hugetlb.c 162.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3
/*
 * Generic hugetlb support.
4
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/compiler.h>
17
#include <linux/cpuset.h>
18
#include <linux/mutex.h>
19
#include <linux/memblock.h>
20
#include <linux/sysfs.h>
21
#include <linux/slab.h>
22
#include <linux/sched/mm.h>
23
#include <linux/mmdebug.h>
24
#include <linux/sched/signal.h>
25
#include <linux/rmap.h>
26
#include <linux/string_helpers.h>
27 28
#include <linux/swap.h>
#include <linux/swapops.h>
29
#include <linux/jhash.h>
30
#include <linux/numa.h>
31
#include <linux/llist.h>
32
#include <linux/cma.h>
33
#include <linux/mman.h>
34

D
David Gibson 已提交
35
#include <asm/page.h>
36
#include <asm/pgalloc.h>
37
#include <asm/tlb.h>
D
David Gibson 已提交
38

39
#include <linux/io.h>
D
David Gibson 已提交
40
#include <linux/hugetlb.h>
41
#include <linux/hugetlb_cgroup.h>
42
#include <linux/node.h>
43
#include <linux/userfaultfd_k.h>
44
#include <linux/page_owner.h>
45
#include "internal.h"
46
#include "hugetlb_vmemmap.h"
L
Linus Torvalds 已提交
47

48
int hugetlb_max_hstate __read_mostly;
49 50
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
51

52
#ifdef CONFIG_CMA
53
static struct cma *hugetlb_cma[MAX_NUMNODES];
54 55
#endif
static unsigned long hugetlb_cma_size __initdata;
56

57 58 59 60 61
/*
 * Minimum page order among possible hugepage sizes, set to a proper value
 * at boot time.
 */
static unsigned int minimum_order __read_mostly = UINT_MAX;
62

63 64
__initdata LIST_HEAD(huge_boot_pages);

65 66 67
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
68
static bool __initdata parsed_valid_hugepagesz = true;
69
static bool __initdata parsed_default_hugepagesz;
70

71
/*
72 73
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
74
 */
75
DEFINE_SPINLOCK(hugetlb_lock);
76

77 78 79 80 81
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
82
struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
83

84 85 86
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);

87 88
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
						unsigned long irq_flags)
89 90 91
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

92
	spin_unlock_irqrestore(&spool->lock, irq_flags);
93 94

	/* If no pages are used, and no other handles to the subpool
E
Ethon Paul 已提交
95
	 * remain, give up any reservations based on minimum size and
96 97 98 99 100
	 * free the subpool */
	if (free) {
		if (spool->min_hpages != -1)
			hugetlb_acct_memory(spool->hstate,
						-spool->min_hpages);
101
		kfree(spool);
102
	}
103 104
}

105 106
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
						long min_hpages)
107 108 109
{
	struct hugepage_subpool *spool;

110
	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
111 112 113 114 115
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
116 117 118 119 120 121 122 123 124
	spool->max_hpages = max_hpages;
	spool->hstate = h;
	spool->min_hpages = min_hpages;

	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
		kfree(spool);
		return NULL;
	}
	spool->rsv_hpages = min_hpages;
125 126 127 128 129 130

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
131 132 133
	unsigned long flags;

	spin_lock_irqsave(&spool->lock, flags);
134 135
	BUG_ON(!spool->count);
	spool->count--;
136
	unlock_or_release_subpool(spool, flags);
137 138
}

139 140 141
/*
 * Subpool accounting for allocating and reserving pages.
 * Return -ENOMEM if there are not enough resources to satisfy the
142
 * request.  Otherwise, return the number of pages by which the
143 144
 * global pools must be adjusted (upward).  The returned value may
 * only be different than the passed value (delta) in the case where
E
Ethon Paul 已提交
145
 * a subpool minimum size must be maintained.
146 147
 */
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
148 149
				      long delta)
{
150
	long ret = delta;
151 152

	if (!spool)
153
		return ret;
154

155
	spin_lock_irq(&spool->lock);
156 157 158 159 160 161 162 163

	if (spool->max_hpages != -1) {		/* maximum size accounting */
		if ((spool->used_hpages + delta) <= spool->max_hpages)
			spool->used_hpages += delta;
		else {
			ret = -ENOMEM;
			goto unlock_ret;
		}
164 165
	}

166 167
	/* minimum size accounting */
	if (spool->min_hpages != -1 && spool->rsv_hpages) {
168 169 170 171 172 173 174 175 176 177 178 179 180 181
		if (delta > spool->rsv_hpages) {
			/*
			 * Asking for more reserves than those already taken on
			 * behalf of subpool.  Return difference.
			 */
			ret = delta - spool->rsv_hpages;
			spool->rsv_hpages = 0;
		} else {
			ret = 0;	/* reserves already accounted for */
			spool->rsv_hpages -= delta;
		}
	}

unlock_ret:
182
	spin_unlock_irq(&spool->lock);
183 184 185
	return ret;
}

186 187 188 189 190 191 192
/*
 * Subpool accounting for freeing and unreserving pages.
 * Return the number of global page reservations that must be dropped.
 * The return value may only be different than the passed value (delta)
 * in the case where a subpool minimum size must be maintained.
 */
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
193 194
				       long delta)
{
195
	long ret = delta;
196
	unsigned long flags;
197

198
	if (!spool)
199
		return delta;
200

201
	spin_lock_irqsave(&spool->lock, flags);
202 203 204 205

	if (spool->max_hpages != -1)		/* maximum size accounting */
		spool->used_hpages -= delta;

206 207
	 /* minimum size accounting */
	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
208 209 210 211 212 213 214 215 216 217 218 219 220 221
		if (spool->rsv_hpages + delta <= spool->min_hpages)
			ret = 0;
		else
			ret = spool->rsv_hpages + delta - spool->min_hpages;

		spool->rsv_hpages += delta;
		if (spool->rsv_hpages > spool->min_hpages)
			spool->rsv_hpages = spool->min_hpages;
	}

	/*
	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
	 * quota reference, free it now.
	 */
222
	unlock_or_release_subpool(spool, flags);
223 224

	return ret;
225 226 227 228 229 230 231 232 233
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
234
	return subpool_inode(file_inode(vma->vm_file));
235 236
}

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
/* Helper that removes a struct file_region from the resv_map cache and returns
 * it for use.
 */
static struct file_region *
get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
{
	struct file_region *nrg = NULL;

	VM_BUG_ON(resv->region_cache_count <= 0);

	resv->region_cache_count--;
	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
	list_del(&nrg->link);

	nrg->from = from;
	nrg->to = to;

	return nrg;
}

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
					      struct file_region *rg)
{
#ifdef CONFIG_CGROUP_HUGETLB
	nrg->reservation_counter = rg->reservation_counter;
	nrg->css = rg->css;
	if (rg->css)
		css_get(rg->css);
#endif
}

/* Helper that records hugetlb_cgroup uncharge info. */
static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
						struct hstate *h,
						struct resv_map *resv,
						struct file_region *nrg)
{
#ifdef CONFIG_CGROUP_HUGETLB
	if (h_cg) {
		nrg->reservation_counter =
			&h_cg->rsvd_hugepage[hstate_index(h)];
		nrg->css = &h_cg->css;
279 280 281 282 283 284 285 286 287 288 289
		/*
		 * The caller will hold exactly one h_cg->css reference for the
		 * whole contiguous reservation region. But this area might be
		 * scattered when there are already some file_regions reside in
		 * it. As a result, many file_regions may share only one css
		 * reference. In order to ensure that one file_region must hold
		 * exactly one h_cg->css reference, we should do css_get for
		 * each file_region and leave the reference held by caller
		 * untouched.
		 */
		css_get(&h_cg->css);
290 291 292 293 294 295 296 297 298 299 300 301 302
		if (!resv->pages_per_hpage)
			resv->pages_per_hpage = pages_per_huge_page(h);
		/* pages_per_hpage should be the same for all entries in
		 * a resv_map.
		 */
		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
	} else {
		nrg->reservation_counter = NULL;
		nrg->css = NULL;
	}
#endif
}

303 304 305 306 307 308 309 310
static void put_uncharge_info(struct file_region *rg)
{
#ifdef CONFIG_CGROUP_HUGETLB
	if (rg->css)
		css_put(rg->css);
#endif
}

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
static bool has_same_uncharge_info(struct file_region *rg,
				   struct file_region *org)
{
#ifdef CONFIG_CGROUP_HUGETLB
	return rg && org &&
	       rg->reservation_counter == org->reservation_counter &&
	       rg->css == org->css;

#else
	return true;
#endif
}

static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
{
	struct file_region *nrg = NULL, *prg = NULL;

	prg = list_prev_entry(rg, link);
	if (&prg->link != &resv->regions && prg->to == rg->from &&
	    has_same_uncharge_info(prg, rg)) {
		prg->to = rg->to;

		list_del(&rg->link);
334
		put_uncharge_info(rg);
335 336
		kfree(rg);

337
		rg = prg;
338 339 340 341 342 343 344 345
	}

	nrg = list_next_entry(rg, link);
	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
	    has_same_uncharge_info(nrg, rg)) {
		nrg->from = rg->from;

		list_del(&rg->link);
346
		put_uncharge_info(rg);
347 348 349 350
		kfree(rg);
	}
}

351 352 353 354 355 356 357
/*
 * Must be called with resv->lock held.
 *
 * Calling this with regions_needed != NULL will count the number of pages
 * to be added but will not modify the linked list. And regions_needed will
 * indicate the number of file_regions needed in the cache to carry out to add
 * the regions for this range.
M
Mina Almasry 已提交
358 359
 */
static long add_reservation_in_range(struct resv_map *resv, long f, long t,
360
				     struct hugetlb_cgroup *h_cg,
361
				     struct hstate *h, long *regions_needed)
M
Mina Almasry 已提交
362
{
363
	long add = 0;
M
Mina Almasry 已提交
364
	struct list_head *head = &resv->regions;
365
	long last_accounted_offset = f;
M
Mina Almasry 已提交
366 367
	struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;

368 369
	if (regions_needed)
		*regions_needed = 0;
M
Mina Almasry 已提交
370

371 372 373 374 375 376 377 378 379 380 381 382 383 384
	/* In this loop, we essentially handle an entry for the range
	 * [last_accounted_offset, rg->from), at every iteration, with some
	 * bounds checking.
	 */
	list_for_each_entry_safe(rg, trg, head, link) {
		/* Skip irrelevant regions that start before our range. */
		if (rg->from < f) {
			/* If this region ends after the last accounted offset,
			 * then we need to update last_accounted_offset.
			 */
			if (rg->to > last_accounted_offset)
				last_accounted_offset = rg->to;
			continue;
		}
M
Mina Almasry 已提交
385

386 387 388
		/* When we find a region that starts beyond our range, we've
		 * finished.
		 */
M
Mina Almasry 已提交
389 390 391
		if (rg->from > t)
			break;

392 393 394 395 396
		/* Add an entry for last_accounted_offset -> rg->from, and
		 * update last_accounted_offset.
		 */
		if (rg->from > last_accounted_offset) {
			add += rg->from - last_accounted_offset;
397
			if (!regions_needed) {
398 399
				nrg = get_file_region_entry_from_cache(
					resv, last_accounted_offset, rg->from);
400 401
				record_hugetlb_cgroup_uncharge_info(h_cg, h,
								    resv, nrg);
402
				list_add(&nrg->link, rg->link.prev);
403
				coalesce_file_region(resv, nrg);
404
			} else
405 406 407 408 409 410 411 412 413 414 415
				*regions_needed += 1;
		}

		last_accounted_offset = rg->to;
	}

	/* Handle the case where our range extends beyond
	 * last_accounted_offset.
	 */
	if (last_accounted_offset < t) {
		add += t - last_accounted_offset;
416
		if (!regions_needed) {
417 418
			nrg = get_file_region_entry_from_cache(
				resv, last_accounted_offset, t);
419
			record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
420
			list_add(&nrg->link, rg->link.prev);
421
			coalesce_file_region(resv, nrg);
422
		} else
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
			*regions_needed += 1;
	}

	VM_BUG_ON(add < 0);
	return add;
}

/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
 */
static int allocate_file_region_entries(struct resv_map *resv,
					int regions_needed)
	__must_hold(&resv->lock)
{
	struct list_head allocated_regions;
	int to_allocate = 0, i = 0;
	struct file_region *trg = NULL, *rg = NULL;

	VM_BUG_ON(regions_needed < 0);

	INIT_LIST_HEAD(&allocated_regions);

	/*
	 * Check for sufficient descriptors in the cache to accommodate
	 * the number of in progress add operations plus regions_needed.
	 *
	 * This is a while loop because when we drop the lock, some other call
	 * to region_add or region_del may have consumed some region_entries,
	 * so we keep looping here until we finally have enough entries for
	 * (adds_in_progress + regions_needed).
	 */
	while (resv->region_cache_count <
	       (resv->adds_in_progress + regions_needed)) {
		to_allocate = resv->adds_in_progress + regions_needed -
			      resv->region_cache_count;

		/* At this point, we should have enough entries in the cache
		 * for all the existings adds_in_progress. We should only be
		 * needing to allocate for regions_needed.
M
Mina Almasry 已提交
461
		 */
462 463 464 465 466 467 468 469
		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);

		spin_unlock(&resv->lock);
		for (i = 0; i < to_allocate; i++) {
			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
			if (!trg)
				goto out_of_memory;
			list_add(&trg->link, &allocated_regions);
M
Mina Almasry 已提交
470 471
		}

472 473
		spin_lock(&resv->lock);

474 475
		list_splice(&allocated_regions, &resv->region_cache);
		resv->region_cache_count += to_allocate;
M
Mina Almasry 已提交
476 477
	}

478
	return 0;
M
Mina Almasry 已提交
479

480 481 482 483 484 485
out_of_memory:
	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
		list_del(&rg->link);
		kfree(rg);
	}
	return -ENOMEM;
M
Mina Almasry 已提交
486 487
}

488 489
/*
 * Add the huge page range represented by [f, t) to the reserve
490 491 492 493 494
 * map.  Regions will be taken from the cache to fill in this range.
 * Sufficient regions should exist in the cache due to the previous
 * call to region_chg with the same range, but in some cases the cache will not
 * have sufficient entries due to races with other code doing region_add or
 * region_del.  The extra needed entries will be allocated.
495
 *
496 497 498 499
 * regions_needed is the out value provided by a previous call to region_chg.
 *
 * Return the number of new huge pages added to the map.  This number is greater
 * than or equal to zero.  If file_region entries needed to be allocated for
E
Ethon Paul 已提交
500
 * this operation and we were not able to allocate, it returns -ENOMEM.
501 502 503
 * region_add of regions of length 1 never allocate file_regions and cannot
 * fail; region_chg will always allocate at least 1 entry and a region_add for
 * 1 page will only require at most 1 entry.
504
 */
505
static long region_add(struct resv_map *resv, long f, long t,
506 507
		       long in_regions_needed, struct hstate *h,
		       struct hugetlb_cgroup *h_cg)
508
{
509
	long add = 0, actual_regions_needed = 0;
510

511
	spin_lock(&resv->lock);
512 513 514
retry:

	/* Count how many regions are actually needed to execute this add. */
515 516
	add_reservation_in_range(resv, f, t, NULL, NULL,
				 &actual_regions_needed);
517

518
	/*
519 520 521 522 523 524 525
	 * Check for sufficient descriptors in the cache to accommodate
	 * this add operation. Note that actual_regions_needed may be greater
	 * than in_regions_needed, as the resv_map may have been modified since
	 * the region_chg call. In this case, we need to make sure that we
	 * allocate extra entries, such that we have enough for all the
	 * existing adds_in_progress, plus the excess needed for this
	 * operation.
526
	 */
527 528 529 530 531 532 533 534
	if (actual_regions_needed > in_regions_needed &&
	    resv->region_cache_count <
		    resv->adds_in_progress +
			    (actual_regions_needed - in_regions_needed)) {
		/* region_add operation of range 1 should never need to
		 * allocate file_region entries.
		 */
		VM_BUG_ON(t - f <= 1);
535

536 537 538 539
		if (allocate_file_region_entries(
			    resv, actual_regions_needed - in_regions_needed)) {
			return -ENOMEM;
		}
540

541
		goto retry;
542 543
	}

544
	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
545 546

	resv->adds_in_progress -= in_regions_needed;
547

548
	spin_unlock(&resv->lock);
549 550
	VM_BUG_ON(add < 0);
	return add;
551 552
}

553 554 555 556 557 558 559
/*
 * Examine the existing reserve map and determine how many
 * huge pages in the specified range [f, t) are NOT currently
 * represented.  This routine is called before a subsequent
 * call to region_add that will actually modify the reserve
 * map to add the specified range [f, t).  region_chg does
 * not change the number of huge pages represented by the
560 561 562 563 564 565 566
 * map.  A number of new file_region structures is added to the cache as a
 * placeholder, for the subsequent region_add call to use. At least 1
 * file_region structure is added.
 *
 * out_regions_needed is the number of regions added to the
 * resv->adds_in_progress.  This value needs to be provided to a follow up call
 * to region_add or region_abort for proper accounting.
567 568 569 570 571
 *
 * Returns the number of huge pages that need to be added to the existing
 * reservation map for the range [f, t).  This number is greater or equal to
 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 * is needed and can not be allocated.
572
 */
573 574
static long region_chg(struct resv_map *resv, long f, long t,
		       long *out_regions_needed)
575 576 577
{
	long chg = 0;

578
	spin_lock(&resv->lock);
579

580
	/* Count how many hugepages in this range are NOT represented. */
581
	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
582
				       out_regions_needed);
583

584 585
	if (*out_regions_needed == 0)
		*out_regions_needed = 1;
586

587 588
	if (allocate_file_region_entries(resv, *out_regions_needed))
		return -ENOMEM;
589

590
	resv->adds_in_progress += *out_regions_needed;
591 592

	spin_unlock(&resv->lock);
593 594 595
	return chg;
}

596 597 598 599 600
/*
 * Abort the in progress add operation.  The adds_in_progress field
 * of the resv_map keeps track of the operations in progress between
 * calls to region_chg and region_add.  Operations are sometimes
 * aborted after the call to region_chg.  In such cases, region_abort
601 602 603
 * is called to decrement the adds_in_progress counter. regions_needed
 * is the value returned by the region_chg call, it is used to decrement
 * the adds_in_progress counter.
604 605 606 607 608
 *
 * NOTE: The range arguments [f, t) are not needed or used in this
 * routine.  They are kept to make reading the calling code easier as
 * arguments will match the associated region_chg call.
 */
609 610
static void region_abort(struct resv_map *resv, long f, long t,
			 long regions_needed)
611 612 613
{
	spin_lock(&resv->lock);
	VM_BUG_ON(!resv->region_cache_count);
614
	resv->adds_in_progress -= regions_needed;
615 616 617
	spin_unlock(&resv->lock);
}

618
/*
619 620 621 622 623 624 625 626 627 628 629 630
 * Delete the specified range [f, t) from the reserve map.  If the
 * t parameter is LONG_MAX, this indicates that ALL regions after f
 * should be deleted.  Locate the regions which intersect [f, t)
 * and either trim, delete or split the existing regions.
 *
 * Returns the number of huge pages deleted from the reserve map.
 * In the normal case, the return value is zero or more.  In the
 * case where a region must be split, a new region descriptor must
 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 * NOTE: If the parameter t == LONG_MAX, then we will never split
 * a region and possibly return -ENOMEM.  Callers specifying
 * t == LONG_MAX do not need to check for -ENOMEM error.
631
 */
632
static long region_del(struct resv_map *resv, long f, long t)
633
{
634
	struct list_head *head = &resv->regions;
635
	struct file_region *rg, *trg;
636 637
	struct file_region *nrg = NULL;
	long del = 0;
638

639
retry:
640
	spin_lock(&resv->lock);
641
	list_for_each_entry_safe(rg, trg, head, link) {
642 643 644 645 646 647 648 649
		/*
		 * Skip regions before the range to be deleted.  file_region
		 * ranges are normally of the form [from, to).  However, there
		 * may be a "placeholder" entry in the map which is of the form
		 * (from, to) with from == to.  Check for placeholder entries
		 * at the beginning of the range to be deleted.
		 */
		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
650
			continue;
651

652
		if (rg->from >= t)
653 654
			break;

655 656 657 658 659 660 661 662 663 664 665 666 667
		if (f > rg->from && t < rg->to) { /* Must split region */
			/*
			 * Check for an entry in the cache before dropping
			 * lock and attempting allocation.
			 */
			if (!nrg &&
			    resv->region_cache_count > resv->adds_in_progress) {
				nrg = list_first_entry(&resv->region_cache,
							struct file_region,
							link);
				list_del(&nrg->link);
				resv->region_cache_count--;
			}
668

669 670 671 672 673 674 675 676 677
			if (!nrg) {
				spin_unlock(&resv->lock);
				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
				if (!nrg)
					return -ENOMEM;
				goto retry;
			}

			del += t - f;
678
			hugetlb_cgroup_uncharge_file_region(
679
				resv, rg, t - f, false);
680 681 682 683

			/* New entry for end of split region */
			nrg->from = t;
			nrg->to = rg->to;
684 685 686

			copy_hugetlb_cgroup_uncharge_info(nrg, rg);

687 688 689 690 691 692 693
			INIT_LIST_HEAD(&nrg->link);

			/* Original entry is trimmed */
			rg->to = f;

			list_add(&nrg->link, &rg->link);
			nrg = NULL;
694
			break;
695 696 697 698
		}

		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
			del += rg->to - rg->from;
699
			hugetlb_cgroup_uncharge_file_region(resv, rg,
700
							    rg->to - rg->from, true);
701 702 703 704 705 706
			list_del(&rg->link);
			kfree(rg);
			continue;
		}

		if (f <= rg->from) {	/* Trim beginning of region */
707
			hugetlb_cgroup_uncharge_file_region(resv, rg,
708
							    t - rg->from, false);
709

710 711 712
			del += t - rg->from;
			rg->from = t;
		} else {		/* Trim end of region */
713
			hugetlb_cgroup_uncharge_file_region(resv, rg,
714
							    rg->to - f, false);
715 716 717

			del += rg->to - f;
			rg->to = f;
718
		}
719
	}
720 721

	spin_unlock(&resv->lock);
722 723
	kfree(nrg);
	return del;
724 725
}

726 727 728 729 730 731 732 733 734
/*
 * A rare out of memory error was encountered which prevented removal of
 * the reserve map region for a page.  The huge page itself was free'ed
 * and removed from the page cache.  This routine will adjust the subpool
 * usage count, and the global reserve count if needed.  By incrementing
 * these counts, the reserve map entry which could not be deleted will
 * appear as a "reserved" entry instead of simply dangling with incorrect
 * counts.
 */
735
void hugetlb_fix_reserve_counts(struct inode *inode)
736 737 738
{
	struct hugepage_subpool *spool = subpool_inode(inode);
	long rsv_adjust;
739
	bool reserved = false;
740 741

	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
742
	if (rsv_adjust > 0) {
743 744
		struct hstate *h = hstate_inode(inode);

745 746 747 748
		if (!hugetlb_acct_memory(h, 1))
			reserved = true;
	} else if (!rsv_adjust) {
		reserved = true;
749
	}
750 751 752

	if (!reserved)
		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
753 754
}

755 756 757 758
/*
 * Count and return the number of huge pages in the reserve map
 * that intersect with the range [f, t).
 */
759
static long region_count(struct resv_map *resv, long f, long t)
760
{
761
	struct list_head *head = &resv->regions;
762 763 764
	struct file_region *rg;
	long chg = 0;

765
	spin_lock(&resv->lock);
766 767
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
768 769
		long seg_from;
		long seg_to;
770 771 772 773 774 775 776 777 778 779 780

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
781
	spin_unlock(&resv->lock);
782 783 784 785

	return chg;
}

786 787 788 789
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
790 791
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
792
{
793 794
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
795 796
}

797 798 799 800 801
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}
802
EXPORT_SYMBOL_GPL(linear_hugepage_index);
803

804 805 806 807 808 809
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
810 811 812
	if (vma->vm_ops && vma->vm_ops->pagesize)
		return vma->vm_ops->pagesize(vma);
	return PAGE_SIZE;
813
}
814
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
815

816 817 818
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
819 820
 * architectures where it differs, an architecture-specific 'strong'
 * version of this symbol is required.
821
 */
822
__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
823 824 825 826
{
	return vma_kernel_pagesize(vma);
}

827 828 829 830 831 832 833
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
834
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
835

836 837 838 839 840 841 842 843 844
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
845 846 847 848 849 850 851 852 853
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
854
 */
855 856 857 858 859 860 861 862 863 864 865
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
					  struct hugetlb_cgroup *h_cg,
					  struct hstate *h)
{
#ifdef CONFIG_CGROUP_HUGETLB
	if (!h_cg || !h) {
		resv_map->reservation_counter = NULL;
		resv_map->pages_per_hpage = 0;
		resv_map->css = NULL;
	} else {
		resv_map->reservation_counter =
			&h_cg->rsvd_hugepage[hstate_index(h)];
		resv_map->pages_per_hpage = pages_per_huge_page(h);
		resv_map->css = &h_cg->css;
	}
#endif
}

885
struct resv_map *resv_map_alloc(void)
886 887
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
888 889 890 891 892
	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);

	if (!resv_map || !rg) {
		kfree(resv_map);
		kfree(rg);
893
		return NULL;
894
	}
895 896

	kref_init(&resv_map->refs);
897
	spin_lock_init(&resv_map->lock);
898 899
	INIT_LIST_HEAD(&resv_map->regions);

900
	resv_map->adds_in_progress = 0;
901 902 903 904 905 906 907
	/*
	 * Initialize these to 0. On shared mappings, 0's here indicate these
	 * fields don't do cgroup accounting. On private mappings, these will be
	 * re-initialized to the proper values, to indicate that hugetlb cgroup
	 * reservations are to be un-charged from here.
	 */
	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
908 909 910 911 912

	INIT_LIST_HEAD(&resv_map->region_cache);
	list_add(&rg->link, &resv_map->region_cache);
	resv_map->region_cache_count = 1;

913 914 915
	return resv_map;
}

916
void resv_map_release(struct kref *ref)
917 918
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
919 920
	struct list_head *head = &resv_map->region_cache;
	struct file_region *rg, *trg;
921 922

	/* Clear out any active regions before we release the map. */
923
	region_del(resv_map, 0, LONG_MAX);
924 925 926 927 928 929 930 931 932

	/* ... and any entries left in the cache */
	list_for_each_entry_safe(rg, trg, head, link) {
		list_del(&rg->link);
		kfree(rg);
	}

	VM_BUG_ON(resv_map->adds_in_progress);

933 934 935
	kfree(resv_map);
}

936 937
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
938 939 940 941 942 943 944 945 946
	/*
	 * At inode evict time, i_mapping may not point to the original
	 * address space within the inode.  This original address space
	 * contains the pointer to the resv_map.  So, always use the
	 * address space embedded within the inode.
	 * The VERY common case is inode->mapping == &inode->i_data but,
	 * this may not be true for device special inodes.
	 */
	return (struct resv_map *)(&inode->i_data)->private_data;
947 948
}

949
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
950
{
951
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
952 953 954 955 956 957 958
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
959 960
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
961
	}
962 963
}

964
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
965
{
966 967
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
968

969 970
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
971 972 973 974
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
975 976
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
977 978

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
979 980 981 982
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
983
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
984 985

	return (get_vma_private_data(vma) & flag) != 0;
986 987
}

988
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
989 990
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
991
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
992
	if (!(vma->vm_flags & VM_MAYSHARE))
993 994 995 996
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
997
static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
998
{
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1010
			return true;
1011
		else
1012
			return false;
1013
	}
1014 1015

	/* Shared mappings always use reserves */
1016 1017 1018 1019 1020
	if (vma->vm_flags & VM_MAYSHARE) {
		/*
		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
		 * be a region map for all pages.  The only situation where
		 * there is no region map is if a hole was punched via
E
Ethon Paul 已提交
1021
		 * fallocate.  In this case, there really are no reserves to
1022 1023 1024 1025 1026 1027 1028
		 * use.  This situation is indicated if chg != 0.
		 */
		if (chg)
			return false;
		else
			return true;
	}
1029 1030 1031 1032 1033

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		/*
		 * Like the shared case above, a hole punch or truncate
		 * could have been performed on the private mapping.
		 * Examine the value of chg to determine if reserves
		 * actually exist or were previously consumed.
		 * Very Subtle - The value of chg comes from a previous
		 * call to vma_needs_reserves().  The reserve map for
		 * private mappings has different (opposite) semantics
		 * than that of shared mappings.  vma_needs_reserves()
		 * has already taken this difference in semantics into
		 * account.  Therefore, the meaning of chg is the same
		 * as in the shared case above.  Code could easily be
		 * combined, but keeping it separate draws attention to
		 * subtle differences.
		 */
		if (chg)
			return false;
		else
			return true;
	}
1055

1056
	return false;
1057 1058
}

1059
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
1060 1061
{
	int nid = page_to_nid(page);
1062 1063

	lockdep_assert_held(&hugetlb_lock);
1064
	list_move(&page->lru, &h->hugepage_freelists[nid]);
1065 1066
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
1067
	SetHPageFreed(page);
L
Linus Torvalds 已提交
1068 1069
}

1070
static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1071 1072
{
	struct page *page;
1073 1074
	bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);

1075
	lockdep_assert_held(&hugetlb_lock);
1076 1077 1078
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
		if (nocma && is_migrate_cma_page(page))
			continue;
1079

1080 1081 1082 1083 1084
		if (PageHWPoison(page))
			continue;

		list_move(&page->lru, &h->hugepage_activelist);
		set_page_refcounted(page);
1085
		ClearHPageFreed(page);
1086 1087 1088
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		return page;
1089 1090
	}

1091
	return NULL;
1092 1093
}

1094
static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1095
		nodemask_t *nmask, struct mempolicy *mpol)
1096
{
1097 1098 1099 1100
	unsigned int cpuset_mems_cookie;
	struct zonelist *zonelist;
	struct zone *zone;
	struct zoneref *z;
1101
	int node = NUMA_NO_NODE;
1102 1103 1104 1105 1106 1107 1108
	bool mbind_cdmnode = false;

#ifdef CONFIG_COHERENT_DEVICE
	if (is_cdm_node(nid) && ((mpol != NULL && mpol->mode == MPOL_BIND) ||
							(gfp_mask & __GFP_THISNODE)))
		mbind_cdmnode = true;
#endif
1109

1110 1111 1112 1113 1114 1115 1116
	zonelist = node_zonelist(nid, gfp_mask);

retry_cpuset:
	cpuset_mems_cookie = read_mems_allowed_begin();
	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
		struct page *page;

1117 1118
		if (!cpuset_zone_allowed(zone, gfp_mask) &&
		    mbind_cdmnode == false)
1119 1120 1121 1122 1123 1124 1125 1126
			continue;
		/*
		 * no need to ask again on the same node. Pool is node rather than
		 * zone aware
		 */
		if (zone_to_nid(zone) == node)
			continue;
		node = zone_to_nid(zone);
1127 1128 1129 1130 1131

		page = dequeue_huge_page_node_exact(h, node);
		if (page)
			return page;
	}
1132 1133 1134
	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
		goto retry_cpuset;

1135 1136 1137
	return NULL;
}

1138 1139
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
1140 1141
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
1142
{
1143
	struct page *page;
1144
	struct mempolicy *mpol;
1145
	gfp_t gfp_mask;
1146
	nodemask_t *nodemask;
1147
	int nid;
L
Linus Torvalds 已提交
1148

1149 1150 1151 1152 1153
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
1154
	if (!vma_has_reserves(vma, chg) &&
1155
			h->free_huge_pages - h->resv_huge_pages == 0)
1156
		goto err;
1157

1158
	/* If reserves cannot be used, ensure enough pages are in the pool */
1159
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1160
		goto err;
1161

1162 1163
	gfp_mask = htlb_alloc_mask(h);
	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1164
	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask, mpol);
1165
	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1166
		SetHPageRestoreReserve(page);
1167
		h->resv_huge_pages--;
1168 1169
		if (is_set_cdmmask() && (vma->vm_flags & VM_CHECKNODE))
			h->resv_huge_pages_node[vma->vm_flags >> CHECKNODE_BITS]--;
L
Linus Torvalds 已提交
1170
	}
1171

1172
	mpol_cond_put(mpol);
L
Linus Torvalds 已提交
1173
	return page;
1174 1175 1176

err:
	return NULL;
L
Linus Torvalds 已提交
1177 1178
}

1179 1180 1181 1182 1183 1184 1185 1186 1187
/*
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
 */
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
1188
	nid = next_node_in(nid, *nodes_allowed);
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

/*
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
 */
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);

	return nid;
}

/*
1221
 * helper for remove_pool_huge_page() - return the previously saved
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
 */
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);

	return nid;
}

#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

1250
#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1251
static void destroy_compound_gigantic_page(struct page *page,
1252
					unsigned int order)
1253 1254 1255 1256 1257
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

1258
	atomic_set(compound_mapcount_ptr(page), 0);
1259
	atomic_set(compound_pincount_ptr(page), 0);
1260

1261
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1262
		clear_compound_head(p);
1263 1264 1265 1266
		set_page_refcounted(p);
	}

	set_compound_order(page, 0);
1267
	page[1].compound_nr = 0;
1268 1269 1270
	__ClearPageHead(page);
}

1271
static void free_gigantic_page(struct page *page, unsigned int order)
1272
{
1273 1274 1275 1276
	/*
	 * If the page isn't allocated using the cma allocator,
	 * cma_release() returns false.
	 */
1277 1278
#ifdef CONFIG_CMA
	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1279
		return;
1280
#endif
1281

1282 1283 1284
	free_contig_range(page_to_pfn(page), 1 << order);
}

1285
#ifdef CONFIG_CONTIG_ALLOC
1286 1287
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
		int nid, nodemask_t *nodemask)
1288
{
1289
	unsigned long nr_pages = 1UL << huge_page_order(h);
1290 1291
	if (nid == NUMA_NO_NODE)
		nid = numa_mem_id();
1292

1293 1294
#ifdef CONFIG_CMA
	{
1295 1296 1297
		struct page *page;
		int node;

1298 1299 1300
		if (hugetlb_cma[nid]) {
			page = cma_alloc(hugetlb_cma[nid], nr_pages,
					huge_page_order(h), true);
1301 1302 1303
			if (page)
				return page;
		}
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315

		if (!(gfp_mask & __GFP_THISNODE)) {
			for_each_node_mask(node, *nodemask) {
				if (node == nid || !hugetlb_cma[node])
					continue;

				page = cma_alloc(hugetlb_cma[node], nr_pages,
						huge_page_order(h), true);
				if (page)
					return page;
			}
		}
1316
	}
1317
#endif
1318

1319
	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1320 1321
}

1322 1323 1324 1325 1326 1327 1328
#else /* !CONFIG_CONTIG_ALLOC */
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
					int nid, nodemask_t *nodemask)
{
	return NULL;
}
#endif /* CONFIG_CONTIG_ALLOC */
1329

1330
#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1331
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1332 1333 1334 1335
					int nid, nodemask_t *nodemask)
{
	return NULL;
}
1336
static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1337
static inline void destroy_compound_gigantic_page(struct page *page,
1338
						unsigned int order) { }
1339 1340
#endif

1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
/*
 * Remove hugetlb page from lists, and update dtor so that page appears
 * as just a compound page.  A reference is held on the page.
 *
 * Must be called with hugetlb lock held.
 */
static void remove_hugetlb_page(struct hstate *h, struct page *page,
							bool adjust_surplus)
{
	int nid = page_to_nid(page);

	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);

1355
	lockdep_assert_held(&hugetlb_lock);
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
		return;

	list_del(&page->lru);

	if (HPageFreed(page)) {
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
	}
	if (adjust_surplus) {
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
	}

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
	/*
	 * Very subtle
	 *
	 * For non-gigantic pages set the destructor to the normal compound
	 * page dtor.  This is needed in case someone takes an additional
	 * temporary ref to the page, and freeing is delayed until they drop
	 * their reference.
	 *
	 * For gigantic pages set the destructor to the null dtor.  This
	 * destructor will never be called.  Before freeing the gigantic
	 * page destroy_compound_gigantic_page will turn the compound page
	 * into a simple group of pages.  After this the destructor does not
	 * apply.
	 *
	 * This handles the case where more than one ref is held when and
	 * after update_and_free_page is called.
	 */
1387
	set_page_refcounted(page);
1388 1389 1390 1391
	if (hstate_is_gigantic(h))
		set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
	else
		set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1392 1393 1394 1395 1396

	h->nr_huge_pages--;
	h->nr_huge_pages_node[nid]--;
}

1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
static void add_hugetlb_page(struct hstate *h, struct page *page,
			     bool adjust_surplus)
{
	int zeroed;
	int nid = page_to_nid(page);

	VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);

	lockdep_assert_held(&hugetlb_lock);

	INIT_LIST_HEAD(&page->lru);
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;

	if (adjust_surplus) {
		h->surplus_huge_pages++;
		h->surplus_huge_pages_node[nid]++;
	}

	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
	set_page_private(page, 0);
	SetHPageVmemmapOptimized(page);

	/*
	 * This page is now managed by the hugetlb allocator and has
	 * no users -- drop the last reference.
	 */
	zeroed = put_page_testzero(page);
	VM_BUG_ON_PAGE(!zeroed, page);
	arch_clear_hugepage_flags(page);
	enqueue_huge_page(h, page);
}

1430
static void __update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
1431 1432
{
	int i;
1433
	struct page *subpage = page;
1434

1435
	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1436
		return;
1437

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
	if (alloc_huge_page_vmemmap(h, page)) {
		spin_lock_irq(&hugetlb_lock);
		/*
		 * If we cannot allocate vmemmap pages, just refuse to free the
		 * page and put the page back on the hugetlb free list and treat
		 * as a surplus page.
		 */
		add_hugetlb_page(h, page, true);
		spin_unlock_irq(&hugetlb_lock);
		return;
	}

1450 1451 1452
	for (i = 0; i < pages_per_huge_page(h);
	     i++, subpage = mem_map_next(subpage, page, i)) {
		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1453
				1 << PG_referenced | 1 << PG_dirty |
1454 1455
				1 << PG_active | 1 << PG_private |
				1 << PG_writeback);
A
Adam Litke 已提交
1456
	}
1457 1458 1459 1460 1461 1462
	if (hstate_is_gigantic(h)) {
		destroy_compound_gigantic_page(page, huge_page_order(h));
		free_gigantic_page(page, huge_page_order(h));
	} else {
		__free_pages(page, huge_page_order(h));
	}
A
Adam Litke 已提交
1463 1464
}

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
/*
 * As update_and_free_page() can be called under any context, so we cannot
 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
 * the vmemmap pages.
 *
 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
 * freed and frees them one-by-one. As the page->mapping pointer is going
 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
 * structure of a lockless linked list of huge pages to be freed.
 */
static LLIST_HEAD(hpage_freelist);

static void free_hpage_workfn(struct work_struct *work)
{
	struct llist_node *node;

	node = llist_del_all(&hpage_freelist);

	while (node) {
		struct page *page;
		struct hstate *h;

		page = container_of((struct address_space **)node,
				     struct page, mapping);
		node = node->next;
		page->mapping = NULL;
		/*
		 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
		 * is going to trigger because a previous call to
		 * remove_hugetlb_page() will set_compound_page_dtor(page,
		 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
		 */
		h = size_to_hstate(page_size(page));

		__update_and_free_page(h, page);

		cond_resched();
	}
}
static DECLARE_WORK(free_hpage_work, free_hpage_workfn);

static inline void flush_free_hpage_work(struct hstate *h)
{
	if (free_vmemmap_pages_per_hpage(h))
		flush_work(&free_hpage_work);
}

static void update_and_free_page(struct hstate *h, struct page *page,
				 bool atomic)
{
1516
	if (!HPageVmemmapOptimized(page) || !atomic) {
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
		__update_and_free_page(h, page);
		return;
	}

	/*
	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
	 *
	 * Only call schedule_work() if hpage_freelist is previously
	 * empty. Otherwise, schedule_work() had been called but the workfn
	 * hasn't retrieved the list yet.
	 */
	if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
		schedule_work(&free_hpage_work);
}

1532 1533 1534 1535 1536
static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
{
	struct page *page, *t_page;

	list_for_each_entry_safe(page, t_page, list, lru) {
1537
		update_and_free_page(h, page, false);
1538 1539 1540 1541
		cond_resched();
	}
}

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

1553
void free_huge_page(struct page *page)
1554
{
1555 1556 1557 1558
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
1559
	struct hstate *h = page_hstate(page);
1560
	int nid = page_to_nid(page);
1561
	struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1562
	bool restore_reserve;
1563
	unsigned long flags;
1564

1565 1566
	VM_BUG_ON_PAGE(page_count(page), page);
	VM_BUG_ON_PAGE(page_mapcount(page), page);
1567

1568
	hugetlb_set_page_subpool(page, NULL);
1569
	page->mapping = NULL;
1570 1571
	restore_reserve = HPageRestoreReserve(page);
	ClearHPageRestoreReserve(page);
1572

1573
	/*
1574
	 * If HPageRestoreReserve was set on page, page allocation consumed a
1575 1576 1577 1578 1579
	 * reservation.  If the page was associated with a subpool, there
	 * would have been a page reserved in the subpool before allocation
	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
	 * reservtion, do not call hugepage_subpool_put_pages() as this will
	 * remove the reserved page from the subpool.
1580
	 */
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
	if (!restore_reserve) {
		/*
		 * A return code of zero implies that the subpool will be
		 * under its minimum size if the reservation is not restored
		 * after page is free.  Therefore, force restore_reserve
		 * operation.
		 */
		if (hugepage_subpool_put_pages(spool, 1) == 0)
			restore_reserve = true;
	}
1591

1592
	spin_lock_irqsave(&hugetlb_lock, flags);
1593
	ClearHPageMigratable(page);
1594 1595
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
1596 1597
	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
					  pages_per_huge_page(h), page);
1598 1599 1600
	if (restore_reserve)
		h->resv_huge_pages++;

1601
	if (HPageTemporary(page)) {
1602
		remove_hugetlb_page(h, page, false);
1603
		spin_unlock_irqrestore(&hugetlb_lock, flags);
1604
		update_and_free_page(h, page, true);
1605
	} else if (h->surplus_huge_pages_node[nid]) {
1606
		/* remove the page from active list */
1607
		remove_hugetlb_page(h, page, true);
1608
		spin_unlock_irqrestore(&hugetlb_lock, flags);
1609
		update_and_free_page(h, page, true);
1610
	} else {
1611
		arch_clear_hugepage_flags(page);
1612
		enqueue_huge_page(h, page);
1613
		spin_unlock_irqrestore(&hugetlb_lock, flags);
1614 1615 1616
	}
}

1617
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1618
{
1619
	free_huge_page_vmemmap(h, page);
1620
	INIT_LIST_HEAD(&page->lru);
1621
	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1622
	hugetlb_set_page_subpool(page, NULL);
1623
	set_hugetlb_cgroup(page, NULL);
1624
	set_hugetlb_cgroup_rsvd(page, NULL);
1625
	spin_lock_irq(&hugetlb_lock);
1626 1627
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
1628
	ClearHPageFreed(page);
1629
	spin_unlock_irq(&hugetlb_lock);
1630 1631
}

1632
static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1633 1634 1635 1636 1637 1638 1639
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
1640
	__ClearPageReserved(page);
1641
	__SetPageHead(page);
1642
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1643 1644 1645 1646
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
E
Ethon Paul 已提交
1647
		 * too.  Otherwise drivers using get_user_pages() to access tail
1648 1649 1650 1651 1652 1653 1654 1655
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
1656
		set_page_count(p, 0);
1657
		set_compound_head(p, page);
1658
	}
1659
	atomic_set(compound_mapcount_ptr(page), -1);
1660
	atomic_set(compound_pincount_ptr(page), 0);
1661 1662
}

A
Andrew Morton 已提交
1663 1664 1665 1666 1667
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
1668 1669 1670 1671 1672 1673
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
1674
	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1675
}
1676 1677
EXPORT_SYMBOL_GPL(PageHuge);

1678 1679 1680 1681 1682 1683 1684 1685 1686
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

1687
	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1688 1689
}

1690 1691 1692
/*
 * Find and lock address space (mapping) in write mode.
 *
1693 1694 1695
 * Upon entry, the page is locked which means that page_mapping() is
 * stable.  Due to locking order, we can only trylock_write.  If we can
 * not get the lock, simply return NULL to caller.
1696 1697 1698
 */
struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
{
1699
	struct address_space *mapping = page_mapping(hpage);
1700 1701 1702 1703 1704 1705 1706

	if (!mapping)
		return mapping;

	if (i_mmap_trylock_write(mapping))
		return mapping;

1707
	return NULL;
1708 1709
}

1710
pgoff_t hugetlb_basepage_index(struct page *page)
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

1724
static struct page *alloc_buddy_huge_page(struct hstate *h,
1725 1726
		gfp_t gfp_mask, int nid, nodemask_t *nmask,
		nodemask_t *node_alloc_noretry)
L
Linus Torvalds 已提交
1727
{
1728
	int order = huge_page_order(h);
L
Linus Torvalds 已提交
1729
	struct page *page;
1730
	bool alloc_try_hard = true;
1731

1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
	/*
	 * By default we always try hard to allocate the page with
	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
	 * a loop (to adjust global huge page counts) and previous allocation
	 * failed, do not continue to try hard on the same node.  Use the
	 * node_alloc_noretry bitmap to manage this state information.
	 */
	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
		alloc_try_hard = false;
	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
	if (alloc_try_hard)
		gfp_mask |= __GFP_RETRY_MAYFAIL;
1744 1745
	if (nid == NUMA_NO_NODE)
		nid = numa_mem_id();
1746
	page = __alloc_pages(gfp_mask, order, nid, nmask);
1747 1748 1749 1750
	if (page)
		__count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1751

1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
	/*
	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
	 * indicates an overall state change.  Clear bit so that we resume
	 * normal 'try hard' allocations.
	 */
	if (node_alloc_noretry && page && !alloc_try_hard)
		node_clear(nid, *node_alloc_noretry);

	/*
	 * If we tried hard to get a page but failed, set bit so that
	 * subsequent attempts will not try as hard until there is an
	 * overall state change.
	 */
	if (node_alloc_noretry && !page && alloc_try_hard)
		node_set(nid, *node_alloc_noretry);

1768 1769 1770
	return page;
}

1771 1772 1773 1774 1775
/*
 * Common helper to allocate a fresh hugetlb page. All specific allocators
 * should use this function to get new hugetlb pages
 */
static struct page *alloc_fresh_huge_page(struct hstate *h,
1776 1777
		gfp_t gfp_mask, int nid, nodemask_t *nmask,
		nodemask_t *node_alloc_noretry)
1778 1779 1780 1781 1782 1783 1784
{
	struct page *page;

	if (hstate_is_gigantic(h))
		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
	else
		page = alloc_buddy_huge_page(h, gfp_mask,
1785
				nid, nmask, node_alloc_noretry);
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
	if (!page)
		return NULL;

	if (hstate_is_gigantic(h))
		prep_compound_gigantic_page(page, huge_page_order(h));
	prep_new_huge_page(h, page, page_to_nid(page));

	return page;
}

1796 1797 1798 1799
/*
 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
 * manner.
 */
1800 1801
static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
				nodemask_t *node_alloc_noretry)
1802 1803 1804
{
	struct page *page;
	int nr_nodes, node;
1805
	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1806 1807

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1808 1809
		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
						node_alloc_noretry);
1810
		if (page)
1811 1812 1813
			break;
	}

1814 1815
	if (!page)
		return 0;
1816

1817 1818 1819
	put_page(page); /* free it into the hugepage allocator */

	return 1;
1820 1821
}

1822
/*
1823 1824 1825 1826
 * Remove huge page from pool from next node to free.  Attempt to keep
 * persistent huge pages more or less balanced over allowed nodes.
 * This routine only 'removes' the hugetlb page.  The caller must make
 * an additional call to free the page to low level allocators.
1827 1828
 * Called with hugetlb_lock locked.
 */
1829 1830 1831
static struct page *remove_pool_huge_page(struct hstate *h,
						nodemask_t *nodes_allowed,
						 bool acct_surplus)
1832
{
1833
	int nr_nodes, node;
1834
	struct page *page = NULL;
1835

1836
	lockdep_assert_held(&hugetlb_lock);
1837
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1838 1839 1840 1841
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
1842 1843
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
1844
			page = list_entry(h->hugepage_freelists[node].next,
1845
					  struct page, lru);
1846
			remove_hugetlb_page(h, page, acct_surplus);
1847
			break;
1848
		}
1849
	}
1850

1851
	return page;
1852 1853
}

1854 1855
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
1856 1857 1858
 * nothing for in-use hugepages and non-hugepages.
 * This function returns values like below:
 *
1859 1860 1861 1862 1863 1864 1865 1866
 *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
 *           when the system is under memory pressure and the feature of
 *           freeing unused vmemmap pages associated with each hugetlb page
 *           is enabled.
 *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
 *           (allocated or reserved.)
 *       0:  successfully dissolved free hugepages or the page is not a
 *           hugepage (considered as already dissolved)
1867
 */
1868
int dissolve_free_huge_page(struct page *page)
1869
{
1870
	int rc = -EBUSY;
1871

1872
retry:
1873 1874 1875 1876
	/* Not to disrupt normal path by vainly holding hugetlb_lock */
	if (!PageHuge(page))
		return 0;

1877
	spin_lock_irq(&hugetlb_lock);
1878 1879 1880 1881 1882 1883
	if (!PageHuge(page)) {
		rc = 0;
		goto out;
	}

	if (!page_count(page)) {
1884 1885
		struct page *head = compound_head(page);
		struct hstate *h = page_hstate(head);
1886
		if (h->free_huge_pages - h->resv_huge_pages == 0)
1887
			goto out;
1888 1889 1890 1891 1892

		/*
		 * We should make sure that the page is already on the free list
		 * when it is dissolved.
		 */
1893
		if (unlikely(!HPageFreed(head))) {
1894
			spin_unlock_irq(&hugetlb_lock);
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
			cond_resched();

			/*
			 * Theoretically, we should return -EBUSY when we
			 * encounter this race. In fact, we have a chance
			 * to successfully dissolve the page if we do a
			 * retry. Because the race window is quite small.
			 * If we seize this opportunity, it is an optimization
			 * for increasing the success rate of dissolving page.
			 */
			goto retry;
		}

1908
		remove_hugetlb_page(h, head, false);
1909
		h->max_huge_pages--;
1910
		spin_unlock_irq(&hugetlb_lock);
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939

		/*
		 * Normally update_and_free_page will allocate required vmemmmap
		 * before freeing the page.  update_and_free_page will fail to
		 * free the page if it can not allocate required vmemmap.  We
		 * need to adjust max_huge_pages if the page is not freed.
		 * Attempt to allocate vmemmmap here so that we can take
		 * appropriate action on failure.
		 */
		rc = alloc_huge_page_vmemmap(h, head);
		if (!rc) {
			/*
			 * Move PageHWPoison flag from head page to the raw
			 * error page, which makes any subpages rather than
			 * the error page reusable.
			 */
			if (PageHWPoison(head) && page != head) {
				SetPageHWPoison(page);
				ClearPageHWPoison(head);
			}
			update_and_free_page(h, head, false);
		} else {
			spin_lock_irq(&hugetlb_lock);
			add_hugetlb_page(h, head, false);
			h->max_huge_pages++;
			spin_unlock_irq(&hugetlb_lock);
		}

		return rc;
1940
	}
1941
out:
1942
	spin_unlock_irq(&hugetlb_lock);
1943
	return rc;
1944 1945 1946 1947 1948
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
1949 1950
 * Note that this will dissolve a free gigantic hugepage completely, if any
 * part of it lies within the given range.
1951 1952
 * Also note that if dissolve_free_huge_page() returns with an error, all
 * free hugepages that were dissolved before that error are lost.
1953
 */
1954
int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1955 1956
{
	unsigned long pfn;
1957
	struct page *page;
1958
	int rc = 0;
1959

1960
	if (!hugepages_supported())
1961
		return rc;
1962

1963 1964
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
		page = pfn_to_page(pfn);
1965 1966 1967
		rc = dissolve_free_huge_page(page);
		if (rc)
			break;
1968
	}
1969 1970

	return rc;
1971 1972
}

1973 1974 1975
/*
 * Allocates a fresh surplus page from the page allocator.
 */
1976
static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1977
		int nid, nodemask_t *nmask)
1978
{
1979
	struct page *page = NULL;
1980

1981
	if (hstate_is_gigantic(h))
1982 1983
		return NULL;

1984
	spin_lock_irq(&hugetlb_lock);
1985 1986
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
		goto out_unlock;
1987
	spin_unlock_irq(&hugetlb_lock);
1988

1989
	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1990
	if (!page)
1991
		return NULL;
1992

1993
	spin_lock_irq(&hugetlb_lock);
1994 1995 1996 1997 1998 1999 2000 2001
	/*
	 * We could have raced with the pool size change.
	 * Double check that and simply deallocate the new page
	 * if we would end up overcommiting the surpluses. Abuse
	 * temporary page to workaround the nasty free_huge_page
	 * codeflow
	 */
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2002
		SetHPageTemporary(page);
2003
		spin_unlock_irq(&hugetlb_lock);
2004
		put_page(page);
2005
		return NULL;
2006 2007
	} else {
		h->surplus_huge_pages++;
2008
		h->surplus_huge_pages_node[page_to_nid(page)]++;
2009
	}
2010 2011

out_unlock:
2012
	spin_unlock_irq(&hugetlb_lock);
2013 2014 2015 2016

	return page;
}

2017
static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2018
				     int nid, nodemask_t *nmask)
2019 2020 2021 2022 2023 2024
{
	struct page *page;

	if (hstate_is_gigantic(h))
		return NULL;

2025
	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2026 2027 2028 2029 2030 2031 2032
	if (!page)
		return NULL;

	/*
	 * We do not account these pages as surplus because they are only
	 * temporary and will be released properly on the last reference
	 */
2033
	SetHPageTemporary(page);
2034 2035 2036 2037

	return page;
}

2038 2039 2040
/*
 * Use the VMA's mpolicy to allocate a huge page from the buddy.
 */
D
Dave Hansen 已提交
2041
static
2042
struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2043 2044
		struct vm_area_struct *vma, unsigned long addr)
{
2045 2046 2047 2048 2049 2050 2051
	struct page *page;
	struct mempolicy *mpol;
	gfp_t gfp_mask = htlb_alloc_mask(h);
	int nid;
	nodemask_t *nodemask;

	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2052
	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
2053 2054 2055
	mpol_cond_put(mpol);

	return page;
2056 2057
}

2058
/* page migration callback function */
2059
struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2060
		nodemask_t *nmask, gfp_t gfp_mask)
2061
{
2062
	spin_lock_irq(&hugetlb_lock);
2063
	if (h->free_huge_pages - h->resv_huge_pages > 0) {
2064 2065
		struct page *page;

2066
		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask, NULL);
2067
		if (page) {
2068
			spin_unlock_irq(&hugetlb_lock);
2069
			return page;
2070 2071
		}
	}
2072
	spin_unlock_irq(&hugetlb_lock);
2073

2074
	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2075 2076
}

2077
/* mempolicy aware migration callback */
2078 2079
struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
		unsigned long address)
2080 2081 2082 2083 2084 2085 2086 2087 2088
{
	struct mempolicy *mpol;
	nodemask_t *nodemask;
	struct page *page;
	gfp_t gfp_mask;
	int node;

	gfp_mask = htlb_alloc_mask(h);
	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2089
	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2090 2091 2092 2093 2094
	mpol_cond_put(mpol);

	return page;
}

2095
/*
L
Lucas De Marchi 已提交
2096
 * Increase the hugetlb pool such that it can accommodate a reservation
2097 2098
 * of size 'delta'.
 */
2099
static int gather_surplus_pages(struct hstate *h, long delta)
2100
	__must_hold(&hugetlb_lock)
2101 2102 2103
{
	struct list_head surplus_list;
	struct page *page, *tmp;
2104 2105 2106
	int ret;
	long i;
	long needed, allocated;
2107
	bool alloc_ok = true;
2108

2109
	lockdep_assert_held(&hugetlb_lock);
2110
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2111
	if (needed <= 0) {
2112
		h->resv_huge_pages += delta;
2113
		return 0;
2114
	}
2115 2116 2117 2118 2119 2120

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
2121
	spin_unlock_irq(&hugetlb_lock);
2122
	for (i = 0; i < needed; i++) {
2123
		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2124
				NUMA_NO_NODE, NULL);
2125 2126 2127 2128
		if (!page) {
			alloc_ok = false;
			break;
		}
2129
		list_add(&page->lru, &surplus_list);
2130
		cond_resched();
2131
	}
2132
	allocated += i;
2133 2134 2135 2136 2137

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
2138
	spin_lock_irq(&hugetlb_lock);
2139 2140
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
2151 2152
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
2153
	 * needed to accommodate the reservation.  Add the appropriate number
2154
	 * of pages to the hugetlb pool and free the extras back to the buddy
2155 2156 2157
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
2158 2159
	 */
	needed += allocated;
2160
	h->resv_huge_pages += delta;
2161
	ret = 0;
2162

2163
	/* Free the needed pages to the hugetlb pool */
2164
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2165 2166
		if ((--needed) < 0)
			break;
2167 2168 2169 2170 2171
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
2172
		VM_BUG_ON_PAGE(page_count(page), page);
2173
		enqueue_huge_page(h, page);
2174
	}
2175
free:
2176
	spin_unlock_irq(&hugetlb_lock);
2177 2178

	/* Free unnecessary surplus pages to the buddy allocator */
2179 2180
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
2181
	spin_lock_irq(&hugetlb_lock);
2182 2183 2184 2185 2186

	return ret;
}

/*
2187 2188 2189 2190 2191 2192
 * This routine has two main purposes:
 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
 *    in unused_resv_pages.  This corresponds to the prior adjustments made
 *    to the associated reservation map.
 * 2) Free any unused surplus pages that may have been allocated to satisfy
 *    the reservation.  As many as unused_resv_pages may be freed.
2193
 */
2194 2195
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
2196 2197
{
	unsigned long nr_pages;
2198 2199 2200
	struct page *page;
	LIST_HEAD(page_list);

2201
	lockdep_assert_held(&hugetlb_lock);
2202 2203
	/* Uncommit the reservation */
	h->resv_huge_pages -= unused_resv_pages;
2204

2205
	/* Cannot return gigantic pages currently */
2206
	if (hstate_is_gigantic(h))
2207
		goto out;
2208

2209 2210 2211 2212
	/*
	 * Part (or even all) of the reservation could have been backed
	 * by pre-allocated pages. Only free surplus pages.
	 */
2213
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2214

2215 2216
	/*
	 * We want to release as many surplus pages as possible, spread
2217 2218 2219
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
2220
	 * remove_pool_huge_page() will balance the freed pages across the
2221
	 * on-line nodes with memory and will handle the hstate accounting.
2222 2223
	 */
	while (nr_pages--) {
2224 2225
		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
		if (!page)
2226
			goto out;
2227 2228

		list_add(&page->lru, &page_list);
2229
	}
2230 2231

out:
2232
	spin_unlock_irq(&hugetlb_lock);
2233
	update_and_free_pages_bulk(h, &page_list);
2234
	spin_lock_irq(&hugetlb_lock);
2235 2236
}

2237

2238
/*
2239
 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2240
 * are used by the huge page allocation routines to manage reservations.
2241 2242 2243 2244 2245 2246
 *
 * vma_needs_reservation is called to determine if the huge page at addr
 * within the vma has an associated reservation.  If a reservation is
 * needed, the value 1 is returned.  The caller is then responsible for
 * managing the global reservation and subpool usage counts.  After
 * the huge page has been allocated, vma_commit_reservation is called
2247 2248 2249
 * to add the page to the reservation map.  If the page allocation fails,
 * the reservation must be ended instead of committed.  vma_end_reservation
 * is called in such cases.
2250 2251 2252 2253 2254 2255
 *
 * In the normal case, vma_commit_reservation returns the same value
 * as the preceding vma_needs_reservation call.  The only time this
 * is not the case is if a reserve map was changed between calls.  It
 * is the responsibility of the caller to notice the difference and
 * take appropriate action.
2256 2257 2258 2259 2260
 *
 * vma_add_reservation is used in error paths where a reservation must
 * be restored when a newly allocated huge page must be freed.  It is
 * to be called after calling vma_needs_reservation to determine if a
 * reservation exists.
2261
 */
2262 2263 2264
enum vma_resv_mode {
	VMA_NEEDS_RESV,
	VMA_COMMIT_RESV,
2265
	VMA_END_RESV,
2266
	VMA_ADD_RESV,
2267
};
2268 2269
static long __vma_reservation_common(struct hstate *h,
				struct vm_area_struct *vma, unsigned long addr,
2270
				enum vma_resv_mode mode)
2271
{
2272 2273
	struct resv_map *resv;
	pgoff_t idx;
2274
	long ret;
2275
	long dummy_out_regions_needed;
2276

2277 2278
	resv = vma_resv_map(vma);
	if (!resv)
2279
		return 1;
2280

2281
	idx = vma_hugecache_offset(h, vma, addr);
2282 2283
	switch (mode) {
	case VMA_NEEDS_RESV:
2284 2285 2286 2287 2288 2289
		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
		/* We assume that vma_reservation_* routines always operate on
		 * 1 page, and that adding to resv map a 1 page entry can only
		 * ever require 1 region.
		 */
		VM_BUG_ON(dummy_out_regions_needed != 1);
2290 2291
		break;
	case VMA_COMMIT_RESV:
2292
		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2293 2294
		/* region_add calls of range 1 should never fail. */
		VM_BUG_ON(ret < 0);
2295
		break;
2296
	case VMA_END_RESV:
2297
		region_abort(resv, idx, idx + 1, 1);
2298 2299
		ret = 0;
		break;
2300
	case VMA_ADD_RESV:
2301
		if (vma->vm_flags & VM_MAYSHARE) {
2302
			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2303 2304 2305 2306
			/* region_add calls of range 1 should never fail. */
			VM_BUG_ON(ret < 0);
		} else {
			region_abort(resv, idx, idx + 1, 1);
2307 2308 2309
			ret = region_del(resv, idx, idx + 1);
		}
		break;
2310 2311 2312
	default:
		BUG();
	}
2313

2314
	if (vma->vm_flags & VM_MAYSHARE)
2315
		return ret;
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
		/*
		 * In most cases, reserves always exist for private mappings.
		 * However, a file associated with mapping could have been
		 * hole punched or truncated after reserves were consumed.
		 * As subsequent fault on such a range will not use reserves.
		 * Subtle - The reserve map for private mappings has the
		 * opposite meaning than that of shared mappings.  If NO
		 * entry is in the reserve map, it means a reservation exists.
		 * If an entry exists in the reserve map, it means the
		 * reservation has already been consumed.  As a result, the
		 * return value of this routine is the opposite of the
		 * value returned from reserve map manipulation routines above.
		 */
		if (ret)
			return 0;
		else
			return 1;
	}
2335
	else
2336
		return ret < 0 ? ret : 0;
2337
}
2338 2339

static long vma_needs_reservation(struct hstate *h,
2340
			struct vm_area_struct *vma, unsigned long addr)
2341
{
2342
	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2343
}
2344

2345 2346 2347
static long vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
2348 2349 2350
	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
}

2351
static void vma_end_reservation(struct hstate *h,
2352 2353
			struct vm_area_struct *vma, unsigned long addr)
{
2354
	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2355 2356
}

2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
static long vma_add_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
}

/*
 * This routine is called to restore a reservation on error paths.  In the
 * specific error paths, a huge page was allocated (via alloc_huge_page)
 * and is about to be freed.  If a reservation for the page existed,
2367 2368 2369 2370 2371 2372
 * alloc_huge_page would have consumed the reservation and set
 * HPageRestoreReserve in the newly allocated page.  When the page is freed
 * via free_huge_page, the global reservation count will be incremented if
 * HPageRestoreReserve is set.  However, free_huge_page can not adjust the
 * reserve map.  Adjust the reserve map here to be consistent with global
 * reserve count adjustments to be made by free_huge_page.
2373 2374 2375 2376 2377
 */
static void restore_reserve_on_error(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address,
			struct page *page)
{
2378
	if (unlikely(HPageRestoreReserve(page))) {
2379 2380 2381 2382 2383
		long rc = vma_needs_reservation(h, vma, address);

		if (unlikely(rc < 0)) {
			/*
			 * Rare out of memory condition in reserve map
2384
			 * manipulation.  Clear HPageRestoreReserve so that
2385 2386 2387 2388 2389 2390 2391 2392
			 * global reserve count will not be incremented
			 * by free_huge_page.  This will make it appear
			 * as though the reservation for this page was
			 * consumed.  This may prevent the task from
			 * faulting in the page at a later time.  This
			 * is better than inconsistent global huge page
			 * accounting of reserve counts.
			 */
2393
			ClearHPageRestoreReserve(page);
2394 2395 2396 2397 2398 2399 2400
		} else if (rc) {
			rc = vma_add_reservation(h, vma, address);
			if (unlikely(rc < 0))
				/*
				 * See above comment about rare out of
				 * memory condition.
				 */
2401
				ClearHPageRestoreReserve(page);
2402 2403 2404 2405 2406
		} else
			vma_end_reservation(h, vma, address);
	}
}

2407
struct page *alloc_huge_page(struct vm_area_struct *vma,
2408
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
2409
{
2410
	struct hugepage_subpool *spool = subpool_vma(vma);
2411
	struct hstate *h = hstate_vma(vma);
2412
	struct page *page;
2413 2414
	long map_chg, map_commit;
	long gbl_chg;
2415 2416
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
2417
	bool deferred_reserve;
2418

2419
	idx = hstate_index(h);
2420
	/*
2421 2422 2423
	 * Examine the region/reserve map to determine if the process
	 * has a reservation for the page to be allocated.  A return
	 * code of zero indicates a reservation exists (no change).
2424
	 */
2425 2426
	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
	if (map_chg < 0)
2427
		return ERR_PTR(-ENOMEM);
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438

	/*
	 * Processes that did not create the mapping will have no
	 * reserves as indicated by the region/reserve map. Check
	 * that the allocation will not exceed the subpool limit.
	 * Allocations for MAP_NORESERVE mappings also need to be
	 * checked against any subpool limit.
	 */
	if (map_chg || avoid_reserve) {
		gbl_chg = hugepage_subpool_get_pages(spool, 1);
		if (gbl_chg < 0) {
2439
			vma_end_reservation(h, vma, addr);
2440
			return ERR_PTR(-ENOSPC);
2441
		}
L
Linus Torvalds 已提交
2442

2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
		/*
		 * Even though there was no reservation in the region/reserve
		 * map, there could be reservations associated with the
		 * subpool that can be used.  This would be indicated if the
		 * return value of hugepage_subpool_get_pages() is zero.
		 * However, if avoid_reserve is specified we still avoid even
		 * the subpool reservations.
		 */
		if (avoid_reserve)
			gbl_chg = 1;
	}

2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
	/* If this allocation is not consuming a reservation, charge it now.
	 */
	deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
	if (deferred_reserve) {
		ret = hugetlb_cgroup_charge_cgroup_rsvd(
			idx, pages_per_huge_page(h), &h_cg);
		if (ret)
			goto out_subpool_put;
	}

2465
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2466
	if (ret)
2467
		goto out_uncharge_cgroup_reservation;
2468

2469
	spin_lock_irq(&hugetlb_lock);
2470 2471 2472 2473 2474 2475
	/*
	 * glb_chg is passed to indicate whether or not a page must be taken
	 * from the global free pool (global change).  gbl_chg == 0 indicates
	 * a reservation exists for the allocation.
	 */
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2476
	if (!page) {
2477
		spin_unlock_irq(&hugetlb_lock);
2478
		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2479 2480
		if (!page)
			goto out_uncharge_cgroup;
2481
		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2482
			SetHPageRestoreReserve(page);
2483 2484
			h->resv_huge_pages--;
		}
2485
		spin_lock_irq(&hugetlb_lock);
2486
		list_add(&page->lru, &h->hugepage_activelist);
2487
		/* Fall through */
K
Ken Chen 已提交
2488
	}
2489
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2490 2491 2492 2493 2494 2495 2496 2497
	/* If allocation is not consuming a reservation, also store the
	 * hugetlb_cgroup pointer on the page.
	 */
	if (deferred_reserve) {
		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
						  h_cg, page);
	}

2498
	spin_unlock_irq(&hugetlb_lock);
2499

2500
	hugetlb_set_page_subpool(page, spool);
2501

2502 2503
	map_commit = vma_commit_reservation(h, vma, addr);
	if (unlikely(map_chg > map_commit)) {
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
		/*
		 * The page was added to the reservation map between
		 * vma_needs_reservation and vma_commit_reservation.
		 * This indicates a race with hugetlb_reserve_pages.
		 * Adjust for the subpool count incremented above AND
		 * in hugetlb_reserve_pages for the same page.  Also,
		 * the reservation count added in hugetlb_reserve_pages
		 * no longer applies.
		 */
		long rsv_adjust;

		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
		hugetlb_acct_memory(h, -rsv_adjust);
2517 2518 2519
		if (deferred_reserve)
			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
					pages_per_huge_page(h), page);
2520
	}
2521
	return page;
2522 2523 2524

out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2525 2526 2527 2528
out_uncharge_cgroup_reservation:
	if (deferred_reserve)
		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
						    h_cg);
2529
out_subpool_put:
2530
	if (map_chg || avoid_reserve)
2531
		hugepage_subpool_put_pages(spool, 1);
2532
	vma_end_reservation(h, vma, addr);
2533
	return ERR_PTR(-ENOSPC);
2534 2535
}

2536 2537 2538
int alloc_bootmem_huge_page(struct hstate *h)
	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
int __alloc_bootmem_huge_page(struct hstate *h)
2539 2540
{
	struct huge_bootmem_page *m;
2541
	int nr_nodes, node;
2542

2543
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2544 2545
		void *addr;

2546
		addr = memblock_alloc_try_nid_raw(
2547
				huge_page_size(h), huge_page_size(h),
2548
				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2549 2550 2551 2552 2553 2554 2555
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
2556
			goto found;
2557 2558 2559 2560 2561
		}
	}
	return 0;

found:
2562
	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2563
	/* Put them into a private list first because mem_map is not up yet */
2564
	INIT_LIST_HEAD(&m->list);
2565 2566 2567 2568 2569
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

2570 2571 2572 2573
/*
 * Put bootmem huge pages into the standard lists after mem_map is up.
 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
 */
2574 2575 2576 2577 2578
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
2579
		struct page *page = virt_to_page(m);
2580
		struct hstate *h = m->hstate;
2581

2582
		VM_BUG_ON(!hstate_is_gigantic(h));
2583
		WARN_ON(page_count(page) != 1);
2584
		prep_compound_gigantic_page(page, huge_page_order(h));
2585
		WARN_ON(PageReserved(page));
2586
		prep_new_huge_page(h, page, page_to_nid(page));
2587 2588
		put_page(page); /* free it into the hugepage allocator */

2589
		/*
2590 2591 2592
		 * We need to restore the 'stolen' pages to totalram_pages
		 * in order to fix confusing memory reports from free(1) and
		 * other side-effects, like CommitLimit going negative.
2593
		 */
2594
		adjust_managed_page_count(page, pages_per_huge_page(h));
2595
		cond_resched();
2596 2597 2598
	}
}

2599
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
2600 2601
{
	unsigned long i;
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
	nodemask_t *node_alloc_noretry;

	if (!hstate_is_gigantic(h)) {
		/*
		 * Bit mask controlling how hard we retry per-node allocations.
		 * Ignore errors as lower level routines can deal with
		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
		 * time, we are likely in bigger trouble.
		 */
		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
						GFP_KERNEL);
	} else {
		/* allocations done at boot time */
		node_alloc_noretry = NULL;
	}

	/* bit mask controlling how hard we retry per-node allocations */
	if (node_alloc_noretry)
		nodes_clear(*node_alloc_noretry);
2621

2622
	for (i = 0; i < h->max_huge_pages; ++i) {
2623
		if (hstate_is_gigantic(h)) {
2624
			if (hugetlb_cma_size) {
2625
				pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2626
				goto free;
2627
			}
2628 2629
			if (!alloc_bootmem_huge_page(h))
				break;
2630
		} else if (!alloc_pool_huge_page(h,
2631 2632
					 &node_states[N_MEMORY],
					 node_alloc_noretry))
L
Linus Torvalds 已提交
2633
			break;
2634
		cond_resched();
L
Linus Torvalds 已提交
2635
	}
2636 2637 2638
	if (i < h->max_huge_pages) {
		char buf[32];

2639
		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2640 2641 2642 2643
		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
			h->max_huge_pages, buf, i);
		h->max_huge_pages = i;
	}
2644
free:
2645
	kfree(node_alloc_noretry);
2646 2647 2648 2649 2650 2651 2652
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
2653 2654 2655
		if (minimum_order > huge_page_order(h))
			minimum_order = huge_page_order(h);

2656
		/* oversize hugepages were init'ed in early boot */
2657
		if (!hstate_is_gigantic(h))
2658
			hugetlb_hstate_alloc_pages(h);
2659
	}
2660
	VM_BUG_ON(minimum_order == UINT_MAX);
2661 2662 2663 2664 2665 2666 2667
}

static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
2668
		char buf[32];
2669 2670

		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2671
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2672
			buf, h->free_huge_pages);
2673 2674 2675
	}
}

L
Linus Torvalds 已提交
2676
#ifdef CONFIG_HIGHMEM
2677 2678
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2679
{
2680
	int i;
2681
	LIST_HEAD(page_list);
2682

2683
	lockdep_assert_held(&hugetlb_lock);
2684
	if (hstate_is_gigantic(h))
2685 2686
		return;

2687 2688 2689
	/*
	 * Collect pages to be freed on a list, and free after dropping lock
	 */
2690
	for_each_node_mask(i, *nodes_allowed) {
2691
		struct page *page, *next;
2692 2693 2694
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
2695
				goto out;
L
Linus Torvalds 已提交
2696 2697
			if (PageHighMem(page))
				continue;
2698
			remove_hugetlb_page(h, page, false);
2699
			list_add(&page->lru, &page_list);
L
Linus Torvalds 已提交
2700 2701
		}
	}
2702 2703

out:
2704
	spin_unlock_irq(&hugetlb_lock);
2705
	update_and_free_pages_bulk(h, &page_list);
2706
	spin_lock_irq(&hugetlb_lock);
L
Linus Torvalds 已提交
2707 2708
}
#else
2709 2710
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2711 2712 2713 2714
{
}
#endif

2715 2716 2717 2718 2719
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
2720 2721
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
2722
{
2723
	int nr_nodes, node;
2724

2725
	lockdep_assert_held(&hugetlb_lock);
2726 2727
	VM_BUG_ON(delta != -1 && delta != 1);

2728 2729 2730 2731
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
2732
		}
2733 2734 2735 2736 2737
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
2738
		}
2739 2740
	}
	return 0;
2741

2742 2743 2744 2745
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
2746 2747
}

2748
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2749
static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2750
			      nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2751
{
2752
	unsigned long min_count, ret;
2753 2754
	struct page *page;
	LIST_HEAD(page_list);
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);

	/*
	 * Bit mask controlling how hard we retry per-node allocations.
	 * If we can not allocate the bit mask, do not attempt to allocate
	 * the requested huge pages.
	 */
	if (node_alloc_noretry)
		nodes_clear(*node_alloc_noretry);
	else
		return -ENOMEM;
L
Linus Torvalds 已提交
2766

2767 2768 2769 2770 2771
	/*
	 * resize_lock mutex prevents concurrent adjustments to number of
	 * pages in hstate via the proc/sysfs interfaces.
	 */
	mutex_lock(&h->resize_lock);
2772
	flush_free_hpage_work(h);
2773
	spin_lock_irq(&hugetlb_lock);
2774

2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
	/*
	 * Check for a node specific request.
	 * Changing node specific huge page count may require a corresponding
	 * change to the global count.  In any case, the passed node mask
	 * (nodes_allowed) will restrict alloc/free to the specified node.
	 */
	if (nid != NUMA_NO_NODE) {
		unsigned long old_count = count;

		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		/*
		 * User may have specified a large count value which caused the
		 * above calculation to overflow.  In this case, they wanted
		 * to allocate as many huge pages as possible.  Set count to
		 * largest possible value to align with their intention.
		 */
		if (count < old_count)
			count = ULONG_MAX;
	}

2795 2796 2797 2798 2799 2800 2801 2802 2803
	/*
	 * Gigantic pages runtime allocation depend on the capability for large
	 * page range allocation.
	 * If the system does not provide this feature, return an error when
	 * the user tries to allocate gigantic pages but let the user free the
	 * boottime allocated gigantic pages.
	 */
	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
		if (count > persistent_huge_pages(h)) {
2804
			spin_unlock_irq(&hugetlb_lock);
2805
			mutex_unlock(&h->resize_lock);
2806
			NODEMASK_FREE(node_alloc_noretry);
2807 2808 2809 2810
			return -EINVAL;
		}
		/* Fall through to decrease pool */
	}
2811

2812 2813 2814 2815
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
2816
	 *
2817
	 * We might race with alloc_surplus_huge_page() here and be unable
2818 2819 2820 2821
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
2822
	 */
2823
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2824
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2825 2826 2827
			break;
	}

2828
	while (count > persistent_huge_pages(h)) {
2829 2830 2831 2832 2833
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
2834
		spin_unlock_irq(&hugetlb_lock);
2835 2836 2837 2838

		/* yield cpu to avoid soft lockup */
		cond_resched();

2839 2840
		ret = alloc_pool_huge_page(h, nodes_allowed,
						node_alloc_noretry);
2841
		spin_lock_irq(&hugetlb_lock);
2842 2843 2844
		if (!ret)
			goto out;

2845 2846 2847
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
2848 2849 2850 2851 2852 2853 2854 2855
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
2856 2857 2858 2859
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
2860
	 * alloc_surplus_huge_page() is checking the global counter,
2861 2862 2863
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
2864
	 */
2865
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2866
	min_count = max(count, min_count);
2867
	try_to_free_low(h, min_count, nodes_allowed);
2868 2869 2870 2871

	/*
	 * Collect pages to be removed on list without dropping lock
	 */
2872
	while (min_count < persistent_huge_pages(h)) {
2873 2874
		page = remove_pool_huge_page(h, nodes_allowed, 0);
		if (!page)
L
Linus Torvalds 已提交
2875
			break;
2876 2877

		list_add(&page->lru, &page_list);
L
Linus Torvalds 已提交
2878
	}
2879
	/* free the pages after dropping lock */
2880
	spin_unlock_irq(&hugetlb_lock);
2881
	update_and_free_pages_bulk(h, &page_list);
2882
	flush_free_hpage_work(h);
2883
	spin_lock_irq(&hugetlb_lock);
2884

2885
	while (count < persistent_huge_pages(h)) {
2886
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2887 2888 2889
			break;
	}
out:
2890
	h->max_huge_pages = persistent_huge_pages(h);
2891
	spin_unlock_irq(&hugetlb_lock);
2892
	mutex_unlock(&h->resize_lock);
2893

2894 2895
	NODEMASK_FREE(node_alloc_noretry);

2896
	return 0;
L
Linus Torvalds 已提交
2897 2898
}

2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

2909 2910 2911
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2912 2913
{
	int i;
2914

2915
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2916 2917 2918
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
2919
			return &hstates[i];
2920 2921 2922
		}

	return kobj_to_node_hstate(kobj, nidp);
2923 2924
}

2925
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2926 2927
					struct kobj_attribute *attr, char *buf)
{
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
2939
}
2940

2941 2942 2943
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
					   struct hstate *h, int nid,
					   unsigned long count, size_t len)
2944 2945
{
	int err;
2946
	nodemask_t nodes_allowed, *n_mask;
2947

2948 2949
	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
		return -EINVAL;
2950

2951 2952 2953 2954 2955
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
2956 2957 2958 2959 2960
				init_nodemask_of_mempolicy(&nodes_allowed)))
			n_mask = &node_states[N_MEMORY];
		else
			n_mask = &nodes_allowed;
	} else {
2961
		/*
2962 2963
		 * Node specific request.  count adjustment happens in
		 * set_max_huge_pages() after acquiring hugetlb_lock.
2964
		 */
2965 2966
		init_nodemask_of_node(&nodes_allowed, nid);
		n_mask = &nodes_allowed;
2967
	}
2968

2969
	err = set_max_huge_pages(h, count, nid, n_mask);
2970

2971
	return err ? err : len;
2972 2973
}

2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
					 struct kobject *kobj, const char *buf,
					 size_t len)
{
	struct hstate *h;
	unsigned long count;
	int nid;
	int err;

	err = kstrtoul(buf, 10, &count);
	if (err)
		return err;

	h = kobj_to_hstate(kobj, &nid);
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
}

2991 2992 2993 2994 2995 2996 2997 2998 2999
static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
3000
	return nr_hugepages_store_common(false, kobj, buf, len);
3001 3002 3003
}
HSTATE_ATTR(nr_hugepages);

3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
3019
	return nr_hugepages_store_common(true, kobj, buf, len);
3020 3021 3022 3023 3024
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


3025 3026 3027
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
3028
	struct hstate *h = kobj_to_hstate(kobj, NULL);
3029 3030
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
3031

3032 3033 3034 3035 3036
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
3037
	struct hstate *h = kobj_to_hstate(kobj, NULL);
3038

3039
	if (hstate_is_gigantic(h))
3040 3041
		return -EINVAL;

3042
	err = kstrtoul(buf, 10, &input);
3043
	if (err)
3044
		return err;
3045

3046
	spin_lock_irq(&hugetlb_lock);
3047
	h->nr_overcommit_huge_pages = input;
3048
	spin_unlock_irq(&hugetlb_lock);
3049 3050 3051 3052 3053 3054 3055 3056

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
3068 3069 3070 3071 3072 3073
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
3074
	struct hstate *h = kobj_to_hstate(kobj, NULL);
3075 3076 3077 3078 3079 3080 3081
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
3093 3094 3095 3096 3097 3098 3099 3100 3101
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
3102 3103 3104
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
3105 3106 3107
	NULL,
};

3108
static const struct attribute_group hstate_attr_group = {
3109 3110 3111
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
3112 3113
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
3114
				    const struct attribute_group *hstate_attr_group)
3115 3116
{
	int retval;
3117
	int hi = hstate_index(h);
3118

3119 3120
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
3121 3122
		return -ENOMEM;

3123
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3124
	if (retval) {
3125
		kobject_put(hstate_kobjs[hi]);
3126 3127
		hstate_kobjs[hi] = NULL;
	}
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
3142 3143
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
3144
		if (err)
3145
			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3146 3147 3148
	}
}

3149 3150 3151 3152
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3153 3154 3155
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
3156 3157 3158 3159 3160 3161
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
3162
static struct node_hstate node_hstates[MAX_NUMNODES];
3163 3164

/*
3165
 * A subset of global hstate attributes for node devices
3166 3167 3168 3169 3170 3171 3172 3173
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

3174
static const struct attribute_group per_node_hstate_attr_group = {
3175 3176 3177 3178
	.attrs = per_node_hstate_attrs,
};

/*
3179
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
3202
 * Unregister hstate attributes from a single node device.
3203 3204
 * No-op if no hstate attributes attached.
 */
3205
static void hugetlb_unregister_node(struct node *node)
3206 3207
{
	struct hstate *h;
3208
	struct node_hstate *nhs = &node_hstates[node->dev.id];
3209 3210

	if (!nhs->hugepages_kobj)
3211
		return;		/* no hstate attributes */
3212

3213 3214 3215 3216 3217
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
3218
		}
3219
	}
3220 3221 3222 3223 3224 3225 3226

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}


/*
3227
 * Register hstate attributes for a single node device.
3228 3229
 * No-op if attributes already registered.
 */
3230
static void hugetlb_register_node(struct node *node)
3231 3232
{
	struct hstate *h;
3233
	struct node_hstate *nhs = &node_hstates[node->dev.id];
3234 3235 3236 3237 3238 3239
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3240
							&node->dev.kobj);
3241 3242 3243 3244 3245 3246 3247 3248
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
3249
			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3250
				h->name, node->dev.id);
3251 3252 3253 3254 3255 3256 3257
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
3258
 * hugetlb init time:  register hstate attributes for all registered node
3259 3260
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
3261
 */
3262
static void __init hugetlb_register_all_nodes(void)
3263 3264 3265
{
	int nid;

3266
	for_each_node_state(nid, N_MEMORY) {
3267
		struct node *node = node_devices[nid];
3268
		if (node->dev.id == nid)
3269 3270 3271 3272
			hugetlb_register_node(node);
	}

	/*
3273
	 * Let the node device driver know we're here so it can
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_register_all_nodes(void) { }

#endif

3293 3294
static int __init hugetlb_init(void)
{
3295 3296
	int i;

3297 3298 3299
	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
			__NR_HPAGEFLAGS);

3300 3301 3302
	if (!hugepages_supported()) {
		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3303
		return 0;
3304
	}
3305

3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
	/*
	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
	 * architectures depend on setup being done here.
	 */
	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
	if (!parsed_default_hugepagesz) {
		/*
		 * If we did not parse a default huge page size, set
		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
		 * number of huge pages for this default size was implicitly
		 * specified, set that here as well.
		 * Note that the implicit setting will overwrite an explicit
		 * setting.  A warning will be printed in this case.
		 */
		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
		if (default_hstate_max_huge_pages) {
			if (default_hstate.max_huge_pages) {
				char buf[32];

				string_get_size(huge_page_size(&default_hstate),
					1, STRING_UNITS_2, buf, 32);
				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
					default_hstate.max_huge_pages, buf);
				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
					default_hstate_max_huge_pages);
			}
			default_hstate.max_huge_pages =
				default_hstate_max_huge_pages;
3334
		}
3335
	}
3336

3337
	hugetlb_cma_check();
3338
	hugetlb_init_hstates();
3339
	gather_bootmem_prealloc();
3340 3341 3342
	report_hugepages();

	hugetlb_sysfs_init();
3343
	hugetlb_register_all_nodes();
3344
	hugetlb_cgroup_file_init();
3345

3346 3347 3348 3349 3350
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
3351
	hugetlb_fault_mutex_table =
3352 3353
		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
			      GFP_KERNEL);
3354
	BUG_ON(!hugetlb_fault_mutex_table);
3355 3356

	for (i = 0; i < num_fault_mutexes; i++)
3357
		mutex_init(&hugetlb_fault_mutex_table[i]);
3358 3359
	return 0;
}
3360
subsys_initcall(hugetlb_init);
3361

3362 3363
/* Overwritten by architectures with more huge page sizes */
bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3364
{
3365
	return size == HPAGE_SIZE;
3366 3367
}

3368
void __init hugetlb_add_hstate(unsigned int order)
3369 3370
{
	struct hstate *h;
3371 3372
	unsigned long i;

3373 3374 3375
	if (size_to_hstate(PAGE_SIZE << order)) {
		return;
	}
3376
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3377
	BUG_ON(order == 0);
3378
	h = &hstates[hugetlb_max_hstate++];
3379
	mutex_init(&h->resize_lock);
3380 3381
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3382 3383 3384 3385
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3386
	INIT_LIST_HEAD(&h->hugepage_activelist);
3387 3388
	h->next_nid_to_alloc = first_memory_node;
	h->next_nid_to_free = first_memory_node;
3389 3390
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
3391
	hugetlb_vmemmap_init(h);
3392

3393 3394 3395
	parsed_hstate = h;
}

3396 3397 3398 3399 3400 3401 3402 3403
/*
 * hugepages command line processing
 * hugepages normally follows a valid hugepagsz or default_hugepagsz
 * specification.  If not, ignore the hugepages value.  hugepages can also
 * be the first huge page command line  option in which case it implicitly
 * specifies the number of huge pages for the default size.
 */
static int __init hugepages_setup(char *s)
3404 3405
{
	unsigned long *mhp;
3406
	static unsigned long *last_mhp;
3407

3408
	if (!parsed_valid_hugepagesz) {
3409
		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3410
		parsed_valid_hugepagesz = true;
3411
		return 0;
3412
	}
3413

3414
	/*
3415 3416 3417 3418
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
	 * yet, so this hugepages= parameter goes to the "default hstate".
	 * Otherwise, it goes with the previously parsed hugepagesz or
	 * default_hugepagesz.
3419
	 */
3420
	else if (!hugetlb_max_hstate)
3421 3422 3423 3424
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

3425
	if (mhp == last_mhp) {
3426 3427
		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
		return 0;
3428 3429
	}

3430 3431 3432
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

3433 3434 3435 3436 3437
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
3438
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3439 3440 3441 3442
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

3443 3444
	return 1;
}
3445
__setup("hugepages=", hugepages_setup);
3446

3447 3448 3449 3450 3451 3452 3453
/*
 * hugepagesz command line processing
 * A specific huge page size can only be specified once with hugepagesz.
 * hugepagesz is followed by hugepages on the command line.  The global
 * variable 'parsed_valid_hugepagesz' is used to determine if prior
 * hugepagesz argument was valid.
 */
3454
static int __init hugepagesz_setup(char *s)
3455
{
3456
	unsigned long size;
3457 3458 3459
	struct hstate *h;

	parsed_valid_hugepagesz = false;
3460 3461 3462
	size = (unsigned long)memparse(s, NULL);

	if (!arch_hugetlb_valid_size(size)) {
3463
		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3464 3465 3466
		return 0;
	}

3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
	h = size_to_hstate(size);
	if (h) {
		/*
		 * hstate for this size already exists.  This is normally
		 * an error, but is allowed if the existing hstate is the
		 * default hstate.  More specifically, it is only allowed if
		 * the number of huge pages for the default hstate was not
		 * previously specified.
		 */
		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
		    default_hstate.max_huge_pages) {
			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
			return 0;
		}

		/*
		 * No need to call hugetlb_add_hstate() as hstate already
		 * exists.  But, do set parsed_hstate so that a following
		 * hugepages= parameter will be applied to this hstate.
		 */
		parsed_hstate = h;
		parsed_valid_hugepagesz = true;
		return 1;
3490 3491
	}

3492
	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3493
	parsed_valid_hugepagesz = true;
3494 3495
	return 1;
}
3496 3497
__setup("hugepagesz=", hugepagesz_setup);

3498 3499 3500 3501
/*
 * default_hugepagesz command line input
 * Only one instance of default_hugepagesz allowed on command line.
 */
3502
static int __init default_hugepagesz_setup(char *s)
3503
{
3504 3505
	unsigned long size;

3506 3507 3508 3509 3510 3511
	parsed_valid_hugepagesz = false;
	if (parsed_default_hugepagesz) {
		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
		return 0;
	}

3512 3513 3514
	size = (unsigned long)memparse(s, NULL);

	if (!arch_hugetlb_valid_size(size)) {
3515
		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3516 3517 3518
		return 0;
	}

3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
	parsed_valid_hugepagesz = true;
	parsed_default_hugepagesz = true;
	default_hstate_idx = hstate_index(size_to_hstate(size));

	/*
	 * The number of default huge pages (for this size) could have been
	 * specified as the first hugetlb parameter: hugepages=X.  If so,
	 * then default_hstate_max_huge_pages is set.  If the default huge
	 * page size is gigantic (>= MAX_ORDER), then the pages must be
	 * allocated here from bootmem allocator.
	 */
	if (default_hstate_max_huge_pages) {
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
		if (hstate_is_gigantic(&default_hstate))
			hugetlb_hstate_alloc_pages(&default_hstate);
		default_hstate_max_huge_pages = 0;
	}

3538 3539
	return 1;
}
3540
__setup("default_hugepagesz=", default_hugepagesz_setup);
3541

3542
static unsigned int allowed_mems_nr(struct hstate *h)
3543 3544 3545
{
	int node;
	unsigned int nr = 0;
3546 3547 3548 3549 3550
	nodemask_t *mpol_allowed;
	unsigned int *array = h->free_huge_pages_node;
	gfp_t gfp_mask = htlb_alloc_mask(h);

	mpol_allowed = policy_nodemask_current(gfp_mask);
3551

3552 3553 3554 3555 3556
	for_each_node_mask(node, cpuset_current_mems_allowed) {
		if (!mpol_allowed ||
		    (mpol_allowed && node_isset(node, *mpol_allowed)))
			nr += array[node];
	}
3557 3558 3559 3560 3561

	return nr;
}

#ifdef CONFIG_SYSCTL
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
					  void *buffer, size_t *length,
					  loff_t *ppos, unsigned long *out)
{
	struct ctl_table dup_table;

	/*
	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
	 * can duplicate the @table and alter the duplicate of it.
	 */
	dup_table = *table;
	dup_table.data = out;

	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
}

3578 3579
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
3580
			 void *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
3581
{
3582
	struct hstate *h = &default_hstate;
3583
	unsigned long tmp = h->max_huge_pages;
3584
	int ret;
3585

3586
	if (!hugepages_supported())
3587
		return -EOPNOTSUPP;
3588

3589 3590
	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
					     &tmp);
3591 3592
	if (ret)
		goto out;
3593

3594 3595 3596
	if (write)
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
						  NUMA_NO_NODE, tmp, *length);
3597 3598
out:
	return ret;
L
Linus Torvalds 已提交
3599
}
3600

3601
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3602
			  void *buffer, size_t *length, loff_t *ppos)
3603 3604 3605 3606 3607 3608 3609 3610
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3611
			  void *buffer, size_t *length, loff_t *ppos)
3612 3613 3614 3615 3616 3617
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

3618
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3619
		void *buffer, size_t *length, loff_t *ppos)
3620
{
3621
	struct hstate *h = &default_hstate;
3622
	unsigned long tmp;
3623
	int ret;
3624

3625
	if (!hugepages_supported())
3626
		return -EOPNOTSUPP;
3627

3628
	tmp = h->nr_overcommit_huge_pages;
3629

3630
	if (write && hstate_is_gigantic(h))
3631 3632
		return -EINVAL;

3633 3634
	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
					     &tmp);
3635 3636
	if (ret)
		goto out;
3637 3638

	if (write) {
3639
		spin_lock_irq(&hugetlb_lock);
3640
		h->nr_overcommit_huge_pages = tmp;
3641
		spin_unlock_irq(&hugetlb_lock);
3642
	}
3643 3644
out:
	return ret;
3645 3646
}

L
Linus Torvalds 已提交
3647 3648
#endif /* CONFIG_SYSCTL */

3649
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
3650
{
3651 3652 3653
	struct hstate *h;
	unsigned long total = 0;

3654 3655
	if (!hugepages_supported())
		return;
3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676

	for_each_hstate(h) {
		unsigned long count = h->nr_huge_pages;

		total += (PAGE_SIZE << huge_page_order(h)) * count;

		if (h == &default_hstate)
			seq_printf(m,
				   "HugePages_Total:   %5lu\n"
				   "HugePages_Free:    %5lu\n"
				   "HugePages_Rsvd:    %5lu\n"
				   "HugePages_Surp:    %5lu\n"
				   "Hugepagesize:   %8lu kB\n",
				   count,
				   h->free_huge_pages,
				   h->resv_huge_pages,
				   h->surplus_huge_pages,
				   (PAGE_SIZE << huge_page_order(h)) / 1024);
	}

	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
L
Linus Torvalds 已提交
3677 3678
}

3679
int hugetlb_report_node_meminfo(char *buf, int len, int nid)
L
Linus Torvalds 已提交
3680
{
3681
	struct hstate *h = &default_hstate;
3682

3683 3684
	if (!hugepages_supported())
		return 0;
3685 3686 3687 3688 3689 3690 3691 3692

	return sysfs_emit_at(buf, len,
			     "Node %d HugePages_Total: %5u\n"
			     "Node %d HugePages_Free:  %5u\n"
			     "Node %d HugePages_Surp:  %5u\n",
			     nid, h->nr_huge_pages_node[nid],
			     nid, h->free_huge_pages_node[nid],
			     nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
3693 3694
}

3695 3696 3697 3698 3699
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

3700 3701 3702
	if (!hugepages_supported())
		return;

3703 3704 3705 3706 3707 3708 3709 3710 3711 3712
	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

3713 3714 3715 3716 3717 3718
void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
{
	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
3719 3720 3721
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
3722 3723 3724 3725 3726 3727
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
3728 3729
}

3730
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
3731 3732 3733
{
	int ret = -ENOMEM;

3734
	spin_lock_irq(&hugetlb_lock);
M
Mel Gorman 已提交
3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
3751 3752 3753 3754 3755 3756
	 *
	 * Apart from cpuset, we also have memory policy mechanism that
	 * also determines from which node the kernel will allocate memory
	 * in a NUMA system. So similar to cpuset, we also should consider
	 * the memory policy of the current task. Similar to the description
	 * above.
M
Mel Gorman 已提交
3757 3758
	 */
	if (delta > 0) {
3759
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
3760 3761
			goto out;

3762
		if (delta > allowed_mems_nr(h)) {
3763
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
3764 3765 3766 3767 3768 3769
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
3770
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
3771 3772

out:
3773
	spin_unlock_irq(&hugetlb_lock);
M
Mel Gorman 已提交
3774 3775 3776
	return ret;
}

3777 3778
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
3779
	struct resv_map *resv = vma_resv_map(vma);
3780 3781 3782 3783 3784

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
3785
	 * has a reference to the reservation map it cannot disappear until
3786 3787 3788
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
3789 3790
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
3791
		kref_get(&resv->refs);
3792
	}
3793 3794
}

3795 3796
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
3797
	struct hstate *h = hstate_vma(vma);
3798
	struct resv_map *resv = vma_resv_map(vma);
3799
	struct hugepage_subpool *spool = subpool_vma(vma);
3800
	unsigned long reserve, start, end;
3801
	long gbl_reserve;
3802

3803 3804
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
3805

3806 3807
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
3808

3809
	reserve = (end - start) - region_count(resv, start, end);
3810
	hugetlb_cgroup_uncharge_counter(resv, start, end);
3811
	if (reserve) {
3812 3813 3814 3815 3816 3817
		/*
		 * Decrement reserve counts.  The global reserve count may be
		 * adjusted if the subpool has a minimum size.
		 */
		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
		hugetlb_acct_memory(h, -gbl_reserve);
3818
	}
3819 3820

	kref_put(&resv->refs, resv_map_release);
3821 3822
}

3823 3824 3825 3826 3827 3828 3829
static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
{
	if (addr & ~(huge_page_mask(hstate_vma(vma))))
		return -EINVAL;
	return 0;
}

3830 3831 3832 3833 3834 3835 3836
static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate = hstate_vma(vma);

	return 1UL << huge_page_shift(hstate);
}

L
Linus Torvalds 已提交
3837 3838 3839 3840 3841 3842
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
3843
static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
L
Linus Torvalds 已提交
3844 3845
{
	BUG();
N
Nick Piggin 已提交
3846
	return 0;
L
Linus Torvalds 已提交
3847 3848
}

3849 3850 3851 3852 3853 3854 3855
/*
 * When a new function is introduced to vm_operations_struct and added
 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
 * This is because under System V memory model, mappings created via
 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
 * their original vm_ops are overwritten with shm_vm_ops.
 */
3856
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
3857
	.fault = hugetlb_vm_op_fault,
3858
	.open = hugetlb_vm_op_open,
3859
	.close = hugetlb_vm_op_close,
3860
	.split = hugetlb_vm_op_split,
3861
	.pagesize = hugetlb_vm_op_pagesize,
L
Linus Torvalds 已提交
3862 3863
};

3864 3865
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
3866 3867 3868
{
	pte_t entry;

3869
	if (writable) {
3870 3871
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
3872
	} else {
3873 3874
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
3875 3876 3877
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
3878
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
3879 3880 3881 3882

	return entry;
}

3883 3884 3885 3886 3887
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

3888
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3889
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3890
		update_mmu_cache(vma, address, ptep);
3891 3892
}

3893
bool is_hugetlb_entry_migration(pte_t pte)
3894 3895 3896 3897
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
3898
		return false;
3899
	swp = pte_to_swp_entry(pte);
3900
	if (is_migration_entry(swp))
3901
		return true;
3902
	else
3903
		return false;
3904 3905
}

3906
static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3907 3908 3909 3910
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
3911
		return false;
3912
	swp = pte_to_swp_entry(pte);
3913
	if (is_hwpoison_entry(swp))
3914
		return true;
3915
	else
3916
		return false;
3917
}
3918

D
David Gibson 已提交
3919 3920 3921
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
3922
	pte_t *src_pte, *dst_pte, entry, dst_entry;
D
David Gibson 已提交
3923
	struct page *ptepage;
3924
	unsigned long addr;
3925
	int cow;
3926 3927
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3928
	struct address_space *mapping = vma->vm_file->f_mapping;
3929
	struct mmu_notifier_range range;
3930
	int ret = 0;
3931 3932

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
3933

3934
	if (cow) {
3935
		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3936
					vma->vm_start,
3937 3938
					vma->vm_end);
		mmu_notifier_invalidate_range_start(&range);
3939 3940 3941 3942 3943 3944 3945 3946
	} else {
		/*
		 * For shared mappings i_mmap_rwsem must be held to call
		 * huge_pte_alloc, otherwise the returned ptep could go
		 * away if part of a shared pmd and another thread calls
		 * huge_pmd_unshare.
		 */
		i_mmap_lock_read(mapping);
3947
	}
3948

3949
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3950
		spinlock_t *src_ptl, *dst_ptl;
3951
		src_pte = huge_pte_offset(src, addr, sz);
H
Hugh Dickins 已提交
3952 3953
		if (!src_pte)
			continue;
3954
		dst_pte = huge_pte_alloc(dst, addr, sz);
3955 3956 3957 3958
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
3959

3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970
		/*
		 * If the pagetables are shared don't copy or take references.
		 * dst_pte == src_pte is the common case of src/dest sharing.
		 *
		 * However, src could have 'unshared' and dst shares with
		 * another vma.  If dst_pte !none, this implies sharing.
		 * Check here before taking page table lock, and once again
		 * after taking the lock below.
		 */
		dst_entry = huge_ptep_get(dst_pte);
		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3971 3972
			continue;

3973 3974 3975
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3976
		entry = huge_ptep_get(src_pte);
3977 3978 3979 3980 3981 3982 3983
		dst_entry = huge_ptep_get(dst_pte);
		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
			/*
			 * Skip if src entry none.  Also, skip in the
			 * unlikely case dst entry !none as this implies
			 * sharing with another vma.
			 */
3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995
			;
		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
				    is_hugetlb_entry_hwpoisoned(entry))) {
			swp_entry_t swp_entry = pte_to_swp_entry(entry);

			if (is_write_migration_entry(swp_entry) && cow) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&swp_entry);
				entry = swp_entry_to_pte(swp_entry);
3996 3997
				set_huge_swap_pte_at(src, addr, src_pte,
						     entry, sz);
3998
			}
3999
			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4000
		} else {
4001
			if (cow) {
4002 4003 4004 4005 4006
				/*
				 * No need to notify as we are downgrading page
				 * table protection not changing it to point
				 * to a new page.
				 *
4007
				 * See Documentation/vm/mmu_notifier.rst
4008
				 */
4009
				huge_ptep_set_wrprotect(src, addr, src_pte);
4010
			}
4011
			entry = huge_ptep_get(src_pte);
4012 4013
			ptepage = pte_page(entry);
			get_page(ptepage);
4014
			page_dup_rmap(ptepage, true);
4015
			set_huge_pte_at(dst, addr, dst_pte, entry);
4016
			hugetlb_count_add(pages_per_huge_page(h), dst);
4017
		}
4018 4019
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
4020 4021
	}

4022
	if (cow)
4023
		mmu_notifier_invalidate_range_end(&range);
4024 4025
	else
		i_mmap_unlock_read(mapping);
4026 4027

	return ret;
D
David Gibson 已提交
4028 4029
}

4030 4031 4032
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
4033 4034 4035
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
4036
	pte_t *ptep;
D
David Gibson 已提交
4037
	pte_t pte;
4038
	spinlock_t *ptl;
D
David Gibson 已提交
4039
	struct page *page;
4040 4041
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
4042
	struct mmu_notifier_range range;
4043
	bool force_flush = false;
4044

D
David Gibson 已提交
4045
	WARN_ON(!is_vm_hugetlb_page(vma));
4046 4047
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
4048

4049 4050 4051 4052
	/*
	 * This is a hugetlb vma, all the pte entries should point
	 * to huge page.
	 */
4053
	tlb_change_page_size(tlb, sz);
4054
	tlb_start_vma(tlb, vma);
4055 4056 4057 4058

	/*
	 * If sharing possible, alert mmu notifiers of worst case.
	 */
4059 4060
	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
				end);
4061 4062
	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
	mmu_notifier_invalidate_range_start(&range);
4063 4064
	address = start;
	for (; address < end; address += sz) {
4065
		ptep = huge_pte_offset(mm, address, sz);
A
Adam Litke 已提交
4066
		if (!ptep)
4067 4068
			continue;

4069
		ptl = huge_pte_lock(h, mm, ptep);
4070
		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4071
			spin_unlock(ptl);
4072 4073
			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
			force_flush = true;
4074 4075
			continue;
		}
4076

4077
		pte = huge_ptep_get(ptep);
4078 4079 4080 4081
		if (huge_pte_none(pte)) {
			spin_unlock(ptl);
			continue;
		}
4082 4083

		/*
4084 4085
		 * Migrating hugepage or HWPoisoned hugepage is already
		 * unmapped and its refcount is dropped, so just clear pte here.
4086
		 */
4087
		if (unlikely(!pte_present(pte))) {
4088
			huge_pte_clear(mm, address, ptep, sz);
4089 4090
			spin_unlock(ptl);
			continue;
4091
		}
4092 4093

		page = pte_page(pte);
4094 4095 4096 4097 4098 4099
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
4100 4101 4102 4103
			if (page != ref_page) {
				spin_unlock(ptl);
				continue;
			}
4104 4105 4106 4107 4108 4109 4110 4111
			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

4112
		pte = huge_ptep_get_and_clear(mm, address, ptep);
4113
		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4114
		if (huge_pte_dirty(pte))
4115
			set_page_dirty(page);
4116

4117
		hugetlb_count_sub(pages_per_huge_page(h), mm);
4118
		page_remove_rmap(page, true);
4119

4120
		spin_unlock(ptl);
4121
		tlb_remove_page_size(tlb, page, huge_page_size(h));
4122 4123 4124 4125 4126
		/*
		 * Bail out after unmapping reference page if supplied
		 */
		if (ref_page)
			break;
4127
	}
4128
	mmu_notifier_invalidate_range_end(&range);
4129
	tlb_end_vma(tlb, vma);
4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145

	/*
	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
	 * could defer the flush until now, since by holding i_mmap_rwsem we
	 * guaranteed that the last refernece would not be dropped. But we must
	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
	 * dropped and the last reference to the shared PMDs page might be
	 * dropped as well.
	 *
	 * In theory we could defer the freeing of the PMD pages as well, but
	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
	 * detect sharing, so we cannot defer the release of the page either.
	 * Instead, do flush now.
	 */
	if (force_flush)
		tlb_flush_mmu_tlbonly(tlb);
L
Linus Torvalds 已提交
4146
}
D
David Gibson 已提交
4147

4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
4160
	 * is to clear it before releasing the i_mmap_rwsem. This works
4161
	 * because in the context this is called, the VMA is about to be
4162
	 * destroyed and the i_mmap_rwsem is held.
4163 4164 4165 4166
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

4167
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4168
			  unsigned long end, struct page *ref_page)
4169
{
4170 4171
	struct mm_struct *mm;
	struct mmu_gather tlb;
4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
	unsigned long tlb_start = start;
	unsigned long tlb_end = end;

	/*
	 * If shared PMDs were possibly used within this vma range, adjust
	 * start/end for worst case tlb flushing.
	 * Note that we can not be sure if PMDs are shared until we try to
	 * unmap pages.  However, we want to make sure TLB flushing covers
	 * the largest possible range.
	 */
	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4183 4184 4185

	mm = vma->vm_mm;

4186
	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4187
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4188
	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4189 4190
}

4191 4192 4193 4194 4195 4196
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
4197 4198
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
			      struct page *page, unsigned long address)
4199
{
4200
	struct hstate *h = hstate_vma(vma);
4201 4202 4203 4204 4205 4206 4207 4208
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
4209
	address = address & huge_page_mask(h);
4210 4211
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
4212
	mapping = vma->vm_file->f_mapping;
4213

4214 4215 4216 4217 4218
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
4219
	i_mmap_lock_write(mapping);
4220
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4221 4222 4223 4224
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

4225 4226 4227 4228 4229 4230 4231 4232
		/*
		 * Shared VMAs have their own reserves and do not affect
		 * MAP_PRIVATE accounting but it is possible that a shared
		 * VMA is using the same page so check and skip such VMAs.
		 */
		if (iter_vma->vm_flags & VM_MAYSHARE)
			continue;

4233 4234 4235 4236 4237 4238 4239 4240
		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4241 4242
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
4243
	}
4244
	i_mmap_unlock_write(mapping);
4245 4246
}

4247 4248
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
4249 4250 4251
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
4252
 */
4253
static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4254
		       unsigned long address, pte_t *ptep,
4255
		       struct page *pagecache_page, spinlock_t *ptl)
4256
{
4257
	pte_t pte;
4258
	struct hstate *h = hstate_vma(vma);
4259
	struct page *old_page, *new_page;
4260 4261
	int outside_reserve = 0;
	vm_fault_t ret = 0;
4262
	unsigned long haddr = address & huge_page_mask(h);
4263
	struct mmu_notifier_range range;
4264

4265
	pte = huge_ptep_get(ptep);
4266 4267
	old_page = pte_page(pte);

4268
retry_avoidcopy:
4269 4270
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
4271
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4272
		page_move_anon_rmap(old_page, vma);
4273
		set_huge_ptep_writable(vma, haddr, ptep);
N
Nick Piggin 已提交
4274
		return 0;
4275 4276
	}

4277 4278 4279 4280 4281 4282 4283 4284 4285
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
4286
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4287 4288 4289
			old_page != pagecache_page)
		outside_reserve = 1;

4290
	get_page(old_page);
4291

4292 4293 4294 4295
	/*
	 * Drop page table lock as buddy allocator may be called. It will
	 * be acquired again before returning to the caller, as expected.
	 */
4296
	spin_unlock(ptl);
4297
	new_page = alloc_huge_page(vma, haddr, outside_reserve);
4298

4299
	if (IS_ERR(new_page)) {
4300 4301 4302 4303 4304 4305 4306 4307
		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
4308 4309 4310 4311
			struct address_space *mapping = vma->vm_file->f_mapping;
			pgoff_t idx;
			u32 hash;

4312
			put_page(old_page);
4313
			BUG_ON(huge_pte_none(pte));
4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327
			/*
			 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
			 * unmapping.  unmapping needs to hold i_mmap_rwsem
			 * in write mode.  Dropping i_mmap_rwsem in read mode
			 * here is OK as COW mappings do not interact with
			 * PMD sharing.
			 *
			 * Reacquire both after unmap operation.
			 */
			idx = vma_hugecache_offset(h, vma, haddr);
			hash = hugetlb_fault_mutex_hash(mapping, idx);
			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
			i_mmap_unlock_read(mapping);

4328
			unmap_ref_private(mm, vma, old_page, haddr);
4329 4330 4331

			i_mmap_lock_read(mapping);
			mutex_lock(&hugetlb_fault_mutex_table[hash]);
4332
			spin_lock(ptl);
4333
			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4334 4335 4336 4337 4338 4339 4340 4341
			if (likely(ptep &&
				   pte_same(huge_ptep_get(ptep), pte)))
				goto retry_avoidcopy;
			/*
			 * race occurs while re-acquiring page table
			 * lock, and our job is done.
			 */
			return 0;
4342 4343
		}

4344
		ret = vmf_error(PTR_ERR(new_page));
4345
		goto out_release_old;
4346 4347
	}

4348 4349 4350 4351
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
4352
	if (unlikely(anon_vma_prepare(vma))) {
4353 4354
		ret = VM_FAULT_OOM;
		goto out_release_all;
4355
	}
4356

4357
	copy_user_huge_page(new_page, old_page, address, vma,
A
Andrea Arcangeli 已提交
4358
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
4359
	__SetPageUptodate(new_page);
4360

4361
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4362
				haddr + huge_page_size(h));
4363
	mmu_notifier_invalidate_range_start(&range);
4364

4365
	/*
4366
	 * Retake the page table lock to check for racing updates
4367 4368
	 * before the page tables are altered
	 */
4369
	spin_lock(ptl);
4370
	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4371
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4372
		ClearHPageRestoreReserve(new_page);
4373

4374
		/* Break COW */
4375
		huge_ptep_clear_flush(vma, haddr, ptep);
4376
		mmu_notifier_invalidate_range(mm, range.start, range.end);
4377
		set_huge_pte_at(mm, haddr, ptep,
4378
				make_huge_pte(vma, new_page, 1));
4379
		page_remove_rmap(old_page, true);
4380
		hugepage_add_new_anon_rmap(new_page, vma, haddr);
4381
		SetHPageMigratable(new_page);
4382 4383 4384
		/* Make the old page be freed below */
		new_page = old_page;
	}
4385
	spin_unlock(ptl);
4386
	mmu_notifier_invalidate_range_end(&range);
4387
out_release_all:
4388
	restore_reserve_on_error(h, vma, haddr, new_page);
4389
	put_page(new_page);
4390
out_release_old:
4391
	put_page(old_page);
4392

4393 4394
	spin_lock(ptl); /* Caller expects lock to be held */
	return ret;
4395 4396
}

4397
/* Return the pagecache page at a given address within a VMA */
4398 4399
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
4400 4401
{
	struct address_space *mapping;
4402
	pgoff_t idx;
4403 4404

	mapping = vma->vm_file->f_mapping;
4405
	idx = vma_hugecache_offset(h, vma, address);
4406 4407 4408 4409

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
4410 4411 4412 4413 4414
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

4430 4431 4432 4433 4434 4435 4436 4437 4438
int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
			   pgoff_t idx)
{
	struct inode *inode = mapping->host;
	struct hstate *h = hstate_inode(inode);
	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);

	if (err)
		return err;
4439
	ClearHPageRestoreReserve(page);
4440

4441 4442 4443 4444 4445 4446
	/*
	 * set page dirty so that it will not be removed from cache/file
	 * by non-hugetlbfs specific code paths.
	 */
	set_page_dirty(page);

4447 4448 4449 4450 4451 4452
	spin_lock(&inode->i_lock);
	inode->i_blocks += blocks_per_huge_page(h);
	spin_unlock(&inode->i_lock);
	return 0;
}

4453 4454 4455 4456
static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
			struct vm_area_struct *vma,
			struct address_space *mapping, pgoff_t idx,
			unsigned long address, pte_t *ptep, unsigned int flags)
4457
{
4458
	struct hstate *h = hstate_vma(vma);
4459
	vm_fault_t ret = VM_FAULT_SIGBUS;
4460
	int anon_rmap = 0;
A
Adam Litke 已提交
4461 4462
	unsigned long size;
	struct page *page;
4463
	pte_t new_pte;
4464
	spinlock_t *ptl;
4465
	unsigned long haddr = address & huge_page_mask(h);
4466
	bool new_page = false;
A
Adam Litke 已提交
4467

4468 4469 4470
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
4471
	 * COW. Warn that such a situation has occurred as it may not be obvious
4472 4473
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4474
		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4475
			   current->pid);
4476 4477 4478
		return ret;
	}

A
Adam Litke 已提交
4479
	/*
4480 4481 4482
	 * We can not race with truncation due to holding i_mmap_rwsem.
	 * i_size is modified when holding i_mmap_rwsem, so check here
	 * once for faults beyond end of file.
A
Adam Litke 已提交
4483
	 */
4484 4485 4486 4487
	size = i_size_read(mapping->host) >> huge_page_shift(h);
	if (idx >= size)
		goto out;

4488 4489 4490
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
4491 4492 4493 4494 4495 4496 4497
		/*
		 * Check for page in userfault range
		 */
		if (userfaultfd_missing(vma)) {
			u32 hash;
			struct vm_fault vmf = {
				.vma = vma,
4498
				.address = haddr,
4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
				.flags = flags,
				/*
				 * Hard to debug if it ends up being
				 * used by a callee that assumes
				 * something about the other
				 * uninitialized fields... same as in
				 * memory.c
				 */
			};

			/*
4510 4511 4512
			 * hugetlb_fault_mutex and i_mmap_rwsem must be
			 * dropped before handling userfault.  Reacquire
			 * after handling fault to make calling code simpler.
4513
			 */
4514
			hash = hugetlb_fault_mutex_hash(mapping, idx);
4515
			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4516
			i_mmap_unlock_read(mapping);
4517
			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4518
			i_mmap_lock_read(mapping);
4519 4520 4521 4522
			mutex_lock(&hugetlb_fault_mutex_table[hash]);
			goto out;
		}

4523
		page = alloc_huge_page(vma, haddr, 0);
4524
		if (IS_ERR(page)) {
4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543
			/*
			 * Returning error will result in faulting task being
			 * sent SIGBUS.  The hugetlb fault mutex prevents two
			 * tasks from racing to fault in the same page which
			 * could result in false unable to allocate errors.
			 * Page migration does not take the fault mutex, but
			 * does a clear then write of pte's under page table
			 * lock.  Page fault code could race with migration,
			 * notice the clear pte and try to allocate a page
			 * here.  Before returning error, get ptl and make
			 * sure there really is no pte entry.
			 */
			ptl = huge_pte_lock(h, mm, ptep);
			if (!huge_pte_none(huge_ptep_get(ptep))) {
				ret = 0;
				spin_unlock(ptl);
				goto out;
			}
			spin_unlock(ptl);
4544
			ret = vmf_error(PTR_ERR(page));
4545 4546
			goto out;
		}
A
Andrea Arcangeli 已提交
4547
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
4548
		__SetPageUptodate(page);
4549
		new_page = true;
4550

4551
		if (vma->vm_flags & VM_MAYSHARE) {
4552
			int err = huge_add_to_page_cache(page, mapping, idx);
4553 4554 4555 4556 4557 4558
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
4559
		} else {
4560
			lock_page(page);
4561 4562 4563 4564
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
4565
			anon_rmap = 1;
4566
		}
4567
	} else {
4568 4569 4570 4571 4572 4573
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
4574
			ret = VM_FAULT_HWPOISON_LARGE |
4575
				VM_FAULT_SET_HINDEX(hstate_index(h));
4576 4577
			goto backout_unlocked;
		}
4578
	}
4579

4580 4581 4582 4583 4584 4585
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
4586
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4587
		if (vma_needs_reservation(h, vma, haddr) < 0) {
4588 4589 4590
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
4591
		/* Just decrements count, does not deallocate */
4592
		vma_end_reservation(h, vma, haddr);
4593
	}
4594

4595
	ptl = huge_pte_lock(h, mm, ptep);
N
Nick Piggin 已提交
4596
	ret = 0;
4597
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
4598 4599
		goto backout;

4600
	if (anon_rmap) {
4601
		ClearHPageRestoreReserve(page);
4602
		hugepage_add_new_anon_rmap(page, vma, haddr);
4603
	} else
4604
		page_dup_rmap(page, true);
4605 4606
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
4607
	set_huge_pte_at(mm, haddr, ptep, new_pte);
4608

4609
	hugetlb_count_add(pages_per_huge_page(h), mm);
4610
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4611
		/* Optimization, do the COW without a second fault */
4612
		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4613 4614
	}

4615
	spin_unlock(ptl);
4616 4617

	/*
4618 4619 4620
	 * Only set HPageMigratable in newly allocated pages.  Existing pages
	 * found in the pagecache may not have HPageMigratableset if they have
	 * been isolated for migration.
4621 4622
	 */
	if (new_page)
4623
		SetHPageMigratable(page);
4624

A
Adam Litke 已提交
4625 4626
	unlock_page(page);
out:
4627
	return ret;
A
Adam Litke 已提交
4628 4629

backout:
4630
	spin_unlock(ptl);
4631
backout_unlocked:
A
Adam Litke 已提交
4632
	unlock_page(page);
4633
	restore_reserve_on_error(h, vma, haddr, page);
A
Adam Litke 已提交
4634 4635
	put_page(page);
	goto out;
4636 4637
}

4638
#ifdef CONFIG_SMP
4639
u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4640 4641 4642 4643
{
	unsigned long key[2];
	u32 hash;

4644 4645
	key[0] = (unsigned long) mapping;
	key[1] = idx;
4646

4647
	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4648 4649 4650 4651 4652 4653 4654 4655

	return hash & (num_fault_mutexes - 1);
}
#else
/*
 * For uniprocesor systems we always use a single mutex, so just
 * return 0 and avoid the hashing overhead.
 */
4656
u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4657 4658 4659 4660 4661
{
	return 0;
}
#endif

4662
vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4663
			unsigned long address, unsigned int flags)
4664
{
4665
	pte_t *ptep, entry;
4666
	spinlock_t *ptl;
4667
	vm_fault_t ret;
4668 4669
	u32 hash;
	pgoff_t idx;
4670
	struct page *page = NULL;
4671
	struct page *pagecache_page = NULL;
4672
	struct hstate *h = hstate_vma(vma);
4673
	struct address_space *mapping;
4674
	int need_wait_lock = 0;
4675
	unsigned long haddr = address & huge_page_mask(h);
4676

4677
	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4678
	if (ptep) {
4679 4680 4681 4682 4683
		/*
		 * Since we hold no locks, ptep could be stale.  That is
		 * OK as we are only making decisions based on content and
		 * not actually modifying content here.
		 */
4684
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
4685
		if (unlikely(is_hugetlb_entry_migration(entry))) {
4686
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
4687 4688
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4689
			return VM_FAULT_HWPOISON_LARGE |
4690
				VM_FAULT_SET_HINDEX(hstate_index(h));
4691 4692
	}

4693 4694
	/*
	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4695 4696 4697 4698
	 * until finished with ptep.  This serves two purposes:
	 * 1) It prevents huge_pmd_unshare from being called elsewhere
	 *    and making the ptep no longer valid.
	 * 2) It synchronizes us with i_size modifications during truncation.
4699 4700 4701 4702 4703
	 *
	 * ptep could have already be assigned via huge_pte_offset.  That
	 * is OK, as huge_pte_alloc will return the same value unless
	 * something has changed.
	 */
4704
	mapping = vma->vm_file->f_mapping;
4705 4706 4707 4708 4709 4710
	i_mmap_lock_read(mapping);
	ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
	if (!ptep) {
		i_mmap_unlock_read(mapping);
		return VM_FAULT_OOM;
	}
4711

4712 4713 4714 4715 4716
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
4717
	idx = vma_hugecache_offset(h, vma, haddr);
4718
	hash = hugetlb_fault_mutex_hash(mapping, idx);
4719
	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4720

4721 4722
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
4723
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4724
		goto out_mutex;
4725
	}
4726

N
Nick Piggin 已提交
4727
	ret = 0;
4728

4729 4730 4731
	/*
	 * entry could be a migration/hwpoison entry at this point, so this
	 * check prevents the kernel from going below assuming that we have
E
Ethon Paul 已提交
4732 4733 4734
	 * an active hugepage in pagecache. This goto expects the 2nd page
	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
	 * properly handle it.
4735 4736 4737 4738
	 */
	if (!pte_present(entry))
		goto out_mutex;

4739 4740 4741 4742 4743 4744 4745 4746
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
4747
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4748
		if (vma_needs_reservation(h, vma, haddr) < 0) {
4749
			ret = VM_FAULT_OOM;
4750
			goto out_mutex;
4751
		}
4752
		/* Just decrements count, does not deallocate */
4753
		vma_end_reservation(h, vma, haddr);
4754

4755
		if (!(vma->vm_flags & VM_MAYSHARE))
4756
			pagecache_page = hugetlbfs_pagecache_page(h,
4757
								vma, haddr);
4758 4759
	}

4760 4761 4762 4763 4764 4765
	ptl = huge_pte_lock(h, mm, ptep);

	/* Check for a racing update before calling hugetlb_cow */
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_ptl;

4766 4767 4768 4769 4770 4771 4772
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
4773 4774 4775 4776
		if (!trylock_page(page)) {
			need_wait_lock = 1;
			goto out_ptl;
		}
4777

4778
	get_page(page);
4779

4780
	if (flags & FAULT_FLAG_WRITE) {
4781
		if (!huge_pte_write(entry)) {
4782
			ret = hugetlb_cow(mm, vma, address, ptep,
4783
					  pagecache_page, ptl);
4784
			goto out_put_page;
4785
		}
4786
		entry = huge_pte_mkdirty(entry);
4787 4788
	}
	entry = pte_mkyoung(entry);
4789
	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4790
						flags & FAULT_FLAG_WRITE))
4791
		update_mmu_cache(vma, haddr, ptep);
4792 4793 4794 4795
out_put_page:
	if (page != pagecache_page)
		unlock_page(page);
	put_page(page);
4796 4797
out_ptl:
	spin_unlock(ptl);
4798 4799 4800 4801 4802

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
4803
out_mutex:
4804
	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4805
	i_mmap_unlock_read(mapping);
4806 4807 4808 4809 4810 4811 4812 4813 4814
	/*
	 * Generally it's safe to hold refcount during waiting page lock. But
	 * here we just wait to defer the next page fault to avoid busy loop and
	 * the page is not used after unlocked before returning from the current
	 * page fault. So we are safe from accessing freed page, even if we wait
	 * here without taking refcount.
	 */
	if (need_wait_lock)
		wait_on_page_locked(page);
4815
	return ret;
4816 4817
}

4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828
/*
 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
 * modifications for huge pages.
 */
int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
			    pte_t *dst_pte,
			    struct vm_area_struct *dst_vma,
			    unsigned long dst_addr,
			    unsigned long src_addr,
			    struct page **pagep)
{
4829 4830 4831
	struct address_space *mapping;
	pgoff_t idx;
	unsigned long size;
4832
	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4833 4834 4835 4836 4837 4838 4839
	struct hstate *h = hstate_vma(dst_vma);
	pte_t _dst_pte;
	spinlock_t *ptl;
	int ret;
	struct page *page;

	if (!*pagep) {
4840 4841 4842 4843 4844 4845 4846 4847 4848
		/* If a page already exists, then it's UFFDIO_COPY for
		 * a non-missing case. Return -EEXIST.
		 */
		if (vm_shared &&
		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
			ret = -EEXIST;
			goto out;
		}

4849
		page = alloc_huge_page(dst_vma, dst_addr, 0);
4850 4851
		if (IS_ERR(page)) {
			ret = -ENOMEM;
4852
			goto out;
4853
		}
4854 4855 4856

		ret = copy_huge_page_from_user(page,
						(const void __user *) src_addr,
4857
						pages_per_huge_page(h), false);
4858

4859
		/* fallback to copy_from_user outside mmap_lock */
4860
		if (unlikely(ret)) {
4861
			ret = -ENOENT;
4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877
			*pagep = page;
			/* don't free the page */
			goto out;
		}
	} else {
		page = *pagep;
		*pagep = NULL;
	}

	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * preceding stores to the page contents become visible before
	 * the set_pte_at() write.
	 */
	__SetPageUptodate(page);

4878 4879 4880
	mapping = dst_vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, dst_vma, dst_addr);

4881 4882 4883 4884
	/*
	 * If shared, add to page cache
	 */
	if (vm_shared) {
4885 4886 4887 4888
		size = i_size_read(mapping->host) >> huge_page_shift(h);
		ret = -EFAULT;
		if (idx >= size)
			goto out_release_nounlock;
4889

4890 4891 4892 4893 4894 4895
		/*
		 * Serialization between remove_inode_hugepages() and
		 * huge_add_to_page_cache() below happens through the
		 * hugetlb_fault_mutex_table that here must be hold by
		 * the caller.
		 */
4896 4897 4898 4899 4900
		ret = huge_add_to_page_cache(page, mapping, idx);
		if (ret)
			goto out_release_nounlock;
	}

4901 4902 4903
	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
	spin_lock(ptl);

4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917
	/*
	 * Recheck the i_size after holding PT lock to make sure not
	 * to leave any page mapped (as page_mapped()) beyond the end
	 * of the i_size (remove_inode_hugepages() is strict about
	 * enforcing that). If we bail out here, we'll also leave a
	 * page in the radix tree in the vm_shared case beyond the end
	 * of the i_size, but remove_inode_hugepages() will take care
	 * of it as soon as we drop the hugetlb_fault_mutex_table.
	 */
	size = i_size_read(mapping->host) >> huge_page_shift(h);
	ret = -EFAULT;
	if (idx >= size)
		goto out_release_unlock;

4918 4919 4920 4921
	ret = -EEXIST;
	if (!huge_pte_none(huge_ptep_get(dst_pte)))
		goto out_release_unlock;

4922 4923 4924
	if (vm_shared) {
		page_dup_rmap(page, true);
	} else {
4925
		ClearHPageRestoreReserve(page);
4926 4927
		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
	}
4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943

	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
	if (dst_vma->vm_flags & VM_WRITE)
		_dst_pte = huge_pte_mkdirty(_dst_pte);
	_dst_pte = pte_mkyoung(_dst_pte);

	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);

	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
					dst_vma->vm_flags & VM_WRITE);
	hugetlb_count_add(pages_per_huge_page(h), dst_mm);

	/* No need to invalidate - it was non-present before */
	update_mmu_cache(dst_vma, dst_addr, dst_pte);

	spin_unlock(ptl);
4944
	SetHPageMigratable(page);
4945 4946
	if (vm_shared)
		unlock_page(page);
4947 4948 4949 4950 4951
	ret = 0;
out:
	return ret;
out_release_unlock:
	spin_unlock(ptl);
4952 4953
	if (vm_shared)
		unlock_page(page);
4954
out_release_nounlock:
4955 4956 4957 4958
	put_page(page);
	goto out;
}

4959 4960 4961
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
4962
			 long i, unsigned int flags, int *locked)
D
David Gibson 已提交
4963
{
4964 4965
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
4966
	unsigned long remainder = *nr_pages;
4967
	struct hstate *h = hstate_vma(vma);
4968
	int err = -EFAULT;
D
David Gibson 已提交
4969 4970

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
4971
		pte_t *pte;
4972
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
4973
		int absent;
A
Adam Litke 已提交
4974
		struct page *page;
D
David Gibson 已提交
4975

4976 4977 4978 4979
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
4980
		if (fatal_signal_pending(current)) {
4981 4982 4983 4984
			remainder = 0;
			break;
		}

A
Adam Litke 已提交
4985 4986
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
4987
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
4988
		 * first, for the page indexing below to work.
4989 4990
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
4991
		 */
4992 4993
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
				      huge_page_size(h));
4994 4995
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
4996 4997 4998 4999
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
5000 5001 5002 5003
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
5004
		 */
H
Hugh Dickins 已提交
5005 5006
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
5007 5008
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
5009 5010 5011
			remainder = 0;
			break;
		}
D
David Gibson 已提交
5012

5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
5024 5025
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
5026
			vm_fault_t ret;
5027
			unsigned int fault_flags = 0;
D
David Gibson 已提交
5028

5029 5030
			if (pte)
				spin_unlock(ptl);
5031 5032
			if (flags & FOLL_WRITE)
				fault_flags |= FAULT_FLAG_WRITE;
5033
			if (locked)
5034 5035
				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
					FAULT_FLAG_KILLABLE;
5036 5037 5038 5039
			if (flags & FOLL_NOWAIT)
				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
					FAULT_FLAG_RETRY_NOWAIT;
			if (flags & FOLL_TRIED) {
5040 5041 5042 5043
				/*
				 * Note: FAULT_FLAG_ALLOW_RETRY and
				 * FAULT_FLAG_TRIED can co-exist
				 */
5044 5045 5046 5047
				fault_flags |= FAULT_FLAG_TRIED;
			}
			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
			if (ret & VM_FAULT_ERROR) {
5048
				err = vm_fault_to_errno(ret, flags);
5049 5050 5051 5052
				remainder = 0;
				break;
			}
			if (ret & VM_FAULT_RETRY) {
5053
				if (locked &&
5054
				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
5055
					*locked = 0;
5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068
				*nr_pages = 0;
				/*
				 * VM_FAULT_RETRY must not return an
				 * error, it will return zero
				 * instead.
				 *
				 * No need to update "position" as the
				 * caller will not check it after
				 * *nr_pages is set to 0.
				 */
				return i;
			}
			continue;
A
Adam Litke 已提交
5069 5070
		}

5071
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
5072
		page = pte_page(huge_ptep_get(pte));
5073

5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087
		/*
		 * If subpage information not requested, update counters
		 * and skip the same_page loop below.
		 */
		if (!pages && !vmas && !pfn_offset &&
		    (vaddr + huge_page_size(h) < vma->vm_end) &&
		    (remainder >= pages_per_huge_page(h))) {
			vaddr += huge_page_size(h);
			remainder -= pages_per_huge_page(h);
			i += pages_per_huge_page(h);
			spin_unlock(ptl);
			continue;
		}

5088
same_page:
5089
		if (pages) {
H
Hugh Dickins 已提交
5090
			pages[i] = mem_map_offset(page, pfn_offset);
J
John Hubbard 已提交
5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106
			/*
			 * try_grab_page() should always succeed here, because:
			 * a) we hold the ptl lock, and b) we've just checked
			 * that the huge page is present in the page tables. If
			 * the huge page is present, then the tail pages must
			 * also be present. The ptl prevents the head page and
			 * tail pages from being rearranged in any way. So this
			 * page must be available at this point, unless the page
			 * refcount overflowed:
			 */
			if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
				spin_unlock(ptl);
				remainder = 0;
				err = -ENOMEM;
				break;
			}
5107
		}
D
David Gibson 已提交
5108 5109 5110 5111 5112

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
5113
		++pfn_offset;
D
David Gibson 已提交
5114 5115
		--remainder;
		++i;
5116
		if (vaddr < vma->vm_end && remainder &&
5117
				pfn_offset < pages_per_huge_page(h)) {
5118 5119 5120 5121 5122 5123
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
5124
		spin_unlock(ptl);
D
David Gibson 已提交
5125
	}
5126
	*nr_pages = remainder;
5127 5128 5129 5130 5131
	/*
	 * setting position is actually required only if remainder is
	 * not zero but it's faster not to add a "if (remainder)"
	 * branch.
	 */
D
David Gibson 已提交
5132 5133
	*position = vaddr;

5134
	return i ? i : err;
D
David Gibson 已提交
5135
}
5136

5137 5138 5139 5140 5141 5142 5143 5144
#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
/*
 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
 * implement this.
 */
#define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
#endif

5145
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5146 5147 5148 5149 5150 5151
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
5152
	struct hstate *h = hstate_vma(vma);
5153
	unsigned long pages = 0;
5154
	bool shared_pmd = false;
5155
	struct mmu_notifier_range range;
5156 5157 5158

	/*
	 * In the case of shared PMDs, the area to flush could be beyond
5159
	 * start/end.  Set range.start/range.end to cover the maximum possible
5160 5161
	 * range if PMD sharing is possible.
	 */
5162 5163
	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
				0, vma, mm, start, end);
5164
	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5165 5166

	BUG_ON(address >= end);
5167
	flush_cache_range(vma, range.start, range.end);
5168

5169
	mmu_notifier_invalidate_range_start(&range);
5170
	i_mmap_lock_write(vma->vm_file->f_mapping);
5171
	for (; address < end; address += huge_page_size(h)) {
5172
		spinlock_t *ptl;
5173
		ptep = huge_pte_offset(mm, address, huge_page_size(h));
5174 5175
		if (!ptep)
			continue;
5176
		ptl = huge_pte_lock(h, mm, ptep);
5177
		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5178
			pages++;
5179
			spin_unlock(ptl);
5180
			shared_pmd = true;
5181
			continue;
5182
		}
5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195
		pte = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			spin_unlock(ptl);
			continue;
		}
		if (unlikely(is_hugetlb_entry_migration(pte))) {
			swp_entry_t entry = pte_to_swp_entry(pte);

			if (is_write_migration_entry(entry)) {
				pte_t newpte;

				make_migration_entry_read(&entry);
				newpte = swp_entry_to_pte(entry);
5196 5197
				set_huge_swap_pte_at(mm, address, ptep,
						     newpte, huge_page_size(h));
5198 5199 5200 5201 5202 5203
				pages++;
			}
			spin_unlock(ptl);
			continue;
		}
		if (!huge_pte_none(pte)) {
5204 5205 5206 5207
			pte_t old_pte;

			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5208
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
5209
			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5210
			pages++;
5211
		}
5212
		spin_unlock(ptl);
5213
	}
5214
	/*
5215
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5216
	 * may have cleared our pud entry and done put_page on the page table:
5217
	 * once we release i_mmap_rwsem, another task can do the final put_page
5218 5219
	 * and that page table be reused and filled with junk.  If we actually
	 * did unshare a page of pmds, flush the range corresponding to the pud.
5220
	 */
5221
	if (shared_pmd)
5222
		flush_hugetlb_tlb_range(vma, range.start, range.end);
5223 5224
	else
		flush_hugetlb_tlb_range(vma, start, end);
5225 5226 5227 5228
	/*
	 * No need to call mmu_notifier_invalidate_range() we are downgrading
	 * page table protection not changing it to point to a new page.
	 *
5229
	 * See Documentation/vm/mmu_notifier.rst
5230
	 */
5231
	i_mmap_unlock_write(vma->vm_file->f_mapping);
5232
	mmu_notifier_invalidate_range_end(&range);
5233 5234

	return pages << h->order;
5235 5236
}

5237 5238
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
5239
					struct vm_area_struct *vma,
5240
					vm_flags_t vm_flags)
5241
{
5242
	long ret, chg, add = -1;
5243
	struct hstate *h = hstate_inode(inode);
5244
	struct hugepage_subpool *spool = subpool_inode(inode);
5245
	struct resv_map *resv_map;
5246
	struct hugetlb_cgroup *h_cg = NULL;
5247
	long gbl_reserve, regions_needed = 0;
5248

5249 5250 5251 5252 5253 5254
	/* This should never happen */
	if (from > to) {
		VM_WARN(1, "%s called with a negative range\n", __func__);
		return -EINVAL;
	}

5255 5256 5257
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
5258
	 * without using reserves
5259
	 */
5260
	if (vm_flags & VM_NORESERVE)
5261 5262
		return 0;

5263 5264 5265 5266 5267 5268
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
5269
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5270 5271 5272 5273 5274
		/*
		 * resv_map can not be NULL as hugetlb_reserve_pages is only
		 * called for inodes for which resv_maps were created (see
		 * hugetlbfs_get_inode).
		 */
5275
		resv_map = inode_resv_map(inode);
5276

5277
		chg = region_chg(resv_map, from, to, &regions_needed);
5278 5279

	} else {
5280
		/* Private mapping. */
5281
		resv_map = resv_map_alloc();
5282 5283 5284
		if (!resv_map)
			return -ENOMEM;

5285
		chg = to - from;
5286

5287 5288 5289 5290
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

5291 5292 5293 5294
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
5295

5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310
	ret = hugetlb_cgroup_charge_cgroup_rsvd(
		hstate_index(h), chg * pages_per_huge_page(h), &h_cg);

	if (ret < 0) {
		ret = -ENOMEM;
		goto out_err;
	}

	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
		/* For private mappings, the hugetlb_cgroup uncharge info hangs
		 * of the resv_map.
		 */
		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
	}

5311 5312 5313 5314 5315 5316 5317
	/*
	 * There must be enough pages in the subpool for the mapping. If
	 * the subpool has a minimum size, there may be some global
	 * reservations already in place (gbl_reserve).
	 */
	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
	if (gbl_reserve < 0) {
5318
		ret = -ENOSPC;
5319
		goto out_uncharge_cgroup;
5320
	}
5321 5322

	/*
5323
	 * Check enough hugepages are available for the reservation.
5324
	 * Hand the pages back to the subpool if there are not
5325
	 */
5326
	ret = hugetlb_acct_memory(h, gbl_reserve);
K
Ken Chen 已提交
5327
	if (ret < 0) {
5328
		goto out_put_pages;
K
Ken Chen 已提交
5329
	}
5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
5342
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5343
		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5344 5345 5346

		if (unlikely(add < 0)) {
			hugetlb_acct_memory(h, -gbl_reserve);
5347
			ret = add;
5348
			goto out_put_pages;
5349
		} else if (unlikely(chg > add)) {
5350 5351 5352 5353 5354 5355 5356 5357 5358
			/*
			 * pages in this range were added to the reserve
			 * map between region_chg and region_add.  This
			 * indicates a race with alloc_huge_page.  Adjust
			 * the subpool and reserve counts modified above
			 * based on the difference.
			 */
			long rsv_adjust;

5359 5360 5361 5362
			/*
			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
			 * reference to h_cg->css. See comment below for detail.
			 */
5363 5364 5365 5366
			hugetlb_cgroup_uncharge_cgroup_rsvd(
				hstate_index(h),
				(chg - add) * pages_per_huge_page(h), h_cg);

5367 5368 5369
			rsv_adjust = hugepage_subpool_put_pages(spool,
								chg - add);
			hugetlb_acct_memory(h, -rsv_adjust);
5370 5371 5372 5373 5374 5375 5376 5377
		} else if (h_cg) {
			/*
			 * The file_regions will hold their own reference to
			 * h_cg->css. So we should release the reference held
			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
			 * done.
			 */
			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5378 5379
		}
	}
5380
	return 0;
5381 5382 5383 5384 5385 5386
out_put_pages:
	/* put back original number of pages, chg */
	(void)hugepage_subpool_put_pages(spool, chg);
out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
					    chg * pages_per_huge_page(h), h_cg);
5387
out_err:
5388
	if (!vma || vma->vm_flags & VM_MAYSHARE)
5389 5390 5391 5392 5393
		/* Only call region_abort if the region_chg succeeded but the
		 * region_add failed or didn't run.
		 */
		if (chg >= 0 && add < 0)
			region_abort(resv_map, from, to, regions_needed);
J
Joonsoo Kim 已提交
5394 5395
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
5396
	return ret;
5397 5398
}

5399 5400
long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
								long freed)
5401
{
5402
	struct hstate *h = hstate_inode(inode);
5403
	struct resv_map *resv_map = inode_resv_map(inode);
5404
	long chg = 0;
5405
	struct hugepage_subpool *spool = subpool_inode(inode);
5406
	long gbl_reserve;
K
Ken Chen 已提交
5407

5408 5409 5410 5411
	/*
	 * Since this routine can be called in the evict inode path for all
	 * hugetlbfs inodes, resv_map could be NULL.
	 */
5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422
	if (resv_map) {
		chg = region_del(resv_map, start, end);
		/*
		 * region_del() can fail in the rare case where a region
		 * must be split and another region descriptor can not be
		 * allocated.  If end == LONG_MAX, it will not fail.
		 */
		if (chg < 0)
			return chg;
	}

K
Ken Chen 已提交
5423
	spin_lock(&inode->i_lock);
5424
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
5425 5426
	spin_unlock(&inode->i_lock);

5427 5428 5429 5430 5431 5432
	/*
	 * If the subpool has a minimum size, the number of global
	 * reservations to be released may be adjusted.
	 */
	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
	hugetlb_acct_memory(h, -gbl_reserve);
5433 5434

	return 0;
5435
}
5436

5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
E
Eric B Munson 已提交
5448 5449
	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

5463
static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5464 5465 5466 5467 5468 5469 5470
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
5471
	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5472 5473
		return true;
	return false;
5474 5475
}

5476 5477 5478 5479 5480 5481 5482 5483
/*
 * Determine if start,end range within vma could be mapped by shared pmd.
 * If yes, adjust start and end to cover range associated with possible
 * shared pmd mappings.
 */
void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
				unsigned long *start, unsigned long *end)
{
5484 5485
	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5486

5487 5488 5489 5490 5491 5492
	/*
	 * vma need span at least one aligned PUD size and the start,end range
	 * must at least partialy within it.
	 */
	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
		(*end <= v_start) || (*start >= v_end))
5493 5494
		return;

5495
	/* Extend the range to be PUD aligned for a worst case scenario */
5496 5497
	if (*start > v_start)
		*start = ALIGN_DOWN(*start, PUD_SIZE);
5498

5499 5500
	if (*end < v_end)
		*end = ALIGN(*end, PUD_SIZE);
5501 5502
}

5503 5504 5505 5506
/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
5507 5508
 * code much cleaner.
 *
5509 5510 5511 5512 5513 5514 5515 5516 5517 5518
 * This routine must be called with i_mmap_rwsem held in at least read mode if
 * sharing is possible.  For hugetlbfs, this prevents removal of any page
 * table entries associated with the address space.  This is important as we
 * are setting up sharing based on existing page table entries (mappings).
 *
 * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
 * huge_pte_alloc know that sharing is not possible and do not take
 * i_mmap_rwsem as a performance optimization.  This is handled by the
 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
 * only required for subsequent processing.
5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
5530
	spinlock_t *ptl;
5531 5532 5533 5534

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

5535
	i_mmap_assert_locked(mapping);
5536 5537 5538 5539 5540 5541
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
5542 5543
			spte = huge_pte_offset(svma->vm_mm, saddr,
					       vma_mmu_pagesize(svma));
5544 5545 5546 5547 5548 5549 5550 5551 5552 5553
			if (spte) {
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

5554
	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5555
	if (pud_none(*pud)) {
5556 5557
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
5558
		mm_inc_nr_pmds(mm);
5559
	} else {
5560
		put_page(virt_to_page(spte));
5561
	}
5562
	spin_unlock(ptl);
5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
5575
 * Called with page table lock held and i_mmap_rwsem held in write mode.
5576 5577 5578 5579
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
5580 5581
int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
					unsigned long *addr, pte_t *ptep)
5582 5583
{
	pgd_t *pgd = pgd_offset(mm, *addr);
5584 5585
	p4d_t *p4d = p4d_offset(pgd, *addr);
	pud_t *pud = pud_offset(p4d, *addr);
5586

5587
	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5588 5589 5590 5591 5592 5593
	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
5594
	mm_dec_nr_pmds(mm);
5595 5596 5597
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
5598 5599 5600 5601 5602 5603
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
5604

5605 5606
int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
				unsigned long *addr, pte_t *ptep)
5607 5608 5609
{
	return 0;
}
5610 5611 5612 5613 5614

void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
				unsigned long *start, unsigned long *end)
{
}
5615
#define want_pmd_share()	(0)
5616 5617
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

5618 5619 5620 5621 5622
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
5623
	p4d_t *p4d;
5624 5625 5626 5627
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
5628 5629 5630
	p4d = p4d_alloc(mm, pgd, addr);
	if (!p4d)
		return NULL;
5631
	pud = pud_alloc(mm, p4d, addr);
5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
5643
	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5644 5645 5646 5647

	return pte;
}

5648 5649 5650 5651
/*
 * huge_pte_offset() - Walk the page table to resolve the hugepage
 * entry at address @addr
 *
5652 5653
 * Return: Pointer to page table entry (PUD or PMD) for
 * address @addr, or NULL if a !p*d_present() entry is encountered and the
5654 5655 5656
 * size @sz doesn't match the hugepage size at this level of the page
 * table.
 */
5657 5658
pte_t *huge_pte_offset(struct mm_struct *mm,
		       unsigned long addr, unsigned long sz)
5659 5660
{
	pgd_t *pgd;
5661
	p4d_t *p4d;
5662 5663
	pud_t *pud;
	pmd_t *pmd;
5664 5665

	pgd = pgd_offset(mm, addr);
5666 5667 5668 5669 5670
	if (!pgd_present(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (!p4d_present(*p4d))
		return NULL;
5671

5672
	pud = pud_offset(p4d, addr);
5673 5674
	if (sz == PUD_SIZE)
		/* must be pud huge, non-present or none */
5675
		return (pte_t *)pud;
5676
	if (!pud_present(*pud))
5677
		return NULL;
5678
	/* must have a valid entry and size to go further */
5679

5680 5681 5682
	pmd = pmd_offset(pud, addr);
	/* must be pmd huge, non-present or none */
	return (pte_t *)pmd;
5683 5684
}

5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/*
 * These functions are overwritable if your architecture needs its own
 * behavior.
 */
struct page * __weak
follow_huge_addr(struct mm_struct *mm, unsigned long address,
			      int write)
{
	return ERR_PTR(-EINVAL);
}

5698 5699 5700 5701 5702 5703 5704 5705
struct page * __weak
follow_huge_pd(struct vm_area_struct *vma,
	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
{
	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
	return NULL;
}

5706
struct page * __weak
5707
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5708
		pmd_t *pmd, int flags)
5709
{
5710 5711
	struct page *page = NULL;
	spinlock_t *ptl;
5712
	pte_t pte;
J
John Hubbard 已提交
5713 5714 5715 5716 5717 5718

	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

5719 5720 5721 5722 5723 5724 5725 5726 5727
retry:
	ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	/*
	 * make sure that the address range covered by this pmd is not
	 * unmapped from other threads.
	 */
	if (!pmd_huge(*pmd))
		goto out;
5728 5729
	pte = huge_ptep_get((pte_t *)pmd);
	if (pte_present(pte)) {
5730
		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
J
John Hubbard 已提交
5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742
		/*
		 * try_grab_page() should always succeed here, because: a) we
		 * hold the pmd (ptl) lock, and b) we've just checked that the
		 * huge pmd (head) page is present in the page tables. The ptl
		 * prevents the head page and tail pages from being rearranged
		 * in any way. So this page must be available at this point,
		 * unless the page refcount overflowed:
		 */
		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
			page = NULL;
			goto out;
		}
5743
	} else {
5744
		if (is_hugetlb_entry_migration(pte)) {
5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755
			spin_unlock(ptl);
			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
			goto retry;
		}
		/*
		 * hwpoisoned entry is treated as no_page_table in
		 * follow_page_mask().
		 */
	}
out:
	spin_unlock(ptl);
5756 5757 5758
	return page;
}

5759
struct page * __weak
5760
follow_huge_pud(struct mm_struct *mm, unsigned long address,
5761
		pud_t *pud, int flags)
5762
{
J
John Hubbard 已提交
5763
	if (flags & (FOLL_GET | FOLL_PIN))
5764
		return NULL;
5765

5766
	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5767 5768
}

5769 5770 5771
struct page * __weak
follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
{
J
John Hubbard 已提交
5772
	if (flags & (FOLL_GET | FOLL_PIN))
5773 5774 5775 5776 5777
		return NULL;

	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
}

5778 5779
bool isolate_huge_page(struct page *page, struct list_head *list)
{
5780 5781
	bool ret = true;

5782
	spin_lock_irq(&hugetlb_lock);
5783 5784
	if (!PageHeadHuge(page) ||
	    !HPageMigratable(page) ||
5785
	    !get_page_unless_zero(page)) {
5786 5787 5788
		ret = false;
		goto unlock;
	}
5789
	ClearHPageMigratable(page);
5790
	list_move_tail(&page->lru, list);
5791
unlock:
5792
	spin_unlock_irq(&hugetlb_lock);
5793
	return ret;
5794 5795 5796 5797
}

void putback_active_hugepage(struct page *page)
{
5798
	VM_BUG_ON_PAGE(!PageHead(page), page);
5799
	spin_lock_irq(&hugetlb_lock);
5800
	SetHPageMigratable(page);
5801
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5802
	spin_unlock_irq(&hugetlb_lock);
5803 5804
	put_page(page);
}
5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822

void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
{
	struct hstate *h = page_hstate(oldpage);

	hugetlb_cgroup_migrate(oldpage, newpage);
	set_page_owner_migrate_reason(newpage, reason);

	/*
	 * transfer temporary state of the new huge page. This is
	 * reverse to other transitions because the newpage is going to
	 * be final while the old one will be freed so it takes over
	 * the temporary status.
	 *
	 * Also note that we have to transfer the per-node surplus state
	 * here as well otherwise the global surplus count will not match
	 * the per-node's.
	 */
5823
	if (HPageTemporary(newpage)) {
5824 5825 5826
		int old_nid = page_to_nid(oldpage);
		int new_nid = page_to_nid(newpage);

5827 5828
		SetHPageTemporary(oldpage);
		ClearHPageTemporary(newpage);
5829

5830
		spin_lock_irq(&hugetlb_lock);
5831 5832 5833 5834
		if (h->surplus_huge_pages_node[old_nid]) {
			h->surplus_huge_pages_node[old_nid]--;
			h->surplus_huge_pages_node[new_nid]++;
		}
5835
		spin_unlock_irq(&hugetlb_lock);
5836 5837
	}
}
5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876

#ifdef CONFIG_CMA
static bool cma_reserve_called __initdata;

static int __init cmdline_parse_hugetlb_cma(char *p)
{
	hugetlb_cma_size = memparse(p, &p);
	return 0;
}

early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);

void __init hugetlb_cma_reserve(int order)
{
	unsigned long size, reserved, per_node;
	int nid;

	cma_reserve_called = true;

	if (!hugetlb_cma_size)
		return;

	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
			(PAGE_SIZE << order) / SZ_1M);
		return;
	}

	/*
	 * If 3 GB area is requested on a machine with 4 numa nodes,
	 * let's allocate 1 GB on first three nodes and ignore the last one.
	 */
	per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
	pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
		hugetlb_cma_size / SZ_1M, per_node / SZ_1M);

	reserved = 0;
	for_each_node_state(nid, N_ONLINE) {
		int res;
5877
		char name[CMA_MAX_NAME];
5878 5879 5880 5881

		size = min(per_node, hugetlb_cma_size - reserved);
		size = round_up(size, PAGE_SIZE << order);

5882
		snprintf(name, sizeof(name), "hugetlb%d", nid);
5883
		res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5884
						 0, false, name,
5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909
						 &hugetlb_cma[nid], nid);
		if (res) {
			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
				res, nid);
			continue;
		}

		reserved += size;
		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
			size / SZ_1M, nid);

		if (reserved >= hugetlb_cma_size)
			break;
	}
}

void __init hugetlb_cma_check(void)
{
	if (!hugetlb_cma_size || cma_reserve_called)
		return;

	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
}

#endif /* CONFIG_CMA */