ohci.c 89.9 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/bug.h>
22
#include <linux/compiler.h>
23
#include <linux/delay.h>
S
Stefan Richter 已提交
24
#include <linux/device.h>
A
Andrew Morton 已提交
25
#include <linux/dma-mapping.h>
26
#include <linux/firewire.h>
S
Stefan Richter 已提交
27
#include <linux/firewire-constants.h>
28 29
#include <linux/init.h>
#include <linux/interrupt.h>
S
Stefan Richter 已提交
30
#include <linux/io.h>
31
#include <linux/kernel.h>
S
Stefan Richter 已提交
32
#include <linux/list.h>
A
Al Viro 已提交
33
#include <linux/mm.h>
34
#include <linux/module.h>
35
#include <linux/moduleparam.h>
36
#include <linux/mutex.h>
37
#include <linux/pci.h>
38
#include <linux/pci_ids.h>
39
#include <linux/slab.h>
S
Stefan Richter 已提交
40
#include <linux/spinlock.h>
S
Stefan Richter 已提交
41
#include <linux/string.h>
42
#include <linux/time.h>
43
#include <linux/vmalloc.h>
A
Andrew Morton 已提交
44

S
Stefan Richter 已提交
45
#include <asm/byteorder.h>
S
Stefan Richter 已提交
46
#include <asm/page.h>
47
#include <asm/system.h>
48

49 50 51 52
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

53 54
#include "core.h"
#include "ohci.h"
55

56 57 58 59 60 61 62 63 64 65 66 67 68
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
69 70 71 72 73 74 75 76 77 78

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

79 80 81 82
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
83

84 85 86 87 88 89 90 91
#define AR_BUFFER_SIZE	(32*1024)
#define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
/* we need at least two pages for proper list management */
#define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)

#define MAX_ASYNC_PAYLOAD	4096
#define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
#define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
92

93 94
struct ar_context {
	struct fw_ohci *ohci;
95 96 97 98
	struct page *pages[AR_BUFFERS];
	void *buffer;
	struct descriptor *descriptors;
	dma_addr_t descriptors_bus;
99
	void *pointer;
100
	unsigned int last_buffer_index;
101
	u32 regs;
102 103 104
	struct tasklet_struct tasklet;
};

105 106 107 108 109
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
110 111 112 113 114 115 116 117 118 119 120 121 122

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

123
struct context {
S
Stefan Richter 已提交
124
	struct fw_ohci *ohci;
125
	u32 regs;
126
	int total_allocation;
S
Stefan Richter 已提交
127

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
	 * The last descriptor in the DMA program.  It contains the branch
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
152 153 154

	descriptor_callback_t callback;

S
Stefan Richter 已提交
155
	struct tasklet_struct tasklet;
156 157
};

158 159 160 161 162 163
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
164 165 166

struct iso_context {
	struct fw_iso_context base;
167
	struct context context;
168
	int excess_bytes;
169 170
	void *header;
	size_t header_length;
171 172 173 174 175 176 177 178
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

	__iomem char *registers;
179
	int node_id;
180
	int generation;
181
	int request_generation;	/* for timestamping incoming requests */
182
	unsigned quirks;
183
	unsigned int pri_req_max;
184
	u32 bus_time;
185
	bool is_root;
186
	bool csr_state_setclear_abdicate;
187

188 189 190 191
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
192 193
	spinlock_t lock;

194 195
	struct mutex phy_reg_mutex;

196 197
	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
198 199
	struct context at_request_ctx;
	struct context at_response_ctx;
200

201
	u32 it_context_mask;     /* unoccupied IT contexts */
202
	struct iso_context *it_context_list;
203 204
	u64 ir_context_channels; /* unoccupied channels */
	u32 ir_context_mask;     /* unoccupied IR contexts */
205
	struct iso_context *ir_context_list;
206 207
	u64 mc_channels; /* channels in use by the multichannel IR context */
	bool mc_allocated;
208 209 210 211 212 213 214 215 216 217 218 219

	__be32    *config_rom;
	dma_addr_t config_rom_bus;
	__be32    *next_config_rom;
	dma_addr_t next_config_rom_bus;
	__be32     next_header;

	__le32    *self_id_cpu;
	dma_addr_t self_id_bus;
	struct tasklet_struct bus_reset_tasklet;

	u32 self_id_buffer[512];
220 221
};

A
Adrian Bunk 已提交
222
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
223 224 225 226
{
	return container_of(card, struct fw_ohci, card);
}

227 228 229 230 231 232
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
233 234 235 236 237 238

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

239
#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
240 241 242 243 244 245 246
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
247
#define OHCI_TCODE_PHY_PACKET		0x0e
248
#define OHCI_VERSION_1_1		0x010010
249

250 251
static char ohci_driver_name[] = KBUILD_MODNAME;

252
#define PCI_DEVICE_ID_AGERE_FW643	0x5901
253
#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
254 255
#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009

256 257 258
#define QUIRK_CYCLE_TIMER		1
#define QUIRK_RESET_PACKET		2
#define QUIRK_BE_HEADERS		4
259
#define QUIRK_NO_1394A			8
260
#define QUIRK_NO_MSI			16
261 262 263

/* In case of multiple matches in ohci_quirks[], only the first one is used. */
static const struct {
264
	unsigned short vendor, device, revision, flags;
265
} ohci_quirks[] = {
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
		QUIRK_BE_HEADERS},

	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
		QUIRK_NO_MSI},

	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
		QUIRK_NO_MSI},

	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},

	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_RESET_PACKET},

	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
292 293
};

294 295 296 297 298 299 300
/* This overrides anything that was found in ohci_quirks[]. */
static int param_quirks;
module_param_named(quirks, param_quirks, int, 0644);
MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
	", AR/selfID endianess = "	__stringify(QUIRK_BE_HEADERS)
301
	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
302
	", disable MSI = "		__stringify(QUIRK_NO_MSI)
303 304
	")");

305
#define OHCI_PARAM_DEBUG_AT_AR		1
306
#define OHCI_PARAM_DEBUG_SELFIDS	2
307 308
#define OHCI_PARAM_DEBUG_IRQS		4
#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
309

310 311
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG

312 313 314 315
static int param_debug;
module_param_named(debug, param_debug, int, 0644);
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
316 317 318
	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
319 320 321 322
	", or a combination, or all = -1)");

static void log_irqs(u32 evt)
{
323 324 325 326 327 328
	if (likely(!(param_debug &
			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
		return;

	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
	    !(evt & OHCI1394_busReset))
329 330
		return;

331
	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
332 333 334 335 336 337 338 339 340
	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
	    evt & OHCI1394_isochRx		? " IR"			: "",
	    evt & OHCI1394_isochTx		? " IT"			: "",
	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
341
	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
342
	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
343 344 345 346 347 348
	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
	    evt & OHCI1394_busReset		? " busReset"		: "",
	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
		    OHCI1394_respTxComplete | OHCI1394_isochRx |
		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
349 350
		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
		    OHCI1394_cycleInconsistent |
351
		    OHCI1394_regAccessFail | OHCI1394_busReset)
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
						? " ?"			: "");
}

static const char *speed[] = {
	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
};
static const char *power[] = {
	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
};
static const char port[] = { '.', '-', 'p', 'c', };

static char _p(u32 *s, int shift)
{
	return port[*s >> shift & 3];
}

369
static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
370 371 372 373
{
	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
		return;

374 375
	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
		  self_id_count, generation, node_id);
376 377 378

	for (; self_id_count--; ++s)
		if ((*s & 1 << 23) == 0)
379 380 381 382 383 384
			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
			    "%s gc=%d %s %s%s%s\n",
			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
			    speed[*s >> 14 & 3], *s >> 16 & 63,
			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
385
		else
386 387 388 389
			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
			    *s, *s >> 24 & 63,
			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
}

static const char *evts[] = {
	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
	[0x10] = "-reserved-",		[0x11] = "ack_complete",
	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
	[0x18] = "-reserved-",		[0x19] = "-reserved-",
	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
	[0x20] = "pending/cancelled",
};
static const char *tcodes[] = {
	[0x0] = "QW req",		[0x1] = "BW req",
	[0x2] = "W resp",		[0x3] = "-reserved-",
	[0x4] = "QR req",		[0x5] = "BR req",
	[0x6] = "QR resp",		[0x7] = "BR resp",
	[0x8] = "cycle start",		[0x9] = "Lk req",
	[0xa] = "async stream packet",	[0xb] = "Lk resp",
	[0xc] = "-reserved-",		[0xd] = "-reserved-",
	[0xe] = "link internal",	[0xf] = "-reserved-",
};
static const char *phys[] = {
	[0x0] = "phy config packet",	[0x1] = "link-on packet",
	[0x2] = "self-id packet",	[0x3] = "-reserved-",
};

static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
{
	int tcode = header[0] >> 4 & 0xf;
	char specific[12];

	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
		return;

	if (unlikely(evt >= ARRAY_SIZE(evts)))
			evt = 0x1f;

437
	if (evt == OHCI1394_evt_bus_reset) {
438 439
		fw_notify("A%c evt_bus_reset, generation %d\n",
		    dir, (header[2] >> 16) & 0xff);
440 441 442
		return;
	}

443
	if (header[0] == ~header[1]) {
444 445
		fw_notify("A%c %s, %s, %08x\n",
		    dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
		return;
	}

	switch (tcode) {
	case 0x0: case 0x6: case 0x8:
		snprintf(specific, sizeof(specific), " = %08x",
			 be32_to_cpu((__force __be32)header[3]));
		break;
	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
		snprintf(specific, sizeof(specific), " %x,%x",
			 header[3] >> 16, header[3] & 0xffff);
		break;
	default:
		specific[0] = '\0';
	}

	switch (tcode) {
	case 0xe: case 0xa:
464
		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
465 466
		break;
	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
467 468 469 470 471 472
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s, %04x%08x%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
473 474
		break;
	default:
475 476 477 478 479 480
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], specific);
481 482 483 484 485
	}
}

#else

486 487 488 489
#define param_debug 0
static inline void log_irqs(u32 evt) {}
static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
490 491 492

#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */

A
Adrian Bunk 已提交
493
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
494 495 496 497
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
498
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
499 500 501 502
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
503
static inline void flush_writes(const struct fw_ohci *ohci)
504 505 506 507 508
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

509
static int read_phy_reg(struct fw_ohci *ohci, int addr)
510
{
511
	u32 val;
512
	int i;
513 514

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
515
	for (i = 0; i < 3 + 100; i++) {
516 517 518 519
		val = reg_read(ohci, OHCI1394_PhyControl);
		if (val & OHCI1394_PhyControl_ReadDone)
			return OHCI1394_PhyControl_ReadData(val);

520 521 522 523 524 525
		/*
		 * Try a few times without waiting.  Sleeping is necessary
		 * only when the link/PHY interface is busy.
		 */
		if (i >= 3)
			msleep(1);
526
	}
527
	fw_error("failed to read phy reg\n");
528

529 530
	return -EBUSY;
}
531

532 533 534
static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
{
	int i;
535 536

	reg_write(ohci, OHCI1394_PhyControl,
537
		  OHCI1394_PhyControl_Write(addr, val));
538
	for (i = 0; i < 3 + 100; i++) {
539 540 541
		val = reg_read(ohci, OHCI1394_PhyControl);
		if (!(val & OHCI1394_PhyControl_WritePending))
			return 0;
542

543 544
		if (i >= 3)
			msleep(1);
545 546 547 548
	}
	fw_error("failed to write phy reg\n");

	return -EBUSY;
549 550
}

551 552
static int update_phy_reg(struct fw_ohci *ohci, int addr,
			  int clear_bits, int set_bits)
553
{
554
	int ret = read_phy_reg(ohci, addr);
555 556
	if (ret < 0)
		return ret;
557

558 559 560 561 562 563 564
	/*
	 * The interrupt status bits are cleared by writing a one bit.
	 * Avoid clearing them unless explicitly requested in set_bits.
	 */
	if (addr == 5)
		clear_bits |= PHY_INT_STATUS_BITS;

565
	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
566 567
}

568
static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
569
{
570
	int ret;
571

572
	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
573 574
	if (ret < 0)
		return ret;
575

576
	return read_phy_reg(ohci, addr);
577 578
}

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
static int ohci_read_phy_reg(struct fw_card *card, int addr)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = read_phy_reg(ohci, addr);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
}

static int ohci_update_phy_reg(struct fw_card *card, int addr,
			       int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
602 603
}

604 605 606 607 608 609
static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
{
	return page_private(ctx->pages[i]);
}

static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
610
{
611
	struct descriptor *d;
612

613 614 615 616
	d = &ctx->descriptors[index];
	d->branch_address  &= cpu_to_le32(~0xf);
	d->res_count       =  cpu_to_le16(PAGE_SIZE);
	d->transfer_status =  0;
617

618
	wmb(); /* finish init of new descriptors before branch_address update */
619 620 621 622
	d = &ctx->descriptors[ctx->last_buffer_index];
	d->branch_address  |= cpu_to_le32(1);

	ctx->last_buffer_index = index;
623

624
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
625
	flush_writes(ctx->ohci);
626 627
}

628
static void ar_context_release(struct ar_context *ctx)
629
{
630
	unsigned int i;
631

632 633 634 635
	if (ctx->descriptors)
		dma_free_coherent(ctx->ohci->card.device,
				  AR_BUFFERS * sizeof(struct descriptor),
				  ctx->descriptors, ctx->descriptors_bus);
636

637 638
	if (ctx->buffer)
		vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
639

640 641 642 643 644 645 646
	for (i = 0; i < AR_BUFFERS; i++)
		if (ctx->pages[i]) {
			dma_unmap_page(ctx->ohci->card.device,
				       ar_buffer_bus(ctx, i),
				       PAGE_SIZE, DMA_FROM_DEVICE);
			__free_page(ctx->pages[i]);
		}
647 648
}

649
static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
650
{
651 652 653
	if (reg_read(ctx->ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
		reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
		flush_writes(ctx->ohci);
654

655
		fw_error("AR error: %s; DMA stopped\n", error_msg);
656
	}
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
	/* FIXME: restart? */
}

static inline unsigned int ar_next_buffer_index(unsigned int index)
{
	return (index + 1) % AR_BUFFERS;
}

static inline unsigned int ar_prev_buffer_index(unsigned int index)
{
	return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
}

static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
{
	return ar_next_buffer_index(ctx->last_buffer_index);
}

/*
 * We search for the buffer that contains the last AR packet DMA data written
 * by the controller.
 */
static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
						 unsigned int *buffer_offset)
{
	unsigned int i, next_i, last = ctx->last_buffer_index;
	__le16 res_count, next_res_count;

	i = ar_first_buffer_index(ctx);
	res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);

	/* A buffer that is not yet completely filled must be the last one. */
	while (i != last && res_count == 0) {

		/* Peek at the next descriptor. */
		next_i = ar_next_buffer_index(i);
		rmb(); /* read descriptors in order */
		next_res_count = ACCESS_ONCE(
				ctx->descriptors[next_i].res_count);
		/*
		 * If the next descriptor is still empty, we must stop at this
		 * descriptor.
		 */
		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
			/*
			 * The exception is when the DMA data for one packet is
			 * split over three buffers; in this case, the middle
			 * buffer's descriptor might be never updated by the
			 * controller and look still empty, and we have to peek
			 * at the third one.
			 */
			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
				next_i = ar_next_buffer_index(next_i);
				rmb();
				next_res_count = ACCESS_ONCE(
					ctx->descriptors[next_i].res_count);
				if (next_res_count != cpu_to_le16(PAGE_SIZE))
					goto next_buffer_is_active;
			}

			break;
		}

next_buffer_is_active:
		i = next_i;
		res_count = next_res_count;
	}

	rmb(); /* read res_count before the DMA data */

	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
	if (*buffer_offset > PAGE_SIZE) {
		*buffer_offset = 0;
		ar_context_abort(ctx, "corrupted descriptor");
	}

	return i;
}

static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
				    unsigned int end_buffer_index,
				    unsigned int end_buffer_offset)
{
	unsigned int i;

	i = ar_first_buffer_index(ctx);
	while (i != end_buffer_index) {
		dma_sync_single_for_cpu(ctx->ohci->card.device,
					ar_buffer_bus(ctx, i),
					PAGE_SIZE, DMA_FROM_DEVICE);
		i = ar_next_buffer_index(i);
	}
	if (end_buffer_offset > 0)
		dma_sync_single_for_cpu(ctx->ohci->card.device,
					ar_buffer_bus(ctx, i),
					end_buffer_offset, DMA_FROM_DEVICE);
753 754
}

755 756
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
757
	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
758 759 760 761
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

762
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
763 764
{
	struct fw_ohci *ohci = ctx->ohci;
765 766
	struct fw_packet p;
	u32 status, length, tcode;
767
	int evt;
768

769 770 771
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
772 773 774 775 776

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
777
		p.header[3] = (__force __u32) buffer[3];
778
		p.header_length = 16;
779
		p.payload_length = 0;
780 781 782
		break;

	case TCODE_READ_BLOCK_REQUEST :
783
		p.header[3] = cond_le32_to_cpu(buffer[3]);
784 785 786 787 788
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
789 790 791
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
792
		p.header[3] = cond_le32_to_cpu(buffer[3]);
793
		p.header_length = 16;
794
		p.payload_length = p.header[3] >> 16;
795 796 797 798
		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
			ar_context_abort(ctx, "invalid packet length");
			return NULL;
		}
799 800 801 802
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
803
	case OHCI_TCODE_PHY_PACKET:
804
		p.header_length = 12;
805
		p.payload_length = 0;
806
		break;
807 808

	default:
809 810
		ar_context_abort(ctx, "invalid tcode");
		return NULL;
811
	}
812

813 814 815 816
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
817
	status = cond_le32_to_cpu(buffer[length]);
818
	evt    = (status >> 16) & 0x1f;
819

820
	p.ack        = evt - 16;
821 822 823
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
824

825
	log_ar_at_event('R', p.speed, p.header, evt);
826

827
	/*
828 829 830 831 832 833 834 835 836
	 * Several controllers, notably from NEC and VIA, forget to
	 * write ack_complete status at PHY packet reception.
	 */
	if (evt == OHCI1394_evt_no_status &&
	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
		p.ack = ACK_COMPLETE;

	/*
	 * The OHCI bus reset handler synthesizes a PHY packet with
837 838 839 840 841
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
842
	 * request.
843 844 845 846
	 *
	 * Alas some chips sometimes emit bus reset packets with a
	 * wrong generation.  We set the correct generation for these
	 * at a slightly incorrect time (in bus_reset_tasklet).
847
	 */
848
	if (evt == OHCI1394_evt_bus_reset) {
849
		if (!(ohci->quirks & QUIRK_RESET_PACKET))
850 851
			ohci->request_generation = (p.header[2] >> 16) & 0xff;
	} else if (ctx == &ohci->ar_request_ctx) {
852
		fw_core_handle_request(&ohci->card, &p);
853
	} else {
854
		fw_core_handle_response(&ohci->card, &p);
855
	}
856

857 858
	return buffer + length + 1;
}
859

860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
{
	void *next;

	while (p < end) {
		next = handle_ar_packet(ctx, p);
		if (!next)
			return p;
		p = next;
	}

	return p;
}

static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
{
	unsigned int i;

	i = ar_first_buffer_index(ctx);
	while (i != end_buffer) {
		dma_sync_single_for_device(ctx->ohci->card.device,
					   ar_buffer_bus(ctx, i),
					   PAGE_SIZE, DMA_FROM_DEVICE);
		ar_context_link_page(ctx, i);
		i = ar_next_buffer_index(i);
	}
}

888 889 890
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
891 892
	unsigned int end_buffer_index, end_buffer_offset;
	void *p, *end;
893

894 895 896
	p = ctx->pointer;
	if (!p)
		return;
897

898 899 900 901
	end_buffer_index = ar_search_last_active_buffer(ctx,
							&end_buffer_offset);
	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
902

903
	if (end_buffer_index < ar_first_buffer_index(ctx)) {
904
		/*
905 906 907 908
		 * The filled part of the overall buffer wraps around; handle
		 * all packets up to the buffer end here.  If the last packet
		 * wraps around, its tail will be visible after the buffer end
		 * because the buffer start pages are mapped there again.
909
		 */
910 911 912 913 914 915 916
		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
		p = handle_ar_packets(ctx, p, buffer_end);
		if (p < buffer_end)
			goto error;
		/* adjust p to point back into the actual buffer */
		p -= AR_BUFFERS * PAGE_SIZE;
	}
917

918 919 920 921 922 923
	p = handle_ar_packets(ctx, p, end);
	if (p != end) {
		if (p > end)
			ar_context_abort(ctx, "inconsistent descriptor");
		goto error;
	}
924

925 926
	ctx->pointer = p;
	ar_recycle_buffers(ctx, end_buffer_index);
927

928
	return;
929

930 931
error:
	ctx->pointer = NULL;
932 933
}

934 935
static int ar_context_init(struct ar_context *ctx,
			   struct fw_ohci *ohci, u32 regs)
936
{
937 938 939 940
	unsigned int i;
	dma_addr_t dma_addr;
	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
	struct descriptor *d;
941

942 943
	ctx->regs        = regs;
	ctx->ohci        = ohci;
944 945
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
	for (i = 0; i < AR_BUFFERS; i++) {
		ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
		if (!ctx->pages[i])
			goto out_of_memory;
		dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
					0, PAGE_SIZE, DMA_FROM_DEVICE);
		if (dma_mapping_error(ohci->card.device, dma_addr)) {
			__free_page(ctx->pages[i]);
			ctx->pages[i] = NULL;
			goto out_of_memory;
		}
		set_page_private(ctx->pages[i], dma_addr);
	}

	for (i = 0; i < AR_BUFFERS; i++)
		pages[i]              = ctx->pages[i];
	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
		pages[AR_BUFFERS + i] = ctx->pages[i];
	ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
				 -1, PAGE_KERNEL_RO);
	if (!ctx->buffer)
		goto out_of_memory;

	ctx->descriptors =
		dma_alloc_coherent(ohci->card.device,
				   AR_BUFFERS * sizeof(struct descriptor),
				   &ctx->descriptors_bus,
				   GFP_KERNEL);
	if (!ctx->descriptors)
		goto out_of_memory;

	for (i = 0; i < AR_BUFFERS; i++) {
		d = &ctx->descriptors[i];
		d->req_count      = cpu_to_le16(PAGE_SIZE);
		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						DESCRIPTOR_STATUS |
						DESCRIPTOR_BRANCH_ALWAYS);
		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
			ar_next_buffer_index(i) * sizeof(struct descriptor));
	}
987

988
	return 0;
989 990 991 992 993

out_of_memory:
	ar_context_release(ctx);

	return -ENOMEM;
994 995 996 997
}

static void ar_context_run(struct ar_context *ctx)
{
998 999 1000 1001
	unsigned int i;

	for (i = 0; i < AR_BUFFERS; i++)
		ar_context_link_page(ctx, i);
1002

1003
	ctx->pointer = ctx->buffer;
1004

1005
	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1006
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1007
	flush_writes(ctx->ohci);
1008
}
S
Stefan Richter 已提交
1009

1010
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
{
	int b, key;

	b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
	key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;

	/* figure out which descriptor the branch address goes in */
	if (z == 2 && (b == 3 || key == 2))
		return d;
	else
		return d + z - 1;
}

1024 1025 1026 1027 1028 1029
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
1030
	struct descriptor_buffer *desc;
1031

1032 1033 1034
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
1035
	while (last->branch_address != 0) {
1036
		struct descriptor_buffer *old_desc = desc;
1037 1038
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
1039 1040 1041 1042 1043 1044 1045 1046 1047
		address &= ~0xf;

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1048
		last = find_branch_descriptor(d, z);
1049 1050 1051 1052

		if (!ctx->callback(ctx, d, last))
			break;

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
1063 1064 1065
	}
}

1066 1067 1068 1069
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
1070
static int context_add_buffer(struct context *ctx)
1071 1072
{
	struct descriptor_buffer *desc;
1073
	dma_addr_t uninitialized_var(bus_addr);
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

1099 1100
static int context_init(struct context *ctx, struct fw_ohci *ohci,
			u32 regs, descriptor_callback_t callback)
1101 1102 1103
{
	ctx->ohci = ohci;
	ctx->regs = regs;
1104 1105 1106 1107
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
1108 1109
		return -ENOMEM;

1110 1111 1112
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

1113 1114 1115
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

1116 1117
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
1118
	 * branch address and looks like it's been sent.  That way we
1119
	 * have a descriptor to append DMA programs to.
1120
	 */
1121 1122 1123 1124 1125 1126
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
1127 1128 1129 1130

	return 0;
}

1131
static void context_release(struct context *ctx)
1132 1133
{
	struct fw_card *card = &ctx->ohci->card;
1134
	struct descriptor_buffer *desc, *tmp;
1135

1136 1137 1138 1139
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
1140 1141
}

1142
/* Must be called with ohci->lock held */
1143 1144
static struct descriptor *context_get_descriptors(struct context *ctx,
						  int z, dma_addr_t *d_bus)
1145
{
1146 1147 1148 1149 1150 1151 1152 1153 1154
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
1155

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
1166

1167
	d = desc->buffer + desc->used / sizeof(*d);
1168
	memset(d, 0, z * sizeof(*d));
1169
	*d_bus = desc->buffer_bus + desc->used;
1170 1171 1172 1173

	return d;
}

1174
static void context_run(struct context *ctx, u32 extra)
1175 1176 1177
{
	struct fw_ohci *ohci = ctx->ohci;

1178
	reg_write(ohci, COMMAND_PTR(ctx->regs),
1179
		  le32_to_cpu(ctx->last->branch_address));
1180 1181
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1182 1183 1184 1185 1186 1187 1188
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
1189
	struct descriptor_buffer *desc = ctx->buffer_tail;
1190

1191
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1192

1193
	desc->used += (z + extra) * sizeof(*d);
1194 1195

	wmb(); /* finish init of new descriptors before branch_address update */
1196 1197
	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev = find_branch_descriptor(d, z);
1198

1199
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1200 1201 1202 1203 1204 1205
	flush_writes(ctx->ohci);
}

static void context_stop(struct context *ctx)
{
	u32 reg;
1206
	int i;
1207

1208
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1209
	flush_writes(ctx->ohci);
1210

1211
	for (i = 0; i < 10; i++) {
1212
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1213
		if ((reg & CONTEXT_ACTIVE) == 0)
1214
			return;
1215

1216
		mdelay(1);
1217
	}
1218
	fw_error("Error: DMA context still active (0x%08x)\n", reg);
1219
}
1220

1221 1222 1223
struct driver_data {
	struct fw_packet *packet;
};
1224

1225 1226
/*
 * This function apppends a packet to the DMA queue for transmission.
1227
 * Must always be called with the ochi->lock held to ensure proper
1228 1229
 * generation handling and locking around packet queue manipulation.
 */
1230 1231
static int at_context_queue_packet(struct context *ctx,
				   struct fw_packet *packet)
1232 1233
{
	struct fw_ohci *ohci = ctx->ohci;
1234
	dma_addr_t d_bus, uninitialized_var(payload_bus);
1235 1236 1237
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
1238
	int z, tcode;
1239
	u32 reg;
1240

1241 1242 1243 1244
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1245 1246
	}

1247
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1248 1249
	d[0].res_count = cpu_to_le16(packet->timestamp);

1250 1251
	/*
	 * The DMA format for asyncronous link packets is different
1252 1253
	 * from the IEEE1394 layout, so shift the fields around
	 * accordingly.  If header_length is 8, it's a PHY packet, to
1254 1255
	 * which we need to prepend an extra quadlet.
	 */
1256 1257

	header = (__le32 *) &d[1];
1258 1259 1260
	switch (packet->header_length) {
	case 16:
	case 12:
1261 1262 1263 1264 1265
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
1266 1267 1268

		tcode = (packet->header[0] >> 4) & 0x0f;
		if (TCODE_IS_BLOCK_PACKET(tcode))
1269
			header[3] = cpu_to_le32(packet->header[3]);
1270
		else
1271 1272 1273
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
1274 1275 1276
		break;

	case 8:
1277 1278 1279 1280 1281
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0]);
		header[2] = cpu_to_le32(packet->header[1]);
		d[0].req_count = cpu_to_le16(12);
S
Stefan Richter 已提交
1282 1283 1284

		if (is_ping_packet(packet->header))
			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
		break;

	case 4:
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
		d[0].req_count = cpu_to_le16(8);
		break;

	default:
		/* BUG(); */
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1298 1299
	}

1300 1301
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
1302
	packet->driver_data = driver_data;
1303

1304 1305 1306 1307
	if (packet->payload_length > 0) {
		payload_bus =
			dma_map_single(ohci->card.device, packet->payload,
				       packet->payload_length, DMA_TO_DEVICE);
1308
		if (dma_mapping_error(ohci->card.device, payload_bus)) {
1309 1310 1311
			packet->ack = RCODE_SEND_ERROR;
			return -1;
		}
1312 1313
		packet->payload_bus	= payload_bus;
		packet->payload_mapped	= true;
1314 1315 1316 1317 1318

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
1319
	} else {
1320 1321
		last = &d[0];
		z = 2;
1322 1323
	}

1324 1325 1326
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
1327

1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
	/*
	 * If the controller and packet generations don't match, we need to
	 * bail out and try again.  If IntEvent.busReset is set, the AT context
	 * is halted, so appending to the context and trying to run it is
	 * futile.  Most controllers do the right thing and just flush the AT
	 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
	 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
	 * up stalling out.  So we just bail out in software and try again
	 * later, and everyone is happy.
	 * FIXME: Document how the locking works.
	 */
	if (ohci->generation != packet->generation ||
	    reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1341
		if (packet->payload_mapped)
1342 1343
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
1344 1345 1346 1347 1348
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
1349

1350
	/* If the context isn't already running, start it up. */
1351
	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1352
	if ((reg & CONTEXT_RUN) == 0)
1353 1354 1355
		context_run(ctx, 0);

	return 0;
1356 1357
}

1358 1359 1360
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1361
{
1362
	struct driver_data *driver_data;
1363
	struct fw_packet *packet;
1364
	struct fw_ohci *ohci = context->ohci;
1365 1366
	int evt;

1367 1368 1369
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
1370

1371 1372 1373 1374 1375
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
1376

1377
	if (packet->payload_mapped)
1378
		dma_unmap_single(ohci->card.device, packet->payload_bus,
1379 1380
				 packet->payload_length, DMA_TO_DEVICE);

1381 1382
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
1383

1384 1385
	log_ar_at_event('T', packet->speed, packet->header, evt);

1386 1387 1388 1389 1390
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
1391

1392
	case OHCI1394_evt_flushed:
1393 1394 1395 1396
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
1397 1398
		packet->ack = RCODE_GENERATION;
		break;
1399

1400
	case OHCI1394_evt_missing_ack:
1401 1402 1403 1404
		/*
		 * Using a valid (current) generation count, but the
		 * node is not on the bus or not sending acks.
		 */
1405 1406
		packet->ack = RCODE_NO_ACK;
		break;
1407

1408 1409 1410 1411 1412 1413 1414 1415 1416
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
1417

1418 1419 1420 1421
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
1422

1423
	packet->callback(packet, &ohci->card, packet->ack);
1424

1425
	return 1;
1426 1427
}

1428 1429 1430 1431 1432
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1433

1434 1435
static void handle_local_rom(struct fw_ohci *ohci,
			     struct fw_packet *packet, u32 csr)
1436 1437 1438 1439
{
	struct fw_packet response;
	int tcode, length, i;

1440
	tcode = HEADER_GET_TCODE(packet->header[0]);
1441
	if (TCODE_IS_BLOCK_PACKET(tcode))
1442
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

1461 1462
static void handle_local_lock(struct fw_ohci *ohci,
			      struct fw_packet *packet, u32 csr)
1463 1464
{
	struct fw_packet response;
1465
	int tcode, length, ext_tcode, sel, try;
1466 1467 1468
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

1469 1470
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1471
	payload = packet->payload;
1472
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
	for (try = 0; try < 20; try++)
		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
			lock_old = cpu_to_be32(reg_read(ohci,
							OHCI1394_CSRData));
			fw_fill_response(&response, packet->header,
					 RCODE_COMPLETE,
					 &lock_old, sizeof(lock_old));
			goto out;
		}

	fw_error("swap not done (CSR lock timeout)\n");
	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1504 1505 1506 1507 1508

 out:
	fw_core_handle_response(&ohci->card, &response);
}

1509
static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1510
{
1511
	u64 offset, csr;
1512

1513 1514 1515 1516
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1517 1518 1519

	offset =
		((unsigned long long)
1520
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
1541 1542 1543 1544 1545

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1546
}
1547

1548
static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1549 1550
{
	unsigned long flags;
1551
	int ret;
1552 1553 1554

	spin_lock_irqsave(&ctx->ohci->lock, flags);

1555
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1556
	    ctx->ohci->generation == packet->generation) {
1557 1558 1559
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
1560
	}
1561

1562
	ret = at_context_queue_packet(ctx, packet);
1563 1564
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

1565
	if (ret < 0)
1566
		packet->callback(packet, &ctx->ohci->card, packet->ack);
1567

1568 1569
}

1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
static u32 cycle_timer_ticks(u32 cycle_timer)
{
	u32 ticks;

	ticks = cycle_timer & 0xfff;
	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
	ticks += (3072 * 8000) * (cycle_timer >> 25);

	return ticks;
}

/*
 * Some controllers exhibit one or more of the following bugs when updating the
 * iso cycle timer register:
 *  - When the lowest six bits are wrapping around to zero, a read that happens
 *    at the same time will return garbage in the lowest ten bits.
 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
 *    not incremented for about 60 ns.
 *  - Occasionally, the entire register reads zero.
 *
 * To catch these, we read the register three times and ensure that the
 * difference between each two consecutive reads is approximately the same, i.e.
 * less than twice the other.  Furthermore, any negative difference indicates an
 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
 * execute, so we have enough precision to compute the ratio of the differences.)
 */
static u32 get_cycle_time(struct fw_ohci *ohci)
{
	u32 c0, c1, c2;
	u32 t0, t1, t2;
	s32 diff01, diff12;
	int i;

	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);

	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
		i = 0;
		c1 = c2;
		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		do {
			c0 = c1;
			c1 = c2;
			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
			t0 = cycle_timer_ticks(c0);
			t1 = cycle_timer_ticks(c1);
			t2 = cycle_timer_ticks(c2);
			diff01 = t1 - t0;
			diff12 = t2 - t1;
		} while ((diff01 <= 0 || diff12 <= 0 ||
			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
			 && i++ < 20);
	}

	return c2;
}

/*
 * This function has to be called at least every 64 seconds.  The bus_time
 * field stores not only the upper 25 bits of the BUS_TIME register but also
 * the most significant bit of the cycle timer in bit 6 so that we can detect
 * changes in this bit.
 */
static u32 update_bus_time(struct fw_ohci *ohci)
{
	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;

	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
		ohci->bus_time += 0x40;

	return ohci->bus_time | cycle_time_seconds;
}

1642 1643 1644
static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
1645
	int self_id_count, i, j, reg;
1646 1647
	int generation, new_generation;
	unsigned long flags;
1648 1649
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1650
	bool is_new_root;
1651 1652 1653

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1654
		fw_notify("node ID not valid, new bus reset in progress\n");
1655 1656
		return;
	}
1657 1658 1659 1660 1661 1662
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1663

1664 1665 1666 1667 1668 1669
	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
	if (!(ohci->is_root && is_new_root))
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	ohci->is_root = is_new_root;

1670 1671 1672 1673 1674
	reg = reg_read(ohci, OHCI1394_SelfIDCount);
	if (reg & OHCI1394_SelfIDCount_selfIDError) {
		fw_notify("inconsistent self IDs\n");
		return;
	}
1675 1676
	/*
	 * The count in the SelfIDCount register is the number of
1677 1678
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1679 1680
	 * bit extra to get the actual number of self IDs.
	 */
1681 1682
	self_id_count = (reg >> 3) & 0xff;
	if (self_id_count == 0 || self_id_count > 252) {
1683 1684 1685
		fw_notify("inconsistent self IDs\n");
		return;
	}
1686
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1687
	rmb();
1688 1689

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1690 1691 1692 1693
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
			fw_notify("inconsistent self IDs\n");
			return;
		}
1694 1695
		ohci->self_id_buffer[j] =
				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1696
	}
1697
	rmb();
1698

1699 1700
	/*
	 * Check the consistency of the self IDs we just read.  The
1701 1702 1703 1704 1705 1706 1707 1708 1709
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1710 1711
	 * of self IDs.
	 */
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
1724 1725
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1726 1727
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

1728
	if (ohci->quirks & QUIRK_RESET_PACKET)
1729 1730
		ohci->request_generation = generation;

1731 1732
	/*
	 * This next bit is unrelated to the AT context stuff but we
1733 1734 1735 1736
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
T
Thomas Weber 已提交
1737
	 * next_config_rom pointer so a new update can take place.
1738
	 */
1739 1740

	if (ohci->next_config_rom != NULL) {
1741 1742 1743 1744
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1745 1746 1747 1748
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1749 1750
		/*
		 * Restore config_rom image and manually update
1751 1752
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1753 1754
		 * do that last.
		 */
1755 1756
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
1757 1758 1759
		ohci->config_rom[0] = ohci->next_header;
		reg_write(ohci, OHCI1394_ConfigROMhdr,
			  be32_to_cpu(ohci->next_header));
1760 1761
	}

1762 1763 1764 1765 1766
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif

1767 1768
	spin_unlock_irqrestore(&ohci->lock, flags);

1769 1770 1771 1772
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1773 1774
	log_selfids(ohci->node_id, generation,
		    self_id_count, ohci->self_id_buffer);
1775

1776
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1777 1778 1779
				 self_id_count, ohci->self_id_buffer,
				 ohci->csr_state_setclear_abdicate);
	ohci->csr_state_setclear_abdicate = false;
1780 1781 1782 1783 1784
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1785
	u32 event, iso_event;
1786 1787 1788 1789
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1790
	if (!event || !~event)
1791 1792
		return IRQ_NONE;

1793 1794
	/* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
	reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1795
	log_irqs(event);
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1812
	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1813 1814 1815 1816
	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1817
		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1818 1819 1820
		iso_event &= ~(1 << i);
	}

1821
	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1822 1823 1824 1825
	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1826
		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1827 1828 1829
		iso_event &= ~(1 << i);
	}

1830 1831 1832 1833
	if (unlikely(event & OHCI1394_regAccessFail))
		fw_error("Register access failure - "
			 "please notify linux1394-devel@lists.sf.net\n");

1834 1835 1836
	if (unlikely(event & OHCI1394_postedWriteErr))
		fw_error("PCI posted write error\n");

1837 1838 1839 1840 1841 1842 1843
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
			fw_notify("isochronous cycle too long\n");
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
	if (unlikely(event & OHCI1394_cycleInconsistent)) {
		/*
		 * We need to clear this event bit in order to make
		 * cycleMatch isochronous I/O work.  In theory we should
		 * stop active cycleMatch iso contexts now and restart
		 * them at least two cycles later.  (FIXME?)
		 */
		if (printk_ratelimit())
			fw_notify("isochronous cycle inconsistent\n");
	}

1855 1856 1857 1858 1859 1860
	if (event & OHCI1394_cycle64Seconds) {
		spin_lock(&ohci->lock);
		update_bus_time(ohci);
		spin_unlock(&ohci->lock);
	}

1861 1862 1863
	return IRQ_HANDLED;
}

1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

1880 1881 1882 1883 1884 1885 1886 1887 1888
static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
{
	size_t size = length * 4;

	memcpy(dest, src, size);
	if (size < CONFIG_ROM_SIZE)
		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
}

1889 1890 1891
static int configure_1394a_enhancements(struct fw_ohci *ohci)
{
	bool enable_1394a;
1892
	int ret, clear, set, offset;
1893 1894 1895 1896 1897 1898 1899 1900

	/* Check if the driver should configure link and PHY. */
	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
	      OHCI1394_HCControl_programPhyEnable))
		return 0;

	/* Paranoia: check whether the PHY supports 1394a, too. */
	enable_1394a = false;
1901 1902 1903 1904 1905 1906 1907 1908
	ret = read_phy_reg(ohci, 2);
	if (ret < 0)
		return ret;
	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
		ret = read_paged_phy_reg(ohci, 1, 8);
		if (ret < 0)
			return ret;
		if (ret >= 1)
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
			enable_1394a = true;
	}

	if (ohci->quirks & QUIRK_NO_1394A)
		enable_1394a = false;

	/* Configure PHY and link consistently. */
	if (enable_1394a) {
		clear = 0;
		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
	} else {
		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
		set = 0;
	}
1923
	ret = update_phy_reg(ohci, 5, clear, set);
1924 1925
	if (ret < 0)
		return ret;
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939

	if (enable_1394a)
		offset = OHCI1394_HCControlSet;
	else
		offset = OHCI1394_HCControlClear;
	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);

	/* Clean up: configuration has been taken care of. */
	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_programPhyEnable);

	return 0;
}

1940 1941
static int ohci_enable(struct fw_card *card,
		       const __be32 *config_rom, size_t length)
1942 1943 1944
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);
1945
	u32 lps, seconds, version, irqs;
1946
	int i, ret;
1947

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
1958 1959
	 * full link enabled.  However, with some cards (well, at least
	 * a JMicron PCIe card), we have to try again sometimes.
1960 1961 1962 1963 1964
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975

	for (lps = 0, i = 0; !lps && i < 3; i++) {
		msleep(50);
		lps = reg_read(ohci, OHCI1394_HCControlSet) &
		      OHCI1394_HCControl_LPS;
	}

	if (!lps) {
		fw_error("Failed to set Link Power Status\n");
		return -EIO;
	}
1976 1977 1978 1979

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

1980
	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1981 1982
	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
1983
		  OHCI1394_LinkControl_rcvPhyPkt |
1984 1985 1986 1987 1988 1989
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1990 1991
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
		  (200 << 16));
1992

1993 1994 1995 1996
	seconds = lower_32_bits(get_seconds());
	reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
	ohci->bus_time = seconds & ~0x3f;

1997 1998 1999 2000
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	if (version >= OHCI_VERSION_1_1) {
		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
			  0xfffffffe);
2001
		card->broadcast_channel_auto_allocated = true;
2002 2003
	}

2004 2005 2006 2007
	/* Get implemented bits of the priority arbitration request counter. */
	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
	reg_write(ohci, OHCI1394_FairnessControl, 0);
2008
	card->priority_budget_implemented = ohci->pri_req_max != 0;
2009 2010 2011 2012 2013 2014 2015 2016

	ar_context_run(&ohci->ar_request_ctx);
	ar_context_run(&ohci->ar_response_ctx);

	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);

2017 2018 2019
	ret = configure_1394a_enhancements(ohci);
	if (ret < 0)
		return ret;
2020

2021
	/* Activate link_on bit and contender bit in our self ID packets.*/
2022 2023 2024
	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
	if (ret < 0)
		return ret;
2025

2026 2027
	/*
	 * When the link is not yet enabled, the atomic config rom
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

2045 2046 2047 2048 2049 2050 2051
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
2052

2053
		copy_config_rom(ohci->next_config_rom, config_rom, length);
2054 2055 2056 2057 2058 2059 2060 2061
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
2062

2063
	ohci->next_header = ohci->next_config_rom[0];
2064 2065
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2066 2067
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
2068 2069 2070 2071
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

2072 2073
	if (!(ohci->quirks & QUIRK_NO_MSI))
		pci_enable_msi(dev);
2074
	if (request_irq(dev->irq, irq_handler,
2075 2076 2077 2078
			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
			ohci_driver_name, ohci)) {
		fw_error("Failed to allocate interrupt %d.\n", dev->irq);
		pci_disable_msi(dev);
2079 2080 2081 2082 2083
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

2084 2085 2086 2087 2088 2089
	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		OHCI1394_RQPkt | OHCI1394_RSPkt |
		OHCI1394_isochTx | OHCI1394_isochRx |
		OHCI1394_postedWriteErr |
		OHCI1394_selfIDComplete |
		OHCI1394_regAccessFail |
2090
		OHCI1394_cycle64Seconds |
2091 2092 2093 2094 2095 2096
		OHCI1394_cycleInconsistent | OHCI1394_cycleTooLong |
		OHCI1394_masterIntEnable;
	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
		irqs |= OHCI1394_busReset;
	reg_write(ohci, OHCI1394_IntMaskSet, irqs);

2097 2098 2099 2100 2101
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
	flush_writes(ohci);

2102 2103
	/* We are ready to go, reset bus to finish initialization. */
	fw_schedule_bus_reset(&ohci->card, false, true);
2104 2105 2106 2107

	return 0;
}

2108
static int ohci_set_config_rom(struct fw_card *card,
2109
			       const __be32 *config_rom, size_t length)
2110 2111 2112
{
	struct fw_ohci *ohci;
	unsigned long flags;
2113
	int ret = -EBUSY;
2114
	__be32 *next_config_rom;
2115
	dma_addr_t uninitialized_var(next_config_rom_bus);
2116 2117 2118

	ohci = fw_ohci(card);

2119 2120
	/*
	 * When the OHCI controller is enabled, the config rom update
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;

2158
		copy_config_rom(ohci->next_config_rom, config_rom, length);
2159 2160 2161 2162 2163 2164

		ohci->next_header = config_rom[0];
		ohci->next_config_rom[0] = 0;

		reg_write(ohci, OHCI1394_ConfigROMmap,
			  ohci->next_config_rom_bus);
2165
		ret = 0;
2166 2167 2168 2169
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

2170 2171
	/*
	 * Now initiate a bus reset to have the changes take
2172 2173 2174
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
2175 2176
	 * takes effect.
	 */
2177
	if (ret == 0)
2178
		fw_schedule_bus_reset(&ohci->card, true, true);
2179 2180 2181
	else
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);
2182

2183
	return ret;
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

2200 2201 2202
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
2203 2204
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
2205
	int ret = -ENOENT;
2206

2207
	tasklet_disable(&ctx->tasklet);
2208

2209 2210
	if (packet->ack != 0)
		goto out;
2211

2212
	if (packet->payload_mapped)
2213 2214 2215
		dma_unmap_single(ohci->card.device, packet->payload_bus,
				 packet->payload_length, DMA_TO_DEVICE);

2216
	log_ar_at_event('T', packet->speed, packet->header, 0x20);
2217 2218 2219
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
2220
	ret = 0;
2221 2222
 out:
	tasklet_enable(&ctx->tasklet);
2223

2224
	return ret;
2225 2226
}

2227 2228
static int ohci_enable_phys_dma(struct fw_card *card,
				int node_id, int generation)
2229
{
2230 2231 2232
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	return 0;
#else
2233 2234
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
2235
	int n, ret = 0;
2236

2237 2238 2239 2240
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
2241 2242 2243 2244

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
2245
		ret = -ESTALE;
2246 2247 2248
		goto out;
	}

2249 2250 2251 2252
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
2253 2254 2255 2256 2257 2258 2259

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

2260 2261
	flush_writes(ohci);
 out:
2262
	spin_unlock_irqrestore(&ohci->lock, flags);
2263 2264

	return ret;
2265
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2266
}
S
Stefan Richter 已提交
2267

2268
static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2269
{
2270
	struct fw_ohci *ohci = fw_ohci(card);
2271 2272
	unsigned long flags;
	u32 value;
2273 2274

	switch (csr_offset) {
2275 2276 2277 2278 2279
	case CSR_STATE_CLEAR:
	case CSR_STATE_SET:
		if (ohci->is_root &&
		    (reg_read(ohci, OHCI1394_LinkControlSet) &
		     OHCI1394_LinkControl_cycleMaster))
2280
			value = CSR_STATE_BIT_CMSTR;
2281
		else
2282 2283 2284
			value = 0;
		if (ohci->csr_state_setclear_abdicate)
			value |= CSR_STATE_BIT_ABDICATE;
2285

2286
		return value;
2287

2288 2289 2290
	case CSR_NODE_IDS:
		return reg_read(ohci, OHCI1394_NodeID) << 16;

2291 2292 2293
	case CSR_CYCLE_TIME:
		return get_cycle_time(ohci);

2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
	case CSR_BUS_TIME:
		/*
		 * We might be called just after the cycle timer has wrapped
		 * around but just before the cycle64Seconds handler, so we
		 * better check here, too, if the bus time needs to be updated.
		 */
		spin_lock_irqsave(&ohci->lock, flags);
		value = update_bus_time(ohci);
		spin_unlock_irqrestore(&ohci->lock, flags);
		return value;

2305 2306 2307 2308
	case CSR_BUSY_TIMEOUT:
		value = reg_read(ohci, OHCI1394_ATRetries);
		return (value >> 4) & 0x0ffff00f;

2309 2310 2311 2312
	case CSR_PRIORITY_BUDGET:
		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
			(ohci->pri_req_max << 8);

2313 2314 2315 2316
	default:
		WARN_ON(1);
		return 0;
	}
2317 2318
}

2319
static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2320 2321
{
	struct fw_ohci *ohci = fw_ohci(card);
2322
	unsigned long flags;
2323

2324
	switch (csr_offset) {
2325 2326 2327 2328 2329 2330
	case CSR_STATE_CLEAR:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlClear,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2331 2332
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = false;
2333
		break;
2334

2335 2336 2337 2338 2339 2340
	case CSR_STATE_SET:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlSet,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2341 2342
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = true;
2343
		break;
2344

2345 2346 2347 2348 2349
	case CSR_NODE_IDS:
		reg_write(ohci, OHCI1394_NodeID, value >> 16);
		flush_writes(ohci);
		break;

2350 2351 2352 2353 2354 2355 2356
	case CSR_CYCLE_TIME:
		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
		reg_write(ohci, OHCI1394_IntEventSet,
			  OHCI1394_cycleInconsistent);
		flush_writes(ohci);
		break;

2357 2358 2359 2360 2361 2362
	case CSR_BUS_TIME:
		spin_lock_irqsave(&ohci->lock, flags);
		ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
		spin_unlock_irqrestore(&ohci->lock, flags);
		break;

2363 2364 2365 2366 2367 2368 2369
	case CSR_BUSY_TIMEOUT:
		value = (value & 0xf) | ((value & 0xf) << 4) |
			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
		reg_write(ohci, OHCI1394_ATRetries, value);
		flush_writes(ohci);
		break;

2370 2371 2372 2373 2374
	case CSR_PRIORITY_BUDGET:
		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
		flush_writes(ohci);
		break;

2375 2376 2377 2378
	default:
		WARN_ON(1);
		break;
	}
2379 2380
}

2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
static void copy_iso_headers(struct iso_context *ctx, void *p)
{
	int i = ctx->header_length;

	if (i + ctx->base.header_size > PAGE_SIZE)
		return;

	/*
	 * The iso header is byteswapped to little endian by
	 * the controller, but the remaining header quadlets
	 * are big endian.  We want to present all the headers
	 * as big endian, so we have to swap the first quadlet.
	 */
	if (ctx->base.header_size > 0)
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
	if (ctx->base.header_size > 4)
		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
	if (ctx->base.header_size > 8)
		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
	ctx->header_length += ctx->base.header_size;
}

2403 2404 2405 2406 2407 2408
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2409
	struct descriptor *pd;
2410
	__le32 *ir_header;
2411
	void *p;
2412

2413
	for (pd = d; pd <= last; pd++)
2414 2415 2416
		if (pd->transfer_status)
			break;
	if (pd > last)
2417 2418 2419
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

2420 2421
	p = last + 1;
	copy_iso_headers(ctx, p);
2422

2423 2424
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) p;
2425 2426 2427 2428
		ctx->base.callback.sc(&ctx->base,
				      le32_to_cpu(ir_header[0]) & 0xffff,
				      ctx->header_length, ctx->header,
				      ctx->base.callback_data);
2429 2430 2431 2432 2433 2434
		ctx->header_length = 0;
	}

	return 1;
}

2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
/* d == last because each descriptor block is only a single descriptor. */
static int handle_ir_buffer_fill(struct context *context,
				 struct descriptor *d,
				 struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);

	if (!last->transfer_status)
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
		ctx->base.callback.mc(&ctx->base,
				      le32_to_cpu(last->data_address) +
				      le16_to_cpu(last->req_count) -
				      le16_to_cpu(last->res_count),
				      ctx->base.callback_data);

	return 1;
}

2457 2458 2459
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
2460
{
2461 2462
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2463 2464
	int i;
	struct descriptor *pd;
S
Stefan Richter 已提交
2465

2466 2467 2468 2469 2470
	for (pd = d; pd <= last; pd++)
		if (pd->transfer_status)
			break;
	if (pd > last)
		/* Descriptor(s) not done yet, stop iteration */
2471 2472
		return 0;

2473 2474 2475 2476 2477 2478 2479 2480 2481
	i = ctx->header_length;
	if (i + 4 < PAGE_SIZE) {
		/* Present this value as big-endian to match the receive code */
		*(__be32 *)(ctx->header + i) = cpu_to_be32(
				((u32)le16_to_cpu(pd->transfer_status) << 16) |
				le16_to_cpu(pd->res_count));
		ctx->header_length += 4;
	}
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2482 2483 2484
		ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
				      ctx->header_length, ctx->header,
				      ctx->base.callback_data);
2485 2486
		ctx->header_length = 0;
	}
2487
	return 1;
2488 2489
}

2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
{
	u32 hi = channels >> 32, lo = channels;

	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
	mmiowb();
	ohci->mc_channels = channels;
}

2502
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2503
				int type, int channel, size_t header_size)
2504 2505
{
	struct fw_ohci *ohci = fw_ohci(card);
2506 2507 2508 2509
	struct iso_context *uninitialized_var(ctx);
	descriptor_callback_t uninitialized_var(callback);
	u64 *uninitialized_var(channels);
	u32 *uninitialized_var(mask), uninitialized_var(regs);
2510
	unsigned long flags;
2511
	int index, ret = -EBUSY;
2512

2513
	spin_lock_irqsave(&ohci->lock, flags);
2514

2515 2516 2517
	switch (type) {
	case FW_ISO_CONTEXT_TRANSMIT:
		mask     = &ohci->it_context_mask;
2518
		callback = handle_it_packet;
2519 2520 2521 2522 2523 2524 2525 2526 2527
		index    = ffs(*mask) - 1;
		if (index >= 0) {
			*mask &= ~(1 << index);
			regs = OHCI1394_IsoXmitContextBase(index);
			ctx  = &ohci->it_context_list[index];
		}
		break;

	case FW_ISO_CONTEXT_RECEIVE:
2528
		channels = &ohci->ir_context_channels;
2529
		mask     = &ohci->ir_context_mask;
2530
		callback = handle_ir_packet_per_buffer;
2531 2532 2533 2534 2535 2536 2537 2538
		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
		if (index >= 0) {
			*channels &= ~(1ULL << channel);
			*mask     &= ~(1 << index);
			regs = OHCI1394_IsoRcvContextBase(index);
			ctx  = &ohci->ir_context_list[index];
		}
		break;
2539

2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		mask     = &ohci->ir_context_mask;
		callback = handle_ir_buffer_fill;
		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
		if (index >= 0) {
			ohci->mc_allocated = true;
			*mask &= ~(1 << index);
			regs = OHCI1394_IsoRcvContextBase(index);
			ctx  = &ohci->ir_context_list[index];
		}
		break;

	default:
		index = -1;
		ret = -ENOSYS;
2555
	}
2556

2557 2558 2559
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
2560
		return ERR_PTR(ret);
S
Stefan Richter 已提交
2561

2562
	memset(ctx, 0, sizeof(*ctx));
2563 2564
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
2565 2566
	if (ctx->header == NULL) {
		ret = -ENOMEM;
2567
		goto out;
2568
	}
2569 2570
	ret = context_init(&ctx->context, ohci, regs, callback);
	if (ret < 0)
2571
		goto out_with_header;
2572

2573 2574 2575
	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
		set_multichannel_mask(ohci, 0);

2576
	return &ctx->base;
2577 2578 2579 2580 2581

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591

	switch (type) {
	case FW_ISO_CONTEXT_RECEIVE:
		*channels |= 1ULL << channel;
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		ohci->mc_allocated = false;
		break;
	}
2592
	*mask |= 1 << index;
2593

2594 2595
	spin_unlock_irqrestore(&ohci->lock, flags);

2596
	return ERR_PTR(ret);
2597 2598
}

2599 2600
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
2601
{
S
Stefan Richter 已提交
2602
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2603
	struct fw_ohci *ohci = ctx->context.ohci;
2604
	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2605 2606
	int index;

2607 2608
	switch (ctx->base.type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2609
		index = ctx - ohci->it_context_list;
2610 2611 2612
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2613
				(cycle & 0x7fff) << 16;
2614

2615 2616
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2617
		context_run(&ctx->context, match);
2618 2619 2620 2621 2622 2623
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
		/* fall through */
	case FW_ISO_CONTEXT_RECEIVE:
2624
		index = ctx - ohci->ir_context_list;
2625 2626 2627 2628 2629
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
2630

2631 2632
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2633
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2634
		context_run(&ctx->context, control);
2635
		break;
2636
	}
2637 2638 2639 2640

	return 0;
}

2641 2642 2643
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2644
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2645 2646
	int index;

2647 2648
	switch (ctx->base.type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2649 2650
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2651 2652 2653 2654
		break;

	case FW_ISO_CONTEXT_RECEIVE:
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2655 2656
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2657
		break;
2658 2659 2660 2661 2662 2663 2664
	}
	flush_writes(ohci);
	context_stop(&ctx->context);

	return 0;
}

2665 2666 2667
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2668
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2669 2670 2671
	unsigned long flags;
	int index;

2672 2673
	ohci_stop_iso(base);
	context_release(&ctx->context);
2674
	free_page((unsigned long)ctx->header);
2675

2676 2677
	spin_lock_irqsave(&ohci->lock, flags);

2678 2679
	switch (base->type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2680 2681
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
2682 2683 2684
		break;

	case FW_ISO_CONTEXT_RECEIVE:
2685 2686
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
2687
		ohci->ir_context_channels |= 1ULL << base->channel;
2688 2689 2690 2691 2692 2693 2694 2695 2696
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
		ohci->ir_context_channels |= ohci->mc_channels;
		ohci->mc_channels = 0;
		ohci->mc_allocated = false;
		break;
2697 2698 2699 2700 2701
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
	unsigned long flags;
	int ret;

	switch (base->type) {
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:

		spin_lock_irqsave(&ohci->lock, flags);

		/* Don't allow multichannel to grab other contexts' channels. */
		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
			*channels = ohci->ir_context_channels;
			ret = -EBUSY;
		} else {
			set_multichannel_mask(ohci, *channels);
			ret = 0;
		}

		spin_unlock_irqrestore(&ohci->lock, flags);

		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

static int queue_iso_transmit(struct iso_context *ctx,
			      struct fw_iso_packet *packet,
			      struct fw_iso_buffer *buffer,
			      unsigned long payload)
2736
{
2737
	struct descriptor *d, *last, *pd;
2738 2739
	struct fw_iso_packet *p;
	__le32 *header;
2740
	dma_addr_t d_bus, page_bus;
2741 2742
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
2743
	int page, end_page, i, length, offset;
2744 2745

	p = packet;
2746
	payload_index = payload;
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
2765
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2766

2767 2768 2769
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
2770 2771

	if (!p->skip) {
2772
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2773
		d[0].req_count = cpu_to_le16(8);
2774 2775 2776 2777 2778 2779 2780 2781
		/*
		 * Link the skip address to this descriptor itself.  This causes
		 * a context to skip a cycle whenever lost cycles or FIFO
		 * overruns occur, without dropping the data.  The application
		 * should then decide whether this is an error condition or not.
		 * FIXME:  Make the context's cycle-lost behaviour configurable?
		 */
		d[0].branch_address = cpu_to_le32(d_bus | z);
2782 2783

		header = (__le32 *) &d[1];
2784 2785 2786 2787 2788
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
2789
		header[1] =
2790
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2791 2792 2793 2794 2795
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
2796
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
2809 2810 2811

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
2812 2813 2814 2815 2816

		payload_index += length;
	}

	if (p->interrupt)
2817
		irq = DESCRIPTOR_IRQ_ALWAYS;
2818
	else
2819
		irq = DESCRIPTOR_NO_IRQ;
2820

2821
	last = z == 2 ? d : d + z - 1;
2822 2823 2824
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
2825
				     irq);
2826

2827
	context_append(&ctx->context, d, z, header_z);
2828 2829 2830

	return 0;
}
S
Stefan Richter 已提交
2831

2832 2833 2834 2835
static int queue_iso_packet_per_buffer(struct iso_context *ctx,
				       struct fw_iso_packet *packet,
				       struct fw_iso_buffer *buffer,
				       unsigned long payload)
2836
{
2837
	struct descriptor *d, *pd;
2838 2839
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
2840 2841
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
2842 2843

	/*
2844 2845
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
2846
	 */
2847
	packet_count = packet->header_length / ctx->base.header_size;
2848
	header_size  = max(ctx->base.header_size, (size_t)8);
2849 2850 2851 2852 2853

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
2854
	payload_per_buffer = packet->payload_length / packet_count;
2855 2856 2857

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
2858
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2859
		d = context_get_descriptors(&ctx->context,
2860
				z + header_z, &d_bus);
2861 2862 2863
		if (d == NULL)
			return -ENOMEM;

2864 2865
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
2866
		if (packet->skip && i == 0)
2867
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2868 2869
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
2870
		d->transfer_status = 0;
2871 2872
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

2873
		rest = payload_per_buffer;
2874
		pd = d;
2875
		for (j = 1; j < z; j++) {
2876
			pd++;
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
2896 2897 2898
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
2899
		if (packet->interrupt && i == packet_count - 1)
2900 2901 2902 2903 2904 2905 2906 2907
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
static int queue_iso_buffer_fill(struct iso_context *ctx,
				 struct fw_iso_packet *packet,
				 struct fw_iso_buffer *buffer,
				 unsigned long payload)
{
	struct descriptor *d;
	dma_addr_t d_bus, page_bus;
	int page, offset, rest, z, i, length;

	page   = payload >> PAGE_SHIFT;
	offset = payload & ~PAGE_MASK;
	rest   = packet->payload_length;

	/* We need one descriptor for each page in the buffer. */
	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);

	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
		return -EFAULT;

	for (i = 0; i < z; i++) {
		d = context_get_descriptors(&ctx->context, 1, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
					 DESCRIPTOR_BRANCH_ALWAYS);
		if (packet->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
		if (packet->interrupt && i == z - 1)
			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		if (offset + rest < PAGE_SIZE)
			length = rest;
		else
			length = PAGE_SIZE - offset;
		d->req_count = cpu_to_le16(length);
		d->res_count = d->req_count;
		d->transfer_status = 0;

		page_bus = page_private(buffer->pages[page]);
		d->data_address = cpu_to_le32(page_bus + offset);

		rest -= length;
		offset = 0;
		page++;

		context_append(&ctx->context, d, 1, 0);
	}

	return 0;
}

2960 2961 2962 2963
static int ohci_queue_iso(struct fw_iso_context *base,
			  struct fw_iso_packet *packet,
			  struct fw_iso_buffer *buffer,
			  unsigned long payload)
2964
{
2965
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2966
	unsigned long flags;
2967
	int ret = -ENOSYS;
2968

2969
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
	switch (base->type) {
	case FW_ISO_CONTEXT_TRANSMIT:
		ret = queue_iso_transmit(ctx, packet, buffer, payload);
		break;
	case FW_ISO_CONTEXT_RECEIVE:
		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
		break;
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
		break;
	}
2981 2982
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

2983
	return ret;
2984 2985
}

2986
static const struct fw_card_driver ohci_driver = {
2987
	.enable			= ohci_enable,
2988
	.read_phy_reg		= ohci_read_phy_reg,
2989 2990 2991 2992
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
2993
	.cancel_packet		= ohci_cancel_packet,
2994
	.enable_phys_dma	= ohci_enable_phys_dma,
2995 2996
	.read_csr		= ohci_read_csr,
	.write_csr		= ohci_write_csr,
2997 2998 2999

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
3000
	.set_iso_channels	= ohci_set_iso_channels,
3001
	.queue_iso		= ohci_queue_iso,
3002
	.start_iso		= ohci_start_iso,
3003
	.stop_iso		= ohci_stop_iso,
3004 3005
};

3006
#ifdef CONFIG_PPC_PMAC
3007
static void pmac_ohci_on(struct pci_dev *dev)
3008
{
3009 3010 3011 3012 3013 3014 3015 3016
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
3017 3018
}

3019
static void pmac_ohci_off(struct pci_dev *dev)
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
{
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
}
#else
3031 3032
static inline void pmac_ohci_on(struct pci_dev *dev) {}
static inline void pmac_ohci_off(struct pci_dev *dev) {}
3033 3034
#endif /* CONFIG_PPC_PMAC */

3035 3036
static int __devinit pci_probe(struct pci_dev *dev,
			       const struct pci_device_id *ent)
3037 3038
{
	struct fw_ohci *ohci;
3039
	u32 bus_options, max_receive, link_speed, version;
3040
	u64 guid;
3041
	int i, err, n_ir, n_it;
3042 3043
	size_t size;

3044
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3045
	if (ohci == NULL) {
3046 3047
		err = -ENOMEM;
		goto fail;
3048 3049 3050 3051
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

3052
	pmac_ohci_on(dev);
3053

3054 3055
	err = pci_enable_device(dev);
	if (err) {
3056
		fw_error("Failed to enable OHCI hardware\n");
3057
		goto fail_free;
3058 3059 3060 3061 3062 3063 3064
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);
3065
	mutex_init(&ohci->phy_reg_mutex);
3066 3067 3068 3069

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

3070 3071
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
3072
		fw_error("MMIO resource unavailable\n");
3073
		goto fail_disable;
3074 3075 3076 3077 3078
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
3079 3080
		err = -ENXIO;
		goto fail_iomem;
3081 3082
	}

3083
	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3084 3085 3086 3087 3088
		if ((ohci_quirks[i].vendor == dev->vendor) &&
		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
		     ohci_quirks[i].device == dev->device) &&
		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
		     ohci_quirks[i].revision >= dev->revision)) {
3089 3090 3091
			ohci->quirks = ohci_quirks[i].flags;
			break;
		}
3092 3093
	if (param_quirks)
		ohci->quirks = param_quirks;
3094

3095 3096 3097 3098
	err = ar_context_init(&ohci->ar_request_ctx, ohci,
			      OHCI1394_AsReqRcvContextControlSet);
	if (err < 0)
		goto fail_iounmap;
3099

3100 3101 3102 3103
	err = ar_context_init(&ohci->ar_response_ctx, ohci,
			      OHCI1394_AsRspRcvContextControlSet);
	if (err < 0)
		goto fail_arreq_ctx;
3104

3105
	context_init(&ohci->at_request_ctx, ohci,
3106
		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3107

3108
	context_init(&ohci->at_response_ctx, ohci,
3109
		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3110 3111

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3112 3113
	ohci->ir_context_channels = ~0ULL;
	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3114
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3115 3116
	n_ir = hweight32(ohci->ir_context_mask);
	size = sizeof(struct iso_context) * n_ir;
3117
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3118 3119

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3120
	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3121
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3122 3123
	n_it = hweight32(ohci->it_context_mask);
	size = sizeof(struct iso_context) * n_it;
3124
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3125 3126

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3127
		err = -ENOMEM;
3128
		goto fail_contexts;
3129 3130 3131 3132 3133 3134 3135 3136
	}

	/* self-id dma buffer allocation */
	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
					       SELF_ID_BUF_SIZE,
					       &ohci->self_id_bus,
					       GFP_KERNEL);
	if (ohci->self_id_cpu == NULL) {
3137
		err = -ENOMEM;
3138
		goto fail_contexts;
3139 3140 3141 3142 3143 3144 3145 3146
	}

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

3147
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3148
	if (err)
3149
		goto fail_self_id;
3150

3151 3152 3153 3154 3155
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
		  "%d IR + %d IT contexts, quirks 0x%x\n",
		  dev_name(&dev->dev), version >> 16, version & 0xff,
		  n_ir, n_it, ohci->quirks);
3156

3157
	return 0;
3158 3159 3160 3161

 fail_self_id:
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
3162
 fail_contexts:
3163
	kfree(ohci->ir_context_list);
3164 3165 3166 3167
	kfree(ohci->it_context_list);
	context_release(&ohci->at_response_ctx);
	context_release(&ohci->at_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
3168
 fail_arreq_ctx:
3169
	ar_context_release(&ohci->ar_request_ctx);
3170
 fail_iounmap:
3171 3172 3173 3174 3175
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
3176 3177
 fail_free:
	kfree(&ohci->card);
3178
	pmac_ohci_off(dev);
3179 3180 3181
 fail:
	if (err == -ENOMEM)
		fw_error("Out of memory\n");
3182 3183

	return err;
3184 3185 3186 3187 3188 3189 3190
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
3191 3192
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
3193 3194
	fw_core_remove_card(&ohci->card);

3195 3196 3197 3198
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
3199 3200 3201

	software_reset(ohci);
	free_irq(dev->irq, ohci);
3202 3203 3204 3205 3206 3207 3208

	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->next_config_rom, ohci->next_config_rom_bus);
	if (ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
3209 3210
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
3211 3212 3213 3214
	ar_context_release(&ohci->ar_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	context_release(&ohci->at_request_ctx);
	context_release(&ohci->at_response_ctx);
3215 3216
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
3217
	pci_disable_msi(dev);
3218 3219 3220
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
3221
	kfree(&ohci->card);
3222
	pmac_ohci_off(dev);
3223

3224 3225 3226
	fw_notify("Removed fw-ohci device.\n");
}

3227
#ifdef CONFIG_PM
3228
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3229
{
3230
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3231 3232 3233
	int err;

	software_reset(ohci);
3234
	free_irq(dev->irq, ohci);
3235
	pci_disable_msi(dev);
3236
	err = pci_save_state(dev);
3237
	if (err) {
3238
		fw_error("pci_save_state failed\n");
3239 3240
		return err;
	}
3241
	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3242 3243
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
3244
	pmac_ohci_off(dev);
3245

3246 3247 3248
	return 0;
}

3249
static int pci_resume(struct pci_dev *dev)
3250
{
3251
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3252 3253
	int err;

3254
	pmac_ohci_on(dev);
3255 3256 3257
	pci_set_power_state(dev, PCI_D0);
	pci_restore_state(dev);
	err = pci_enable_device(dev);
3258
	if (err) {
3259
		fw_error("pci_enable_device failed\n");
3260 3261 3262
		return err;
	}

3263
	return ohci_enable(&ohci->card, NULL, 0);
3264 3265 3266
}
#endif

3267
static const struct pci_device_id pci_table[] = {
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
3279 3280 3281 3282
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
3283 3284 3285 3286 3287 3288
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

3289 3290 3291 3292 3293
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);