~PAGE_MASK,
					      le16_to_cpu(pd->req_count),
					      DMA_TO_DEVICE);
		control = pd->control;
		pd++;
	} while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
}

2840 2841 2842
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
2843
{
2844 2845
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2846
	struct descriptor *pd;
2847
	__be32 *ctx_hdr;
S
Stefan Richter 已提交
2848

2849 2850 2851 2852 2853
	for (pd = d; pd <= last; pd++)
		if (pd->transfer_status)
			break;
	if (pd > last)
		/* Descriptor(s) not done yet, stop iteration */
2854 2855
		return 0;

2856 2857
	sync_it_packet_for_cpu(context, d);

2858 2859
	if (ctx->header_length + 4 > PAGE_SIZE)
		flush_iso_completions(ctx);
2860

2861
	ctx_hdr = ctx->header + ctx->header_length;
2862
	ctx->last_timestamp = le16_to_cpu(last->res_count);
2863 2864 2865 2866 2867
	/* Present this value as big-endian to match the receive code */
	*ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
			       le16_to_cpu(pd->res_count));
	ctx->header_length += 4;

2868 2869 2870
	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
		flush_iso_completions(ctx);

2871
	return 1;
2872 2873
}

2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
{
	u32 hi = channels >> 32, lo = channels;

	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
	mmiowb();
	ohci->mc_channels = channels;
}

2886
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2887
				int type, int channel, size_t header_size)
2888 2889
{
	struct fw_ohci *ohci = fw_ohci(card);
2890 2891 2892 2893
	struct iso_context *uninitialized_var(ctx);
	descriptor_callback_t uninitialized_var(callback);
	u64 *uninitialized_var(channels);
	u32 *uninitialized_var(mask), uninitialized_var(regs);
2894
	unsigned long flags;
2895
	int index, ret = -EBUSY;
2896

2897
	spin_lock_irqsave(&ohci->lock, flags);
2898

2899 2900 2901
	switch (type) {
	case FW_ISO_CONTEXT_TRANSMIT:
		mask     = &ohci->it_context_mask;
2902
		callback = handle_it_packet;
2903 2904 2905 2906 2907 2908 2909 2910 2911
		index    = ffs(*mask) - 1;
		if (index >= 0) {
			*mask &= ~(1 << index);
			regs = OHCI1394_IsoXmitContextBase(index);
			ctx  = &ohci->it_context_list[index];
		}
		break;

	case FW_ISO_CONTEXT_RECEIVE:
2912
		channels = &ohci->ir_context_channels;
2913
		mask     = &ohci->ir_context_mask;
2914
		callback = handle_ir_packet_per_buffer;
2915 2916 2917 2918 2919 2920 2921 2922
		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
		if (index >= 0) {
			*channels &= ~(1ULL << channel);
			*mask     &= ~(1 << index);
			regs = OHCI1394_IsoRcvContextBase(index);
			ctx  = &ohci->ir_context_list[index];
		}
		break;
2923

2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		mask     = &ohci->ir_context_mask;
		callback = handle_ir_buffer_fill;
		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
		if (index >= 0) {
			ohci->mc_allocated = true;
			*mask &= ~(1 << index);
			regs = OHCI1394_IsoRcvContextBase(index);
			ctx  = &ohci->ir_context_list[index];
		}
		break;

	default:
		index = -1;
		ret = -ENOSYS;
2939
	}
2940

2941 2942 2943
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
2944
		return ERR_PTR(ret);
S
Stefan Richter 已提交
2945

2946
	memset(ctx, 0, sizeof(*ctx));
2947 2948
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
2949 2950
	if (ctx->header == NULL) {
		ret = -ENOMEM;
2951
		goto out;
2952
	}
2953 2954
	ret = context_init(&ctx->context, ohci, regs, callback);
	if (ret < 0)
2955
		goto out_with_header;
2956

2957
	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
2958
		set_multichannel_mask(ohci, 0);
2959 2960
		ctx->mc_completed = 0;
	}
2961

2962
	return &ctx->base;
2963 2964 2965 2966 2967

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977

	switch (type) {
	case FW_ISO_CONTEXT_RECEIVE:
		*channels |= 1ULL << channel;
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		ohci->mc_allocated = false;
		break;
	}
2978
	*mask |= 1 << index;
2979

2980 2981
	spin_unlock_irqrestore(&ohci->lock, flags);

2982
	return ERR_PTR(ret);
2983 2984
}

2985 2986
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
2987
{
S
Stefan Richter 已提交
2988
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2989
	struct fw_ohci *ohci = ctx->context.ohci;
2990
	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2991 2992
	int index;

2993 2994 2995 2996
	/* the controller cannot start without any queued packets */
	if (ctx->context.last->branch_address == 0)
		return -ENODATA;

2997 2998
	switch (ctx->base.type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2999
		index = ctx - ohci->it_context_list;
3000 3001 3002
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3003
				(cycle & 0x7fff) << 16;
3004

3005 3006
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3007
		context_run(&ctx->context, match);
3008 3009 3010 3011 3012 3013
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
		/* fall through */
	case FW_ISO_CONTEXT_RECEIVE:
3014
		index = ctx - ohci->ir_context_list;
3015 3016 3017 3018 3019
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
3020

3021 3022
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3023
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3024
		context_run(&ctx->context, control);
3025 3026 3027 3028

		ctx->sync = sync;
		ctx->tags = tags;

3029
		break;
3030
	}
3031 3032 3033 3034

	return 0;
}

3035 3036 3037
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
3038
	struct iso_context *ctx = container_of(base, struct iso_context, base);
3039 3040
	int index;

3041 3042
	switch (ctx->base.type) {
	case FW_ISO_CONTEXT_TRANSMIT:
3043 3044
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3045 3046 3047 3048
		break;

	case FW_ISO_CONTEXT_RECEIVE:
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3049 3050
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3051
		break;
3052 3053 3054
	}
	flush_writes(ohci);
	context_stop(&ctx->context);
3055
	tasklet_kill(&ctx->context.tasklet);
3056 3057 3058 3059

	return 0;
}

3060 3061 3062
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
3063
	struct iso_context *ctx = container_of(base, struct iso_context, base);
3064 3065 3066
	unsigned long flags;
	int index;

3067 3068
	ohci_stop_iso(base);
	context_release(&ctx->context);
3069
	free_page((unsigned long)ctx->header);
3070

3071 3072
	spin_lock_irqsave(&ohci->lock, flags);

3073 3074
	switch (base->type) {
	case FW_ISO_CONTEXT_TRANSMIT:
3075 3076
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
3077 3078 3079
		break;

	case FW_ISO_CONTEXT_RECEIVE:
3080 3081
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
3082
		ohci->ir_context_channels |= 1ULL << base->channel;
3083 3084 3085 3086 3087 3088 3089 3090 3091
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
		ohci->ir_context_channels |= ohci->mc_channels;
		ohci->mc_channels = 0;
		ohci->mc_allocated = false;
		break;
3092 3093 3094 3095 3096
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
	unsigned long flags;
	int ret;

	switch (base->type) {
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:

		spin_lock_irqsave(&ohci->lock, flags);

		/* Don't allow multichannel to grab other contexts' channels. */
		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
			*channels = ohci->ir_context_channels;
			ret = -EBUSY;
		} else {
			set_multichannel_mask(ohci, *channels);
			ret = 0;
		}

		spin_unlock_irqrestore(&ohci->lock, flags);

		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

3127 3128 3129 3130 3131 3132 3133 3134
#ifdef CONFIG_PM
static void ohci_resume_iso_dma(struct fw_ohci *ohci)
{
	int i;
	struct iso_context *ctx;

	for (i = 0 ; i < ohci->n_ir ; i++) {
		ctx = &ohci->ir_context_list[i];
3135
		if (ctx->context.running)
3136 3137 3138 3139 3140
			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
	}

	for (i = 0 ; i < ohci->n_it ; i++) {
		ctx = &ohci->it_context_list[i];
3141
		if (ctx->context.running)
3142 3143 3144 3145 3146
			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
	}
}
#endif

3147 3148 3149 3150
static int queue_iso_transmit(struct iso_context *ctx,
			      struct fw_iso_packet *packet,
			      struct fw_iso_buffer *buffer,
			      unsigned long payload)
3151
{
3152
	struct descriptor *d, *last, *pd;
3153 3154
	struct fw_iso_packet *p;
	__le32 *header;
3155
	dma_addr_t d_bus, page_bus;
3156 3157
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
3158
	int page, end_page, i, length, offset;
3159 3160

	p = packet;
3161
	payload_index = payload;
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
3180
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3181

3182 3183 3184
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
3185 3186

	if (!p->skip) {
3187
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3188
		d[0].req_count = cpu_to_le16(8);
3189 3190 3191 3192 3193 3194 3195 3196
		/*
		 * Link the skip address to this descriptor itself.  This causes
		 * a context to skip a cycle whenever lost cycles or FIFO
		 * overruns occur, without dropping the data.  The application
		 * should then decide whether this is an error condition or not.
		 * FIXME:  Make the context's cycle-lost behaviour configurable?
		 */
		d[0].branch_address = cpu_to_le32(d_bus | z);
3197 3198

		header = (__le32 *) &d[1];
3199 3200 3201 3202 3203
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
3204
		header[1] =
3205
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3206 3207 3208 3209 3210
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
3211
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
3224 3225 3226

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
3227

3228 3229 3230 3231
		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
						 page_bus, offset, length,
						 DMA_TO_DEVICE);

3232 3233 3234 3235
		payload_index += length;
	}

	if (p->interrupt)
3236
		irq = DESCRIPTOR_IRQ_ALWAYS;
3237
	else
3238
		irq = DESCRIPTOR_NO_IRQ;
3239

3240
	last = z == 2 ? d : d + z - 1;
3241 3242 3243
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
3244
				     irq);
3245

3246
	context_append(&ctx->context, d, z, header_z);
3247 3248 3249

	return 0;
}
S
Stefan Richter 已提交
3250

3251 3252 3253 3254
static int queue_iso_packet_per_buffer(struct iso_context *ctx,
				       struct fw_iso_packet *packet,
				       struct fw_iso_buffer *buffer,
				       unsigned long payload)
3255
{
3256
	struct device *device = ctx->context.ohci->card.device;
3257
	struct descriptor *d, *pd;
3258 3259
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
3260 3261
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
3262 3263

	/*
3264 3265
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
3266
	 */
3267
	packet_count = packet->header_length / ctx->base.header_size;
3268
	header_size  = max(ctx->base.header_size, (size_t)8);
3269 3270 3271 3272 3273

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
3274
	payload_per_buffer = packet->payload_length / packet_count;
3275 3276 3277

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
3278
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3279
		d = context_get_descriptors(&ctx->context,
3280
				z + header_z, &d_bus);
3281 3282 3283
		if (d == NULL)
			return -ENOMEM;

3284 3285
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
3286
		if (packet->skip && i == 0)
3287
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3288 3289
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
3290
		d->transfer_status = 0;
3291 3292
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

3293
		rest = payload_per_buffer;
3294
		pd = d;
3295
		for (j = 1; j < z; j++) {
3296
			pd++;
3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

3311 3312 3313 3314
			dma_sync_single_range_for_device(device, page_bus,
							 offset, length,
							 DMA_FROM_DEVICE);

3315 3316 3317 3318 3319
			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
3320 3321 3322
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
3323
		if (packet->interrupt && i == packet_count - 1)
3324 3325 3326 3327 3328 3329 3330 3331
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
static int queue_iso_buffer_fill(struct iso_context *ctx,
				 struct fw_iso_packet *packet,
				 struct fw_iso_buffer *buffer,
				 unsigned long payload)
{
	struct descriptor *d;
	dma_addr_t d_bus, page_bus;
	int page, offset, rest, z, i, length;

	page   = payload >> PAGE_SHIFT;
	offset = payload & ~PAGE_MASK;
	rest   = packet->payload_length;

	/* We need one descriptor for each page in the buffer. */
	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);

	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
		return -EFAULT;

	for (i = 0; i < z; i++) {
		d = context_get_descriptors(&ctx->context, 1, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
					 DESCRIPTOR_BRANCH_ALWAYS);
		if (packet->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
		if (packet->interrupt && i == z - 1)
			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		if (offset + rest < PAGE_SIZE)
			length = rest;
		else
			length = PAGE_SIZE - offset;
		d->req_count = cpu_to_le16(length);
		d->res_count = d->req_count;
		d->transfer_status = 0;

		page_bus = page_private(buffer->pages[page]);
		d->data_address = cpu_to_le32(page_bus + offset);

3374 3375 3376 3377
		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
						 page_bus, offset, length,
						 DMA_FROM_DEVICE);

3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
		rest -= length;
		offset = 0;
		page++;

		context_append(&ctx->context, d, 1, 0);
	}

	return 0;
}

3388 3389 3390 3391
static int ohci_queue_iso(struct fw_iso_context *base,
			  struct fw_iso_packet *packet,
			  struct fw_iso_buffer *buffer,
			  unsigned long payload)
3392
{
3393
	struct iso_context *ctx = container_of(base, struct iso_context, base);
3394
	unsigned long flags;
3395
	int ret = -ENOSYS;
3396

3397
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
	switch (base->type) {
	case FW_ISO_CONTEXT_TRANSMIT:
		ret = queue_iso_transmit(ctx, packet, buffer, payload);
		break;
	case FW_ISO_CONTEXT_RECEIVE:
		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
		break;
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
		break;
	}
3409 3410
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

3411
	return ret;
3412 3413
}

3414 3415 3416 3417 3418 3419 3420 3421
static void ohci_flush_queue_iso(struct fw_iso_context *base)
{
	struct context *ctx =
			&container_of(base, struct iso_context, base)->context;

	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
}

3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
static int ohci_flush_iso_completions(struct fw_iso_context *base)
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
	int ret = 0;

	tasklet_disable(&ctx->context.tasklet);

	if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
		context_tasklet((unsigned long)&ctx->context);

		switch (base->type) {
		case FW_ISO_CONTEXT_TRANSMIT:
		case FW_ISO_CONTEXT_RECEIVE:
			if (ctx->header_length != 0)
				flush_iso_completions(ctx);
			break;
		case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
			if (ctx->mc_completed != 0)
				flush_ir_buffer_fill(ctx);
			break;
		default:
			ret = -ENOSYS;
		}

		clear_bit_unlock(0, &ctx->flushing_completions);
		smp_mb__after_clear_bit();
	}

	tasklet_enable(&ctx->context.tasklet);

	return ret;
}

3455
static const struct fw_card_driver ohci_driver = {
3456
	.enable			= ohci_enable,
3457
	.read_phy_reg		= ohci_read_phy_reg,
3458 3459 3460 3461
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
3462
	.cancel_packet		= ohci_cancel_packet,
3463
	.enable_phys_dma	= ohci_enable_phys_dma,
3464 3465
	.read_csr		= ohci_read_csr,
	.write_csr		= ohci_write_csr,
3466 3467 3468

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
3469
	.set_iso_channels	= ohci_set_iso_channels,
3470
	.queue_iso		= ohci_queue_iso,
3471
	.flush_queue_iso	= ohci_flush_queue_iso,
3472
	.flush_iso_completions	= ohci_flush_iso_completions,
3473
	.start_iso		= ohci_start_iso,
3474
	.stop_iso		= ohci_stop_iso,
3475 3476
};

3477
#ifdef CONFIG_PPC_PMAC
3478
static void pmac_ohci_on(struct pci_dev *dev)
3479
{
3480 3481 3482 3483 3484 3485 3486 3487
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
3488 3489
}

3490
static void pmac_ohci_off(struct pci_dev *dev)
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
{
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
}
#else
3502 3503
static inline void pmac_ohci_on(struct pci_dev *dev) {}
static inline void pmac_ohci_off(struct pci_dev *dev) {}
3504 3505
#endif /* CONFIG_PPC_PMAC */

3506 3507
static int __devinit pci_probe(struct pci_dev *dev,
			       const struct pci_device_id *ent)
3508 3509
{
	struct fw_ohci *ohci;
3510
	u32 bus_options, max_receive, link_speed, version;
3511
	u64 guid;
3512
	int i, err;
3513 3514
	size_t size;

3515 3516 3517 3518 3519
	if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
		dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
		return -ENOSYS;
	}

3520
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3521
	if (ohci == NULL) {
3522 3523
		err = -ENOMEM;
		goto fail;
3524 3525 3526 3527
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

3528
	pmac_ohci_on(dev);
3529

3530 3531
	err = pci_enable_device(dev);
	if (err) {
3532
		dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3533
		goto fail_free;
3534 3535 3536 3537 3538 3539 3540
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);
3541
	mutex_init(&ohci->phy_reg_mutex);
3542

3543
	INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3544

3545 3546
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
3547
		dev_err(&dev->dev, "MMIO resource unavailable\n");
3548
		goto fail_disable;
3549 3550 3551 3552
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
3553
		dev_err(&dev->dev, "failed to remap registers\n");
3554 3555
		err = -ENXIO;
		goto fail_iomem;
3556 3557
	}

3558
	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3559 3560 3561 3562 3563
		if ((ohci_quirks[i].vendor == dev->vendor) &&
		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
		     ohci_quirks[i].device == dev->device) &&
		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
		     ohci_quirks[i].revision >= dev->revision)) {
3564 3565 3566
			ohci->quirks = ohci_quirks[i].flags;
			break;
		}
3567 3568
	if (param_quirks)
		ohci->quirks = param_quirks;
3569

3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
	/*
	 * Because dma_alloc_coherent() allocates at least one page,
	 * we save space by using a common buffer for the AR request/
	 * response descriptors and the self IDs buffer.
	 */
	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
	ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
					       PAGE_SIZE,
					       &ohci->misc_buffer_bus,
					       GFP_KERNEL);
	if (!ohci->misc_buffer) {
		err = -ENOMEM;
		goto fail_iounmap;
	}

	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3587 3588
			      OHCI1394_AsReqRcvContextControlSet);
	if (err < 0)
3589
		goto fail_misc_buf;
3590

3591
	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3592 3593 3594
			      OHCI1394_AsRspRcvContextControlSet);
	if (err < 0)
		goto fail_arreq_ctx;
3595

3596 3597 3598 3599
	err = context_init(&ohci->at_request_ctx, ohci,
			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
	if (err < 0)
		goto fail_arrsp_ctx;
3600

3601 3602 3603 3604
	err = context_init(&ohci->at_response_ctx, ohci,
			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
	if (err < 0)
		goto fail_atreq_ctx;
3605 3606

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3607
	ohci->ir_context_channels = ~0ULL;
3608
	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3609
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3610
	ohci->ir_context_mask = ohci->ir_context_support;
3611 3612
	ohci->n_ir = hweight32(ohci->ir_context_mask);
	size = sizeof(struct iso_context) * ohci->n_ir;
3613
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3614 3615

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3616
	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3617
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3618
	ohci->it_context_mask = ohci->it_context_support;
3619 3620
	ohci->n_it = hweight32(ohci->it_context_mask);
	size = sizeof(struct iso_context) * ohci->n_it;
3621
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3622 3623

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3624
		err = -ENOMEM;
3625
		goto fail_contexts;
3626 3627
	}

3628 3629
	ohci->self_id_cpu = ohci->misc_buffer     + PAGE_SIZE/2;
	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3630 3631 3632 3633 3634 3635 3636

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

3637
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3638
	if (err)
3639
		goto fail_contexts;
3640

3641
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3642 3643
	dev_notice(&dev->dev,
		  "added OHCI v%x.%x device as card %d, "
3644
		  "%d IR + %d IT contexts, quirks 0x%x\n",
3645
		  version >> 16, version & 0xff, ohci->card.index,
3646
		  ohci->n_ir, ohci->n_it, ohci->quirks);
3647

3648
	return 0;
3649

3650
 fail_contexts:
3651
	kfree(ohci->ir_context_list);
3652 3653
	kfree(ohci->it_context_list);
	context_release(&ohci->at_response_ctx);
3654
 fail_atreq_ctx:
3655
	context_release(&ohci->at_request_ctx);
3656
 fail_arrsp_ctx:
3657
	ar_context_release(&ohci->ar_response_ctx);
3658
 fail_arreq_ctx:
3659
	ar_context_release(&ohci->ar_request_ctx);
3660 3661 3662
 fail_misc_buf:
	dma_free_coherent(ohci->card.device, PAGE_SIZE,
			  ohci->misc_buffer, ohci->misc_buffer_bus);
3663
 fail_iounmap:
3664 3665 3666 3667 3668
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
3669
 fail_free:
3670
	kfree(ohci);
3671
	pmac_ohci_off(dev);
3672 3673
 fail:
	if (err == -ENOMEM)
3674
		dev_err(&dev->dev, "out of memory\n");
3675 3676

	return err;
3677 3678 3679 3680 3681 3682 3683
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
3684 3685
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
3686
	cancel_work_sync(&ohci->bus_reset_work);
3687 3688
	fw_core_remove_card(&ohci->card);

3689 3690 3691 3692
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
3693 3694 3695

	software_reset(ohci);
	free_irq(dev->irq, ohci);
3696 3697 3698 3699 3700 3701 3702 3703 3704

	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->next_config_rom, ohci->next_config_rom_bus);
	if (ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
	ar_context_release(&ohci->ar_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
3705 3706
	dma_free_coherent(ohci->card.device, PAGE_SIZE,
			  ohci->misc_buffer, ohci->misc_buffer_bus);
3707 3708
	context_release(&ohci->at_request_ctx);
	context_release(&ohci->at_response_ctx);
3709 3710
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
3711
	pci_disable_msi(dev);
3712 3713 3714
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
3715
	kfree(ohci);
3716
	pmac_ohci_off(dev);
3717

3718
	dev_notice(&dev->dev, "removed fw-ohci device\n");
3719 3720
}

3721
#ifdef CONFIG_PM
3722
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3723
{
3724
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3725 3726 3727
	int err;

	software_reset(ohci);
3728
	free_irq(dev->irq, ohci);
3729
	pci_disable_msi(dev);
3730
	err = pci_save_state(dev);
3731
	if (err) {
3732
		dev_err(&dev->dev, "pci_save_state failed\n");
3733 3734
		return err;
	}
3735
	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3736
	if (err)
3737
		dev_err(&dev->dev, "pci_set_power_state failed with %d\n", err);
3738
	pmac_ohci_off(dev);
3739

3740 3741 3742
	return 0;
}

3743
static int pci_resume(struct pci_dev *dev)
3744
{
3745
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3746 3747
	int err;

3748
	pmac_ohci_on(dev);
3749 3750 3751
	pci_set_power_state(dev, PCI_D0);
	pci_restore_state(dev);
	err = pci_enable_device(dev);
3752
	if (err) {
3753
		dev_err(&dev->dev, "pci_enable_device failed\n");
3754 3755 3756
		return err;
	}

3757 3758 3759 3760 3761 3762 3763
	/* Some systems don't setup GUID register on resume from ram  */
	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
					!reg_read(ohci, OHCI1394_GUIDHi)) {
		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
	}

3764 3765 3766 3767 3768
	err = ohci_enable(&ohci->card, NULL, 0);
	if (err)
		return err;

	ohci_resume_iso_dma(ohci);
3769

3770
	return 0;
3771 3772 3773
}
#endif

3774
static const struct pci_device_id pci_table[] = {
3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
3786 3787 3788 3789
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
3790 3791
};

A
Axel Lin 已提交
3792 3793
module_pci_driver(fw_ohci_pci_driver);

3794 3795 3796 3797
MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

3798 3799 3800 3801
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif