intel_lrc.c 82.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "i915_gem_render_state.h"
140
#include "intel_lrc_reg.h"
141
#include "intel_mocs.h"
142
#include "intel_workarounds.h"
143

144 145 146 147 148 149 150 151 152 153 154 155 156
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
157

158
#define GEN8_CTX_STATUS_COMPLETED_MASK \
159
	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
160

161 162
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
163
#define WA_TAIL_DWORDS 2
164
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
165

166
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
167
					    struct intel_engine_cs *engine);
168 169 170 171
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
172

173 174 175 176 177 178 179
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

static inline int rq_prio(const struct i915_request *rq)
{
180
	return rq->sched.attr.priority;
181 182 183 184 185 186
}

static inline bool need_preempt(const struct intel_engine_cs *engine,
				const struct i915_request *last,
				int prio)
{
187
	return (intel_engine_has_preemption(engine) &&
188 189
		__execlists_need_preempt(prio, rq_prio(last)) &&
		!i915_request_completed(last));
190 191
}

192
/**
193 194 195
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
196
 * @engine: Engine the descriptor will be used with
197
 *
198 199 200 201 202
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
203 204
 * This is what a descriptor looks like, from LSB to MSB::
 *
205
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
206 207 208 209
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
210 211 212 213 214 215 216 217 218 219 220 221
 *
 * Starting from Gen11, the upper dword of the descriptor has a new format:
 *
 *      bits 32-36:    reserved
 *      bits 37-47:    SW context ID
 *      bits 48:53:    engine instance
 *      bit 54:        mbz, reserved for use by hardware
 *      bits 55-60:    SW counter
 *      bits 61-63:    engine class
 *
 * engine info, SW context ID and SW counter need to form a unique number
 * (Context ID) per lrc.
222
 */
223
static void
224
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
225
				   struct intel_engine_cs *engine)
226
{
227
	struct intel_context *ce = to_intel_context(ctx, engine);
228
	u64 desc;
229

230 231
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
	BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
232

233
	desc = ctx->desc_template;				/* bits  0-11 */
234 235
	GEM_BUG_ON(desc & GENMASK_ULL(63, 12));

236
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
237
								/* bits 12-31 */
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
	GEM_BUG_ON(desc & GENMASK_ULL(63, 32));

	if (INTEL_GEN(ctx->i915) >= 11) {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
								/* bits 37-47 */

		desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
								/* bits 48-53 */

		/* TODO: decide what to do with SW counter (bits 55-60) */

		desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
								/* bits 61-63 */
	} else {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;	/* bits 32-52 */
	}
256

257
	ce->lrc_desc = desc;
258 259
}

260
static struct i915_priolist *
261
lookup_priolist(struct intel_engine_cs *engine, int prio)
262
{
263
	struct intel_engine_execlists * const execlists = &engine->execlists;
264 265 266 267
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
	bool first = true;

268
	if (unlikely(execlists->no_priolist))
269 270 271 272 273
		prio = I915_PRIORITY_NORMAL;

find_priolist:
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
274
	parent = &execlists->queue.rb_node;
275 276
	while (*parent) {
		rb = *parent;
277
		p = to_priolist(rb);
278 279 280 281 282 283
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
			first = false;
		} else {
284
			return p;
285 286 287 288
		}
	}

	if (prio == I915_PRIORITY_NORMAL) {
289
		p = &execlists->default_priolist;
290 291 292 293 294 295 296 297 298 299 300 301 302 303
	} else {
		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
304
			execlists->no_priolist = true;
305 306 307 308 309
			goto find_priolist;
		}
	}

	p->priority = prio;
310
	INIT_LIST_HEAD(&p->requests);
311
	rb_link_node(&p->node, rb, parent);
312
	rb_insert_color(&p->node, &execlists->queue);
313 314

	if (first)
315
		execlists->first = &p->node;
316

317
	return p;
318 319
}

320
static void unwind_wa_tail(struct i915_request *rq)
321 322 323 324 325
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

326
static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
327
{
328
	struct i915_request *rq, *rn;
329 330
	struct i915_priolist *uninitialized_var(p);
	int last_prio = I915_PRIORITY_INVALID;
331

332
	lockdep_assert_held(&engine->timeline.lock);
333 334

	list_for_each_entry_safe_reverse(rq, rn,
335
					 &engine->timeline.requests,
336
					 link) {
337
		if (i915_request_completed(rq))
338 339
			return;

340
		__i915_request_unsubmit(rq);
341 342
		unwind_wa_tail(rq);

343 344 345
		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
		if (rq_prio(rq) != last_prio) {
			last_prio = rq_prio(rq);
346
			p = lookup_priolist(engine, last_prio);
347 348
		}

349
		GEM_BUG_ON(p->priority != rq_prio(rq));
350
		list_add(&rq->sched.link, &p->requests);
351 352 353
	}
}

354
void
355 356 357 358
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);
359 360 361
	unsigned long flags;

	spin_lock_irqsave(&engine->timeline.lock, flags);
362 363

	__unwind_incomplete_requests(engine);
364 365

	spin_unlock_irqrestore(&engine->timeline.lock, flags);
366 367
}

368
static inline void
369
execlists_context_status_change(struct i915_request *rq, unsigned long status)
370
{
371 372 373 374 375 376
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
377

378 379
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
380 381
}

382 383 384 385 386 387 388 389 390 391 392 393 394
inline void
execlists_user_begin(struct intel_engine_execlists *execlists,
		     const struct execlist_port *port)
{
	execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
}

inline void
execlists_user_end(struct intel_engine_execlists *execlists)
{
	execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
}

395
static inline void
396
execlists_context_schedule_in(struct i915_request *rq)
397 398
{
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
399
	intel_engine_context_in(rq->engine);
400 401 402
}

static inline void
403
execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
404
{
405
	intel_engine_context_out(rq->engine);
406 407
	execlists_context_status_change(rq, status);
	trace_i915_request_out(rq);
408 409
}

410 411 412 413 414 415 416 417 418
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

419
static u64 execlists_update_context(struct i915_request *rq)
420
{
421
	struct intel_context *ce = to_intel_context(rq->ctx, rq->engine);
422 423
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
424
	u32 *reg_state = ce->lrc_reg_state;
425

426
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
427

428 429 430 431 432
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
433
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
434
		execlists_update_context_pdps(ppgtt, reg_state);
435 436

	return ce->lrc_desc;
437 438
}

439
static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
C
Chris Wilson 已提交
440
{
441 442 443 444 445 446 447
	if (execlists->ctrl_reg) {
		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
	} else {
		writel(upper_32_bits(desc), execlists->submit_reg);
		writel(lower_32_bits(desc), execlists->submit_reg);
	}
C
Chris Wilson 已提交
448 449
}

450
static void execlists_submit_ports(struct intel_engine_cs *engine)
451
{
452 453
	struct intel_engine_execlists *execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
454
	unsigned int n;
455

456 457 458 459 460 461 462
	/*
	 * ELSQ note: the submit queue is not cleared after being submitted
	 * to the HW so we need to make sure we always clean it up. This is
	 * currently ensured by the fact that we always write the same number
	 * of elsq entries, keep this in mind before changing the loop below.
	 */
	for (n = execlists_num_ports(execlists); n--; ) {
463
		struct i915_request *rq;
464 465 466 467 468 469 470
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
471
				execlists_context_schedule_in(rq);
472 473 474
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
475

476
			GEM_TRACE("%s in[%d]:  ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
477
				  engine->name, n,
478
				  port[n].context_id, count,
479
				  rq->global_seqno,
480
				  rq->fence.context, rq->fence.seqno,
481
				  intel_engine_get_seqno(engine),
482
				  rq_prio(rq));
483 484 485 486
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
487

488
		write_desc(execlists, desc, n);
489
	}
490 491 492 493 494 495

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);

	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
496 497
}

498
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
499
{
500
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
501
		i915_gem_context_force_single_submission(ctx));
502
}
503

504 505 506 507 508
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
509

510 511
	if (ctx_single_port_submission(prev))
		return false;
512

513
	return true;
514 515
}

516
static void port_assign(struct execlist_port *port, struct i915_request *rq)
517 518 519 520
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
521
		i915_request_put(port_request(port));
522

523
	port_set(port, port_pack(i915_request_get(rq), port_count(port)));
524 525
}

C
Chris Wilson 已提交
526 527
static void inject_preempt_context(struct intel_engine_cs *engine)
{
528
	struct intel_engine_execlists *execlists = &engine->execlists;
C
Chris Wilson 已提交
529
	struct intel_context *ce =
530
		to_intel_context(engine->i915->preempt_context, engine);
C
Chris Wilson 已提交
531 532
	unsigned int n;

533
	GEM_BUG_ON(execlists->preempt_complete_status !=
534
		   upper_32_bits(ce->lrc_desc));
535 536 537 538 539 540
	GEM_BUG_ON((ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1] &
		    _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				       CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)) !=
		   _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				      CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT));

541 542 543 544
	/*
	 * Switch to our empty preempt context so
	 * the state of the GPU is known (idle).
	 */
545
	GEM_TRACE("%s\n", engine->name);
546 547 548 549 550 551 552 553
	for (n = execlists_num_ports(execlists); --n; )
		write_desc(execlists, 0, n);

	write_desc(execlists, ce->lrc_desc, n);

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
C
Chris Wilson 已提交
554

555
	execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
556
	execlists_set_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
557 558
}

559
static bool __execlists_dequeue(struct intel_engine_cs *engine)
560
{
561 562
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
563 564
	const struct execlist_port * const last_port =
		&execlists->port[execlists->port_mask];
565
	struct i915_request *last = port_request(port);
566
	struct rb_node *rb;
567 568
	bool submit = false;

569 570
	lockdep_assert_held(&engine->timeline.lock);

571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
590
	 */
591

592 593
	rb = execlists->first;
	GEM_BUG_ON(rb_first(&execlists->queue) != rb);
C
Chris Wilson 已提交
594 595 596 597 598 599 600 601

	if (last) {
		/*
		 * Don't resubmit or switch until all outstanding
		 * preemptions (lite-restore) are seen. Then we
		 * know the next preemption status we see corresponds
		 * to this ELSP update.
		 */
602 603
		GEM_BUG_ON(!execlists_is_active(execlists,
						EXECLISTS_ACTIVE_USER));
604
		GEM_BUG_ON(!port_count(&port[0]));
C
Chris Wilson 已提交
605
		if (port_count(&port[0]) > 1)
606
			return false;
C
Chris Wilson 已提交
607

608 609 610 611 612 613 614 615
		/*
		 * If we write to ELSP a second time before the HW has had
		 * a chance to respond to the previous write, we can confuse
		 * the HW and hit "undefined behaviour". After writing to ELSP,
		 * we must then wait until we see a context-switch event from
		 * the HW to indicate that it has had a chance to respond.
		 */
		if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
616
			return false;
617

618
		if (need_preempt(engine, last, execlists->queue_priority)) {
C
Chris Wilson 已提交
619
			inject_preempt_context(engine);
620
			return false;
C
Chris Wilson 已提交
621
		}
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644

		/*
		 * In theory, we could coalesce more requests onto
		 * the second port (the first port is active, with
		 * no preemptions pending). However, that means we
		 * then have to deal with the possible lite-restore
		 * of the second port (as we submit the ELSP, there
		 * may be a context-switch) but also we may complete
		 * the resubmission before the context-switch. Ergo,
		 * coalescing onto the second port will cause a
		 * preemption event, but we cannot predict whether
		 * that will affect port[0] or port[1].
		 *
		 * If the second port is already active, we can wait
		 * until the next context-switch before contemplating
		 * new requests. The GPU will be busy and we should be
		 * able to resubmit the new ELSP before it idles,
		 * avoiding pipeline bubbles (momentary pauses where
		 * the driver is unable to keep up the supply of new
		 * work). However, we have to double check that the
		 * priorities of the ports haven't been switch.
		 */
		if (port_count(&port[1]))
645
			return false;
646 647 648 649 650 651 652 653 654 655

		/*
		 * WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent
		 * ring:HEAD == rq:TAIL as we resubmit the
		 * request. See gen8_emit_breadcrumb() for
		 * where we prepare the padding after the
		 * end of the request.
		 */
		last->tail = last->wa_tail;
C
Chris Wilson 已提交
656 657
	}

658 659
	while (rb) {
		struct i915_priolist *p = to_priolist(rb);
660
		struct i915_request *rq, *rn;
661

662
		list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
663 664 665 666 667 668 669 670 671 672
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
673
			 */
674 675 676 677 678 679
			if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
680
				if (port == last_port) {
681
					__list_del_many(&p->requests,
682
							&rq->sched.link);
683 684 685 686 687 688 689 690 691 692 693 694 695
					goto done;
				}

				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
				if (ctx_single_port_submission(last->ctx) ||
				    ctx_single_port_submission(rq->ctx)) {
					__list_del_many(&p->requests,
696
							&rq->sched.link);
697 698 699 700 701 702 703 704
					goto done;
				}

				GEM_BUG_ON(last->ctx == rq->ctx);

				if (submit)
					port_assign(port, last);
				port++;
705 706

				GEM_BUG_ON(port_isset(port));
707
			}
708

709
			INIT_LIST_HEAD(&rq->sched.link);
710 711
			__i915_request_submit(rq);
			trace_i915_request_in(rq, port_index(port, execlists));
712 713
			last = rq;
			submit = true;
714
		}
715

716
		rb = rb_next(rb);
717
		rb_erase(&p->node, &execlists->queue);
718 719
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
720
			kmem_cache_free(engine->i915->priorities, p);
721
	}
722

723
done:
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
	/*
	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
	 *
	 * We choose queue_priority such that if we add a request of greater
	 * priority than this, we kick the submission tasklet to decide on
	 * the right order of submitting the requests to hardware. We must
	 * also be prepared to reorder requests as they are in-flight on the
	 * HW. We derive the queue_priority then as the first "hole" in
	 * the HW submission ports and if there are no available slots,
	 * the priority of the lowest executing request, i.e. last.
	 *
	 * When we do receive a higher priority request ready to run from the
	 * user, see queue_request(), the queue_priority is bumped to that
	 * request triggering preemption on the next dequeue (or subsequent
	 * interrupt for secondary ports).
	 */
	execlists->queue_priority =
		port != execlists->port ? rq_prio(last) : INT_MIN;

743
	execlists->first = rb;
744
	if (submit)
745
		port_assign(port, last);
746 747 748 749

	/* We must always keep the beast fed if we have work piled up */
	GEM_BUG_ON(execlists->first && !port_isset(execlists->port));

750 751
	/* Re-evaluate the executing context setup after each preemptive kick */
	if (last)
752
		execlists_user_begin(execlists, execlists->port);
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767

	return submit;
}

static void execlists_dequeue(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
	unsigned long flags;
	bool submit;

	spin_lock_irqsave(&engine->timeline.lock, flags);
	submit = __execlists_dequeue(engine);
	spin_unlock_irqrestore(&engine->timeline.lock, flags);

	if (submit)
768
		execlists_submit_ports(engine);
769 770 771

	GEM_BUG_ON(port_isset(execlists->port) &&
		   !execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
772 773
}

774
void
775
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
776
{
777
	struct execlist_port *port = execlists->port;
778
	unsigned int num_ports = execlists_num_ports(execlists);
779

780
	while (num_ports-- && port_isset(port)) {
781
		struct i915_request *rq = port_request(port);
782

783 784 785 786 787 788 789
		GEM_TRACE("%s:port%u global=%d (fence %llx:%d), (current %d)\n",
			  rq->engine->name,
			  (unsigned int)(port - execlists->port),
			  rq->global_seqno,
			  rq->fence.context, rq->fence.seqno,
			  intel_engine_get_seqno(rq->engine));

790
		GEM_BUG_ON(!execlists->active);
791 792 793 794
		execlists_context_schedule_out(rq,
					       i915_request_completed(rq) ?
					       INTEL_CONTEXT_SCHEDULE_OUT :
					       INTEL_CONTEXT_SCHEDULE_PREEMPTED);
795

796
		i915_request_put(rq);
797

798 799 800
		memset(port, 0, sizeof(*port));
		port++;
	}
801

802
	execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
803
	execlists_user_end(execlists);
804 805
}

806 807 808 809 810 811 812 813 814 815 816 817
static void clear_gtiir(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	int i;

	/*
	 * Clear any pending interrupt state.
	 *
	 * We do it twice out of paranoia that some of the IIR are
	 * double buffered, and so if we only reset it once there may
	 * still be an interrupt pending.
	 */
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
	if (INTEL_GEN(dev_priv) >= 11) {
		static const struct {
			u8 bank;
			u8 bit;
		} gen11_gtiir[] = {
			[RCS] = {0, GEN11_RCS0},
			[BCS] = {0, GEN11_BCS},
			[_VCS(0)] = {1, GEN11_VCS(0)},
			[_VCS(1)] = {1, GEN11_VCS(1)},
			[_VCS(2)] = {1, GEN11_VCS(2)},
			[_VCS(3)] = {1, GEN11_VCS(3)},
			[_VECS(0)] = {1, GEN11_VECS(0)},
			[_VECS(1)] = {1, GEN11_VECS(1)},
		};
		unsigned long irqflags;

		GEM_BUG_ON(engine->id >= ARRAY_SIZE(gen11_gtiir));

		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
		for (i = 0; i < 2; i++) {
			gen11_reset_one_iir(dev_priv,
					    gen11_gtiir[engine->id].bank,
					    gen11_gtiir[engine->id].bit);
		}
		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
	} else {
		static const u8 gtiir[] = {
			[RCS]  = 0,
			[BCS]  = 0,
			[VCS]  = 1,
			[VCS2] = 1,
			[VECS] = 3,
		};

		GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));

		for (i = 0; i < 2; i++) {
			I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
				   engine->irq_keep_mask);
			POSTING_READ(GEN8_GT_IIR(gtiir[engine->id]));
		}
		GEM_BUG_ON(I915_READ(GEN8_GT_IIR(gtiir[engine->id])) &
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
			   engine->irq_keep_mask);
	}
}

static void reset_irq(struct intel_engine_cs *engine)
{
	/* Mark all CS interrupts as complete */
	smp_store_mb(engine->execlists.active, 0);
	synchronize_hardirq(engine->i915->drm.irq);

	clear_gtiir(engine);

	/*
	 * The port is checked prior to scheduling a tasklet, but
	 * just in case we have suspended the tasklet to do the
	 * wedging make sure that when it wakes, it decides there
	 * is no work to do by clearing the irq_posted bit.
	 */
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
}

881 882
static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
883
	struct intel_engine_execlists * const execlists = &engine->execlists;
884
	struct i915_request *rq, *rn;
885 886 887
	struct rb_node *rb;
	unsigned long flags;

888 889
	GEM_TRACE("%s current %d\n",
		  engine->name, intel_engine_get_seqno(engine));
890

891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
	/*
	 * Before we call engine->cancel_requests(), we should have exclusive
	 * access to the submission state. This is arranged for us by the
	 * caller disabling the interrupt generation, the tasklet and other
	 * threads that may then access the same state, giving us a free hand
	 * to reset state. However, we still need to let lockdep be aware that
	 * we know this state may be accessed in hardirq context, so we
	 * disable the irq around this manipulation and we want to keep
	 * the spinlock focused on its duties and not accidentally conflate
	 * coverage to the submission's irq state. (Similarly, although we
	 * shouldn't need to disable irq around the manipulation of the
	 * submission's irq state, we also wish to remind ourselves that
	 * it is irq state.)
	 */
	local_irq_save(flags);
906 907

	/* Cancel the requests on the HW and clear the ELSP tracker. */
908
	execlists_cancel_port_requests(execlists);
909
	reset_irq(engine);
910

911
	spin_lock(&engine->timeline.lock);
912

913
	/* Mark all executing requests as skipped. */
914
	list_for_each_entry(rq, &engine->timeline.requests, link) {
915
		GEM_BUG_ON(!rq->global_seqno);
916
		if (!i915_request_completed(rq))
917 918 919 920
			dma_fence_set_error(&rq->fence, -EIO);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
921
	rb = execlists->first;
922
	while (rb) {
923
		struct i915_priolist *p = to_priolist(rb);
924

925 926
		list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
			INIT_LIST_HEAD(&rq->sched.link);
927 928

			dma_fence_set_error(&rq->fence, -EIO);
929
			__i915_request_submit(rq);
930 931 932
		}

		rb = rb_next(rb);
933
		rb_erase(&p->node, &execlists->queue);
934 935 936 937 938 939 940
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
			kmem_cache_free(engine->i915->priorities, p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

941
	execlists->queue_priority = INT_MIN;
942 943
	execlists->queue = RB_ROOT;
	execlists->first = NULL;
944
	GEM_BUG_ON(port_isset(execlists->port));
945

946
	spin_unlock(&engine->timeline.lock);
947 948

	local_irq_restore(flags);
949 950
}

951
/*
952 953 954
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
955
static void execlists_submission_tasklet(unsigned long data)
956
{
957 958
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
	struct intel_engine_execlists * const execlists = &engine->execlists;
959
	struct execlist_port *port = execlists->port;
960
	struct drm_i915_private *dev_priv = engine->i915;
961
	bool fw = false;
962

963 964
	/*
	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
965 966 967 968 969 970 971 972
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!dev_priv->gt.awake);

973 974
	/*
	 * Prefer doing test_and_clear_bit() as a two stage operation to avoid
975 976 977 978
	 * imposing the cost of a locked atomic transaction when submitting a
	 * new request (outside of the context-switch interrupt).
	 */
	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
979 980 981
		/* The HWSP contains a (cacheable) mirror of the CSB */
		const u32 *buf =
			&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
982
		unsigned int head, tail;
983

984
		if (unlikely(execlists->csb_use_mmio)) {
985 986
			buf = (u32 * __force)
				(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
987
			execlists->csb_head = -1; /* force mmio read of CSB ptrs */
988 989
		}

990 991 992 993
		/* Clear before reading to catch new interrupts */
		clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
		smp_mb__after_atomic();

994
		if (unlikely(execlists->csb_head == -1)) { /* following a reset */
995 996 997 998 999 1000
			if (!fw) {
				intel_uncore_forcewake_get(dev_priv,
							   execlists->fw_domains);
				fw = true;
			}

1001 1002 1003
			head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
			tail = GEN8_CSB_WRITE_PTR(head);
			head = GEN8_CSB_READ_PTR(head);
1004
			execlists->csb_head = head;
1005 1006 1007 1008 1009
		} else {
			const int write_idx =
				intel_hws_csb_write_index(dev_priv) -
				I915_HWS_CSB_BUF0_INDEX;

1010
			head = execlists->csb_head;
1011
			tail = READ_ONCE(buf[write_idx]);
1012
			rmb(); /* Hopefully paired with a wmb() in HW */
1013
		}
1014
		GEM_TRACE("%s cs-irq head=%d [%d%s], tail=%d [%d%s]\n",
1015
			  engine->name,
1016 1017
			  head, GEN8_CSB_READ_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?",
			  tail, GEN8_CSB_WRITE_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?");
1018

1019
		while (head != tail) {
1020
			struct i915_request *rq;
1021
			unsigned int status;
1022
			unsigned int count;
1023 1024 1025

			if (++head == GEN8_CSB_ENTRIES)
				head = 0;
1026

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
			/* We are flying near dragons again.
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

1044
			status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
1045
			GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
1046
				  engine->name, head,
1047 1048
				  status, buf[2*head + 1],
				  execlists->active);
1049 1050 1051 1052 1053 1054 1055 1056 1057

			if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
				      GEN8_CTX_STATUS_PREEMPTED))
				execlists_set_active(execlists,
						     EXECLISTS_ACTIVE_HWACK);
			if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_HWACK);

1058 1059 1060
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

1061 1062 1063
			/* We should never get a COMPLETED | IDLE_ACTIVE! */
			GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);

1064
			if (status & GEN8_CTX_STATUS_COMPLETE &&
1065
			    buf[2*head + 1] == execlists->preempt_complete_status) {
1066 1067
				GEM_TRACE("%s preempt-idle\n", engine->name);

1068 1069
				execlists_cancel_port_requests(execlists);
				execlists_unwind_incomplete_requests(execlists);
C
Chris Wilson 已提交
1070

1071 1072 1073 1074
				GEM_BUG_ON(!execlists_is_active(execlists,
								EXECLISTS_ACTIVE_PREEMPT));
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
1075 1076 1077 1078
				continue;
			}

			if (status & GEN8_CTX_STATUS_PREEMPTED &&
1079 1080
			    execlists_is_active(execlists,
						EXECLISTS_ACTIVE_PREEMPT))
C
Chris Wilson 已提交
1081 1082
				continue;

1083 1084 1085
			GEM_BUG_ON(!execlists_is_active(execlists,
							EXECLISTS_ACTIVE_USER));

1086
			rq = port_unpack(port, &count);
1087
			GEM_TRACE("%s out[0]: ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
1088
				  engine->name,
1089
				  port->context_id, count,
1090
				  rq ? rq->global_seqno : 0,
1091 1092
				  rq ? rq->fence.context : 0,
				  rq ? rq->fence.seqno : 0,
1093
				  intel_engine_get_seqno(engine),
1094
				  rq ? rq_prio(rq) : 0);
1095 1096 1097 1098

			/* Check the context/desc id for this event matches */
			GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);

1099 1100
			GEM_BUG_ON(count == 0);
			if (--count == 0) {
1101 1102 1103 1104 1105 1106 1107 1108
				/*
				 * On the final event corresponding to the
				 * submission of this context, we expect either
				 * an element-switch event or a completion
				 * event (and on completion, the active-idle
				 * marker). No more preemptions, lite-restore
				 * or otherwise.
				 */
1109
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
1110 1111
				GEM_BUG_ON(port_isset(&port[1]) &&
					   !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
1112 1113 1114 1115 1116 1117 1118 1119 1120
				GEM_BUG_ON(!port_isset(&port[1]) &&
					   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));

				/*
				 * We rely on the hardware being strongly
				 * ordered, that the breadcrumb write is
				 * coherent (visible from the CPU) before the
				 * user interrupt and CSB is processed.
				 */
1121
				GEM_BUG_ON(!i915_request_completed(rq));
1122

1123 1124
				execlists_context_schedule_out(rq,
							       INTEL_CONTEXT_SCHEDULE_OUT);
1125
				i915_request_put(rq);
1126

1127 1128 1129
				GEM_TRACE("%s completed ctx=%d\n",
					  engine->name, port->context_id);

1130 1131 1132 1133 1134
				port = execlists_port_complete(execlists, port);
				if (port_isset(port))
					execlists_user_begin(execlists, port);
				else
					execlists_user_end(execlists);
1135 1136
			} else {
				port_set(port, port_pack(rq, count));
1137
			}
1138
		}
1139

1140 1141
		if (head != execlists->csb_head) {
			execlists->csb_head = head;
1142 1143 1144
			writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
			       dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
		}
1145 1146
	}

1147
	if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
1148
		execlists_dequeue(engine);
1149

1150 1151
	if (fw)
		intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
1152 1153 1154 1155 1156

	/* If the engine is now idle, so should be the flag; and vice versa. */
	GEM_BUG_ON(execlists_is_active(&engine->execlists,
				       EXECLISTS_ACTIVE_USER) ==
		   !port_isset(engine->execlists.port));
1157 1158
}

1159
static void queue_request(struct intel_engine_cs *engine,
1160
			  struct i915_sched_node *node,
1161
			  int prio)
1162
{
1163
	list_add_tail(&node->link,
1164
		      &lookup_priolist(engine, prio)->requests);
1165
}
1166

1167 1168 1169 1170 1171 1172
static void __submit_queue(struct intel_engine_cs *engine, int prio)
{
	engine->execlists.queue_priority = prio;
	tasklet_hi_schedule(&engine->execlists.tasklet);
}

1173 1174
static void submit_queue(struct intel_engine_cs *engine, int prio)
{
1175 1176
	if (prio > engine->execlists.queue_priority)
		__submit_queue(engine, prio);
1177 1178
}

1179
static void execlists_submit_request(struct i915_request *request)
1180
{
1181
	struct intel_engine_cs *engine = request->engine;
1182
	unsigned long flags;
1183

1184
	/* Will be called from irq-context when using foreign fences. */
1185
	spin_lock_irqsave(&engine->timeline.lock, flags);
1186

1187
	queue_request(engine, &request->sched, rq_prio(request));
1188
	submit_queue(engine, rq_prio(request));
1189

1190
	GEM_BUG_ON(!engine->execlists.first);
1191
	GEM_BUG_ON(list_empty(&request->sched.link));
1192

1193
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1194 1195
}

1196
static struct i915_request *sched_to_request(struct i915_sched_node *node)
1197
{
1198
	return container_of(node, struct i915_request, sched);
1199 1200
}

1201
static struct intel_engine_cs *
1202
sched_lock_engine(struct i915_sched_node *node, struct intel_engine_cs *locked)
1203
{
1204
	struct intel_engine_cs *engine = sched_to_request(node)->engine;
1205 1206

	GEM_BUG_ON(!locked);
1207 1208

	if (engine != locked) {
1209 1210
		spin_unlock(&locked->timeline.lock);
		spin_lock(&engine->timeline.lock);
1211 1212 1213 1214 1215
	}

	return engine;
}

1216 1217
static void execlists_schedule(struct i915_request *request,
			       const struct i915_sched_attr *attr)
1218
{
1219 1220
	struct i915_priolist *uninitialized_var(pl);
	struct intel_engine_cs *engine, *last;
1221 1222
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
1223
	const int prio = attr->priority;
1224 1225
	LIST_HEAD(dfs);

1226 1227
	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);

1228
	if (i915_request_completed(request))
1229 1230
		return;

1231
	if (prio <= READ_ONCE(request->sched.attr.priority))
1232 1233
		return;

1234 1235
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
1236

1237
	stack.signaler = &request->sched;
1238 1239
	list_add(&stack.dfs_link, &dfs);

1240 1241
	/*
	 * Recursively bump all dependent priorities to match the new request.
1242 1243
	 *
	 * A naive approach would be to use recursion:
1244 1245
	 * static void update_priorities(struct i915_sched_node *node, prio) {
	 *	list_for_each_entry(dep, &node->signalers_list, signal_link)
1246
	 *		update_priorities(dep->signal, prio)
1247
	 *	queue_request(node);
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
1258
	list_for_each_entry(dep, &dfs, dfs_link) {
1259
		struct i915_sched_node *node = dep->signaler;
1260

1261 1262
		/*
		 * Within an engine, there can be no cycle, but we may
1263 1264 1265 1266
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
1267
		list_for_each_entry(p, &node->signalers_list, signal_link) {
1268 1269
			GEM_BUG_ON(p == dep); /* no cycles! */

1270
			if (i915_sched_node_signaled(p->signaler))
1271 1272
				continue;

1273 1274
			GEM_BUG_ON(p->signaler->attr.priority < node->attr.priority);
			if (prio > READ_ONCE(p->signaler->attr.priority))
1275
				list_move_tail(&p->dfs_link, &dfs);
1276
		}
1277 1278
	}

1279 1280
	/*
	 * If we didn't need to bump any existing priorities, and we haven't
1281 1282 1283 1284
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
1285
	if (request->sched.attr.priority == I915_PRIORITY_INVALID) {
1286
		GEM_BUG_ON(!list_empty(&request->sched.link));
1287
		request->sched.attr = *attr;
1288 1289 1290 1291 1292
		if (stack.dfs_link.next == stack.dfs_link.prev)
			return;
		__list_del_entry(&stack.dfs_link);
	}

1293
	last = NULL;
1294
	engine = request->engine;
1295
	spin_lock_irq(&engine->timeline.lock);
1296

1297 1298
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
1299
		struct i915_sched_node *node = dep->signaler;
1300 1301 1302

		INIT_LIST_HEAD(&dep->dfs_link);

1303
		engine = sched_lock_engine(node, engine);
1304

1305
		if (prio <= node->attr.priority)
1306 1307
			continue;

1308
		node->attr.priority = prio;
1309
		if (!list_empty(&node->link)) {
1310 1311 1312 1313 1314 1315
			if (last != engine) {
				pl = lookup_priolist(engine, prio);
				last = engine;
			}
			GEM_BUG_ON(pl->priority != prio);
			list_move_tail(&node->link, &pl->requests);
1316
		}
1317 1318

		if (prio > engine->execlists.queue_priority &&
1319
		    i915_sw_fence_done(&sched_to_request(node)->submit))
1320
			__submit_queue(engine, prio);
1321 1322
	}

1323
	spin_unlock_irq(&engine->timeline.lock);
1324 1325
}

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
{
	unsigned int flags;
	int err;

	/*
	 * Clear this page out of any CPU caches for coherent swap-in/out.
	 * We only want to do this on the first bind so that we do not stall
	 * on an active context (which by nature is already on the GPU).
	 */
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
		err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		if (err)
			return err;
	}

	flags = PIN_GLOBAL | PIN_HIGH;
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;

	return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
}

1349 1350 1351
static struct intel_ring *
execlists_context_pin(struct intel_engine_cs *engine,
		      struct i915_gem_context *ctx)
1352
{
1353
	struct intel_context *ce = to_intel_context(ctx, engine);
1354
	void *vaddr;
1355
	int ret;
1356

1357
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1358

1359 1360
	if (likely(ce->pin_count++))
		goto out;
1361
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1362

1363 1364 1365
	ret = execlists_context_deferred_alloc(ctx, engine);
	if (ret)
		goto err;
1366
	GEM_BUG_ON(!ce->state);
1367

1368
	ret = __context_pin(ctx, ce->state);
1369
	if (ret)
1370
		goto err;
1371

1372
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1373 1374
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
1375
		goto unpin_vma;
1376 1377
	}

1378
	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1379
	if (ret)
1380
		goto unpin_map;
1381

1382
	intel_lr_context_descriptor_update(ctx, engine);
1383

1384 1385
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1386
		i915_ggtt_offset(ce->ring->vma);
1387
	ce->lrc_reg_state[CTX_RING_HEAD+1] = ce->ring->head;
1388

1389
	ce->state->obj->pin_global++;
1390
	i915_gem_context_get(ctx);
1391 1392
out:
	return ce->ring;
1393

1394
unpin_map:
1395 1396 1397
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
1398
err:
1399
	ce->pin_count = 0;
1400
	return ERR_PTR(ret);
1401 1402
}

1403 1404
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
1405
{
1406
	struct intel_context *ce = to_intel_context(ctx, engine);
1407

1408
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1409
	GEM_BUG_ON(ce->pin_count == 0);
1410

1411
	if (--ce->pin_count)
1412
		return;
1413

1414
	intel_ring_unpin(ce->ring);
1415

1416
	ce->state->obj->pin_global--;
1417 1418
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
1419

1420
	i915_gem_context_put(ctx);
1421 1422
}

1423
static int execlists_request_alloc(struct i915_request *request)
1424
{
1425 1426
	struct intel_context *ce =
		to_intel_context(request->ctx, request->engine);
1427
	int ret;
1428

1429 1430
	GEM_BUG_ON(!ce->pin_count);

1431 1432 1433 1434 1435 1436
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1437 1438 1439
	ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
	if (ret)
		return ret;
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1468 1469
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1470
{
1471 1472 1473 1474 1475 1476 1477 1478 1479
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1480 1481 1482 1483
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1484 1485 1486 1487 1488 1489 1490

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
1491 1492
}

1493 1494 1495 1496 1497 1498
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1499
 *
1500 1501
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1502
 *
1503 1504 1505 1506
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1507
 */
1508
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1509
{
1510
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1511
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1512

1513
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1514 1515
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1516

1517 1518
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1519 1520 1521 1522 1523 1524 1525
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
1526

C
Chris Wilson 已提交
1527 1528
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1529
	/* Pad to end of cacheline */
1530 1531
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1532 1533 1534 1535 1536 1537 1538

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1539
	return batch;
1540 1541
}

1542
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1543
{
C
Chris Wilson 已提交
1544 1545
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

1546
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1547
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1548

1549
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1550 1551 1552 1553 1554
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
1555

1556 1557
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1558
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1559 1560 1561 1562 1563 1564 1565
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1566
	}
1567

1568
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1583 1584 1585 1586 1587 1588
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1589 1590
	}

C
Chris Wilson 已提交
1591 1592
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1593
	/* Pad to end of cacheline */
1594 1595
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1596

1597
	return batch;
1598 1599
}

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
static u32 *
gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	int i;

	/*
	 * WaPipeControlBefore3DStateSamplePattern: cnl
	 *
	 * Ensure the engine is idle prior to programming a
	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
	 */
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL,
				       0);
	/*
	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
	 * confusing. Since gen8_emit_pipe_control() already advances the
	 * batch by 6 dwords, we advance the other 10 here, completing a
	 * cacheline. It's not clear if the workaround requires this padding
	 * before other commands, or if it's just the regular padding we would
	 * already have for the workaround bb, so leave it here for now.
	 */
	for (i = 0; i < 10; i++)
		*batch++ = MI_NOOP;

	/* Pad to end of cacheline */
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;

	return batch;
}

1634 1635 1636
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1637
{
1638 1639 1640
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1641

1642
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1643 1644
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1645

1646
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1647 1648 1649
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1650 1651
	}

1652 1653 1654 1655 1656
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1657
	return 0;
1658 1659 1660 1661

err:
	i915_gem_object_put(obj);
	return err;
1662 1663
}

1664
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1665
{
1666
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1667 1668
}

1669 1670
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1671
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1672
{
1673
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1674 1675 1676
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1677
	struct page *page;
1678 1679
	void *batch, *batch_ptr;
	unsigned int i;
1680
	int ret;
1681

1682
	if (GEM_WARN_ON(engine->id != RCS))
1683
		return -EINVAL;
1684

1685
	switch (INTEL_GEN(engine->i915)) {
1686 1687
	case 11:
		return 0;
1688
	case 10:
1689 1690 1691
		wa_bb_fn[0] = gen10_init_indirectctx_bb;
		wa_bb_fn[1] = NULL;
		break;
1692 1693
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1694
		wa_bb_fn[1] = NULL;
1695 1696 1697
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1698
		wa_bb_fn[1] = NULL;
1699 1700 1701
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1702
		return 0;
1703
	}
1704

1705
	ret = lrc_setup_wa_ctx(engine);
1706 1707 1708 1709 1710
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1711
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1712
	batch = batch_ptr = kmap_atomic(page);
1713

1714 1715 1716 1717 1718 1719 1720
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
1721 1722
		if (GEM_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
					    CACHELINE_BYTES))) {
1723 1724 1725
			ret = -EINVAL;
			break;
		}
1726 1727
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1728
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1729 1730
	}

1731 1732
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1733 1734
	kunmap_atomic(batch);
	if (ret)
1735
		lrc_destroy_wa_ctx(engine);
1736 1737 1738 1739

	return ret;
}

1740
static void enable_execlists(struct intel_engine_cs *engine)
1741
{
1742
	struct drm_i915_private *dev_priv = engine->i915;
1743 1744

	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760

	/*
	 * Make sure we're not enabling the new 12-deep CSB
	 * FIFO as that requires a slightly updated handling
	 * in the ctx switch irq. Since we're currently only
	 * using only 2 elements of the enhanced execlists the
	 * deeper FIFO it's not needed and it's not worth adding
	 * more statements to the irq handler to support it.
	 */
	if (INTEL_GEN(dev_priv) >= 11)
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
	else
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));

1761 1762 1763
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1764 1765 1766

	/* Following the reset, we need to reload the CSB read/write pointers */
	engine->execlists.csb_head = -1;
1767 1768 1769 1770
}

static int gen8_init_common_ring(struct intel_engine_cs *engine)
{
1771
	struct intel_engine_execlists * const execlists = &engine->execlists;
1772 1773 1774 1775 1776
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1777

1778
	intel_engine_reset_breadcrumbs(engine);
1779
	intel_engine_init_hangcheck(engine);
1780

1781
	enable_execlists(engine);
1782

1783
	/* After a GPU reset, we may have requests to replay */
1784
	if (execlists->first)
1785
		tasklet_schedule(&execlists->tasklet);
1786

1787
	return 0;
1788 1789
}

1790
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1791
{
1792
	struct drm_i915_private *dev_priv = engine->i915;
1793 1794
	int ret;

1795
	ret = gen8_init_common_ring(engine);
1796 1797 1798
	if (ret)
		return ret;

1799
	intel_whitelist_workarounds_apply(engine);
1800

1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1811
	return 0;
1812 1813
}

1814
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1815 1816 1817
{
	int ret;

1818
	ret = gen8_init_common_ring(engine);
1819 1820 1821
	if (ret)
		return ret;

1822
	intel_whitelist_workarounds_apply(engine);
1823 1824

	return 0;
1825 1826
}

1827
static void reset_common_ring(struct intel_engine_cs *engine,
1828
			      struct i915_request *request)
1829
{
1830
	struct intel_engine_execlists * const execlists = &engine->execlists;
1831
	unsigned long flags;
1832
	u32 *regs;
1833

1834 1835 1836
	GEM_TRACE("%s request global=%x, current=%d\n",
		  engine->name, request ? request->global_seqno : 0,
		  intel_engine_get_seqno(engine));
1837

1838 1839
	/* See execlists_cancel_requests() for the irq/spinlock split. */
	local_irq_save(flags);
1840

1841 1842 1843 1844 1845 1846 1847 1848 1849
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
1850
	execlists_cancel_port_requests(execlists);
1851
	reset_irq(engine);
1852

1853
	/* Push back any incomplete requests for replay after the reset. */
1854
	spin_lock(&engine->timeline.lock);
1855
	__unwind_incomplete_requests(engine);
1856
	spin_unlock(&engine->timeline.lock);
1857

1858
	local_irq_restore(flags);
1859

1860 1861
	/*
	 * If the request was innocent, we leave the request in the ELSP
1862 1863 1864 1865 1866 1867 1868 1869 1870
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1871
	if (!request || request->fence.error != -EIO)
1872
		return;
1873

1874 1875
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
1876 1877 1878 1879 1880 1881
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1882
	regs = to_intel_context(request->ctx, engine)->lrc_reg_state;
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
	if (engine->default_state) {
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
		if (!IS_ERR(defaults)) {
			memcpy(regs, /* skip restoring the vanilla PPHWSP */
			       defaults + LRC_STATE_PN * PAGE_SIZE,
			       engine->context_size - PAGE_SIZE);
			i915_gem_object_unpin_map(engine->default_state);
		}
	}
	execlists_init_reg_state(regs, request->ctx, engine, request->ring);
1896

1897
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1898 1899
	regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(request->ring->vma);
	regs[CTX_RING_HEAD + 1] = request->postfix;
1900

1901 1902 1903
	request->ring->head = request->postfix;
	intel_ring_update_space(request->ring);

1904
	/* Reset WaIdleLiteRestore:bdw,skl as well */
1905
	unwind_wa_tail(request);
1906 1907
}

1908
static int intel_logical_ring_emit_pdps(struct i915_request *rq)
1909
{
1910 1911
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
	struct intel_engine_cs *engine = rq->engine;
1912
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1913 1914
	u32 *cs;
	int i;
1915

1916
	cs = intel_ring_begin(rq, num_lri_cmds * 2 + 2);
1917 1918
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1919

1920
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1921
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1922 1923
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1924 1925 1926 1927
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
1928 1929
	}

1930
	*cs++ = MI_NOOP;
1931
	intel_ring_advance(rq, cs);
1932 1933 1934 1935

	return 0;
}

1936
static int gen8_emit_bb_start(struct i915_request *rq,
1937
			      u64 offset, u32 len,
1938
			      const unsigned int flags)
1939
{
1940
	u32 *cs;
1941 1942
	int ret;

1943 1944 1945 1946
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1947 1948
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1949 1950 1951 1952 1953
	if (rq->ctx->ppgtt &&
	    (intel_engine_flag(rq->engine) & rq->ctx->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&rq->ctx->ppgtt->base) &&
	    !intel_vgpu_active(rq->i915)) {
		ret = intel_logical_ring_emit_pdps(rq);
1954 1955
		if (ret)
			return ret;
1956

1957
		rq->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(rq->engine);
1958 1959
	}

1960
	cs = intel_ring_begin(rq, 6);
1961 1962
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1963

1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
	 * we would be fine. However, there doesn't seem to be a downside to
	 * being paranoid and making sure it is set before each batch and
	 * every context-switch.
	 *
	 * Note that if we fail to enable arbitration before the request
	 * is complete, then we do not see the context-switch interrupt and
	 * the engine hangs (with RING_HEAD == RING_TAIL).
	 *
	 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
	 */
1981 1982
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1983
	/* FIXME(BDW): Address space and security selectors. */
1984 1985 1986
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1987 1988
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
1989 1990 1991

	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
	*cs++ = MI_NOOP;
1992
	intel_ring_advance(rq, cs);
1993 1994 1995 1996

	return 0;
}

1997
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1998
{
1999
	struct drm_i915_private *dev_priv = engine->i915;
2000 2001 2002
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
2003 2004
}

2005
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2006
{
2007
	struct drm_i915_private *dev_priv = engine->i915;
2008
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
2009 2010
}

2011
static int gen8_emit_flush(struct i915_request *request, u32 mode)
2012
{
2013
	u32 cmd, *cs;
2014

2015 2016 2017
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2018 2019 2020

	cmd = MI_FLUSH_DW + 1;

2021 2022 2023 2024 2025 2026 2027
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2028
	if (mode & EMIT_INVALIDATE) {
2029
		cmd |= MI_INVALIDATE_TLB;
2030
		if (request->engine->id == VCS)
2031
			cmd |= MI_INVALIDATE_BSD;
2032 2033
	}

2034 2035 2036 2037 2038
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
2039 2040 2041 2042

	return 0;
}

2043
static int gen8_emit_flush_render(struct i915_request *request,
2044
				  u32 mode)
2045
{
2046
	struct intel_engine_cs *engine = request->engine;
2047 2048
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
2049
	bool vf_flush_wa = false, dc_flush_wa = false;
2050
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
2051
	int len;
2052 2053 2054

	flags |= PIPE_CONTROL_CS_STALL;

2055
	if (mode & EMIT_FLUSH) {
2056 2057
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2058
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2059
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
2060 2061
	}

2062
	if (mode & EMIT_INVALIDATE) {
2063 2064 2065 2066 2067 2068 2069 2070 2071
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

2072 2073 2074 2075
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
2076
		if (IS_GEN9(request->i915))
2077
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
2078 2079 2080 2081

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
2082
	}
2083

M
Mika Kuoppala 已提交
2084 2085 2086 2087 2088 2089 2090 2091
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

2092 2093 2094
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2095

2096 2097
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
2098

2099 2100 2101
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
2102

2103
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
2104

2105 2106
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
2107

2108
	intel_ring_advance(request, cs);
2109 2110 2111 2112

	return 0;
}

2113 2114 2115 2116 2117
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
2118
static void gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2119
{
C
Chris Wilson 已提交
2120 2121
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
2122 2123
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
2124
}
2125

2126
static void gen8_emit_breadcrumb(struct i915_request *request, u32 *cs)
C
Chris Wilson 已提交
2127
{
2128 2129
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
2130

2131 2132
	cs = gen8_emit_ggtt_write(cs, request->global_seqno,
				  intel_hws_seqno_address(request->engine));
2133
	*cs++ = MI_USER_INTERRUPT;
2134
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2135
	request->tail = intel_ring_offset(request, cs);
2136
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2137

2138
	gen8_emit_wa_tail(request, cs);
2139
}
2140 2141
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

2142
static void gen8_emit_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2143
{
2144 2145 2146
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

2147 2148
	cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
				      intel_hws_seqno_address(request->engine));
2149
	*cs++ = MI_USER_INTERRUPT;
2150
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2151
	request->tail = intel_ring_offset(request, cs);
2152
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2153

2154
	gen8_emit_wa_tail(request, cs);
2155
}
2156
static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
2157

2158
static int gen8_init_rcs_context(struct i915_request *rq)
2159 2160 2161
{
	int ret;

2162
	ret = intel_ctx_workarounds_emit(rq);
2163 2164 2165
	if (ret)
		return ret;

2166
	ret = intel_rcs_context_init_mocs(rq);
2167 2168 2169 2170 2171 2172 2173
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

2174
	return i915_gem_render_state_emit(rq);
2175 2176
}

2177 2178
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2179
 * @engine: Engine Command Streamer.
2180
 */
2181
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2182
{
2183
	struct drm_i915_private *dev_priv;
2184

2185 2186 2187 2188
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
2189 2190 2191
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
			     &engine->execlists.tasklet.state)))
		tasklet_kill(&engine->execlists.tasklet);
2192

2193
	dev_priv = engine->i915;
2194

2195 2196
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2197
	}
2198

2199 2200
	if (engine->cleanup)
		engine->cleanup(engine);
2201

2202
	intel_engine_cleanup_common(engine);
2203

2204
	lrc_destroy_wa_ctx(engine);
2205

2206
	engine->i915 = NULL;
2207 2208
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
2209 2210
}

2211
static void execlists_set_default_submission(struct intel_engine_cs *engine)
2212
{
2213
	engine->submit_request = execlists_submit_request;
2214
	engine->cancel_requests = execlists_cancel_requests;
2215
	engine->schedule = execlists_schedule;
2216
	engine->execlists.tasklet.func = execlists_submission_tasklet;
2217 2218 2219

	engine->park = NULL;
	engine->unpark = NULL;
2220 2221

	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2222 2223
	if (engine->i915->preempt_context)
		engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2224 2225 2226 2227

	engine->i915->caps.scheduler =
		I915_SCHEDULER_CAP_ENABLED |
		I915_SCHEDULER_CAP_PRIORITY;
2228
	if (intel_engine_has_preemption(engine))
2229
		engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
2230 2231
}

2232
static void
2233
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2234 2235
{
	/* Default vfuncs which can be overriden by each engine. */
2236
	engine->init_hw = gen8_init_common_ring;
2237
	engine->reset_hw = reset_common_ring;
2238 2239 2240 2241

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

2242 2243
	engine->request_alloc = execlists_request_alloc;

2244
	engine->emit_flush = gen8_emit_flush;
2245
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
2246
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
2247 2248

	engine->set_default_submission = execlists_set_default_submission;
2249

2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
	if (INTEL_GEN(engine->i915) < 11) {
		engine->irq_enable = gen8_logical_ring_enable_irq;
		engine->irq_disable = gen8_logical_ring_disable_irq;
	} else {
		/*
		 * TODO: On Gen11 interrupt masks need to be clear
		 * to allow C6 entry. Keep interrupts enabled at
		 * and take the hit of generating extra interrupts
		 * until a more refined solution exists.
		 */
	}
2261
	engine->emit_bb_start = gen8_emit_bb_start;
2262 2263
}

2264
static inline void
2265
logical_ring_default_irqs(struct intel_engine_cs *engine)
2266
{
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
	unsigned int shift = 0;

	if (INTEL_GEN(engine->i915) < 11) {
		const u8 irq_shifts[] = {
			[RCS]  = GEN8_RCS_IRQ_SHIFT,
			[BCS]  = GEN8_BCS_IRQ_SHIFT,
			[VCS]  = GEN8_VCS1_IRQ_SHIFT,
			[VCS2] = GEN8_VCS2_IRQ_SHIFT,
			[VECS] = GEN8_VECS_IRQ_SHIFT,
		};

		shift = irq_shifts[engine->id];
	}

2281 2282
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2283 2284
}

2285 2286 2287 2288 2289 2290
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

2291 2292
	intel_engine_setup_common(engine);

2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

2308
	engine->execlists.fw_domains = fw_domains;
2309

2310 2311
	tasklet_init(&engine->execlists.tasklet,
		     execlists_submission_tasklet, (unsigned long)engine);
2312 2313 2314 2315 2316

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

2317
static int logical_ring_init(struct intel_engine_cs *engine)
2318 2319 2320
{
	int ret;

2321
	ret = intel_engine_init_common(engine);
2322 2323 2324
	if (ret)
		goto error;

2325 2326 2327 2328 2329 2330 2331 2332 2333
	if (HAS_LOGICAL_RING_ELSQ(engine->i915)) {
		engine->execlists.submit_reg = engine->i915->regs +
			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(engine));
		engine->execlists.ctrl_reg = engine->i915->regs +
			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(engine));
	} else {
		engine->execlists.submit_reg = engine->i915->regs +
			i915_mmio_reg_offset(RING_ELSP(engine));
	}
2334

2335
	engine->execlists.preempt_complete_status = ~0u;
2336 2337 2338 2339
	if (engine->i915->preempt_context) {
		struct intel_context *ce =
			to_intel_context(engine->i915->preempt_context, engine);

2340
		engine->execlists.preempt_complete_status =
2341 2342
			upper_32_bits(ce->lrc_desc);
	}
2343

2344 2345 2346 2347 2348 2349 2350
	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

2351
int logical_render_ring_init(struct intel_engine_cs *engine)
2352 2353 2354 2355
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

2356 2357
	logical_ring_setup(engine);

2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
2368 2369
	engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2370

2371
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2386
	return logical_ring_init(engine);
2387 2388
}

2389
int logical_xcs_ring_init(struct intel_engine_cs *engine)
2390 2391 2392 2393
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
2394 2395
}

2396
static u32
2397
make_rpcs(struct drm_i915_private *dev_priv)
2398 2399 2400 2401 2402 2403 2404
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2405
	if (INTEL_GEN(dev_priv) < 9)
2406 2407 2408 2409 2410 2411 2412 2413
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2414
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2415
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2416
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2417 2418 2419 2420
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2421
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2422
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2423
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask[0]) <<
2424 2425 2426 2427
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2428 2429
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2430
			GEN8_RPCS_EU_MIN_SHIFT;
2431
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2432 2433 2434 2435 2436 2437 2438
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2439
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2440 2441 2442
{
	u32 indirect_ctx_offset;

2443
	switch (INTEL_GEN(engine->i915)) {
2444
	default:
2445
		MISSING_CASE(INTEL_GEN(engine->i915));
2446
		/* fall through */
2447 2448 2449 2450
	case 11:
		indirect_ctx_offset =
			GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2451 2452 2453 2454
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2468
static void execlists_init_reg_state(u32 *regs,
2469 2470 2471
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2472
{
2473 2474
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
	u32 base = engine->mmio_base;
	bool rcs = engine->id == RCS;

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2489 2490
		_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				    CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT) |
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2506 2507
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2508 2509 2510
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2511
		if (wa_ctx->indirect_ctx.size) {
2512
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2513

2514
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2515 2516
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2517

2518
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2519
				intel_lr_indirect_ctx_offset(engine) << 6;
2520 2521 2522 2523 2524
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2525

2526
			regs[CTX_BB_PER_CTX_PTR + 1] =
2527
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2528
		}
2529
	}
2530 2531 2532 2533

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2534
	/* PDP values well be assigned later if needed */
2535 2536 2537 2538 2539 2540 2541 2542
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2543

2544
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2545 2546 2547 2548
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2549
		ASSIGN_CTX_PML4(ppgtt, regs);
2550 2551
	}

2552 2553 2554 2555
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
2556 2557

		i915_oa_init_reg_state(engine, ctx, regs);
2558
	}
2559 2560 2561 2562 2563 2564 2565 2566 2567
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
2568
	u32 *regs;
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2583
	ctx_obj->mm.dirty = true;
2584

2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
	if (engine->default_state) {
		/*
		 * We only want to copy over the template context state;
		 * skipping over the headers reserved for GuC communication,
		 * leaving those as zero.
		 */
		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
2596 2597 2598 2599
		if (IS_ERR(defaults)) {
			ret = PTR_ERR(defaults);
			goto err_unpin_ctx;
		}
2600 2601 2602 2603 2604

		memcpy(vaddr + start, defaults + start, engine->context_size);
		i915_gem_object_unpin_map(engine->default_state);
	}

2605 2606
	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2607 2608 2609 2610 2611
	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
	execlists_init_reg_state(regs, ctx, engine, ring);
	if (!engine->default_state)
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2612
	if (ctx == ctx->i915->preempt_context && INTEL_GEN(engine->i915) < 11)
2613 2614 2615
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
					   CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2616

2617
err_unpin_ctx:
2618
	i915_gem_object_unpin_map(ctx_obj);
2619
	return ret;
2620 2621
}

2622
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2623
					    struct intel_engine_cs *engine)
2624
{
2625
	struct drm_i915_gem_object *ctx_obj;
2626
	struct intel_context *ce = to_intel_context(ctx, engine);
2627
	struct i915_vma *vma;
2628
	uint32_t context_size;
2629
	struct intel_ring *ring;
2630
	struct i915_timeline *timeline;
2631 2632
	int ret;

2633 2634
	if (ce->state)
		return 0;
2635

2636
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2637

2638 2639 2640 2641 2642
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2643

2644
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2645
	if (IS_ERR(ctx_obj)) {
2646 2647
		ret = PTR_ERR(ctx_obj);
		goto error_deref_obj;
2648 2649
	}

2650
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2651 2652 2653 2654 2655
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2656 2657 2658 2659 2660 2661 2662 2663
	timeline = i915_timeline_create(ctx->i915, ctx->name);
	if (IS_ERR(timeline)) {
		ret = PTR_ERR(timeline);
		goto error_deref_obj;
	}

	ring = intel_engine_create_ring(engine, timeline, ctx->ring_size);
	i915_timeline_put(timeline);
2664 2665
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2666
		goto error_deref_obj;
2667 2668
	}

2669
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2670 2671
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2672
		goto error_ring_free;
2673 2674
	}

2675
	ce->ring = ring;
2676
	ce->state = vma;
2677 2678

	return 0;
2679

2680
error_ring_free:
2681
	intel_ring_free(ring);
2682
error_deref_obj:
2683
	i915_gem_object_put(ctx_obj);
2684
	return ret;
2685
}
2686

2687
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2688
{
2689
	struct intel_engine_cs *engine;
2690
	struct i915_gem_context *ctx;
2691
	enum intel_engine_id id;
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
2703
	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2704
		for_each_engine(engine, dev_priv, id) {
2705 2706
			struct intel_context *ce =
				to_intel_context(ctx, engine);
2707
			u32 *reg;
2708

2709 2710
			if (!ce->state)
				continue;
2711

2712 2713 2714 2715
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2716

2717 2718 2719
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2720

C
Chris Wilson 已提交
2721
			ce->state->obj->mm.dirty = true;
2722
			i915_gem_object_unpin_map(ce->state->obj);
2723

2724
			intel_ring_reset(ce->ring, 0);
2725
		}
2726 2727
	}
}
2728 2729 2730 2731

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/intel_lrc.c"
#endif