ohci.c 79.7 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/bug.h>
22
#include <linux/compiler.h>
23
#include <linux/delay.h>
S
Stefan Richter 已提交
24
#include <linux/device.h>
A
Andrew Morton 已提交
25
#include <linux/dma-mapping.h>
26
#include <linux/firewire.h>
S
Stefan Richter 已提交
27
#include <linux/firewire-constants.h>
S
Stefan Richter 已提交
28
#include <linux/gfp.h>
29 30
#include <linux/init.h>
#include <linux/interrupt.h>
S
Stefan Richter 已提交
31
#include <linux/io.h>
32
#include <linux/kernel.h>
S
Stefan Richter 已提交
33
#include <linux/list.h>
A
Al Viro 已提交
34
#include <linux/mm.h>
35
#include <linux/module.h>
36
#include <linux/moduleparam.h>
37
#include <linux/pci.h>
38
#include <linux/pci_ids.h>
S
Stefan Richter 已提交
39
#include <linux/spinlock.h>
S
Stefan Richter 已提交
40
#include <linux/string.h>
A
Andrew Morton 已提交
41

S
Stefan Richter 已提交
42
#include <asm/byteorder.h>
S
Stefan Richter 已提交
43
#include <asm/page.h>
44
#include <asm/system.h>
45

46 47 48 49
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

50 51
#include "core.h"
#include "ohci.h"
52

53 54 55 56 57 58 59 60 61 62 63 64 65
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
66 67 68 69 70 71 72 73 74 75

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

76 77 78 79
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
80

81
struct ar_buffer {
82
	struct descriptor descriptor;
83 84 85
	struct ar_buffer *next;
	__le32 data[0];
};
86

87 88 89 90 91
struct ar_context {
	struct fw_ohci *ohci;
	struct ar_buffer *current_buffer;
	struct ar_buffer *last_buffer;
	void *pointer;
92
	u32 regs;
93 94 95
	struct tasklet_struct tasklet;
};

96 97 98 99 100
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
101 102 103 104 105 106 107 108 109 110 111 112 113

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

114
struct context {
S
Stefan Richter 已提交
115
	struct fw_ohci *ohci;
116
	u32 regs;
117
	int total_allocation;
S
Stefan Richter 已提交
118

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
	 * The last descriptor in the DMA program.  It contains the branch
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
143 144 145

	descriptor_callback_t callback;

S
Stefan Richter 已提交
146
	struct tasklet_struct tasklet;
147 148
};

149 150 151 152 153 154
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
155 156 157

struct iso_context {
	struct fw_iso_context base;
158
	struct context context;
159
	int excess_bytes;
160 161
	void *header;
	size_t header_length;
162 163 164 165 166 167 168 169
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

	__iomem char *registers;
170
	int node_id;
171
	int generation;
172
	int request_generation;	/* for timestamping incoming requests */
173
	unsigned quirks;
174
	unsigned int pri_req_max;
175
	u32 bus_time;
176
	bool is_root;
177
	bool csr_state_setclear_abdicate;
178

179 180 181 182
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
183 184 185 186
	spinlock_t lock;

	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
187 188
	struct context at_request_ctx;
	struct context at_response_ctx;
189 190 191

	u32 it_context_mask;
	struct iso_context *it_context_list;
192
	u64 ir_context_channels;
193 194
	u32 ir_context_mask;
	struct iso_context *ir_context_list;
195 196 197 198 199 200 201 202 203 204 205 206

	__be32    *config_rom;
	dma_addr_t config_rom_bus;
	__be32    *next_config_rom;
	dma_addr_t next_config_rom_bus;
	__be32     next_header;

	__le32    *self_id_cpu;
	dma_addr_t self_id_bus;
	struct tasklet_struct bus_reset_tasklet;

	u32 self_id_buffer[512];
207 208
};

A
Adrian Bunk 已提交
209
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
210 211 212 213
{
	return container_of(card, struct fw_ohci, card);
}

214 215 216 217 218 219
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
220 221 222 223 224 225

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

226
#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
227 228 229 230 231 232 233
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
234
#define OHCI_TCODE_PHY_PACKET		0x0e
235
#define OHCI_VERSION_1_1		0x010010
236

237 238
static char ohci_driver_name[] = KBUILD_MODNAME;

239
#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
240 241
#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009

242 243 244
#define QUIRK_CYCLE_TIMER		1
#define QUIRK_RESET_PACKET		2
#define QUIRK_BE_HEADERS		4
245
#define QUIRK_NO_1394A			8
246
#define QUIRK_NO_MSI			16
247 248 249 250 251

/* In case of multiple matches in ohci_quirks[], only the first one is used. */
static const struct {
	unsigned short vendor, device, flags;
} ohci_quirks[] = {
252
	{PCI_VENDOR_ID_TI,	PCI_DEVICE_ID_TI_TSB12LV22, QUIRK_CYCLE_TIMER |
253 254
							    QUIRK_RESET_PACKET |
							    QUIRK_NO_1394A},
255 256
	{PCI_VENDOR_ID_TI,	PCI_ANY_ID,	QUIRK_RESET_PACKET},
	{PCI_VENDOR_ID_AL,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
257
	{PCI_VENDOR_ID_JMICRON,	PCI_DEVICE_ID_JMICRON_JMB38X_FW, QUIRK_NO_MSI},
258 259 260 261 262
	{PCI_VENDOR_ID_NEC,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
	{PCI_VENDOR_ID_VIA,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
	{PCI_VENDOR_ID_APPLE,	PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
};

263 264 265 266 267 268 269
/* This overrides anything that was found in ohci_quirks[]. */
static int param_quirks;
module_param_named(quirks, param_quirks, int, 0644);
MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
	", AR/selfID endianess = "	__stringify(QUIRK_BE_HEADERS)
270
	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
271
	", disable MSI = "		__stringify(QUIRK_NO_MSI)
272 273
	")");

274
#define OHCI_PARAM_DEBUG_AT_AR		1
275
#define OHCI_PARAM_DEBUG_SELFIDS	2
276 277
#define OHCI_PARAM_DEBUG_IRQS		4
#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
278

279 280
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG

281 282 283 284
static int param_debug;
module_param_named(debug, param_debug, int, 0644);
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
285 286 287
	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
288 289 290 291
	", or a combination, or all = -1)");

static void log_irqs(u32 evt)
{
292 293 294 295 296 297
	if (likely(!(param_debug &
			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
		return;

	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
	    !(evt & OHCI1394_busReset))
298 299
		return;

300
	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
301 302 303 304 305 306 307 308 309
	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
	    evt & OHCI1394_isochRx		? " IR"			: "",
	    evt & OHCI1394_isochTx		? " IT"			: "",
	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
310
	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
311
	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
312 313 314 315 316 317
	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
	    evt & OHCI1394_busReset		? " busReset"		: "",
	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
		    OHCI1394_respTxComplete | OHCI1394_isochRx |
		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
318 319
		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
		    OHCI1394_cycleInconsistent |
320
		    OHCI1394_regAccessFail | OHCI1394_busReset)
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
						? " ?"			: "");
}

static const char *speed[] = {
	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
};
static const char *power[] = {
	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
};
static const char port[] = { '.', '-', 'p', 'c', };

static char _p(u32 *s, int shift)
{
	return port[*s >> shift & 3];
}

338
static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
339 340 341 342
{
	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
		return;

343 344
	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
		  self_id_count, generation, node_id);
345 346 347

	for (; self_id_count--; ++s)
		if ((*s & 1 << 23) == 0)
348 349 350 351 352 353
			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
			    "%s gc=%d %s %s%s%s\n",
			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
			    speed[*s >> 14 & 3], *s >> 16 & 63,
			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
354
		else
355 356 357 358
			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
			    *s, *s >> 24 & 63,
			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
}

static const char *evts[] = {
	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
	[0x10] = "-reserved-",		[0x11] = "ack_complete",
	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
	[0x18] = "-reserved-",		[0x19] = "-reserved-",
	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
	[0x20] = "pending/cancelled",
};
static const char *tcodes[] = {
	[0x0] = "QW req",		[0x1] = "BW req",
	[0x2] = "W resp",		[0x3] = "-reserved-",
	[0x4] = "QR req",		[0x5] = "BR req",
	[0x6] = "QR resp",		[0x7] = "BR resp",
	[0x8] = "cycle start",		[0x9] = "Lk req",
	[0xa] = "async stream packet",	[0xb] = "Lk resp",
	[0xc] = "-reserved-",		[0xd] = "-reserved-",
	[0xe] = "link internal",	[0xf] = "-reserved-",
};
static const char *phys[] = {
	[0x0] = "phy config packet",	[0x1] = "link-on packet",
	[0x2] = "self-id packet",	[0x3] = "-reserved-",
};

static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
{
	int tcode = header[0] >> 4 & 0xf;
	char specific[12];

	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
		return;

	if (unlikely(evt >= ARRAY_SIZE(evts)))
			evt = 0x1f;

406
	if (evt == OHCI1394_evt_bus_reset) {
407 408
		fw_notify("A%c evt_bus_reset, generation %d\n",
		    dir, (header[2] >> 16) & 0xff);
409 410 411
		return;
	}

412
	if (header[0] == ~header[1]) {
413 414
		fw_notify("A%c %s, %s, %08x\n",
		    dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
		return;
	}

	switch (tcode) {
	case 0x0: case 0x6: case 0x8:
		snprintf(specific, sizeof(specific), " = %08x",
			 be32_to_cpu((__force __be32)header[3]));
		break;
	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
		snprintf(specific, sizeof(specific), " %x,%x",
			 header[3] >> 16, header[3] & 0xffff);
		break;
	default:
		specific[0] = '\0';
	}

	switch (tcode) {
	case 0xe: case 0xa:
433
		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
434 435
		break;
	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
436 437 438 439 440 441
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s, %04x%08x%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
442 443
		break;
	default:
444 445 446 447 448 449
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], specific);
450 451 452 453 454
	}
}

#else

455 456 457 458
#define param_debug 0
static inline void log_irqs(u32 evt) {}
static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
459 460 461

#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */

A
Adrian Bunk 已提交
462
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
463 464 465 466
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
467
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
468 469 470 471
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
472
static inline void flush_writes(const struct fw_ohci *ohci)
473 474 475 476 477
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

478
static int read_phy_reg(struct fw_ohci *ohci, int addr)
479
{
480
	u32 val;
481
	int i;
482 483

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
484
	for (i = 0; i < 3 + 100; i++) {
485 486 487 488
		val = reg_read(ohci, OHCI1394_PhyControl);
		if (val & OHCI1394_PhyControl_ReadDone)
			return OHCI1394_PhyControl_ReadData(val);

489 490 491 492 493 494
		/*
		 * Try a few times without waiting.  Sleeping is necessary
		 * only when the link/PHY interface is busy.
		 */
		if (i >= 3)
			msleep(1);
495
	}
496
	fw_error("failed to read phy reg\n");
497

498 499
	return -EBUSY;
}
500

501 502 503 504 505 506
static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
{
	int i;

	reg_write(ohci, OHCI1394_PhyControl,
		  OHCI1394_PhyControl_Write(addr, val));
507
	for (i = 0; i < 3 + 100; i++) {
508 509 510 511
		val = reg_read(ohci, OHCI1394_PhyControl);
		if (!(val & OHCI1394_PhyControl_WritePending))
			return 0;

512 513
		if (i >= 3)
			msleep(1);
514 515 516 517
	}
	fw_error("failed to write phy reg\n");

	return -EBUSY;
518 519 520 521 522 523
}

static int ohci_update_phy_reg(struct fw_card *card, int addr,
			       int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
524
	int ret;
525

526 527 528
	ret = read_phy_reg(ohci, addr);
	if (ret < 0)
		return ret;
529

530 531 532 533 534 535 536
	/*
	 * The interrupt status bits are cleared by writing a one bit.
	 * Avoid clearing them unless explicitly requested in set_bits.
	 */
	if (addr == 5)
		clear_bits |= PHY_INT_STATUS_BITS;

537
	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
538 539
}

540
static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
541
{
542
	int ret;
543

544 545 546
	ret = ohci_update_phy_reg(&ohci->card, 7, PHY_PAGE_SELECT, page << 5);
	if (ret < 0)
		return ret;
547

548
	return read_phy_reg(ohci, addr);
549 550
}

551
static int ar_context_add_page(struct ar_context *ctx)
552
{
553 554
	struct device *dev = ctx->ohci->card.device;
	struct ar_buffer *ab;
555
	dma_addr_t uninitialized_var(ab_bus);
556 557
	size_t offset;

558
	ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
559 560 561
	if (ab == NULL)
		return -ENOMEM;

562
	ab->next = NULL;
563
	memset(&ab->descriptor, 0, sizeof(ab->descriptor));
564 565 566
	ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						    DESCRIPTOR_STATUS |
						    DESCRIPTOR_BRANCH_ALWAYS);
567 568 569 570 571 572
	offset = offsetof(struct ar_buffer, data);
	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.branch_address = 0;

573
	ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
574 575 576
	ctx->last_buffer->next = ab;
	ctx->last_buffer = ab;

577
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
578
	flush_writes(ctx->ohci);
579 580

	return 0;
581 582
}

583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
static void ar_context_release(struct ar_context *ctx)
{
	struct ar_buffer *ab, *ab_next;
	size_t offset;
	dma_addr_t ab_bus;

	for (ab = ctx->current_buffer; ab; ab = ab_next) {
		ab_next = ab->next;
		offset = offsetof(struct ar_buffer, data);
		ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
		dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
				  ab, ab_bus);
	}
}

598 599
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
600
	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
601 602 603 604
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

605
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
606 607
{
	struct fw_ohci *ohci = ctx->ohci;
608 609
	struct fw_packet p;
	u32 status, length, tcode;
610
	int evt;
611

612 613 614
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
615 616 617 618 619

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
620
		p.header[3] = (__force __u32) buffer[3];
621
		p.header_length = 16;
622
		p.payload_length = 0;
623 624 625
		break;

	case TCODE_READ_BLOCK_REQUEST :
626
		p.header[3] = cond_le32_to_cpu(buffer[3]);
627 628 629 630 631
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
632 633 634
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
635
		p.header[3] = cond_le32_to_cpu(buffer[3]);
636
		p.header_length = 16;
637
		p.payload_length = p.header[3] >> 16;
638 639 640 641
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
642
	case OHCI_TCODE_PHY_PACKET:
643
		p.header_length = 12;
644
		p.payload_length = 0;
645
		break;
646 647 648 649 650

	default:
		/* FIXME: Stop context, discard everything, and restart? */
		p.header_length = 0;
		p.payload_length = 0;
651
	}
652

653 654 655 656
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
657
	status = cond_le32_to_cpu(buffer[length]);
658
	evt    = (status >> 16) & 0x1f;
659

660
	p.ack        = evt - 16;
661 662 663
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
664

665
	log_ar_at_event('R', p.speed, p.header, evt);
666

667 668
	/*
	 * The OHCI bus reset handler synthesizes a phy packet with
669 670 671 672 673
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
674
	 * request.
675 676 677 678
	 *
	 * Alas some chips sometimes emit bus reset packets with a
	 * wrong generation.  We set the correct generation for these
	 * at a slightly incorrect time (in bus_reset_tasklet).
679
	 */
680
	if (evt == OHCI1394_evt_bus_reset) {
681
		if (!(ohci->quirks & QUIRK_RESET_PACKET))
682 683
			ohci->request_generation = (p.header[2] >> 16) & 0xff;
	} else if (ctx == &ohci->ar_request_ctx) {
684
		fw_core_handle_request(&ohci->card, &p);
685
	} else {
686
		fw_core_handle_response(&ohci->card, &p);
687
	}
688

689 690
	return buffer + length + 1;
}
691

692 693 694 695 696 697 698 699 700 701 702 703 704
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
	struct fw_ohci *ohci = ctx->ohci;
	struct ar_buffer *ab;
	struct descriptor *d;
	void *buffer, *end;

	ab = ctx->current_buffer;
	d = &ab->descriptor;

	if (d->res_count == 0) {
		size_t size, rest, offset;
705 706
		dma_addr_t start_bus;
		void *start;
707

708 709
		/*
		 * This descriptor is finished and we may have a
710
		 * packet split across this and the next buffer. We
711 712
		 * reuse the page for reassembling the split packet.
		 */
713 714

		offset = offsetof(struct ar_buffer, data);
715 716
		start = buffer = ab;
		start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
717 718 719 720 721 722 723 724 725 726 727 728 729 730

		ab = ab->next;
		d = &ab->descriptor;
		size = buffer + PAGE_SIZE - ctx->pointer;
		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
		memmove(buffer, ctx->pointer, size);
		memcpy(buffer + size, ab->data, rest);
		ctx->current_buffer = ab;
		ctx->pointer = (void *) ab->data + rest;
		end = buffer + size + rest;

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);

731
		dma_free_coherent(ohci->card.device, PAGE_SIZE,
732
				  start, start_bus);
733 734 735 736 737 738 739 740 741
		ar_context_add_page(ctx);
	} else {
		buffer = ctx->pointer;
		ctx->pointer = end =
			(void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);
	}
742 743
}

744 745
static int ar_context_init(struct ar_context *ctx,
			   struct fw_ohci *ohci, u32 regs)
746
{
747
	struct ar_buffer ab;
748

749 750 751
	ctx->regs        = regs;
	ctx->ohci        = ohci;
	ctx->last_buffer = &ab;
752 753
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

754 755 756 757 758
	ar_context_add_page(ctx);
	ar_context_add_page(ctx);
	ctx->current_buffer = ab.next;
	ctx->pointer = ctx->current_buffer->data;

759 760 761 762 763 764 765 766 767 768
	return 0;
}

static void ar_context_run(struct ar_context *ctx)
{
	struct ar_buffer *ab = ctx->current_buffer;
	dma_addr_t ab_bus;
	size_t offset;

	offset = offsetof(struct ar_buffer, data);
769
	ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
770 771

	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
772
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
773
	flush_writes(ctx->ohci);
774
}
S
Stefan Richter 已提交
775

776
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
777 778 779 780 781 782 783 784 785 786 787 788 789
{
	int b, key;

	b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
	key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;

	/* figure out which descriptor the branch address goes in */
	if (z == 2 && (b == 3 || key == 2))
		return d;
	else
		return d + z - 1;
}

790 791 792 793 794 795
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
796
	struct descriptor_buffer *desc;
797

798 799 800
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
801
	while (last->branch_address != 0) {
802
		struct descriptor_buffer *old_desc = desc;
803 804
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
805 806 807 808 809 810 811 812 813
		address &= ~0xf;

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
814
		last = find_branch_descriptor(d, z);
815 816 817 818

		if (!ctx->callback(ctx, d, last))
			break;

819 820 821 822 823 824 825 826 827 828
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
829 830 831
	}
}

832 833 834 835
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
836
static int context_add_buffer(struct context *ctx)
837 838
{
	struct descriptor_buffer *desc;
839
	dma_addr_t uninitialized_var(bus_addr);
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

865 866
static int context_init(struct context *ctx, struct fw_ohci *ohci,
			u32 regs, descriptor_callback_t callback)
867 868 869
{
	ctx->ohci = ohci;
	ctx->regs = regs;
870 871 872 873
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
874 875
		return -ENOMEM;

876 877 878
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

879 880 881
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

882 883
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
884
	 * branch address and looks like it's been sent.  That way we
885
	 * have a descriptor to append DMA programs to.
886
	 */
887 888 889 890 891 892
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
893 894 895 896

	return 0;
}

897
static void context_release(struct context *ctx)
898 899
{
	struct fw_card *card = &ctx->ohci->card;
900
	struct descriptor_buffer *desc, *tmp;
901

902 903 904 905
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
906 907
}

908
/* Must be called with ohci->lock held */
909 910
static struct descriptor *context_get_descriptors(struct context *ctx,
						  int z, dma_addr_t *d_bus)
911
{
912 913 914 915 916 917 918 919 920
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
921

922 923 924 925 926 927 928 929 930 931
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
932

933
	d = desc->buffer + desc->used / sizeof(*d);
934
	memset(d, 0, z * sizeof(*d));
935
	*d_bus = desc->buffer_bus + desc->used;
936 937 938 939

	return d;
}

940
static void context_run(struct context *ctx, u32 extra)
941 942 943
{
	struct fw_ohci *ohci = ctx->ohci;

944
	reg_write(ohci, COMMAND_PTR(ctx->regs),
945
		  le32_to_cpu(ctx->last->branch_address));
946 947
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
948 949 950 951 952 953 954
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
955
	struct descriptor_buffer *desc = ctx->buffer_tail;
956

957
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
958

959 960 961
	desc->used += (z + extra) * sizeof(*d);
	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev = find_branch_descriptor(d, z);
962

963
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
964 965 966 967 968 969
	flush_writes(ctx->ohci);
}

static void context_stop(struct context *ctx)
{
	u32 reg;
970
	int i;
971

972
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
973
	flush_writes(ctx->ohci);
974

975
	for (i = 0; i < 10; i++) {
976
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
977
		if ((reg & CONTEXT_ACTIVE) == 0)
978
			return;
979

980
		mdelay(1);
981
	}
982
	fw_error("Error: DMA context still active (0x%08x)\n", reg);
983
}
984

985 986 987
struct driver_data {
	struct fw_packet *packet;
};
988

989 990
/*
 * This function apppends a packet to the DMA queue for transmission.
991
 * Must always be called with the ochi->lock held to ensure proper
992 993
 * generation handling and locking around packet queue manipulation.
 */
994 995
static int at_context_queue_packet(struct context *ctx,
				   struct fw_packet *packet)
996 997
{
	struct fw_ohci *ohci = ctx->ohci;
998
	dma_addr_t d_bus, uninitialized_var(payload_bus);
999 1000 1001
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
1002
	int z, tcode;
1003
	u32 reg;
1004

1005 1006 1007 1008
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1009 1010
	}

1011
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1012 1013
	d[0].res_count = cpu_to_le16(packet->timestamp);

1014 1015
	/*
	 * The DMA format for asyncronous link packets is different
1016 1017
	 * from the IEEE1394 layout, so shift the fields around
	 * accordingly.  If header_length is 8, it's a PHY packet, to
1018 1019
	 * which we need to prepend an extra quadlet.
	 */
1020 1021

	header = (__le32 *) &d[1];
1022 1023 1024
	switch (packet->header_length) {
	case 16:
	case 12:
1025 1026 1027 1028 1029
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
1030 1031 1032

		tcode = (packet->header[0] >> 4) & 0x0f;
		if (TCODE_IS_BLOCK_PACKET(tcode))
1033
			header[3] = cpu_to_le32(packet->header[3]);
1034
		else
1035 1036 1037
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
1038 1039 1040
		break;

	case 8:
1041 1042 1043 1044 1045
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0]);
		header[2] = cpu_to_le32(packet->header[1]);
		d[0].req_count = cpu_to_le16(12);
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
		break;

	case 4:
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
		d[0].req_count = cpu_to_le16(8);
		break;

	default:
		/* BUG(); */
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1059 1060
	}

1061 1062
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
1063
	packet->driver_data = driver_data;
1064

1065 1066 1067 1068
	if (packet->payload_length > 0) {
		payload_bus =
			dma_map_single(ohci->card.device, packet->payload,
				       packet->payload_length, DMA_TO_DEVICE);
1069
		if (dma_mapping_error(ohci->card.device, payload_bus)) {
1070 1071 1072
			packet->ack = RCODE_SEND_ERROR;
			return -1;
		}
1073 1074
		packet->payload_bus	= payload_bus;
		packet->payload_mapped	= true;
1075 1076 1077 1078 1079

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
1080
	} else {
1081 1082
		last = &d[0];
		z = 2;
1083 1084
	}

1085 1086 1087
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
1088

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
	/*
	 * If the controller and packet generations don't match, we need to
	 * bail out and try again.  If IntEvent.busReset is set, the AT context
	 * is halted, so appending to the context and trying to run it is
	 * futile.  Most controllers do the right thing and just flush the AT
	 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
	 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
	 * up stalling out.  So we just bail out in software and try again
	 * later, and everyone is happy.
	 * FIXME: Document how the locking works.
	 */
	if (ohci->generation != packet->generation ||
	    reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1102
		if (packet->payload_mapped)
1103 1104
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
1105 1106 1107 1108 1109
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
1110

1111
	/* If the context isn't already running, start it up. */
1112
	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1113
	if ((reg & CONTEXT_RUN) == 0)
1114 1115 1116
		context_run(ctx, 0);

	return 0;
1117 1118
}

1119 1120 1121
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1122
{
1123
	struct driver_data *driver_data;
1124
	struct fw_packet *packet;
1125
	struct fw_ohci *ohci = context->ohci;
1126 1127
	int evt;

1128 1129 1130
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
1131

1132 1133 1134 1135 1136
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
1137

1138
	if (packet->payload_mapped)
1139
		dma_unmap_single(ohci->card.device, packet->payload_bus,
1140 1141
				 packet->payload_length, DMA_TO_DEVICE);

1142 1143
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
1144

1145 1146
	log_ar_at_event('T', packet->speed, packet->header, evt);

1147 1148 1149 1150 1151
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
1152

1153
	case OHCI1394_evt_flushed:
1154 1155 1156 1157
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
1158 1159
		packet->ack = RCODE_GENERATION;
		break;
1160

1161
	case OHCI1394_evt_missing_ack:
1162 1163 1164 1165
		/*
		 * Using a valid (current) generation count, but the
		 * node is not on the bus or not sending acks.
		 */
1166 1167
		packet->ack = RCODE_NO_ACK;
		break;
1168

1169 1170 1171 1172 1173 1174 1175 1176 1177
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
1178

1179 1180 1181 1182
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
1183

1184
	packet->callback(packet, &ohci->card, packet->ack);
1185

1186
	return 1;
1187 1188
}

1189 1190 1191 1192 1193
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1194

1195 1196
static void handle_local_rom(struct fw_ohci *ohci,
			     struct fw_packet *packet, u32 csr)
1197 1198 1199 1200
{
	struct fw_packet response;
	int tcode, length, i;

1201
	tcode = HEADER_GET_TCODE(packet->header[0]);
1202
	if (TCODE_IS_BLOCK_PACKET(tcode))
1203
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

1222 1223
static void handle_local_lock(struct fw_ohci *ohci,
			      struct fw_packet *packet, u32 csr)
1224 1225 1226 1227 1228 1229
{
	struct fw_packet response;
	int tcode, length, ext_tcode, sel;
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

1230 1231
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1232
	payload = packet->payload;
1233
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

	if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
		lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
	else
		fw_notify("swap not done yet\n");

	fw_fill_response(&response, packet->header,
1259
			 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1260 1261 1262 1263
 out:
	fw_core_handle_response(&ohci->card, &response);
}

1264
static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1265 1266 1267 1268
{
	u64 offset;
	u32 csr;

1269 1270 1271 1272
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1273 1274 1275

	offset =
		((unsigned long long)
1276
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
1297 1298 1299 1300 1301

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1302
}
1303

1304
static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1305 1306
{
	unsigned long flags;
1307
	int ret;
1308 1309 1310

	spin_lock_irqsave(&ctx->ohci->lock, flags);

1311
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1312
	    ctx->ohci->generation == packet->generation) {
1313 1314 1315
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
1316
	}
1317

1318
	ret = at_context_queue_packet(ctx, packet);
1319 1320
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

1321
	if (ret < 0)
1322
		packet->callback(packet, &ctx->ohci->card, packet->ack);
1323

1324 1325
}

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
static u32 cycle_timer_ticks(u32 cycle_timer)
{
	u32 ticks;

	ticks = cycle_timer & 0xfff;
	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
	ticks += (3072 * 8000) * (cycle_timer >> 25);

	return ticks;
}

/*
 * Some controllers exhibit one or more of the following bugs when updating the
 * iso cycle timer register:
 *  - When the lowest six bits are wrapping around to zero, a read that happens
 *    at the same time will return garbage in the lowest ten bits.
 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
 *    not incremented for about 60 ns.
 *  - Occasionally, the entire register reads zero.
 *
 * To catch these, we read the register three times and ensure that the
 * difference between each two consecutive reads is approximately the same, i.e.
 * less than twice the other.  Furthermore, any negative difference indicates an
 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
 * execute, so we have enough precision to compute the ratio of the differences.)
 */
static u32 get_cycle_time(struct fw_ohci *ohci)
{
	u32 c0, c1, c2;
	u32 t0, t1, t2;
	s32 diff01, diff12;
	int i;

	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);

	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
		i = 0;
		c1 = c2;
		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		do {
			c0 = c1;
			c1 = c2;
			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
			t0 = cycle_timer_ticks(c0);
			t1 = cycle_timer_ticks(c1);
			t2 = cycle_timer_ticks(c2);
			diff01 = t1 - t0;
			diff12 = t2 - t1;
		} while ((diff01 <= 0 || diff12 <= 0 ||
			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
			 && i++ < 20);
	}

	return c2;
}

/*
 * This function has to be called at least every 64 seconds.  The bus_time
 * field stores not only the upper 25 bits of the BUS_TIME register but also
 * the most significant bit of the cycle timer in bit 6 so that we can detect
 * changes in this bit.
 */
static u32 update_bus_time(struct fw_ohci *ohci)
{
	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;

	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
		ohci->bus_time += 0x40;

	return ohci->bus_time | cycle_time_seconds;
}

1398 1399 1400
static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
1401
	int self_id_count, i, j, reg;
1402 1403
	int generation, new_generation;
	unsigned long flags;
1404 1405
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1406
	bool is_new_root;
1407 1408 1409

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1410
		fw_notify("node ID not valid, new bus reset in progress\n");
1411 1412
		return;
	}
1413 1414 1415 1416 1417 1418
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1419

1420 1421 1422 1423 1424 1425
	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
	if (!(ohci->is_root && is_new_root))
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	ohci->is_root = is_new_root;

1426 1427 1428 1429 1430
	reg = reg_read(ohci, OHCI1394_SelfIDCount);
	if (reg & OHCI1394_SelfIDCount_selfIDError) {
		fw_notify("inconsistent self IDs\n");
		return;
	}
1431 1432
	/*
	 * The count in the SelfIDCount register is the number of
1433 1434
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1435 1436
	 * bit extra to get the actual number of self IDs.
	 */
1437 1438
	self_id_count = (reg >> 3) & 0xff;
	if (self_id_count == 0 || self_id_count > 252) {
1439 1440 1441
		fw_notify("inconsistent self IDs\n");
		return;
	}
1442
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1443
	rmb();
1444 1445

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1446 1447 1448 1449
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
			fw_notify("inconsistent self IDs\n");
			return;
		}
1450 1451
		ohci->self_id_buffer[j] =
				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1452
	}
1453
	rmb();
1454

1455 1456
	/*
	 * Check the consistency of the self IDs we just read.  The
1457 1458 1459 1460 1461 1462 1463 1464 1465
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1466 1467
	 * of self IDs.
	 */
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
1480 1481
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1482 1483
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

1484
	if (ohci->quirks & QUIRK_RESET_PACKET)
1485 1486
		ohci->request_generation = generation;

1487 1488
	/*
	 * This next bit is unrelated to the AT context stuff but we
1489 1490 1491 1492
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
1493 1494
	 * next_config_rom pointer so a new udpate can take place.
	 */
1495 1496

	if (ohci->next_config_rom != NULL) {
1497 1498 1499 1500
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1501 1502 1503 1504
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1505 1506
		/*
		 * Restore config_rom image and manually update
1507 1508
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1509 1510
		 * do that last.
		 */
1511 1512
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
1513 1514 1515
		ohci->config_rom[0] = ohci->next_header;
		reg_write(ohci, OHCI1394_ConfigROMhdr,
			  be32_to_cpu(ohci->next_header));
1516 1517
	}

1518 1519 1520 1521 1522
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif

1523 1524
	spin_unlock_irqrestore(&ohci->lock, flags);

1525 1526 1527 1528
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1529 1530
	log_selfids(ohci->node_id, generation,
		    self_id_count, ohci->self_id_buffer);
1531

1532
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1533 1534 1535
				 self_id_count, ohci->self_id_buffer,
				 ohci->csr_state_setclear_abdicate);
	ohci->csr_state_setclear_abdicate = false;
1536 1537 1538 1539 1540
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1541
	u32 event, iso_event;
1542 1543 1544 1545
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1546
	if (!event || !~event)
1547 1548
		return IRQ_NONE;

1549 1550
	/* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
	reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1551
	log_irqs(event);
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1568
	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1569 1570 1571 1572
	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1573
		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1574 1575 1576
		iso_event &= ~(1 << i);
	}

1577
	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1578 1579 1580 1581
	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1582
		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1583 1584 1585
		iso_event &= ~(1 << i);
	}

1586 1587 1588 1589
	if (unlikely(event & OHCI1394_regAccessFail))
		fw_error("Register access failure - "
			 "please notify linux1394-devel@lists.sf.net\n");

1590 1591 1592
	if (unlikely(event & OHCI1394_postedWriteErr))
		fw_error("PCI posted write error\n");

1593 1594 1595 1596 1597 1598 1599
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
			fw_notify("isochronous cycle too long\n");
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
	if (unlikely(event & OHCI1394_cycleInconsistent)) {
		/*
		 * We need to clear this event bit in order to make
		 * cycleMatch isochronous I/O work.  In theory we should
		 * stop active cycleMatch iso contexts now and restart
		 * them at least two cycles later.  (FIXME?)
		 */
		if (printk_ratelimit())
			fw_notify("isochronous cycle inconsistent\n");
	}

1611 1612 1613 1614 1615 1616
	if (event & OHCI1394_cycle64Seconds) {
		spin_lock(&ohci->lock);
		update_bus_time(ohci);
		spin_unlock(&ohci->lock);
	}

1617 1618 1619
	return IRQ_HANDLED;
}

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

1636 1637 1638 1639 1640 1641 1642 1643 1644
static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
{
	size_t size = length * 4;

	memcpy(dest, src, size);
	if (size < CONFIG_ROM_SIZE)
		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
}

1645 1646 1647
static int configure_1394a_enhancements(struct fw_ohci *ohci)
{
	bool enable_1394a;
1648
	int ret, clear, set, offset;
1649 1650 1651 1652 1653 1654 1655 1656

	/* Check if the driver should configure link and PHY. */
	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
	      OHCI1394_HCControl_programPhyEnable))
		return 0;

	/* Paranoia: check whether the PHY supports 1394a, too. */
	enable_1394a = false;
1657 1658 1659 1660 1661 1662 1663 1664
	ret = read_phy_reg(ohci, 2);
	if (ret < 0)
		return ret;
	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
		ret = read_paged_phy_reg(ohci, 1, 8);
		if (ret < 0)
			return ret;
		if (ret >= 1)
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
			enable_1394a = true;
	}

	if (ohci->quirks & QUIRK_NO_1394A)
		enable_1394a = false;

	/* Configure PHY and link consistently. */
	if (enable_1394a) {
		clear = 0;
		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
	} else {
		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
		set = 0;
	}
1679 1680 1681
	ret = ohci_update_phy_reg(&ohci->card, 5, clear, set);
	if (ret < 0)
		return ret;
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695

	if (enable_1394a)
		offset = OHCI1394_HCControlSet;
	else
		offset = OHCI1394_HCControlClear;
	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);

	/* Clean up: configuration has been taken care of. */
	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_programPhyEnable);

	return 0;
}

1696 1697
static int ohci_enable(struct fw_card *card,
		       const __be32 *config_rom, size_t length)
1698 1699 1700
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);
1701
	u32 lps, seconds, version, irqs;
1702
	int i, ret;
1703

1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
1714 1715
	 * full link enabled.  However, with some cards (well, at least
	 * a JMicron PCIe card), we have to try again sometimes.
1716 1717 1718 1719 1720
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731

	for (lps = 0, i = 0; !lps && i < 3; i++) {
		msleep(50);
		lps = reg_read(ohci, OHCI1394_HCControlSet) &
		      OHCI1394_HCControl_LPS;
	}

	if (!lps) {
		fw_error("Failed to set Link Power Status\n");
		return -EIO;
	}
1732 1733 1734 1735

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

1736
	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1737 1738
	reg_write(ohci, OHCI1394_LinkControlClear,
		  OHCI1394_LinkControl_rcvPhyPkt);
1739 1740 1741 1742 1743 1744 1745 1746
	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1747 1748
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
		  (200 << 16));
1749

1750 1751 1752 1753
	seconds = lower_32_bits(get_seconds());
	reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
	ohci->bus_time = seconds & ~0x3f;

1754 1755 1756 1757
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	if (version >= OHCI_VERSION_1_1) {
		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
			  0xfffffffe);
1758
		card->broadcast_channel_auto_allocated = true;
1759 1760
	}

1761 1762 1763 1764
	/* Get implemented bits of the priority arbitration request counter. */
	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
	reg_write(ohci, OHCI1394_FairnessControl, 0);
1765
	card->priority_budget_implemented = ohci->pri_req_max != 0;
1766

1767 1768 1769 1770 1771 1772 1773
	ar_context_run(&ohci->ar_request_ctx);
	ar_context_run(&ohci->ar_response_ctx);

	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);

1774 1775 1776
	ret = configure_1394a_enhancements(ohci);
	if (ret < 0)
		return ret;
1777

1778
	/* Activate link_on bit and contender bit in our self ID packets.*/
1779 1780 1781
	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
	if (ret < 0)
		return ret;
1782

1783 1784
	/*
	 * When the link is not yet enabled, the atomic config rom
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

1802 1803 1804 1805 1806 1807 1808
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
1809

1810
		copy_config_rom(ohci->next_config_rom, config_rom, length);
1811 1812 1813 1814 1815 1816 1817 1818
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
1819

1820
	ohci->next_header = ohci->next_config_rom[0];
1821 1822
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1823 1824
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
1825 1826 1827 1828
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

1829 1830
	if (!(ohci->quirks & QUIRK_NO_MSI))
		pci_enable_msi(dev);
1831
	if (request_irq(dev->irq, irq_handler,
1832 1833 1834 1835
			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
			ohci_driver_name, ohci)) {
		fw_error("Failed to allocate interrupt %d.\n", dev->irq);
		pci_disable_msi(dev);
1836 1837 1838 1839 1840
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

1841 1842 1843 1844 1845 1846
	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		OHCI1394_RQPkt | OHCI1394_RSPkt |
		OHCI1394_isochTx | OHCI1394_isochRx |
		OHCI1394_postedWriteErr |
		OHCI1394_selfIDComplete |
		OHCI1394_regAccessFail |
1847
		OHCI1394_cycle64Seconds |
1848 1849 1850 1851 1852 1853
		OHCI1394_cycleInconsistent | OHCI1394_cycleTooLong |
		OHCI1394_masterIntEnable;
	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
		irqs |= OHCI1394_busReset;
	reg_write(ohci, OHCI1394_IntMaskSet, irqs);

1854 1855 1856 1857 1858
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
	flush_writes(ohci);

1859 1860 1861 1862
	/*
	 * We are ready to go, initiate bus reset to finish the
	 * initialization.
	 */
1863 1864 1865 1866 1867 1868

	fw_core_initiate_bus_reset(&ohci->card, 1);

	return 0;
}

1869
static int ohci_set_config_rom(struct fw_card *card,
1870
			       const __be32 *config_rom, size_t length)
1871 1872 1873
{
	struct fw_ohci *ohci;
	unsigned long flags;
1874
	int ret = -EBUSY;
1875
	__be32 *next_config_rom;
1876
	dma_addr_t uninitialized_var(next_config_rom_bus);
1877 1878 1879

	ohci = fw_ohci(card);

1880 1881
	/*
	 * When the OHCI controller is enabled, the config rom update
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;

1919
		copy_config_rom(ohci->next_config_rom, config_rom, length);
1920 1921 1922 1923 1924 1925

		ohci->next_header = config_rom[0];
		ohci->next_config_rom[0] = 0;

		reg_write(ohci, OHCI1394_ConfigROMmap,
			  ohci->next_config_rom_bus);
1926
		ret = 0;
1927 1928 1929 1930
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

1931 1932
	/*
	 * Now initiate a bus reset to have the changes take
1933 1934 1935
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
1936 1937
	 * takes effect.
	 */
1938
	if (ret == 0)
1939
		fw_core_initiate_bus_reset(&ohci->card, 1);
1940 1941 1942
	else
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);
1943

1944
	return ret;
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

1961 1962 1963
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
1964 1965
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
1966
	int ret = -ENOENT;
1967

1968
	tasklet_disable(&ctx->tasklet);
1969

1970 1971
	if (packet->ack != 0)
		goto out;
1972

1973
	if (packet->payload_mapped)
1974 1975 1976
		dma_unmap_single(ohci->card.device, packet->payload_bus,
				 packet->payload_length, DMA_TO_DEVICE);

1977
	log_ar_at_event('T', packet->speed, packet->header, 0x20);
1978 1979 1980
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
1981
	ret = 0;
1982 1983
 out:
	tasklet_enable(&ctx->tasklet);
1984

1985
	return ret;
1986 1987
}

1988 1989
static int ohci_enable_phys_dma(struct fw_card *card,
				int node_id, int generation)
1990
{
1991 1992 1993
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	return 0;
#else
1994 1995
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
1996
	int n, ret = 0;
1997

1998 1999 2000 2001
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
2002 2003 2004 2005

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
2006
		ret = -ESTALE;
2007 2008 2009
		goto out;
	}

2010 2011 2012 2013
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
2014 2015 2016 2017 2018 2019 2020

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

2021 2022
	flush_writes(ohci);
 out:
2023
	spin_unlock_irqrestore(&ohci->lock, flags);
2024 2025

	return ret;
2026
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2027
}
S
Stefan Richter 已提交
2028

2029
static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2030 2031
{
	struct fw_ohci *ohci = fw_ohci(card);
2032 2033
	unsigned long flags;
	u32 value;
2034 2035

	switch (csr_offset) {
2036 2037 2038 2039 2040
	case CSR_STATE_CLEAR:
	case CSR_STATE_SET:
		if (ohci->is_root &&
		    (reg_read(ohci, OHCI1394_LinkControlSet) &
		     OHCI1394_LinkControl_cycleMaster))
2041
			value = CSR_STATE_BIT_CMSTR;
2042
		else
2043 2044 2045 2046 2047
			value = 0;
		if (ohci->csr_state_setclear_abdicate)
			value |= CSR_STATE_BIT_ABDICATE;

		return value;
2048

2049 2050 2051
	case CSR_NODE_IDS:
		return reg_read(ohci, OHCI1394_NodeID) << 16;

2052 2053 2054
	case CSR_CYCLE_TIME:
		return get_cycle_time(ohci);

2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
	case CSR_BUS_TIME:
		/*
		 * We might be called just after the cycle timer has wrapped
		 * around but just before the cycle64Seconds handler, so we
		 * better check here, too, if the bus time needs to be updated.
		 */
		spin_lock_irqsave(&ohci->lock, flags);
		value = update_bus_time(ohci);
		spin_unlock_irqrestore(&ohci->lock, flags);
		return value;

2066 2067 2068 2069
	case CSR_BUSY_TIMEOUT:
		value = reg_read(ohci, OHCI1394_ATRetries);
		return (value >> 4) & 0x0ffff00f;

2070 2071 2072 2073
	case CSR_PRIORITY_BUDGET:
		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
			(ohci->pri_req_max << 8);

2074 2075 2076 2077 2078 2079
	default:
		WARN_ON(1);
		return 0;
	}
}

2080
static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2081 2082
{
	struct fw_ohci *ohci = fw_ohci(card);
2083
	unsigned long flags;
2084 2085

	switch (csr_offset) {
2086 2087 2088 2089 2090 2091
	case CSR_STATE_CLEAR:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlClear,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2092 2093
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = false;
2094 2095 2096 2097 2098 2099 2100 2101
		break;

	case CSR_STATE_SET:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlSet,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2102 2103
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = true;
2104 2105
		break;

2106 2107 2108 2109 2110
	case CSR_NODE_IDS:
		reg_write(ohci, OHCI1394_NodeID, value >> 16);
		flush_writes(ohci);
		break;

2111 2112 2113 2114 2115 2116 2117
	case CSR_CYCLE_TIME:
		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
		reg_write(ohci, OHCI1394_IntEventSet,
			  OHCI1394_cycleInconsistent);
		flush_writes(ohci);
		break;

2118 2119 2120 2121 2122 2123
	case CSR_BUS_TIME:
		spin_lock_irqsave(&ohci->lock, flags);
		ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
		spin_unlock_irqrestore(&ohci->lock, flags);
		break;

2124 2125 2126 2127 2128 2129 2130
	case CSR_BUSY_TIMEOUT:
		value = (value & 0xf) | ((value & 0xf) << 4) |
			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
		reg_write(ohci, OHCI1394_ATRetries, value);
		flush_writes(ohci);
		break;

2131 2132 2133 2134 2135
	case CSR_PRIORITY_BUDGET:
		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
		flush_writes(ohci);
		break;

2136 2137 2138 2139 2140 2141
	default:
		WARN_ON(1);
		break;
	}
}

2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
static void copy_iso_headers(struct iso_context *ctx, void *p)
{
	int i = ctx->header_length;

	if (i + ctx->base.header_size > PAGE_SIZE)
		return;

	/*
	 * The iso header is byteswapped to little endian by
	 * the controller, but the remaining header quadlets
	 * are big endian.  We want to present all the headers
	 * as big endian, so we have to swap the first quadlet.
	 */
	if (ctx->base.header_size > 0)
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
	if (ctx->base.header_size > 4)
		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
	if (ctx->base.header_size > 8)
		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
	ctx->header_length += ctx->base.header_size;
}

2164 2165 2166 2167 2168 2169
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2170
	struct descriptor *pd;
2171
	__le32 *ir_header;
2172
	void *p;
2173

2174 2175 2176 2177 2178
	for (pd = d; pd <= last; pd++) {
		if (pd->transfer_status)
			break;
	}
	if (pd > last)
2179 2180 2181
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

2182 2183
	p = last + 1;
	copy_iso_headers(ctx, p);
2184

2185 2186
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) p;
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
		ctx->base.callback(&ctx->base,
				   le32_to_cpu(ir_header[0]) & 0xffff,
				   ctx->header_length, ctx->header,
				   ctx->base.callback_data);
		ctx->header_length = 0;
	}

	return 1;
}

2197 2198 2199
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
2200
{
2201 2202
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2203 2204
	int i;
	struct descriptor *pd;
S
Stefan Richter 已提交
2205

2206 2207 2208 2209 2210
	for (pd = d; pd <= last; pd++)
		if (pd->transfer_status)
			break;
	if (pd > last)
		/* Descriptor(s) not done yet, stop iteration */
2211 2212
		return 0;

2213 2214 2215 2216 2217 2218 2219 2220 2221
	i = ctx->header_length;
	if (i + 4 < PAGE_SIZE) {
		/* Present this value as big-endian to match the receive code */
		*(__be32 *)(ctx->header + i) = cpu_to_be32(
				((u32)le16_to_cpu(pd->transfer_status) << 16) |
				le16_to_cpu(pd->res_count));
		ctx->header_length += 4;
	}
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2222
		ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
2223 2224 2225 2226
				   ctx->header_length, ctx->header,
				   ctx->base.callback_data);
		ctx->header_length = 0;
	}
2227
	return 1;
2228 2229
}

2230
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2231
				int type, int channel, size_t header_size)
2232 2233 2234
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct iso_context *ctx, *list;
2235
	descriptor_callback_t callback;
2236
	u64 *channels, dont_care = ~0ULL;
2237
	u32 *mask, regs;
2238
	unsigned long flags;
2239
	int index, ret = -ENOMEM;
2240 2241

	if (type == FW_ISO_CONTEXT_TRANSMIT) {
2242
		channels = &dont_care;
2243 2244
		mask = &ohci->it_context_mask;
		list = ohci->it_context_list;
2245
		callback = handle_it_packet;
2246
	} else {
2247
		channels = &ohci->ir_context_channels;
S
Stefan Richter 已提交
2248 2249
		mask = &ohci->ir_context_mask;
		list = ohci->ir_context_list;
2250
		callback = handle_ir_packet_per_buffer;
2251 2252 2253
	}

	spin_lock_irqsave(&ohci->lock, flags);
2254 2255 2256
	index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
	if (index >= 0) {
		*channels &= ~(1ULL << channel);
2257
		*mask &= ~(1 << index);
2258
	}
2259 2260 2261 2262 2263
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
		return ERR_PTR(-EBUSY);

S
Stefan Richter 已提交
2264 2265 2266 2267 2268
	if (type == FW_ISO_CONTEXT_TRANSMIT)
		regs = OHCI1394_IsoXmitContextBase(index);
	else
		regs = OHCI1394_IsoRcvContextBase(index);

2269
	ctx = &list[index];
2270
	memset(ctx, 0, sizeof(*ctx));
2271 2272 2273 2274 2275
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
	if (ctx->header == NULL)
		goto out;

2276 2277
	ret = context_init(&ctx->context, ohci, regs, callback);
	if (ret < 0)
2278
		goto out_with_header;
2279 2280

	return &ctx->base;
2281 2282 2283 2284 2285 2286 2287 2288

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
	*mask |= 1 << index;
	spin_unlock_irqrestore(&ohci->lock, flags);

2289
	return ERR_PTR(ret);
2290 2291
}

2292 2293
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
2294
{
S
Stefan Richter 已提交
2295
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2296
	struct fw_ohci *ohci = ctx->context.ohci;
2297
	u32 control, match;
2298 2299
	int index;

2300 2301
	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
2302 2303 2304
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2305
				(cycle & 0x7fff) << 16;
2306

2307 2308
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2309
		context_run(&ctx->context, match);
2310 2311
	} else {
		index = ctx - ohci->ir_context_list;
2312
		control = IR_CONTEXT_ISOCH_HEADER;
2313 2314 2315 2316 2317
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
2318

2319 2320
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2321
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2322
		context_run(&ctx->context, control);
2323
	}
2324 2325 2326 2327

	return 0;
}

2328 2329 2330
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2331
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
	int index;

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
	} else {
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
	}
	flush_writes(ohci);
	context_stop(&ctx->context);

	return 0;
}

2347 2348 2349
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2350
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2351 2352 2353
	unsigned long flags;
	int index;

2354 2355
	ohci_stop_iso(base);
	context_release(&ctx->context);
2356
	free_page((unsigned long)ctx->header);
2357

2358 2359 2360 2361 2362 2363 2364 2365
	spin_lock_irqsave(&ohci->lock, flags);

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
	} else {
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
2366
		ohci->ir_context_channels |= 1ULL << base->channel;
2367 2368 2369 2370 2371
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

2372 2373 2374 2375
static int ohci_queue_iso_transmit(struct fw_iso_context *base,
				   struct fw_iso_packet *packet,
				   struct fw_iso_buffer *buffer,
				   unsigned long payload)
2376
{
S
Stefan Richter 已提交
2377
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2378
	struct descriptor *d, *last, *pd;
2379 2380
	struct fw_iso_packet *p;
	__le32 *header;
2381
	dma_addr_t d_bus, page_bus;
2382 2383
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
2384
	int page, end_page, i, length, offset;
2385 2386

	p = packet;
2387
	payload_index = payload;
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
2406
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2407

2408 2409 2410
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
2411 2412

	if (!p->skip) {
2413
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2414
		d[0].req_count = cpu_to_le16(8);
2415 2416 2417 2418 2419 2420 2421 2422
		/*
		 * Link the skip address to this descriptor itself.  This causes
		 * a context to skip a cycle whenever lost cycles or FIFO
		 * overruns occur, without dropping the data.  The application
		 * should then decide whether this is an error condition or not.
		 * FIXME:  Make the context's cycle-lost behaviour configurable?
		 */
		d[0].branch_address = cpu_to_le32(d_bus | z);
2423 2424

		header = (__le32 *) &d[1];
2425 2426 2427 2428 2429
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
2430
		header[1] =
2431
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2432 2433 2434 2435 2436
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
2437
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
2450 2451 2452

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
2453 2454 2455 2456 2457

		payload_index += length;
	}

	if (p->interrupt)
2458
		irq = DESCRIPTOR_IRQ_ALWAYS;
2459
	else
2460
		irq = DESCRIPTOR_NO_IRQ;
2461

2462
	last = z == 2 ? d : d + z - 1;
2463 2464 2465
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
2466
				     irq);
2467

2468
	context_append(&ctx->context, d, z, header_z);
2469 2470 2471

	return 0;
}
S
Stefan Richter 已提交
2472

2473 2474 2475 2476
static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
					struct fw_iso_packet *packet,
					struct fw_iso_buffer *buffer,
					unsigned long payload)
2477 2478
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2479
	struct descriptor *d, *pd;
2480
	struct fw_iso_packet *p = packet;
2481 2482
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
2483 2484
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
2485 2486

	/*
2487 2488
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
2489 2490
	 */
	packet_count = p->header_length / ctx->base.header_size;
2491
	header_size  = max(ctx->base.header_size, (size_t)8);
2492 2493 2494 2495 2496

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
2497
	payload_per_buffer = p->payload_length / packet_count;
2498 2499 2500

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
2501
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2502
		d = context_get_descriptors(&ctx->context,
2503
				z + header_z, &d_bus);
2504 2505 2506
		if (d == NULL)
			return -ENOMEM;

2507 2508 2509 2510
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
		if (p->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2511 2512
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
2513
		d->transfer_status = 0;
2514 2515
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

2516
		rest = payload_per_buffer;
2517
		pd = d;
2518
		for (j = 1; j < z; j++) {
2519
			pd++;
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
2539 2540 2541
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
2542
		if (p->interrupt && i == packet_count - 1)
2543 2544 2545 2546 2547 2548 2549 2550
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

2551 2552 2553 2554
static int ohci_queue_iso(struct fw_iso_context *base,
			  struct fw_iso_packet *packet,
			  struct fw_iso_buffer *buffer,
			  unsigned long payload)
2555
{
2556
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2557
	unsigned long flags;
2558
	int ret;
2559

2560
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2561
	if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2562
		ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2563
	else
2564 2565
		ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
							buffer, payload);
2566 2567
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

2568
	return ret;
2569 2570
}

2571
static const struct fw_card_driver ohci_driver = {
2572 2573 2574 2575 2576
	.enable			= ohci_enable,
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
2577
	.cancel_packet		= ohci_cancel_packet,
2578
	.enable_phys_dma	= ohci_enable_phys_dma,
2579 2580
	.read_csr		= ohci_read_csr,
	.write_csr		= ohci_write_csr,
2581 2582 2583 2584

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
	.queue_iso		= ohci_queue_iso,
2585
	.start_iso		= ohci_start_iso,
2586
	.stop_iso		= ohci_stop_iso,
2587 2588
};

2589
#ifdef CONFIG_PPC_PMAC
2590
static void pmac_ohci_on(struct pci_dev *dev)
2591
{
2592 2593 2594 2595 2596 2597 2598 2599
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
2600 2601
}

2602
static void pmac_ohci_off(struct pci_dev *dev)
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
{
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
}
#else
2614 2615
static inline void pmac_ohci_on(struct pci_dev *dev) {}
static inline void pmac_ohci_off(struct pci_dev *dev) {}
2616 2617
#endif /* CONFIG_PPC_PMAC */

2618 2619
static int __devinit pci_probe(struct pci_dev *dev,
			       const struct pci_device_id *ent)
2620 2621
{
	struct fw_ohci *ohci;
2622
	u32 bus_options, max_receive, link_speed, version, link_enh;
2623
	u64 guid;
2624
	int i, err, n_ir, n_it;
2625 2626
	size_t size;

2627
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2628
	if (ohci == NULL) {
2629 2630
		err = -ENOMEM;
		goto fail;
2631 2632 2633 2634
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

2635
	pmac_ohci_on(dev);
2636

2637 2638
	err = pci_enable_device(dev);
	if (err) {
2639
		fw_error("Failed to enable OHCI hardware\n");
2640
		goto fail_free;
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

2652 2653
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
2654
		fw_error("MMIO resource unavailable\n");
2655
		goto fail_disable;
2656 2657 2658 2659 2660
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
2661 2662
		err = -ENXIO;
		goto fail_iomem;
2663 2664
	}

2665 2666 2667 2668 2669 2670 2671
	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
		if (ohci_quirks[i].vendor == dev->vendor &&
		    (ohci_quirks[i].device == dev->device ||
		     ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
			ohci->quirks = ohci_quirks[i].flags;
			break;
		}
2672 2673
	if (param_quirks)
		ohci->quirks = param_quirks;
2674

2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
	/* TI OHCI-Lynx and compatible: set recommended configuration bits. */
	if (dev->vendor == PCI_VENDOR_ID_TI) {
		pci_read_config_dword(dev, PCI_CFG_TI_LinkEnh, &link_enh);

		/* adjust latency of ATx FIFO: use 1.7 KB threshold */
		link_enh &= ~TI_LinkEnh_atx_thresh_mask;
		link_enh |= TI_LinkEnh_atx_thresh_1_7K;

		/* use priority arbitration for asynchronous responses */
		link_enh |= TI_LinkEnh_enab_unfair;

		/* required for aPhyEnhanceEnable to work */
		link_enh |= TI_LinkEnh_enab_accel;

		pci_write_config_dword(dev, PCI_CFG_TI_LinkEnh, link_enh);
	}

2692 2693 2694 2695 2696 2697
	ar_context_init(&ohci->ar_request_ctx, ohci,
			OHCI1394_AsReqRcvContextControlSet);

	ar_context_init(&ohci->ar_response_ctx, ohci,
			OHCI1394_AsRspRcvContextControlSet);

2698
	context_init(&ohci->at_request_ctx, ohci,
2699
		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2700

2701
	context_init(&ohci->at_response_ctx, ohci,
2702
		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2703 2704

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2705 2706
	ohci->ir_context_channels = ~0ULL;
	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2707
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2708 2709
	n_ir = hweight32(ohci->ir_context_mask);
	size = sizeof(struct iso_context) * n_ir;
2710
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2711 2712

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2713
	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2714
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2715 2716
	n_it = hweight32(ohci->it_context_mask);
	size = sizeof(struct iso_context) * n_it;
2717
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2718 2719

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2720
		err = -ENOMEM;
2721
		goto fail_contexts;
2722 2723 2724 2725 2726 2727 2728 2729
	}

	/* self-id dma buffer allocation */
	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
					       SELF_ID_BUF_SIZE,
					       &ohci->self_id_bus,
					       GFP_KERNEL);
	if (ohci->self_id_cpu == NULL) {
2730
		err = -ENOMEM;
2731
		goto fail_contexts;
2732 2733 2734 2735 2736 2737 2738 2739
	}

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

2740
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2741
	if (err)
2742
		goto fail_self_id;
2743

2744 2745 2746 2747 2748
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
		  "%d IR + %d IT contexts, quirks 0x%x\n",
		  dev_name(&dev->dev), version >> 16, version & 0xff,
		  n_ir, n_it, ohci->quirks);
2749

2750
	return 0;
2751 2752 2753 2754

 fail_self_id:
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
2755
 fail_contexts:
2756
	kfree(ohci->ir_context_list);
2757 2758 2759 2760 2761
	kfree(ohci->it_context_list);
	context_release(&ohci->at_response_ctx);
	context_release(&ohci->at_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	ar_context_release(&ohci->ar_request_ctx);
2762 2763 2764 2765 2766
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
2767 2768
 fail_free:
	kfree(&ohci->card);
2769
	pmac_ohci_off(dev);
2770 2771 2772
 fail:
	if (err == -ENOMEM)
		fw_error("Out of memory\n");
2773 2774

	return err;
2775 2776 2777 2778 2779 2780 2781
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
2782 2783
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
2784 2785
	fw_core_remove_card(&ohci->card);

2786 2787 2788 2789
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
2790 2791 2792

	software_reset(ohci);
	free_irq(dev->irq, ohci);
2793 2794 2795 2796 2797 2798 2799

	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->next_config_rom, ohci->next_config_rom_bus);
	if (ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
2800 2801
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
2802 2803 2804 2805
	ar_context_release(&ohci->ar_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	context_release(&ohci->at_request_ctx);
	context_release(&ohci->at_response_ctx);
2806 2807
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
2808
	pci_disable_msi(dev);
2809 2810 2811
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
2812
	kfree(&ohci->card);
2813
	pmac_ohci_off(dev);
2814

2815 2816 2817
	fw_notify("Removed fw-ohci device.\n");
}

2818
#ifdef CONFIG_PM
2819
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2820
{
2821
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2822 2823 2824
	int err;

	software_reset(ohci);
2825
	free_irq(dev->irq, ohci);
2826
	pci_disable_msi(dev);
2827
	err = pci_save_state(dev);
2828
	if (err) {
2829
		fw_error("pci_save_state failed\n");
2830 2831
		return err;
	}
2832
	err = pci_set_power_state(dev, pci_choose_state(dev, state));
2833 2834
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
2835
	pmac_ohci_off(dev);
2836

2837 2838 2839
	return 0;
}

2840
static int pci_resume(struct pci_dev *dev)
2841
{
2842
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2843 2844
	int err;

2845
	pmac_ohci_on(dev);
2846 2847 2848
	pci_set_power_state(dev, PCI_D0);
	pci_restore_state(dev);
	err = pci_enable_device(dev);
2849
	if (err) {
2850
		fw_error("pci_enable_device failed\n");
2851 2852 2853
		return err;
	}

2854
	return ohci_enable(&ohci->card, NULL, 0);
2855 2856 2857
}
#endif

2858
static const struct pci_device_id pci_table[] = {
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
2870 2871 2872 2873
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
2874 2875 2876 2877 2878 2879
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

2880 2881 2882 2883 2884
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);