ohci.c 75.7 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/compiler.h>
22
#include <linux/delay.h>
S
Stefan Richter 已提交
23
#include <linux/device.h>
A
Andrew Morton 已提交
24
#include <linux/dma-mapping.h>
25
#include <linux/firewire.h>
S
Stefan Richter 已提交
26
#include <linux/firewire-constants.h>
S
Stefan Richter 已提交
27
#include <linux/gfp.h>
28 29
#include <linux/init.h>
#include <linux/interrupt.h>
S
Stefan Richter 已提交
30
#include <linux/io.h>
31
#include <linux/kernel.h>
S
Stefan Richter 已提交
32
#include <linux/list.h>
A
Al Viro 已提交
33
#include <linux/mm.h>
34
#include <linux/module.h>
35
#include <linux/moduleparam.h>
36
#include <linux/pci.h>
37
#include <linux/pci_ids.h>
S
Stefan Richter 已提交
38
#include <linux/spinlock.h>
S
Stefan Richter 已提交
39
#include <linux/string.h>
A
Andrew Morton 已提交
40

S
Stefan Richter 已提交
41
#include <asm/byteorder.h>
S
Stefan Richter 已提交
42
#include <asm/page.h>
43
#include <asm/system.h>
44

45 46 47 48
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

49 50
#include "core.h"
#include "ohci.h"
51

52 53 54 55 56 57 58 59 60 61 62 63 64
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
65 66 67 68 69 70 71 72 73 74

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

75 76 77 78
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
79

80
struct ar_buffer {
81
	struct descriptor descriptor;
82 83 84
	struct ar_buffer *next;
	__le32 data[0];
};
85

86 87 88 89 90
struct ar_context {
	struct fw_ohci *ohci;
	struct ar_buffer *current_buffer;
	struct ar_buffer *last_buffer;
	void *pointer;
91
	u32 regs;
92 93 94
	struct tasklet_struct tasklet;
};

95 96 97 98 99
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
100 101 102 103 104 105 106 107 108 109 110 111 112

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

113
struct context {
S
Stefan Richter 已提交
114
	struct fw_ohci *ohci;
115
	u32 regs;
116
	int total_allocation;
S
Stefan Richter 已提交
117

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
	 * The last descriptor in the DMA program.  It contains the branch
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
142 143 144

	descriptor_callback_t callback;

S
Stefan Richter 已提交
145
	struct tasklet_struct tasklet;
146 147
};

148 149 150 151 152 153
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
154 155 156

struct iso_context {
	struct fw_iso_context base;
157
	struct context context;
158
	int excess_bytes;
159 160
	void *header;
	size_t header_length;
161 162 163 164 165 166 167 168
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

	__iomem char *registers;
169
	int node_id;
170
	int generation;
171
	int request_generation;	/* for timestamping incoming requests */
172
	unsigned quirks;
173

174 175 176 177
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
178 179 180 181
	spinlock_t lock;

	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
182 183
	struct context at_request_ctx;
	struct context at_response_ctx;
184 185 186

	u32 it_context_mask;
	struct iso_context *it_context_list;
187
	u64 ir_context_channels;
188 189
	u32 ir_context_mask;
	struct iso_context *ir_context_list;
190 191 192 193 194 195 196 197 198 199 200 201

	__be32    *config_rom;
	dma_addr_t config_rom_bus;
	__be32    *next_config_rom;
	dma_addr_t next_config_rom_bus;
	__be32     next_header;

	__le32    *self_id_cpu;
	dma_addr_t self_id_bus;
	struct tasklet_struct bus_reset_tasklet;

	u32 self_id_buffer[512];
202 203
};

A
Adrian Bunk 已提交
204
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
205 206 207 208
{
	return container_of(card, struct fw_ohci, card);
}

209 210 211 212 213 214
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
215 216 217 218 219 220

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

221
#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
222 223 224 225 226 227 228
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
229
#define OHCI_TCODE_PHY_PACKET		0x0e
230
#define OHCI_VERSION_1_1		0x010010
231

232 233
static char ohci_driver_name[] = KBUILD_MODNAME;

234
#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
235 236
#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009

237 238 239
#define QUIRK_CYCLE_TIMER		1
#define QUIRK_RESET_PACKET		2
#define QUIRK_BE_HEADERS		4
240
#define QUIRK_NO_1394A			8
241
#define QUIRK_NO_MSI			16
242 243 244 245 246

/* In case of multiple matches in ohci_quirks[], only the first one is used. */
static const struct {
	unsigned short vendor, device, flags;
} ohci_quirks[] = {
247
	{PCI_VENDOR_ID_TI,	PCI_DEVICE_ID_TI_TSB12LV22, QUIRK_CYCLE_TIMER |
248 249
							    QUIRK_RESET_PACKET |
							    QUIRK_NO_1394A},
250 251
	{PCI_VENDOR_ID_TI,	PCI_ANY_ID,	QUIRK_RESET_PACKET},
	{PCI_VENDOR_ID_AL,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
252
	{PCI_VENDOR_ID_JMICRON,	PCI_DEVICE_ID_JMICRON_JMB38X_FW, QUIRK_NO_MSI},
253 254 255 256 257
	{PCI_VENDOR_ID_NEC,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
	{PCI_VENDOR_ID_VIA,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
	{PCI_VENDOR_ID_APPLE,	PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
};

258 259 260 261 262 263 264
/* This overrides anything that was found in ohci_quirks[]. */
static int param_quirks;
module_param_named(quirks, param_quirks, int, 0644);
MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
	", AR/selfID endianess = "	__stringify(QUIRK_BE_HEADERS)
265
	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
266
	", disable MSI = "		__stringify(QUIRK_NO_MSI)
267 268
	")");

269
#define OHCI_PARAM_DEBUG_AT_AR		1
270
#define OHCI_PARAM_DEBUG_SELFIDS	2
271 272
#define OHCI_PARAM_DEBUG_IRQS		4
#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
273

274 275
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG

276 277 278 279
static int param_debug;
module_param_named(debug, param_debug, int, 0644);
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
280 281 282
	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
283 284 285 286
	", or a combination, or all = -1)");

static void log_irqs(u32 evt)
{
287 288 289 290 291 292
	if (likely(!(param_debug &
			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
		return;

	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
	    !(evt & OHCI1394_busReset))
293 294
		return;

295
	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
296 297 298 299 300 301 302 303 304
	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
	    evt & OHCI1394_isochRx		? " IR"			: "",
	    evt & OHCI1394_isochTx		? " IT"			: "",
	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
305
	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
306 307 308 309 310 311
	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
	    evt & OHCI1394_busReset		? " busReset"		: "",
	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
		    OHCI1394_respTxComplete | OHCI1394_isochRx |
		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
312
		    OHCI1394_cycleTooLong | OHCI1394_cycleInconsistent |
313
		    OHCI1394_regAccessFail | OHCI1394_busReset)
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
						? " ?"			: "");
}

static const char *speed[] = {
	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
};
static const char *power[] = {
	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
};
static const char port[] = { '.', '-', 'p', 'c', };

static char _p(u32 *s, int shift)
{
	return port[*s >> shift & 3];
}

331
static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
332 333 334 335
{
	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
		return;

336 337
	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
		  self_id_count, generation, node_id);
338 339 340

	for (; self_id_count--; ++s)
		if ((*s & 1 << 23) == 0)
341 342 343 344 345 346
			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
			    "%s gc=%d %s %s%s%s\n",
			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
			    speed[*s >> 14 & 3], *s >> 16 & 63,
			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
347
		else
348 349 350 351
			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
			    *s, *s >> 24 & 63,
			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
}

static const char *evts[] = {
	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
	[0x10] = "-reserved-",		[0x11] = "ack_complete",
	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
	[0x18] = "-reserved-",		[0x19] = "-reserved-",
	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
	[0x20] = "pending/cancelled",
};
static const char *tcodes[] = {
	[0x0] = "QW req",		[0x1] = "BW req",
	[0x2] = "W resp",		[0x3] = "-reserved-",
	[0x4] = "QR req",		[0x5] = "BR req",
	[0x6] = "QR resp",		[0x7] = "BR resp",
	[0x8] = "cycle start",		[0x9] = "Lk req",
	[0xa] = "async stream packet",	[0xb] = "Lk resp",
	[0xc] = "-reserved-",		[0xd] = "-reserved-",
	[0xe] = "link internal",	[0xf] = "-reserved-",
};
static const char *phys[] = {
	[0x0] = "phy config packet",	[0x1] = "link-on packet",
	[0x2] = "self-id packet",	[0x3] = "-reserved-",
};

static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
{
	int tcode = header[0] >> 4 & 0xf;
	char specific[12];

	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
		return;

	if (unlikely(evt >= ARRAY_SIZE(evts)))
			evt = 0x1f;

399
	if (evt == OHCI1394_evt_bus_reset) {
400 401
		fw_notify("A%c evt_bus_reset, generation %d\n",
		    dir, (header[2] >> 16) & 0xff);
402 403 404
		return;
	}

405
	if (header[0] == ~header[1]) {
406 407
		fw_notify("A%c %s, %s, %08x\n",
		    dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
		return;
	}

	switch (tcode) {
	case 0x0: case 0x6: case 0x8:
		snprintf(specific, sizeof(specific), " = %08x",
			 be32_to_cpu((__force __be32)header[3]));
		break;
	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
		snprintf(specific, sizeof(specific), " %x,%x",
			 header[3] >> 16, header[3] & 0xffff);
		break;
	default:
		specific[0] = '\0';
	}

	switch (tcode) {
	case 0xe: case 0xa:
426
		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
427 428
		break;
	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
429 430 431 432 433 434
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s, %04x%08x%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
435 436
		break;
	default:
437 438 439 440 441 442
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], specific);
443 444 445 446 447
	}
}

#else

448 449 450 451
#define param_debug 0
static inline void log_irqs(u32 evt) {}
static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
452 453 454

#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */

A
Adrian Bunk 已提交
455
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
456 457 458 459
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
460
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
461 462 463 464
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
465
static inline void flush_writes(const struct fw_ohci *ohci)
466 467 468 469 470
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

471
static int read_phy_reg(struct fw_ohci *ohci, int addr)
472
{
473
	u32 val;
474
	int i;
475 476

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
477
	for (i = 0; i < 3 + 100; i++) {
478 479 480 481
		val = reg_read(ohci, OHCI1394_PhyControl);
		if (val & OHCI1394_PhyControl_ReadDone)
			return OHCI1394_PhyControl_ReadData(val);

482 483 484 485 486 487
		/*
		 * Try a few times without waiting.  Sleeping is necessary
		 * only when the link/PHY interface is busy.
		 */
		if (i >= 3)
			msleep(1);
488
	}
489
	fw_error("failed to read phy reg\n");
490

491 492
	return -EBUSY;
}
493

494 495 496 497 498 499
static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
{
	int i;

	reg_write(ohci, OHCI1394_PhyControl,
		  OHCI1394_PhyControl_Write(addr, val));
500
	for (i = 0; i < 3 + 100; i++) {
501 502 503 504
		val = reg_read(ohci, OHCI1394_PhyControl);
		if (!(val & OHCI1394_PhyControl_WritePending))
			return 0;

505 506
		if (i >= 3)
			msleep(1);
507 508 509 510
	}
	fw_error("failed to write phy reg\n");

	return -EBUSY;
511 512 513 514 515 516
}

static int ohci_update_phy_reg(struct fw_card *card, int addr,
			       int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
517
	int ret;
518

519 520 521
	ret = read_phy_reg(ohci, addr);
	if (ret < 0)
		return ret;
522

523 524 525 526 527 528 529
	/*
	 * The interrupt status bits are cleared by writing a one bit.
	 * Avoid clearing them unless explicitly requested in set_bits.
	 */
	if (addr == 5)
		clear_bits |= PHY_INT_STATUS_BITS;

530
	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
531 532
}

533
static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
534
{
535
	int ret;
536

537 538 539
	ret = ohci_update_phy_reg(&ohci->card, 7, PHY_PAGE_SELECT, page << 5);
	if (ret < 0)
		return ret;
540

541
	return read_phy_reg(ohci, addr);
542 543
}

544
static int ar_context_add_page(struct ar_context *ctx)
545
{
546 547
	struct device *dev = ctx->ohci->card.device;
	struct ar_buffer *ab;
548
	dma_addr_t uninitialized_var(ab_bus);
549 550
	size_t offset;

551
	ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
552 553 554
	if (ab == NULL)
		return -ENOMEM;

555
	ab->next = NULL;
556
	memset(&ab->descriptor, 0, sizeof(ab->descriptor));
557 558 559
	ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						    DESCRIPTOR_STATUS |
						    DESCRIPTOR_BRANCH_ALWAYS);
560 561 562 563 564 565
	offset = offsetof(struct ar_buffer, data);
	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.branch_address = 0;

566
	ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
567 568 569
	ctx->last_buffer->next = ab;
	ctx->last_buffer = ab;

570
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
571
	flush_writes(ctx->ohci);
572 573

	return 0;
574 575
}

576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
static void ar_context_release(struct ar_context *ctx)
{
	struct ar_buffer *ab, *ab_next;
	size_t offset;
	dma_addr_t ab_bus;

	for (ab = ctx->current_buffer; ab; ab = ab_next) {
		ab_next = ab->next;
		offset = offsetof(struct ar_buffer, data);
		ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
		dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
				  ab, ab_bus);
	}
}

591 592
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
593
	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
594 595 596 597
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

598
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
599 600
{
	struct fw_ohci *ohci = ctx->ohci;
601 602
	struct fw_packet p;
	u32 status, length, tcode;
603
	int evt;
604

605 606 607
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
608 609 610 611 612

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
613
		p.header[3] = (__force __u32) buffer[3];
614
		p.header_length = 16;
615
		p.payload_length = 0;
616 617 618
		break;

	case TCODE_READ_BLOCK_REQUEST :
619
		p.header[3] = cond_le32_to_cpu(buffer[3]);
620 621 622 623 624
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
625 626 627
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
628
		p.header[3] = cond_le32_to_cpu(buffer[3]);
629
		p.header_length = 16;
630
		p.payload_length = p.header[3] >> 16;
631 632 633 634
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
635
	case OHCI_TCODE_PHY_PACKET:
636
		p.header_length = 12;
637
		p.payload_length = 0;
638
		break;
639 640 641 642 643

	default:
		/* FIXME: Stop context, discard everything, and restart? */
		p.header_length = 0;
		p.payload_length = 0;
644
	}
645

646 647 648 649
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
650
	status = cond_le32_to_cpu(buffer[length]);
651
	evt    = (status >> 16) & 0x1f;
652

653
	p.ack        = evt - 16;
654 655 656
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
657

658
	log_ar_at_event('R', p.speed, p.header, evt);
659

660 661
	/*
	 * The OHCI bus reset handler synthesizes a phy packet with
662 663 664 665 666
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
667
	 * request.
668 669 670 671
	 *
	 * Alas some chips sometimes emit bus reset packets with a
	 * wrong generation.  We set the correct generation for these
	 * at a slightly incorrect time (in bus_reset_tasklet).
672
	 */
673
	if (evt == OHCI1394_evt_bus_reset) {
674
		if (!(ohci->quirks & QUIRK_RESET_PACKET))
675 676
			ohci->request_generation = (p.header[2] >> 16) & 0xff;
	} else if (ctx == &ohci->ar_request_ctx) {
677
		fw_core_handle_request(&ohci->card, &p);
678
	} else {
679
		fw_core_handle_response(&ohci->card, &p);
680
	}
681

682 683
	return buffer + length + 1;
}
684

685 686 687 688 689 690 691 692 693 694 695 696 697
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
	struct fw_ohci *ohci = ctx->ohci;
	struct ar_buffer *ab;
	struct descriptor *d;
	void *buffer, *end;

	ab = ctx->current_buffer;
	d = &ab->descriptor;

	if (d->res_count == 0) {
		size_t size, rest, offset;
698 699
		dma_addr_t start_bus;
		void *start;
700

701 702
		/*
		 * This descriptor is finished and we may have a
703
		 * packet split across this and the next buffer. We
704 705
		 * reuse the page for reassembling the split packet.
		 */
706 707

		offset = offsetof(struct ar_buffer, data);
708 709
		start = buffer = ab;
		start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
710 711 712 713 714 715 716 717 718 719 720 721 722 723

		ab = ab->next;
		d = &ab->descriptor;
		size = buffer + PAGE_SIZE - ctx->pointer;
		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
		memmove(buffer, ctx->pointer, size);
		memcpy(buffer + size, ab->data, rest);
		ctx->current_buffer = ab;
		ctx->pointer = (void *) ab->data + rest;
		end = buffer + size + rest;

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);

724
		dma_free_coherent(ohci->card.device, PAGE_SIZE,
725
				  start, start_bus);
726 727 728 729 730 731 732 733 734
		ar_context_add_page(ctx);
	} else {
		buffer = ctx->pointer;
		ctx->pointer = end =
			(void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);
	}
735 736
}

737 738
static int ar_context_init(struct ar_context *ctx,
			   struct fw_ohci *ohci, u32 regs)
739
{
740
	struct ar_buffer ab;
741

742 743 744
	ctx->regs        = regs;
	ctx->ohci        = ohci;
	ctx->last_buffer = &ab;
745 746
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

747 748 749 750 751
	ar_context_add_page(ctx);
	ar_context_add_page(ctx);
	ctx->current_buffer = ab.next;
	ctx->pointer = ctx->current_buffer->data;

752 753 754 755 756 757 758 759 760 761
	return 0;
}

static void ar_context_run(struct ar_context *ctx)
{
	struct ar_buffer *ab = ctx->current_buffer;
	dma_addr_t ab_bus;
	size_t offset;

	offset = offsetof(struct ar_buffer, data);
762
	ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
763 764

	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
765
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
766
	flush_writes(ctx->ohci);
767
}
S
Stefan Richter 已提交
768

769
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
770 771 772 773 774 775 776 777 778 779 780 781 782
{
	int b, key;

	b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
	key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;

	/* figure out which descriptor the branch address goes in */
	if (z == 2 && (b == 3 || key == 2))
		return d;
	else
		return d + z - 1;
}

783 784 785 786 787 788
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
789
	struct descriptor_buffer *desc;
790

791 792 793
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
794
	while (last->branch_address != 0) {
795
		struct descriptor_buffer *old_desc = desc;
796 797
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
798 799 800 801 802 803 804 805 806
		address &= ~0xf;

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
807
		last = find_branch_descriptor(d, z);
808 809 810 811

		if (!ctx->callback(ctx, d, last))
			break;

812 813 814 815 816 817 818 819 820 821
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
822 823 824
	}
}

825 826 827 828
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
829
static int context_add_buffer(struct context *ctx)
830 831
{
	struct descriptor_buffer *desc;
832
	dma_addr_t uninitialized_var(bus_addr);
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

858 859
static int context_init(struct context *ctx, struct fw_ohci *ohci,
			u32 regs, descriptor_callback_t callback)
860 861 862
{
	ctx->ohci = ohci;
	ctx->regs = regs;
863 864 865 866
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
867 868
		return -ENOMEM;

869 870 871
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

872 873 874
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

875 876
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
877
	 * branch address and looks like it's been sent.  That way we
878
	 * have a descriptor to append DMA programs to.
879
	 */
880 881 882 883 884 885
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
886 887 888 889

	return 0;
}

890
static void context_release(struct context *ctx)
891 892
{
	struct fw_card *card = &ctx->ohci->card;
893
	struct descriptor_buffer *desc, *tmp;
894

895 896 897 898
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
899 900
}

901
/* Must be called with ohci->lock held */
902 903
static struct descriptor *context_get_descriptors(struct context *ctx,
						  int z, dma_addr_t *d_bus)
904
{
905 906 907 908 909 910 911 912 913
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
914

915 916 917 918 919 920 921 922 923 924
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
925

926
	d = desc->buffer + desc->used / sizeof(*d);
927
	memset(d, 0, z * sizeof(*d));
928
	*d_bus = desc->buffer_bus + desc->used;
929 930 931 932

	return d;
}

933
static void context_run(struct context *ctx, u32 extra)
934 935 936
{
	struct fw_ohci *ohci = ctx->ohci;

937
	reg_write(ohci, COMMAND_PTR(ctx->regs),
938
		  le32_to_cpu(ctx->last->branch_address));
939 940
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
941 942 943 944 945 946 947
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
948
	struct descriptor_buffer *desc = ctx->buffer_tail;
949

950
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
951

952 953 954
	desc->used += (z + extra) * sizeof(*d);
	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev = find_branch_descriptor(d, z);
955

956
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
957 958 959 960 961 962
	flush_writes(ctx->ohci);
}

static void context_stop(struct context *ctx)
{
	u32 reg;
963
	int i;
964

965
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
966
	flush_writes(ctx->ohci);
967

968
	for (i = 0; i < 10; i++) {
969
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
970
		if ((reg & CONTEXT_ACTIVE) == 0)
971
			return;
972

973
		mdelay(1);
974
	}
975
	fw_error("Error: DMA context still active (0x%08x)\n", reg);
976
}
977

978 979 980
struct driver_data {
	struct fw_packet *packet;
};
981

982 983
/*
 * This function apppends a packet to the DMA queue for transmission.
984
 * Must always be called with the ochi->lock held to ensure proper
985 986
 * generation handling and locking around packet queue manipulation.
 */
987 988
static int at_context_queue_packet(struct context *ctx,
				   struct fw_packet *packet)
989 990
{
	struct fw_ohci *ohci = ctx->ohci;
991
	dma_addr_t d_bus, uninitialized_var(payload_bus);
992 993 994
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
995
	int z, tcode;
996
	u32 reg;
997

998 999 1000 1001
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1002 1003
	}

1004
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1005 1006
	d[0].res_count = cpu_to_le16(packet->timestamp);

1007 1008
	/*
	 * The DMA format for asyncronous link packets is different
1009 1010
	 * from the IEEE1394 layout, so shift the fields around
	 * accordingly.  If header_length is 8, it's a PHY packet, to
1011 1012
	 * which we need to prepend an extra quadlet.
	 */
1013 1014

	header = (__le32 *) &d[1];
1015 1016 1017
	switch (packet->header_length) {
	case 16:
	case 12:
1018 1019 1020 1021 1022
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
1023 1024 1025

		tcode = (packet->header[0] >> 4) & 0x0f;
		if (TCODE_IS_BLOCK_PACKET(tcode))
1026
			header[3] = cpu_to_le32(packet->header[3]);
1027
		else
1028 1029 1030
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
1031 1032 1033
		break;

	case 8:
1034 1035 1036 1037 1038
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0]);
		header[2] = cpu_to_le32(packet->header[1]);
		d[0].req_count = cpu_to_le16(12);
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
		break;

	case 4:
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
		d[0].req_count = cpu_to_le16(8);
		break;

	default:
		/* BUG(); */
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1052 1053
	}

1054 1055
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
1056
	packet->driver_data = driver_data;
1057

1058 1059 1060 1061
	if (packet->payload_length > 0) {
		payload_bus =
			dma_map_single(ohci->card.device, packet->payload,
				       packet->payload_length, DMA_TO_DEVICE);
1062
		if (dma_mapping_error(ohci->card.device, payload_bus)) {
1063 1064 1065
			packet->ack = RCODE_SEND_ERROR;
			return -1;
		}
1066 1067
		packet->payload_bus	= payload_bus;
		packet->payload_mapped	= true;
1068 1069 1070 1071 1072

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
1073
	} else {
1074 1075
		last = &d[0];
		z = 2;
1076 1077
	}

1078 1079 1080
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
1081

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
	/*
	 * If the controller and packet generations don't match, we need to
	 * bail out and try again.  If IntEvent.busReset is set, the AT context
	 * is halted, so appending to the context and trying to run it is
	 * futile.  Most controllers do the right thing and just flush the AT
	 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
	 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
	 * up stalling out.  So we just bail out in software and try again
	 * later, and everyone is happy.
	 * FIXME: Document how the locking works.
	 */
	if (ohci->generation != packet->generation ||
	    reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1095
		if (packet->payload_mapped)
1096 1097
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
1098 1099 1100 1101 1102
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
1103

1104
	/* If the context isn't already running, start it up. */
1105
	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1106
	if ((reg & CONTEXT_RUN) == 0)
1107 1108 1109
		context_run(ctx, 0);

	return 0;
1110 1111
}

1112 1113 1114
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1115
{
1116
	struct driver_data *driver_data;
1117
	struct fw_packet *packet;
1118
	struct fw_ohci *ohci = context->ohci;
1119 1120
	int evt;

1121 1122 1123
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
1124

1125 1126 1127 1128 1129
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
1130

1131
	if (packet->payload_mapped)
1132
		dma_unmap_single(ohci->card.device, packet->payload_bus,
1133 1134
				 packet->payload_length, DMA_TO_DEVICE);

1135 1136
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
1137

1138 1139
	log_ar_at_event('T', packet->speed, packet->header, evt);

1140 1141 1142 1143 1144
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
1145

1146
	case OHCI1394_evt_flushed:
1147 1148 1149 1150
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
1151 1152
		packet->ack = RCODE_GENERATION;
		break;
1153

1154
	case OHCI1394_evt_missing_ack:
1155 1156 1157 1158
		/*
		 * Using a valid (current) generation count, but the
		 * node is not on the bus or not sending acks.
		 */
1159 1160
		packet->ack = RCODE_NO_ACK;
		break;
1161

1162 1163 1164 1165 1166 1167 1168 1169 1170
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
1171

1172 1173 1174 1175
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
1176

1177
	packet->callback(packet, &ohci->card, packet->ack);
1178

1179
	return 1;
1180 1181
}

1182 1183 1184 1185 1186
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1187

1188 1189
static void handle_local_rom(struct fw_ohci *ohci,
			     struct fw_packet *packet, u32 csr)
1190 1191 1192 1193
{
	struct fw_packet response;
	int tcode, length, i;

1194
	tcode = HEADER_GET_TCODE(packet->header[0]);
1195
	if (TCODE_IS_BLOCK_PACKET(tcode))
1196
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

1215 1216
static void handle_local_lock(struct fw_ohci *ohci,
			      struct fw_packet *packet, u32 csr)
1217 1218 1219 1220 1221 1222
{
	struct fw_packet response;
	int tcode, length, ext_tcode, sel;
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

1223 1224
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1225
	payload = packet->payload;
1226
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

	if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
		lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
	else
		fw_notify("swap not done yet\n");

	fw_fill_response(&response, packet->header,
1252
			 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1253 1254 1255 1256
 out:
	fw_core_handle_response(&ohci->card, &response);
}

1257
static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1258 1259 1260 1261
{
	u64 offset;
	u32 csr;

1262 1263 1264 1265
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1266 1267 1268

	offset =
		((unsigned long long)
1269
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
1290 1291 1292 1293 1294

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1295
}
1296

1297
static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1298 1299
{
	unsigned long flags;
1300
	int ret;
1301 1302 1303

	spin_lock_irqsave(&ctx->ohci->lock, flags);

1304
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1305
	    ctx->ohci->generation == packet->generation) {
1306 1307 1308
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
1309
	}
1310

1311
	ret = at_context_queue_packet(ctx, packet);
1312 1313
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

1314
	if (ret < 0)
1315
		packet->callback(packet, &ctx->ohci->card, packet->ack);
1316

1317 1318 1319 1320 1321
}

static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
1322
	int self_id_count, i, j, reg;
1323 1324
	int generation, new_generation;
	unsigned long flags;
1325 1326
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1327 1328 1329

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1330
		fw_notify("node ID not valid, new bus reset in progress\n");
1331 1332
		return;
	}
1333 1334 1335 1336 1337 1338
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1339

1340 1341 1342 1343 1344
	reg = reg_read(ohci, OHCI1394_SelfIDCount);
	if (reg & OHCI1394_SelfIDCount_selfIDError) {
		fw_notify("inconsistent self IDs\n");
		return;
	}
1345 1346
	/*
	 * The count in the SelfIDCount register is the number of
1347 1348
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1349 1350
	 * bit extra to get the actual number of self IDs.
	 */
1351 1352
	self_id_count = (reg >> 3) & 0xff;
	if (self_id_count == 0 || self_id_count > 252) {
1353 1354 1355
		fw_notify("inconsistent self IDs\n");
		return;
	}
1356
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1357
	rmb();
1358 1359

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1360 1361 1362 1363
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
			fw_notify("inconsistent self IDs\n");
			return;
		}
1364 1365
		ohci->self_id_buffer[j] =
				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1366
	}
1367
	rmb();
1368

1369 1370
	/*
	 * Check the consistency of the self IDs we just read.  The
1371 1372 1373 1374 1375 1376 1377 1378 1379
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1380 1381
	 * of self IDs.
	 */
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
1394 1395
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1396 1397
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

1398
	if (ohci->quirks & QUIRK_RESET_PACKET)
1399 1400
		ohci->request_generation = generation;

1401 1402
	/*
	 * This next bit is unrelated to the AT context stuff but we
1403 1404 1405 1406
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
1407 1408
	 * next_config_rom pointer so a new udpate can take place.
	 */
1409 1410

	if (ohci->next_config_rom != NULL) {
1411 1412 1413 1414
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1415 1416 1417 1418
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1419 1420
		/*
		 * Restore config_rom image and manually update
1421 1422
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1423 1424
		 * do that last.
		 */
1425 1426
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
1427 1428 1429
		ohci->config_rom[0] = ohci->next_header;
		reg_write(ohci, OHCI1394_ConfigROMhdr,
			  be32_to_cpu(ohci->next_header));
1430 1431
	}

1432 1433 1434 1435 1436
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif

1437 1438
	spin_unlock_irqrestore(&ohci->lock, flags);

1439 1440 1441 1442
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1443 1444
	log_selfids(ohci->node_id, generation,
		    self_id_count, ohci->self_id_buffer);
1445

1446
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1447 1448 1449 1450 1451 1452
				 self_id_count, ohci->self_id_buffer);
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1453
	u32 event, iso_event;
1454 1455 1456 1457
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1458
	if (!event || !~event)
1459 1460
		return IRQ_NONE;

1461 1462
	/* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
	reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1463
	log_irqs(event);
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1480
	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1481 1482 1483 1484
	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1485
		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1486 1487 1488
		iso_event &= ~(1 << i);
	}

1489
	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1490 1491 1492 1493
	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1494
		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1495 1496 1497
		iso_event &= ~(1 << i);
	}

1498 1499 1500 1501
	if (unlikely(event & OHCI1394_regAccessFail))
		fw_error("Register access failure - "
			 "please notify linux1394-devel@lists.sf.net\n");

1502 1503 1504
	if (unlikely(event & OHCI1394_postedWriteErr))
		fw_error("PCI posted write error\n");

1505 1506 1507 1508 1509 1510 1511
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
			fw_notify("isochronous cycle too long\n");
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
	if (unlikely(event & OHCI1394_cycleInconsistent)) {
		/*
		 * We need to clear this event bit in order to make
		 * cycleMatch isochronous I/O work.  In theory we should
		 * stop active cycleMatch iso contexts now and restart
		 * them at least two cycles later.  (FIXME?)
		 */
		if (printk_ratelimit())
			fw_notify("isochronous cycle inconsistent\n");
	}

1523 1524 1525
	return IRQ_HANDLED;
}

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

1542 1543 1544 1545 1546 1547 1548 1549 1550
static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
{
	size_t size = length * 4;

	memcpy(dest, src, size);
	if (size < CONFIG_ROM_SIZE)
		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
}

1551 1552 1553
static int configure_1394a_enhancements(struct fw_ohci *ohci)
{
	bool enable_1394a;
1554
	int ret, clear, set, offset;
1555 1556 1557 1558 1559 1560 1561 1562

	/* Check if the driver should configure link and PHY. */
	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
	      OHCI1394_HCControl_programPhyEnable))
		return 0;

	/* Paranoia: check whether the PHY supports 1394a, too. */
	enable_1394a = false;
1563 1564 1565 1566 1567 1568 1569 1570
	ret = read_phy_reg(ohci, 2);
	if (ret < 0)
		return ret;
	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
		ret = read_paged_phy_reg(ohci, 1, 8);
		if (ret < 0)
			return ret;
		if (ret >= 1)
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
			enable_1394a = true;
	}

	if (ohci->quirks & QUIRK_NO_1394A)
		enable_1394a = false;

	/* Configure PHY and link consistently. */
	if (enable_1394a) {
		clear = 0;
		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
	} else {
		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
		set = 0;
	}
1585 1586 1587
	ret = ohci_update_phy_reg(&ohci->card, 5, clear, set);
	if (ret < 0)
		return ret;
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601

	if (enable_1394a)
		offset = OHCI1394_HCControlSet;
	else
		offset = OHCI1394_HCControlClear;
	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);

	/* Clean up: configuration has been taken care of. */
	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_programPhyEnable);

	return 0;
}

1602 1603
static int ohci_enable(struct fw_card *card,
		       const __be32 *config_rom, size_t length)
1604 1605 1606
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);
1607
	u32 lps, irqs;
1608
	int i, ret;
1609

1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
1620 1621
	 * full link enabled.  However, with some cards (well, at least
	 * a JMicron PCIe card), we have to try again sometimes.
1622 1623 1624 1625 1626
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637

	for (lps = 0, i = 0; !lps && i < 3; i++) {
		msleep(50);
		lps = reg_read(ohci, OHCI1394_HCControlSet) &
		      OHCI1394_HCControl_LPS;
	}

	if (!lps) {
		fw_error("Failed to set Link Power Status\n");
		return -EIO;
	}
1638 1639 1640 1641

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

1642
	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1643 1644
	reg_write(ohci, OHCI1394_LinkControlClear,
		  OHCI1394_LinkControl_rcvPhyPkt);
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));

	ar_context_run(&ohci->ar_request_ctx);
	ar_context_run(&ohci->ar_response_ctx);

	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);

1662 1663 1664
	ret = configure_1394a_enhancements(ohci);
	if (ret < 0)
		return ret;
1665

1666
	/* Activate link_on bit and contender bit in our self ID packets.*/
1667 1668 1669
	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
	if (ret < 0)
		return ret;
1670

1671 1672
	/*
	 * When the link is not yet enabled, the atomic config rom
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

1690 1691 1692 1693 1694 1695 1696
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
1697

1698
		copy_config_rom(ohci->next_config_rom, config_rom, length);
1699 1700 1701 1702 1703 1704 1705 1706
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
1707

1708
	ohci->next_header = ohci->next_config_rom[0];
1709 1710
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1711 1712
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
1713 1714 1715 1716
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

1717 1718
	if (!(ohci->quirks & QUIRK_NO_MSI))
		pci_enable_msi(dev);
1719
	if (request_irq(dev->irq, irq_handler,
1720 1721 1722 1723
			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
			ohci_driver_name, ohci)) {
		fw_error("Failed to allocate interrupt %d.\n", dev->irq);
		pci_disable_msi(dev);
1724 1725 1726 1727 1728
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		OHCI1394_RQPkt | OHCI1394_RSPkt |
		OHCI1394_isochTx | OHCI1394_isochRx |
		OHCI1394_postedWriteErr |
		OHCI1394_selfIDComplete |
		OHCI1394_regAccessFail |
		OHCI1394_cycleInconsistent | OHCI1394_cycleTooLong |
		OHCI1394_masterIntEnable;
	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
		irqs |= OHCI1394_busReset;
	reg_write(ohci, OHCI1394_IntMaskSet, irqs);

1741 1742 1743 1744 1745
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
	flush_writes(ohci);

1746 1747 1748 1749
	/*
	 * We are ready to go, initiate bus reset to finish the
	 * initialization.
	 */
1750 1751 1752 1753 1754 1755

	fw_core_initiate_bus_reset(&ohci->card, 1);

	return 0;
}

1756
static int ohci_set_config_rom(struct fw_card *card,
1757
			       const __be32 *config_rom, size_t length)
1758 1759 1760
{
	struct fw_ohci *ohci;
	unsigned long flags;
1761
	int ret = -EBUSY;
1762
	__be32 *next_config_rom;
1763
	dma_addr_t uninitialized_var(next_config_rom_bus);
1764 1765 1766

	ohci = fw_ohci(card);

1767 1768
	/*
	 * When the OHCI controller is enabled, the config rom update
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;

1806
		copy_config_rom(ohci->next_config_rom, config_rom, length);
1807 1808 1809 1810 1811 1812

		ohci->next_header = config_rom[0];
		ohci->next_config_rom[0] = 0;

		reg_write(ohci, OHCI1394_ConfigROMmap,
			  ohci->next_config_rom_bus);
1813
		ret = 0;
1814 1815 1816 1817
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

1818 1819
	/*
	 * Now initiate a bus reset to have the changes take
1820 1821 1822
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
1823 1824
	 * takes effect.
	 */
1825
	if (ret == 0)
1826
		fw_core_initiate_bus_reset(&ohci->card, 1);
1827 1828 1829
	else
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);
1830

1831
	return ret;
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

1848 1849 1850
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
1851 1852
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
1853
	int ret = -ENOENT;
1854

1855
	tasklet_disable(&ctx->tasklet);
1856

1857 1858
	if (packet->ack != 0)
		goto out;
1859

1860
	if (packet->payload_mapped)
1861 1862 1863
		dma_unmap_single(ohci->card.device, packet->payload_bus,
				 packet->payload_length, DMA_TO_DEVICE);

1864
	log_ar_at_event('T', packet->speed, packet->header, 0x20);
1865 1866 1867
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
1868
	ret = 0;
1869 1870
 out:
	tasklet_enable(&ctx->tasklet);
1871

1872
	return ret;
1873 1874
}

1875 1876
static int ohci_enable_phys_dma(struct fw_card *card,
				int node_id, int generation)
1877
{
1878 1879 1880
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	return 0;
#else
1881 1882
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
1883
	int n, ret = 0;
1884

1885 1886 1887 1888
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
1889 1890 1891 1892

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
1893
		ret = -ESTALE;
1894 1895 1896
		goto out;
	}

1897 1898 1899 1900
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
1901 1902 1903 1904 1905 1906 1907

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

1908 1909
	flush_writes(ohci);
 out:
1910
	spin_unlock_irqrestore(&ohci->lock, flags);
1911 1912

	return ret;
1913
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1914
}
S
Stefan Richter 已提交
1915

1916
static u32 cycle_timer_ticks(u32 cycle_timer)
1917 1918 1919 1920 1921 1922
{
	u32 ticks;

	ticks = cycle_timer & 0xfff;
	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
	ticks += (3072 * 8000) * (cycle_timer >> 25);
1923

1924 1925 1926
	return ticks;
}

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
/*
 * Some controllers exhibit one or more of the following bugs when updating the
 * iso cycle timer register:
 *  - When the lowest six bits are wrapping around to zero, a read that happens
 *    at the same time will return garbage in the lowest ten bits.
 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
 *    not incremented for about 60 ns.
 *  - Occasionally, the entire register reads zero.
 *
 * To catch these, we read the register three times and ensure that the
 * difference between each two consecutive reads is approximately the same, i.e.
 * less than twice the other.  Furthermore, any negative difference indicates an
 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
 * execute, so we have enough precision to compute the ratio of the differences.)
 */
1942
static u32 get_cycle_time(struct fw_ohci *ohci)
1943
{
1944 1945 1946
	u32 c0, c1, c2;
	u32 t0, t1, t2;
	s32 diff01, diff12;
1947
	int i;
1948

1949 1950
	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);

1951
	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1952 1953
		i = 0;
		c1 = c2;
1954 1955
		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		do {
1956 1957
			c0 = c1;
			c1 = c2;
1958 1959 1960 1961 1962 1963
			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
			t0 = cycle_timer_ticks(c0);
			t1 = cycle_timer_ticks(c1);
			t2 = cycle_timer_ticks(c2);
			diff01 = t1 - t0;
			diff12 = t2 - t1;
1964 1965 1966
		} while ((diff01 <= 0 || diff12 <= 0 ||
			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
			 && i++ < 20);
1967
	}
1968

1969
	return c2;
1970 1971
}

1972 1973 1974 1975 1976
static u32 ohci_read_csr_reg(struct fw_card *card, int csr_offset)
{
	struct fw_ohci *ohci = fw_ohci(card);

	switch (csr_offset) {
1977 1978 1979
	case CSR_NODE_IDS:
		return reg_read(ohci, OHCI1394_NodeID) << 16;

1980 1981 1982 1983 1984 1985 1986 1987 1988
	case CSR_CYCLE_TIME:
		return get_cycle_time(ohci);

	default:
		WARN_ON(1);
		return 0;
	}
}

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
static void ohci_write_csr_reg(struct fw_card *card, int csr_offset, u32 value)
{
	struct fw_ohci *ohci = fw_ohci(card);

	switch (csr_offset) {
	case CSR_NODE_IDS:
		reg_write(ohci, OHCI1394_NodeID, value >> 16);
		flush_writes(ohci);
		break;

	default:
		WARN_ON(1);
		break;
	}
}

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
static void copy_iso_headers(struct iso_context *ctx, void *p)
{
	int i = ctx->header_length;

	if (i + ctx->base.header_size > PAGE_SIZE)
		return;

	/*
	 * The iso header is byteswapped to little endian by
	 * the controller, but the remaining header quadlets
	 * are big endian.  We want to present all the headers
	 * as big endian, so we have to swap the first quadlet.
	 */
	if (ctx->base.header_size > 0)
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
	if (ctx->base.header_size > 4)
		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
	if (ctx->base.header_size > 8)
		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
	ctx->header_length += ctx->base.header_size;
}

2027 2028 2029 2030 2031 2032
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2033
	struct descriptor *pd;
2034
	__le32 *ir_header;
2035
	void *p;
2036

2037 2038 2039 2040 2041
	for (pd = d; pd <= last; pd++) {
		if (pd->transfer_status)
			break;
	}
	if (pd > last)
2042 2043 2044
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

2045 2046
	p = last + 1;
	copy_iso_headers(ctx, p);
2047

2048 2049
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) p;
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
		ctx->base.callback(&ctx->base,
				   le32_to_cpu(ir_header[0]) & 0xffff,
				   ctx->header_length, ctx->header,
				   ctx->base.callback_data);
		ctx->header_length = 0;
	}

	return 1;
}

2060 2061 2062
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
2063
{
2064 2065
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2066 2067
	int i;
	struct descriptor *pd;
S
Stefan Richter 已提交
2068

2069 2070 2071 2072 2073
	for (pd = d; pd <= last; pd++)
		if (pd->transfer_status)
			break;
	if (pd > last)
		/* Descriptor(s) not done yet, stop iteration */
2074 2075
		return 0;

2076 2077 2078 2079 2080 2081 2082 2083 2084
	i = ctx->header_length;
	if (i + 4 < PAGE_SIZE) {
		/* Present this value as big-endian to match the receive code */
		*(__be32 *)(ctx->header + i) = cpu_to_be32(
				((u32)le16_to_cpu(pd->transfer_status) << 16) |
				le16_to_cpu(pd->res_count));
		ctx->header_length += 4;
	}
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2085
		ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
2086 2087 2088 2089
				   ctx->header_length, ctx->header,
				   ctx->base.callback_data);
		ctx->header_length = 0;
	}
2090
	return 1;
2091 2092
}

2093
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2094
				int type, int channel, size_t header_size)
2095 2096 2097
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct iso_context *ctx, *list;
2098
	descriptor_callback_t callback;
2099
	u64 *channels, dont_care = ~0ULL;
2100
	u32 *mask, regs;
2101
	unsigned long flags;
2102
	int index, ret = -ENOMEM;
2103 2104

	if (type == FW_ISO_CONTEXT_TRANSMIT) {
2105
		channels = &dont_care;
2106 2107
		mask = &ohci->it_context_mask;
		list = ohci->it_context_list;
2108
		callback = handle_it_packet;
2109
	} else {
2110
		channels = &ohci->ir_context_channels;
S
Stefan Richter 已提交
2111 2112
		mask = &ohci->ir_context_mask;
		list = ohci->ir_context_list;
2113
		callback = handle_ir_packet_per_buffer;
2114 2115 2116
	}

	spin_lock_irqsave(&ohci->lock, flags);
2117 2118 2119
	index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
	if (index >= 0) {
		*channels &= ~(1ULL << channel);
2120
		*mask &= ~(1 << index);
2121
	}
2122 2123 2124 2125 2126
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
		return ERR_PTR(-EBUSY);

S
Stefan Richter 已提交
2127 2128 2129 2130 2131
	if (type == FW_ISO_CONTEXT_TRANSMIT)
		regs = OHCI1394_IsoXmitContextBase(index);
	else
		regs = OHCI1394_IsoRcvContextBase(index);

2132
	ctx = &list[index];
2133
	memset(ctx, 0, sizeof(*ctx));
2134 2135 2136 2137 2138
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
	if (ctx->header == NULL)
		goto out;

2139 2140
	ret = context_init(&ctx->context, ohci, regs, callback);
	if (ret < 0)
2141
		goto out_with_header;
2142 2143

	return &ctx->base;
2144 2145 2146 2147 2148 2149 2150 2151

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
	*mask |= 1 << index;
	spin_unlock_irqrestore(&ohci->lock, flags);

2152
	return ERR_PTR(ret);
2153 2154
}

2155 2156
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
2157
{
S
Stefan Richter 已提交
2158
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2159
	struct fw_ohci *ohci = ctx->context.ohci;
2160
	u32 control, match;
2161 2162
	int index;

2163 2164
	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
2165 2166 2167
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2168
				(cycle & 0x7fff) << 16;
2169

2170 2171
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2172
		context_run(&ctx->context, match);
2173 2174
	} else {
		index = ctx - ohci->ir_context_list;
2175
		control = IR_CONTEXT_ISOCH_HEADER;
2176 2177 2178 2179 2180
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
2181

2182 2183
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2184
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2185
		context_run(&ctx->context, control);
2186
	}
2187 2188 2189 2190

	return 0;
}

2191 2192 2193
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2194
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
	int index;

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
	} else {
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
	}
	flush_writes(ohci);
	context_stop(&ctx->context);

	return 0;
}

2210 2211 2212
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2213
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2214 2215 2216
	unsigned long flags;
	int index;

2217 2218
	ohci_stop_iso(base);
	context_release(&ctx->context);
2219
	free_page((unsigned long)ctx->header);
2220

2221 2222 2223 2224 2225 2226 2227 2228
	spin_lock_irqsave(&ohci->lock, flags);

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
	} else {
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
2229
		ohci->ir_context_channels |= 1ULL << base->channel;
2230 2231 2232 2233 2234
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

2235 2236 2237 2238
static int ohci_queue_iso_transmit(struct fw_iso_context *base,
				   struct fw_iso_packet *packet,
				   struct fw_iso_buffer *buffer,
				   unsigned long payload)
2239
{
S
Stefan Richter 已提交
2240
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2241
	struct descriptor *d, *last, *pd;
2242 2243
	struct fw_iso_packet *p;
	__le32 *header;
2244
	dma_addr_t d_bus, page_bus;
2245 2246
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
2247
	int page, end_page, i, length, offset;
2248 2249

	p = packet;
2250
	payload_index = payload;
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
2269
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2270

2271 2272 2273
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
2274 2275

	if (!p->skip) {
2276
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2277
		d[0].req_count = cpu_to_le16(8);
2278 2279 2280 2281 2282 2283 2284 2285
		/*
		 * Link the skip address to this descriptor itself.  This causes
		 * a context to skip a cycle whenever lost cycles or FIFO
		 * overruns occur, without dropping the data.  The application
		 * should then decide whether this is an error condition or not.
		 * FIXME:  Make the context's cycle-lost behaviour configurable?
		 */
		d[0].branch_address = cpu_to_le32(d_bus | z);
2286 2287

		header = (__le32 *) &d[1];
2288 2289 2290 2291 2292
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
2293
		header[1] =
2294
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2295 2296 2297 2298 2299
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
2300
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
2313 2314 2315

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
2316 2317 2318 2319 2320

		payload_index += length;
	}

	if (p->interrupt)
2321
		irq = DESCRIPTOR_IRQ_ALWAYS;
2322
	else
2323
		irq = DESCRIPTOR_NO_IRQ;
2324

2325
	last = z == 2 ? d : d + z - 1;
2326 2327 2328
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
2329
				     irq);
2330

2331
	context_append(&ctx->context, d, z, header_z);
2332 2333 2334

	return 0;
}
S
Stefan Richter 已提交
2335

2336 2337 2338 2339
static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
					struct fw_iso_packet *packet,
					struct fw_iso_buffer *buffer,
					unsigned long payload)
2340 2341
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2342
	struct descriptor *d, *pd;
2343
	struct fw_iso_packet *p = packet;
2344 2345
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
2346 2347
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
2348 2349

	/*
2350 2351
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
2352 2353
	 */
	packet_count = p->header_length / ctx->base.header_size;
2354
	header_size  = max(ctx->base.header_size, (size_t)8);
2355 2356 2357 2358 2359

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
2360
	payload_per_buffer = p->payload_length / packet_count;
2361 2362 2363

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
2364
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2365
		d = context_get_descriptors(&ctx->context,
2366
				z + header_z, &d_bus);
2367 2368 2369
		if (d == NULL)
			return -ENOMEM;

2370 2371 2372 2373
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
		if (p->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2374 2375
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
2376
		d->transfer_status = 0;
2377 2378
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

2379
		rest = payload_per_buffer;
2380
		pd = d;
2381
		for (j = 1; j < z; j++) {
2382
			pd++;
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
2402 2403 2404
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
2405
		if (p->interrupt && i == packet_count - 1)
2406 2407 2408 2409 2410 2411 2412 2413
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

2414 2415 2416 2417
static int ohci_queue_iso(struct fw_iso_context *base,
			  struct fw_iso_packet *packet,
			  struct fw_iso_buffer *buffer,
			  unsigned long payload)
2418
{
2419
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2420
	unsigned long flags;
2421
	int ret;
2422

2423
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2424
	if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2425
		ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2426
	else
2427 2428
		ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
							buffer, payload);
2429 2430
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

2431
	return ret;
2432 2433
}

2434
static const struct fw_card_driver ohci_driver = {
2435 2436 2437 2438 2439
	.enable			= ohci_enable,
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
2440
	.cancel_packet		= ohci_cancel_packet,
2441
	.enable_phys_dma	= ohci_enable_phys_dma,
2442
	.read_csr_reg		= ohci_read_csr_reg,
2443
	.write_csr_reg		= ohci_write_csr_reg,
2444 2445 2446 2447

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
	.queue_iso		= ohci_queue_iso,
2448
	.start_iso		= ohci_start_iso,
2449
	.stop_iso		= ohci_stop_iso,
2450 2451
};

2452
#ifdef CONFIG_PPC_PMAC
2453
static void pmac_ohci_on(struct pci_dev *dev)
2454
{
2455 2456 2457 2458 2459 2460 2461 2462
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
2463 2464
}

2465
static void pmac_ohci_off(struct pci_dev *dev)
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
{
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
}
#else
2477 2478
static inline void pmac_ohci_on(struct pci_dev *dev) {}
static inline void pmac_ohci_off(struct pci_dev *dev) {}
2479 2480
#endif /* CONFIG_PPC_PMAC */

2481 2482
static int __devinit pci_probe(struct pci_dev *dev,
			       const struct pci_device_id *ent)
2483 2484
{
	struct fw_ohci *ohci;
2485
	u32 bus_options, max_receive, link_speed, version, link_enh;
2486
	u64 guid;
2487
	int i, err, n_ir, n_it;
2488 2489
	size_t size;

2490
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2491
	if (ohci == NULL) {
2492 2493
		err = -ENOMEM;
		goto fail;
2494 2495 2496 2497
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

2498
	pmac_ohci_on(dev);
2499

2500 2501
	err = pci_enable_device(dev);
	if (err) {
2502
		fw_error("Failed to enable OHCI hardware\n");
2503
		goto fail_free;
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

2515 2516
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
2517
		fw_error("MMIO resource unavailable\n");
2518
		goto fail_disable;
2519 2520 2521 2522 2523
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
2524 2525
		err = -ENXIO;
		goto fail_iomem;
2526 2527
	}

2528 2529 2530 2531 2532 2533 2534
	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
		if (ohci_quirks[i].vendor == dev->vendor &&
		    (ohci_quirks[i].device == dev->device ||
		     ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
			ohci->quirks = ohci_quirks[i].flags;
			break;
		}
2535 2536
	if (param_quirks)
		ohci->quirks = param_quirks;
2537

2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
	/* TI OHCI-Lynx and compatible: set recommended configuration bits. */
	if (dev->vendor == PCI_VENDOR_ID_TI) {
		pci_read_config_dword(dev, PCI_CFG_TI_LinkEnh, &link_enh);

		/* adjust latency of ATx FIFO: use 1.7 KB threshold */
		link_enh &= ~TI_LinkEnh_atx_thresh_mask;
		link_enh |= TI_LinkEnh_atx_thresh_1_7K;

		/* use priority arbitration for asynchronous responses */
		link_enh |= TI_LinkEnh_enab_unfair;

		/* required for aPhyEnhanceEnable to work */
		link_enh |= TI_LinkEnh_enab_accel;

		pci_write_config_dword(dev, PCI_CFG_TI_LinkEnh, link_enh);
	}

2555 2556 2557 2558 2559 2560
	ar_context_init(&ohci->ar_request_ctx, ohci,
			OHCI1394_AsReqRcvContextControlSet);

	ar_context_init(&ohci->ar_response_ctx, ohci,
			OHCI1394_AsRspRcvContextControlSet);

2561
	context_init(&ohci->at_request_ctx, ohci,
2562
		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2563

2564
	context_init(&ohci->at_response_ctx, ohci,
2565
		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2566 2567

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2568 2569
	ohci->ir_context_channels = ~0ULL;
	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2570
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2571 2572
	n_ir = hweight32(ohci->ir_context_mask);
	size = sizeof(struct iso_context) * n_ir;
2573
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2574 2575

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2576
	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2577
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2578 2579
	n_it = hweight32(ohci->it_context_mask);
	size = sizeof(struct iso_context) * n_it;
2580
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2581 2582

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2583
		err = -ENOMEM;
2584
		goto fail_contexts;
2585 2586 2587 2588 2589 2590 2591 2592
	}

	/* self-id dma buffer allocation */
	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
					       SELF_ID_BUF_SIZE,
					       &ohci->self_id_bus,
					       GFP_KERNEL);
	if (ohci->self_id_cpu == NULL) {
2593
		err = -ENOMEM;
2594
		goto fail_contexts;
2595 2596 2597 2598 2599 2600 2601 2602
	}

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

2603
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2604
	if (err)
2605
		goto fail_self_id;
2606

2607 2608 2609 2610 2611
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
		  "%d IR + %d IT contexts, quirks 0x%x\n",
		  dev_name(&dev->dev), version >> 16, version & 0xff,
		  n_ir, n_it, ohci->quirks);
2612

2613
	return 0;
2614 2615 2616 2617

 fail_self_id:
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
2618
 fail_contexts:
2619
	kfree(ohci->ir_context_list);
2620 2621 2622 2623 2624
	kfree(ohci->it_context_list);
	context_release(&ohci->at_response_ctx);
	context_release(&ohci->at_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	ar_context_release(&ohci->ar_request_ctx);
2625 2626 2627 2628 2629
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
2630 2631
 fail_free:
	kfree(&ohci->card);
2632
	pmac_ohci_off(dev);
2633 2634 2635
 fail:
	if (err == -ENOMEM)
		fw_error("Out of memory\n");
2636 2637

	return err;
2638 2639 2640 2641 2642 2643 2644
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
2645 2646
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
2647 2648
	fw_core_remove_card(&ohci->card);

2649 2650 2651 2652
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
2653 2654 2655

	software_reset(ohci);
	free_irq(dev->irq, ohci);
2656 2657 2658 2659 2660 2661 2662

	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->next_config_rom, ohci->next_config_rom_bus);
	if (ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
2663 2664
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
2665 2666 2667 2668
	ar_context_release(&ohci->ar_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	context_release(&ohci->at_request_ctx);
	context_release(&ohci->at_response_ctx);
2669 2670
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
2671
	pci_disable_msi(dev);
2672 2673 2674
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
2675
	kfree(&ohci->card);
2676
	pmac_ohci_off(dev);
2677

2678 2679 2680
	fw_notify("Removed fw-ohci device.\n");
}

2681
#ifdef CONFIG_PM
2682
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2683
{
2684
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2685 2686 2687
	int err;

	software_reset(ohci);
2688
	free_irq(dev->irq, ohci);
2689
	pci_disable_msi(dev);
2690
	err = pci_save_state(dev);
2691
	if (err) {
2692
		fw_error("pci_save_state failed\n");
2693 2694
		return err;
	}
2695
	err = pci_set_power_state(dev, pci_choose_state(dev, state));
2696 2697
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
2698
	pmac_ohci_off(dev);
2699

2700 2701 2702
	return 0;
}

2703
static int pci_resume(struct pci_dev *dev)
2704
{
2705
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2706 2707
	int err;

2708
	pmac_ohci_on(dev);
2709 2710 2711
	pci_set_power_state(dev, PCI_D0);
	pci_restore_state(dev);
	err = pci_enable_device(dev);
2712
	if (err) {
2713
		fw_error("pci_enable_device failed\n");
2714 2715 2716
		return err;
	}

2717
	return ohci_enable(&ohci->card, NULL, 0);
2718 2719 2720
}
#endif

2721
static const struct pci_device_id pci_table[] = {
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
2733 2734 2735 2736
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
2737 2738 2739 2740 2741 2742
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

2743 2744 2745 2746 2747
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);