intel_dp.c 192.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Keith Packard <keithp@keithp.com>
 *
 */

#include <linux/i2c.h>
29
#include <linux/slab.h>
30
#include <linux/export.h>
31
#include <linux/types.h>
32 33
#include <linux/notifier.h>
#include <linux/reboot.h>
34
#include <asm/byteorder.h>
35
#include <drm/drmP.h>
36
#include <drm/drm_atomic_helper.h>
37 38
#include <drm/drm_crtc.h>
#include <drm/drm_crtc_helper.h>
39
#include <drm/drm_dp_helper.h>
40
#include <drm/drm_edid.h>
41
#include <drm/drm_hdcp.h>
42
#include "intel_drv.h"
43
#include <drm/i915_drm.h>
44 45
#include "i915_drv.h"

46
#define DP_DPRX_ESI_LEN 14
47

48 49 50 51 52 53 54 55 56 57 58
/* DP DSC small joiner has 2 FIFOs each of 640 x 6 bytes */
#define DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER	61440

/* DP DSC throughput values used for slice count calculations KPixels/s */
#define DP_DSC_PEAK_PIXEL_RATE			2720000
#define DP_DSC_MAX_ENC_THROUGHPUT_0		340000
#define DP_DSC_MAX_ENC_THROUGHPUT_1		400000

/* DP DSC FEC Overhead factor = (100 - 2.4)/100 */
#define DP_DSC_FEC_OVERHEAD_FACTOR		976

59 60 61 62 63 64
/* Compliance test status bits  */
#define INTEL_DP_RESOLUTION_SHIFT_MASK	0
#define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)

65
struct dp_link_dpll {
66
	int clock;
67 68 69
	struct dpll dpll;
};

70
static const struct dp_link_dpll g4x_dpll[] = {
71
	{ 162000,
72
		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
73
	{ 270000,
74 75 76 77
		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
};

static const struct dp_link_dpll pch_dpll[] = {
78
	{ 162000,
79
		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
80
	{ 270000,
81 82 83
		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
};

84
static const struct dp_link_dpll vlv_dpll[] = {
85
	{ 162000,
C
Chon Ming Lee 已提交
86
		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
87
	{ 270000,
88 89 90
		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
};

91 92 93 94 95 96 97 98 99 100
/*
 * CHV supports eDP 1.4 that have  more link rates.
 * Below only provides the fixed rate but exclude variable rate.
 */
static const struct dp_link_dpll chv_dpll[] = {
	/*
	 * CHV requires to program fractional division for m2.
	 * m2 is stored in fixed point format using formula below
	 * (m2_int << 22) | m2_fraction
	 */
101
	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
102
		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
103
	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
104 105
		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
};
106

107 108 109 110 111 112 113 114
/* Constants for DP DSC configurations */
static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};

/* With Single pipe configuration, HW is capable of supporting maximum
 * of 4 slices per line.
 */
static const u8 valid_dsc_slicecount[] = {1, 2, 4};

115
/**
116
 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
117 118 119 120 121
 * @intel_dp: DP struct
 *
 * If a CPU or PCH DP output is attached to an eDP panel, this function
 * will return true, and false otherwise.
 */
122
bool intel_dp_is_edp(struct intel_dp *intel_dp)
123
{
124 125 126
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);

	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
127 128
}

129 130
static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
{
131
	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
132 133
}

134 135
static void intel_dp_link_down(struct intel_encoder *encoder,
			       const struct intel_crtc_state *old_crtc_state);
136
static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
137
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
138 139
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state);
140
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
141
				      enum pipe pipe);
142
static void intel_dp_unset_edid(struct intel_dp *intel_dp);
143

144 145 146
/* update sink rates from dpcd */
static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
{
147
	static const int dp_rates[] = {
148
		162000, 270000, 540000, 810000
149
	};
150
	int i, max_rate;
151

152
	max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
153

154 155
	for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
		if (dp_rates[i] > max_rate)
156
			break;
157
		intel_dp->sink_rates[i] = dp_rates[i];
158
	}
159

160
	intel_dp->num_sink_rates = i;
161 162
}

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
/* Get length of rates array potentially limited by max_rate. */
static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
{
	int i;

	/* Limit results by potentially reduced max rate */
	for (i = 0; i < len; i++) {
		if (rates[len - i - 1] <= max_rate)
			return len - i;
	}

	return 0;
}

/* Get length of common rates array potentially limited by max_rate. */
static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
					  int max_rate)
{
	return intel_dp_rate_limit_len(intel_dp->common_rates,
				       intel_dp->num_common_rates, max_rate);
}

185 186
/* Theoretical max between source and sink */
static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
187
{
188
	return intel_dp->common_rates[intel_dp->num_common_rates - 1];
189 190
}

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
static int intel_dp_get_fia_supported_lane_count(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
	u32 lane_info;

	if (tc_port == PORT_TC_NONE || dig_port->tc_type != TC_PORT_TYPEC)
		return 4;

	lane_info = (I915_READ(PORT_TX_DFLEXDPSP) &
		     DP_LANE_ASSIGNMENT_MASK(tc_port)) >>
		    DP_LANE_ASSIGNMENT_SHIFT(tc_port);

	switch (lane_info) {
	default:
		MISSING_CASE(lane_info);
	case 1:
	case 2:
	case 4:
	case 8:
		return 1;
	case 3:
	case 12:
		return 2;
	case 15:
		return 4;
	}
}

221 222
/* Theoretical max between source and sink */
static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
223 224
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
225 226
	int source_max = intel_dig_port->max_lanes;
	int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
227
	int fia_max = intel_dp_get_fia_supported_lane_count(intel_dp);
228

229
	return min3(source_max, sink_max, fia_max);
230 231
}

232
int intel_dp_max_lane_count(struct intel_dp *intel_dp)
233 234 235 236
{
	return intel_dp->max_link_lane_count;
}

237
int
238
intel_dp_link_required(int pixel_clock, int bpp)
239
{
240 241
	/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
	return DIV_ROUND_UP(pixel_clock * bpp, 8);
242 243
}

P
Paulo Zanoni 已提交
244 245 246
void icl_program_mg_dp_mode(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
247
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
P
Paulo Zanoni 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
	enum port port = intel_dig_port->base.port;
	enum tc_port tc_port = intel_port_to_tc(dev_priv, port);
	u32 ln0, ln1, lane_info;

	if (tc_port == PORT_TC_NONE || intel_dig_port->tc_type == TC_PORT_TBT)
		return;

	ln0 = I915_READ(MG_DP_MODE(port, 0));
	ln1 = I915_READ(MG_DP_MODE(port, 1));

	switch (intel_dig_port->tc_type) {
	case TC_PORT_TYPEC:
		ln0 &= ~(MG_DP_MODE_CFG_DP_X1_MODE | MG_DP_MODE_CFG_DP_X2_MODE);
		ln1 &= ~(MG_DP_MODE_CFG_DP_X1_MODE | MG_DP_MODE_CFG_DP_X2_MODE);

		lane_info = (I915_READ(PORT_TX_DFLEXDPSP) &
			     DP_LANE_ASSIGNMENT_MASK(tc_port)) >>
			    DP_LANE_ASSIGNMENT_SHIFT(tc_port);

		switch (lane_info) {
		case 0x1:
		case 0x4:
			break;
		case 0x2:
			ln0 |= MG_DP_MODE_CFG_DP_X1_MODE;
			break;
		case 0x3:
			ln0 |= MG_DP_MODE_CFG_DP_X1_MODE |
			       MG_DP_MODE_CFG_DP_X2_MODE;
			break;
		case 0x8:
			ln1 |= MG_DP_MODE_CFG_DP_X1_MODE;
			break;
		case 0xC:
			ln1 |= MG_DP_MODE_CFG_DP_X1_MODE |
			       MG_DP_MODE_CFG_DP_X2_MODE;
			break;
		case 0xF:
			ln0 |= MG_DP_MODE_CFG_DP_X1_MODE |
			       MG_DP_MODE_CFG_DP_X2_MODE;
			ln1 |= MG_DP_MODE_CFG_DP_X1_MODE |
			       MG_DP_MODE_CFG_DP_X2_MODE;
			break;
		default:
			MISSING_CASE(lane_info);
		}
		break;

	case TC_PORT_LEGACY:
		ln0 |= MG_DP_MODE_CFG_DP_X1_MODE | MG_DP_MODE_CFG_DP_X2_MODE;
		ln1 |= MG_DP_MODE_CFG_DP_X1_MODE | MG_DP_MODE_CFG_DP_X2_MODE;
		break;

	default:
		MISSING_CASE(intel_dig_port->tc_type);
		return;
	}

	I915_WRITE(MG_DP_MODE(port, 0), ln0);
	I915_WRITE(MG_DP_MODE(port, 1), ln1);
}

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
void icl_enable_phy_clock_gating(struct intel_digital_port *dig_port)
{
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum port port = dig_port->base.port;
	enum tc_port tc_port = intel_port_to_tc(dev_priv, port);
	i915_reg_t mg_regs[2] = { MG_DP_MODE(port, 0), MG_DP_MODE(port, 1) };
	u32 val;
	int i;

	if (tc_port == PORT_TC_NONE)
		return;

	for (i = 0; i < ARRAY_SIZE(mg_regs); i++) {
		val = I915_READ(mg_regs[i]);
		val |= MG_DP_MODE_CFG_TR2PWR_GATING |
		       MG_DP_MODE_CFG_TRPWR_GATING |
		       MG_DP_MODE_CFG_CLNPWR_GATING |
		       MG_DP_MODE_CFG_DIGPWR_GATING |
		       MG_DP_MODE_CFG_GAONPWR_GATING;
		I915_WRITE(mg_regs[i], val);
	}

	val = I915_READ(MG_MISC_SUS0(tc_port));
	val |= MG_MISC_SUS0_SUSCLK_DYNCLKGATE_MODE(3) |
	       MG_MISC_SUS0_CFG_TR2PWR_GATING |
	       MG_MISC_SUS0_CFG_CL2PWR_GATING |
	       MG_MISC_SUS0_CFG_GAONPWR_GATING |
	       MG_MISC_SUS0_CFG_TRPWR_GATING |
	       MG_MISC_SUS0_CFG_CL1PWR_GATING |
	       MG_MISC_SUS0_CFG_DGPWR_GATING;
	I915_WRITE(MG_MISC_SUS0(tc_port), val);
}

void icl_disable_phy_clock_gating(struct intel_digital_port *dig_port)
{
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum port port = dig_port->base.port;
	enum tc_port tc_port = intel_port_to_tc(dev_priv, port);
	i915_reg_t mg_regs[2] = { MG_DP_MODE(port, 0), MG_DP_MODE(port, 1) };
	u32 val;
	int i;

	if (tc_port == PORT_TC_NONE)
		return;

	for (i = 0; i < ARRAY_SIZE(mg_regs); i++) {
		val = I915_READ(mg_regs[i]);
		val &= ~(MG_DP_MODE_CFG_TR2PWR_GATING |
			 MG_DP_MODE_CFG_TRPWR_GATING |
			 MG_DP_MODE_CFG_CLNPWR_GATING |
			 MG_DP_MODE_CFG_DIGPWR_GATING |
			 MG_DP_MODE_CFG_GAONPWR_GATING);
		I915_WRITE(mg_regs[i], val);
	}

	val = I915_READ(MG_MISC_SUS0(tc_port));
	val &= ~(MG_MISC_SUS0_SUSCLK_DYNCLKGATE_MODE_MASK |
		 MG_MISC_SUS0_CFG_TR2PWR_GATING |
		 MG_MISC_SUS0_CFG_CL2PWR_GATING |
		 MG_MISC_SUS0_CFG_GAONPWR_GATING |
		 MG_MISC_SUS0_CFG_TRPWR_GATING |
		 MG_MISC_SUS0_CFG_CL1PWR_GATING |
		 MG_MISC_SUS0_CFG_DGPWR_GATING);
	I915_WRITE(MG_MISC_SUS0(tc_port), val);
}

376
int
377 378
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
{
379 380 381 382 383 384 385
	/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
	 * link rate that is generally expressed in Gbps. Since, 8 bits of data
	 * is transmitted every LS_Clk per lane, there is no need to account for
	 * the channel encoding that is done in the PHY layer here.
	 */

	return max_link_clock * max_lanes;
386 387
}

388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
static int
intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &intel_dig_port->base;
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	int max_dotclk = dev_priv->max_dotclk_freq;
	int ds_max_dotclk;

	int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;

	if (type != DP_DS_PORT_TYPE_VGA)
		return max_dotclk;

	ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
						    intel_dp->downstream_ports);

	if (ds_max_dotclk != 0)
		max_dotclk = min(max_dotclk, ds_max_dotclk);

	return max_dotclk;
}

411
static int cnl_max_source_rate(struct intel_dp *intel_dp)
412 413 414 415 416 417 418 419 420
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum port port = dig_port->base.port;

	u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;

	/* Low voltage SKUs are limited to max of 5.4G */
	if (voltage == VOLTAGE_INFO_0_85V)
421
		return 540000;
422 423 424

	/* For this SKU 8.1G is supported in all ports */
	if (IS_CNL_WITH_PORT_F(dev_priv))
425
		return 810000;
426

427
	/* For other SKUs, max rate on ports A and D is 5.4G */
428
	if (port == PORT_A || port == PORT_D)
429
		return 540000;
430

431
	return 810000;
432 433
}

434 435 436 437 438 439 440 441 442 443 444
static int icl_max_source_rate(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum port port = dig_port->base.port;

	if (port == PORT_B)
		return 540000;

	return 810000;
}

445 446
static void
intel_dp_set_source_rates(struct intel_dp *intel_dp)
447
{
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
	/* The values must be in increasing order */
	static const int cnl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
	};
	static const int bxt_rates[] = {
		162000, 216000, 243000, 270000, 324000, 432000, 540000
	};
	static const int skl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000
	};
	static const int hsw_rates[] = {
		162000, 270000, 540000
	};
	static const int g4x_rates[] = {
		162000, 270000
	};
464 465
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
466 467
	const struct ddi_vbt_port_info *info =
		&dev_priv->vbt.ddi_port_info[dig_port->base.port];
468
	const int *source_rates;
469
	int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
470

471 472 473
	/* This should only be done once */
	WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);

474
	if (INTEL_GEN(dev_priv) >= 10) {
475
		source_rates = cnl_rates;
476
		size = ARRAY_SIZE(cnl_rates);
477
		if (IS_GEN10(dev_priv))
478 479 480
			max_rate = cnl_max_source_rate(intel_dp);
		else
			max_rate = icl_max_source_rate(intel_dp);
481 482 483
	} else if (IS_GEN9_LP(dev_priv)) {
		source_rates = bxt_rates;
		size = ARRAY_SIZE(bxt_rates);
484
	} else if (IS_GEN9_BC(dev_priv)) {
485
		source_rates = skl_rates;
486
		size = ARRAY_SIZE(skl_rates);
487 488
	} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
		   IS_BROADWELL(dev_priv)) {
489 490
		source_rates = hsw_rates;
		size = ARRAY_SIZE(hsw_rates);
491
	} else {
492 493
		source_rates = g4x_rates;
		size = ARRAY_SIZE(g4x_rates);
494 495
	}

496 497 498 499 500
	if (max_rate && vbt_max_rate)
		max_rate = min(max_rate, vbt_max_rate);
	else if (vbt_max_rate)
		max_rate = vbt_max_rate;

501 502 503
	if (max_rate)
		size = intel_dp_rate_limit_len(source_rates, size, max_rate);

504 505
	intel_dp->source_rates = source_rates;
	intel_dp->num_source_rates = size;
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
}

static int intersect_rates(const int *source_rates, int source_len,
			   const int *sink_rates, int sink_len,
			   int *common_rates)
{
	int i = 0, j = 0, k = 0;

	while (i < source_len && j < sink_len) {
		if (source_rates[i] == sink_rates[j]) {
			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
				return k;
			common_rates[k] = source_rates[i];
			++k;
			++i;
			++j;
		} else if (source_rates[i] < sink_rates[j]) {
			++i;
		} else {
			++j;
		}
	}
	return k;
}

531 532 533 534 535 536 537 538 539 540 541 542
/* return index of rate in rates array, or -1 if not found */
static int intel_dp_rate_index(const int *rates, int len, int rate)
{
	int i;

	for (i = 0; i < len; i++)
		if (rate == rates[i])
			return i;

	return -1;
}

543
static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
544
{
545
	WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
546

547 548 549 550 551 552 553 554
	intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
						     intel_dp->num_source_rates,
						     intel_dp->sink_rates,
						     intel_dp->num_sink_rates,
						     intel_dp->common_rates);

	/* Paranoia, there should always be something in common. */
	if (WARN_ON(intel_dp->num_common_rates == 0)) {
555
		intel_dp->common_rates[0] = 162000;
556 557 558 559
		intel_dp->num_common_rates = 1;
	}
}

560 561
static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
				       uint8_t lane_count)
562 563 564 565 566 567
{
	/*
	 * FIXME: we need to synchronize the current link parameters with
	 * hardware readout. Currently fast link training doesn't work on
	 * boot-up.
	 */
568 569
	if (link_rate == 0 ||
	    link_rate > intel_dp->max_link_rate)
570 571
		return false;

572 573
	if (lane_count == 0 ||
	    lane_count > intel_dp_max_lane_count(intel_dp))
574 575 576 577 578
		return false;

	return true;
}

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
						     int link_rate,
						     uint8_t lane_count)
{
	const struct drm_display_mode *fixed_mode =
		intel_dp->attached_connector->panel.fixed_mode;
	int mode_rate, max_rate;

	mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
	max_rate = intel_dp_max_data_rate(link_rate, lane_count);
	if (mode_rate > max_rate)
		return false;

	return true;
}

595 596 597
int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
					    int link_rate, uint8_t lane_count)
{
598
	int index;
599

600 601 602 603
	index = intel_dp_rate_index(intel_dp->common_rates,
				    intel_dp->num_common_rates,
				    link_rate);
	if (index > 0) {
604 605 606 607 608 609 610
		if (intel_dp_is_edp(intel_dp) &&
		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
							      intel_dp->common_rates[index - 1],
							      lane_count)) {
			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
			return 0;
		}
611 612
		intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
		intel_dp->max_link_lane_count = lane_count;
613
	} else if (lane_count > 1) {
614 615 616 617 618 619 620
		if (intel_dp_is_edp(intel_dp) &&
		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
							      intel_dp_max_common_rate(intel_dp),
							      lane_count >> 1)) {
			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
			return 0;
		}
621
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
622
		intel_dp->max_link_lane_count = lane_count >> 1;
623 624 625 626 627 628 629 630
	} else {
		DRM_ERROR("Link Training Unsuccessful\n");
		return -1;
	}

	return 0;
}

631
static enum drm_mode_status
632 633 634
intel_dp_mode_valid(struct drm_connector *connector,
		    struct drm_display_mode *mode)
{
635
	struct intel_dp *intel_dp = intel_attached_dp(connector);
636 637
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
638
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
639 640
	int target_clock = mode->clock;
	int max_rate, mode_rate, max_lanes, max_link_clock;
641
	int max_dotclk;
642 643
	u16 dsc_max_output_bpp = 0;
	u8 dsc_slice_count = 0;
644

645 646 647
	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
		return MODE_NO_DBLESCAN;

648
	max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
649

650
	if (intel_dp_is_edp(intel_dp) && fixed_mode) {
651
		if (mode->hdisplay > fixed_mode->hdisplay)
652 653
			return MODE_PANEL;

654
		if (mode->vdisplay > fixed_mode->vdisplay)
655
			return MODE_PANEL;
656 657

		target_clock = fixed_mode->clock;
658 659
	}

660
	max_link_clock = intel_dp_max_link_rate(intel_dp);
661
	max_lanes = intel_dp_max_lane_count(intel_dp);
662 663 664 665

	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
	mode_rate = intel_dp_link_required(target_clock, 18);

666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
	/*
	 * Output bpp is stored in 6.4 format so right shift by 4 to get the
	 * integer value since we support only integer values of bpp.
	 */
	if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
	    drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
		if (intel_dp_is_edp(intel_dp)) {
			dsc_max_output_bpp =
				drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
			dsc_slice_count =
				drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
								true);
		} else {
			dsc_max_output_bpp =
				intel_dp_dsc_get_output_bpp(max_link_clock,
							    max_lanes,
							    target_clock,
							    mode->hdisplay) >> 4;
			dsc_slice_count =
				intel_dp_dsc_get_slice_count(intel_dp,
							     target_clock,
							     mode->hdisplay);
		}
	}

	if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
	    target_clock > max_dotclk)
693
		return MODE_CLOCK_HIGH;
694 695 696 697

	if (mode->clock < 10000)
		return MODE_CLOCK_LOW;

698 699 700
	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
		return MODE_H_ILLEGAL;

701 702 703
	return MODE_OK;
}

704
uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
705 706 707 708 709 710 711 712 713 714 715
{
	int	i;
	uint32_t v = 0;

	if (src_bytes > 4)
		src_bytes = 4;
	for (i = 0; i < src_bytes; i++)
		v |= ((uint32_t) src[i]) << ((3-i) * 8);
	return v;
}

716
static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
717 718 719 720 721 722 723 724
{
	int i;
	if (dst_bytes > 4)
		dst_bytes = 4;
	for (i = 0; i < dst_bytes; i++)
		dst[i] = src >> ((3-i) * 8);
}

725
static void
726
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
727
static void
728
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
729
					      bool force_disable_vdd);
730
static void
731
intel_dp_pps_init(struct intel_dp *intel_dp);
732

733 734
static void pps_lock(struct intel_dp *intel_dp)
{
735
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
736 737

	/*
738
	 * See intel_power_sequencer_reset() why we need
739 740
	 * a power domain reference here.
	 */
741
	intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
742 743 744 745 746 747

	mutex_lock(&dev_priv->pps_mutex);
}

static void pps_unlock(struct intel_dp *intel_dp)
{
748
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
749 750 751

	mutex_unlock(&dev_priv->pps_mutex);

752
	intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
753 754
}

755 756 757
static void
vlv_power_sequencer_kick(struct intel_dp *intel_dp)
{
758
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
759 760
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	enum pipe pipe = intel_dp->pps_pipe;
761 762 763
	bool pll_enabled, release_cl_override = false;
	enum dpio_phy phy = DPIO_PHY(pipe);
	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
764 765 766
	uint32_t DP;

	if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
767
		 "skipping pipe %c power sequencer kick due to port %c being active\n",
768
		 pipe_name(pipe), port_name(intel_dig_port->base.port)))
769 770 771
		return;

	DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
772
		      pipe_name(pipe), port_name(intel_dig_port->base.port));
773 774 775 776 777 778 779 780 781

	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
	DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
	DP |= DP_PORT_WIDTH(1);
	DP |= DP_LINK_TRAIN_PAT_1;

782
	if (IS_CHERRYVIEW(dev_priv))
783 784 785
		DP |= DP_PIPE_SEL_CHV(pipe);
	else
		DP |= DP_PIPE_SEL(pipe);
786

787 788 789 790 791 792
	pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;

	/*
	 * The DPLL for the pipe must be enabled for this to work.
	 * So enable temporarily it if it's not already enabled.
	 */
793
	if (!pll_enabled) {
794
		release_cl_override = IS_CHERRYVIEW(dev_priv) &&
795 796
			!chv_phy_powergate_ch(dev_priv, phy, ch, true);

797
		if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
798 799 800 801 802
				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
			DRM_ERROR("Failed to force on pll for pipe %c!\n",
				  pipe_name(pipe));
			return;
		}
803
	}
804

805 806 807
	/*
	 * Similar magic as in intel_dp_enable_port().
	 * We _must_ do this port enable + disable trick
808
	 * to make this power sequencer lock onto the port.
809 810 811 812 813 814 815 816 817 818
	 * Otherwise even VDD force bit won't work.
	 */
	I915_WRITE(intel_dp->output_reg, DP);
	POSTING_READ(intel_dp->output_reg);

	I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
	POSTING_READ(intel_dp->output_reg);

	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
	POSTING_READ(intel_dp->output_reg);
819

820
	if (!pll_enabled) {
821
		vlv_force_pll_off(dev_priv, pipe);
822 823 824 825

		if (release_cl_override)
			chv_phy_powergate_ch(dev_priv, phy, ch, false);
	}
826 827
}

828 829 830 831 832 833 834 835 836
static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
{
	struct intel_encoder *encoder;
	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);

	/*
	 * We don't have power sequencer currently.
	 * Pick one that's not used by other ports.
	 */
837 838
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859

		if (encoder->type == INTEL_OUTPUT_EDP) {
			WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
				intel_dp->active_pipe != intel_dp->pps_pipe);

			if (intel_dp->pps_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->pps_pipe);
		} else {
			WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);

			if (intel_dp->active_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->active_pipe);
		}
	}

	if (pipes == 0)
		return INVALID_PIPE;

	return ffs(pipes) - 1;
}

860 861 862
static enum pipe
vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
{
863
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
864
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
865
	enum pipe pipe;
866

V
Ville Syrjälä 已提交
867
	lockdep_assert_held(&dev_priv->pps_mutex);
868

869
	/* We should never land here with regular DP ports */
870
	WARN_ON(!intel_dp_is_edp(intel_dp));
871

872 873 874
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
		intel_dp->active_pipe != intel_dp->pps_pipe);

875 876 877
	if (intel_dp->pps_pipe != INVALID_PIPE)
		return intel_dp->pps_pipe;

878
	pipe = vlv_find_free_pps(dev_priv);
879 880 881 882 883

	/*
	 * Didn't find one. This should not happen since there
	 * are two power sequencers and up to two eDP ports.
	 */
884
	if (WARN_ON(pipe == INVALID_PIPE))
885
		pipe = PIPE_A;
886

887
	vlv_steal_power_sequencer(dev_priv, pipe);
888
	intel_dp->pps_pipe = pipe;
889 890 891

	DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
		      pipe_name(intel_dp->pps_pipe),
892
		      port_name(intel_dig_port->base.port));
893 894

	/* init power sequencer on this pipe and port */
895 896
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
897

898 899 900 901 902
	/*
	 * Even vdd force doesn't work until we've made
	 * the power sequencer lock in on the port.
	 */
	vlv_power_sequencer_kick(intel_dp);
903 904 905 906

	return intel_dp->pps_pipe;
}

907 908 909
static int
bxt_power_sequencer_idx(struct intel_dp *intel_dp)
{
910
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
911
	int backlight_controller = dev_priv->vbt.backlight.controller;
912 913 914 915

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* We should never land here with regular DP ports */
916
	WARN_ON(!intel_dp_is_edp(intel_dp));
917 918

	if (!intel_dp->pps_reset)
919
		return backlight_controller;
920 921 922 923 924 925 926

	intel_dp->pps_reset = false;

	/*
	 * Only the HW needs to be reprogrammed, the SW state is fixed and
	 * has been setup during connector init.
	 */
927
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
928

929
	return backlight_controller;
930 931
}

932 933 934 935 936 937
typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
			       enum pipe pipe);

static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
			       enum pipe pipe)
{
938
	return I915_READ(PP_STATUS(pipe)) & PP_ON;
939 940 941 942 943
}

static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
				enum pipe pipe)
{
944
	return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
945 946 947 948 949 950 951
}

static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
			 enum pipe pipe)
{
	return true;
}
952

953
static enum pipe
954 955 956
vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
		     enum port port,
		     vlv_pipe_check pipe_check)
957 958
{
	enum pipe pipe;
959 960

	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
961
		u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
962
			PANEL_PORT_SELECT_MASK;
963 964 965 966

		if (port_sel != PANEL_PORT_SELECT_VLV(port))
			continue;

967 968 969
		if (!pipe_check(dev_priv, pipe))
			continue;

970
		return pipe;
971 972
	}

973 974 975 976 977 978
	return INVALID_PIPE;
}

static void
vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
{
979
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
980
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
981
	enum port port = intel_dig_port->base.port;
982 983 984 985

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* try to find a pipe with this port selected */
986 987 988 989 990 991 992 993 994 995 996
	/* first pick one where the panel is on */
	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
						  vlv_pipe_has_pp_on);
	/* didn't find one? pick one where vdd is on */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_has_vdd_on);
	/* didn't find one? pick one with just the correct port */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_any);
997 998 999 1000 1001 1002

	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
	if (intel_dp->pps_pipe == INVALID_PIPE) {
		DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
			      port_name(port));
		return;
1003 1004
	}

1005 1006 1007
	DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
		      port_name(port), pipe_name(intel_dp->pps_pipe));

1008 1009
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
1010 1011
}

1012
void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
1013 1014 1015
{
	struct intel_encoder *encoder;

1016
	if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
1017
		    !IS_GEN9_LP(dev_priv)))
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
		return;

	/*
	 * We can't grab pps_mutex here due to deadlock with power_domain
	 * mutex when power_domain functions are called while holding pps_mutex.
	 * That also means that in order to use pps_pipe the code needs to
	 * hold both a power domain reference and pps_mutex, and the power domain
	 * reference get/put must be done while _not_ holding pps_mutex.
	 * pps_{lock,unlock}() do these steps in the correct order, so one
	 * should use them always.
	 */

1030 1031
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1032

1033 1034 1035 1036 1037
		WARN_ON(intel_dp->active_pipe != INVALID_PIPE);

		if (encoder->type != INTEL_OUTPUT_EDP)
			continue;

1038
		if (IS_GEN9_LP(dev_priv))
1039 1040 1041
			intel_dp->pps_reset = true;
		else
			intel_dp->pps_pipe = INVALID_PIPE;
1042
	}
1043 1044
}

1045 1046 1047 1048 1049 1050 1051 1052
struct pps_registers {
	i915_reg_t pp_ctrl;
	i915_reg_t pp_stat;
	i915_reg_t pp_on;
	i915_reg_t pp_off;
	i915_reg_t pp_div;
};

1053
static void intel_pps_get_registers(struct intel_dp *intel_dp,
1054 1055
				    struct pps_registers *regs)
{
1056
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1057 1058
	int pps_idx = 0;

1059 1060
	memset(regs, 0, sizeof(*regs));

1061
	if (IS_GEN9_LP(dev_priv))
1062 1063 1064
		pps_idx = bxt_power_sequencer_idx(intel_dp);
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		pps_idx = vlv_power_sequencer_pipe(intel_dp);
1065

1066 1067 1068 1069
	regs->pp_ctrl = PP_CONTROL(pps_idx);
	regs->pp_stat = PP_STATUS(pps_idx);
	regs->pp_on = PP_ON_DELAYS(pps_idx);
	regs->pp_off = PP_OFF_DELAYS(pps_idx);
1070 1071
	if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv) &&
	    !HAS_PCH_ICP(dev_priv))
1072
		regs->pp_div = PP_DIVISOR(pps_idx);
1073 1074
}

1075 1076
static i915_reg_t
_pp_ctrl_reg(struct intel_dp *intel_dp)
1077
{
1078
	struct pps_registers regs;
1079

1080
	intel_pps_get_registers(intel_dp, &regs);
1081 1082

	return regs.pp_ctrl;
1083 1084
}

1085 1086
static i915_reg_t
_pp_stat_reg(struct intel_dp *intel_dp)
1087
{
1088
	struct pps_registers regs;
1089

1090
	intel_pps_get_registers(intel_dp, &regs);
1091 1092

	return regs.pp_stat;
1093 1094
}

1095 1096 1097 1098 1099 1100 1101
/* Reboot notifier handler to shutdown panel power to guarantee T12 timing
   This function only applicable when panel PM state is not to be tracked */
static int edp_notify_handler(struct notifier_block *this, unsigned long code,
			      void *unused)
{
	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
						 edp_notifier);
1102
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1103

1104
	if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1105 1106
		return 0;

1107
	pps_lock(intel_dp);
V
Ville Syrjälä 已提交
1108

1109
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
V
Ville Syrjälä 已提交
1110
		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
1111
		i915_reg_t pp_ctrl_reg, pp_div_reg;
1112
		u32 pp_div;
V
Ville Syrjälä 已提交
1113

1114 1115
		pp_ctrl_reg = PP_CONTROL(pipe);
		pp_div_reg  = PP_DIVISOR(pipe);
1116 1117 1118 1119 1120 1121 1122 1123 1124
		pp_div = I915_READ(pp_div_reg);
		pp_div &= PP_REFERENCE_DIVIDER_MASK;

		/* 0x1F write to PP_DIV_REG sets max cycle delay */
		I915_WRITE(pp_div_reg, pp_div | 0x1F);
		I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
		msleep(intel_dp->panel_power_cycle_delay);
	}

1125
	pps_unlock(intel_dp);
V
Ville Syrjälä 已提交
1126

1127 1128 1129
	return 0;
}

1130
static bool edp_have_panel_power(struct intel_dp *intel_dp)
1131
{
1132
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1133

V
Ville Syrjälä 已提交
1134 1135
	lockdep_assert_held(&dev_priv->pps_mutex);

1136
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1137 1138 1139
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

1140
	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
1141 1142
}

1143
static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1144
{
1145
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1146

V
Ville Syrjälä 已提交
1147 1148
	lockdep_assert_held(&dev_priv->pps_mutex);

1149
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1150 1151 1152
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

1153
	return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1154 1155
}

1156 1157 1158
static void
intel_dp_check_edp(struct intel_dp *intel_dp)
{
1159
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1160

1161
	if (!intel_dp_is_edp(intel_dp))
1162
		return;
1163

1164
	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1165 1166
		WARN(1, "eDP powered off while attempting aux channel communication.\n");
		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
1167 1168
			      I915_READ(_pp_stat_reg(intel_dp)),
			      I915_READ(_pp_ctrl_reg(intel_dp)));
1169 1170 1171
	}
}

1172
static uint32_t
1173
intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1174
{
1175
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1176
	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1177 1178 1179
	uint32_t status;
	bool done;

1180
#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1181 1182
	done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
				  msecs_to_jiffies_timeout(10));
1183
	if (!done)
1184
		DRM_ERROR("dp aux hw did not signal timeout!\n");
1185 1186 1187 1188 1189
#undef C

	return status;
}

1190
static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1191
{
1192
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1193

1194 1195 1196
	if (index)
		return 0;

1197 1198
	/*
	 * The clock divider is based off the hrawclk, and would like to run at
1199
	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1200
	 */
1201
	return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1202 1203 1204 1205
}

static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
1206
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1207
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1208 1209 1210 1211

	if (index)
		return 0;

1212 1213 1214 1215 1216
	/*
	 * The clock divider is based off the cdclk or PCH rawclk, and would
	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
	 * divide by 2000 and use that
	 */
1217
	if (dig_port->aux_ch == AUX_CH_A)
1218
		return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
1219 1220
	else
		return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1221 1222 1223 1224
}

static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
1225
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1226
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1227

1228
	if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1229
		/* Workaround for non-ULT HSW */
1230 1231 1232 1233 1234
		switch (index) {
		case 0: return 63;
		case 1: return 72;
		default: return 0;
		}
1235
	}
1236 1237

	return ilk_get_aux_clock_divider(intel_dp, index);
1238 1239
}

1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
	/*
	 * SKL doesn't need us to program the AUX clock divider (Hardware will
	 * derive the clock from CDCLK automatically). We still implement the
	 * get_aux_clock_divider vfunc to plug-in into the existing code.
	 */
	return index ? 0 : 1;
}

1250 1251 1252
static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
				     int send_bytes,
				     uint32_t aux_clock_divider)
1253 1254
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1255 1256
	struct drm_i915_private *dev_priv =
			to_i915(intel_dig_port->base.base.dev);
1257 1258
	uint32_t precharge, timeout;

1259
	if (IS_GEN6(dev_priv))
1260 1261 1262 1263
		precharge = 3;
	else
		precharge = 5;

1264
	if (IS_BROADWELL(dev_priv))
1265 1266 1267 1268 1269
		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
	else
		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;

	return DP_AUX_CH_CTL_SEND_BUSY |
1270
	       DP_AUX_CH_CTL_DONE |
1271
	       DP_AUX_CH_CTL_INTERRUPT |
1272
	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
1273
	       timeout |
1274
	       DP_AUX_CH_CTL_RECEIVE_ERROR |
1275 1276
	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1277
	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1278 1279
}

1280 1281 1282 1283
static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
				      int send_bytes,
				      uint32_t unused)
{
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	uint32_t ret;

	ret = DP_AUX_CH_CTL_SEND_BUSY |
	      DP_AUX_CH_CTL_DONE |
	      DP_AUX_CH_CTL_INTERRUPT |
	      DP_AUX_CH_CTL_TIME_OUT_ERROR |
	      DP_AUX_CH_CTL_TIME_OUT_MAX |
	      DP_AUX_CH_CTL_RECEIVE_ERROR |
	      (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	      DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
	      DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);

	if (intel_dig_port->tc_type == TC_PORT_TBT)
		ret |= DP_AUX_CH_CTL_TBT_IO;

	return ret;
1301 1302
}

1303
static int
1304 1305
intel_dp_aux_xfer(struct intel_dp *intel_dp,
		  const uint8_t *send, int send_bytes,
1306 1307
		  uint8_t *recv, int recv_size,
		  u32 aux_send_ctl_flags)
1308 1309
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1310 1311
	struct drm_i915_private *dev_priv =
			to_i915(intel_dig_port->base.base.dev);
1312
	i915_reg_t ch_ctl, ch_data[5];
1313
	uint32_t aux_clock_divider;
1314 1315
	int i, ret, recv_bytes;
	uint32_t status;
1316
	int try, clock = 0;
1317 1318
	bool vdd;

1319 1320 1321 1322
	ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
	for (i = 0; i < ARRAY_SIZE(ch_data); i++)
		ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);

1323
	pps_lock(intel_dp);
V
Ville Syrjälä 已提交
1324

1325 1326 1327 1328 1329 1330
	/*
	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
	 * In such cases we want to leave VDD enabled and it's up to upper layers
	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
	 * ourselves.
	 */
1331
	vdd = edp_panel_vdd_on(intel_dp);
1332 1333 1334 1335 1336 1337 1338 1339

	/* dp aux is extremely sensitive to irq latency, hence request the
	 * lowest possible wakeup latency and so prevent the cpu from going into
	 * deep sleep states.
	 */
	pm_qos_update_request(&dev_priv->pm_qos, 0);

	intel_dp_check_edp(intel_dp);
1340

1341 1342
	/* Try to wait for any previous AUX channel activity */
	for (try = 0; try < 3; try++) {
1343
		status = I915_READ_NOTRACE(ch_ctl);
1344 1345 1346 1347 1348 1349
		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
			break;
		msleep(1);
	}

	if (try == 3) {
1350 1351 1352 1353 1354 1355 1356 1357 1358
		static u32 last_status = -1;
		const u32 status = I915_READ(ch_ctl);

		if (status != last_status) {
			WARN(1, "dp_aux_ch not started status 0x%08x\n",
			     status);
			last_status = status;
		}

1359 1360
		ret = -EBUSY;
		goto out;
1361 1362
	}

1363 1364 1365 1366 1367 1368
	/* Only 5 data registers! */
	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
		ret = -E2BIG;
		goto out;
	}

1369
	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1370 1371 1372 1373 1374
		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
							  send_bytes,
							  aux_clock_divider);

		send_ctl |= aux_send_ctl_flags;
1375

1376 1377 1378 1379
		/* Must try at least 3 times according to DP spec */
		for (try = 0; try < 5; try++) {
			/* Load the send data into the aux channel data registers */
			for (i = 0; i < send_bytes; i += 4)
1380
				I915_WRITE(ch_data[i >> 2],
1381 1382
					   intel_dp_pack_aux(send + i,
							     send_bytes - i));
1383 1384

			/* Send the command and wait for it to complete */
1385
			I915_WRITE(ch_ctl, send_ctl);
1386

1387
			status = intel_dp_aux_wait_done(intel_dp);
1388 1389 1390 1391 1392 1393 1394 1395

			/* Clear done status and any errors */
			I915_WRITE(ch_ctl,
				   status |
				   DP_AUX_CH_CTL_DONE |
				   DP_AUX_CH_CTL_TIME_OUT_ERROR |
				   DP_AUX_CH_CTL_RECEIVE_ERROR);

1396 1397 1398 1399 1400
			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
			 *   400us delay required for errors and timeouts
			 *   Timeout errors from the HW already meet this
			 *   requirement so skip to next iteration
			 */
1401 1402 1403
			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
				continue;

1404 1405
			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
				usleep_range(400, 500);
1406
				continue;
1407
			}
1408
			if (status & DP_AUX_CH_CTL_DONE)
1409
				goto done;
1410
		}
1411 1412 1413
	}

	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1414
		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1415 1416
		ret = -EBUSY;
		goto out;
1417 1418
	}

1419
done:
1420 1421 1422
	/* Check for timeout or receive error.
	 * Timeouts occur when the sink is not connected
	 */
1423
	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1424
		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1425 1426
		ret = -EIO;
		goto out;
1427
	}
1428 1429 1430

	/* Timeouts occur when the device isn't connected, so they're
	 * "normal" -- don't fill the kernel log with these */
1431
	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1432
		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1433 1434
		ret = -ETIMEDOUT;
		goto out;
1435 1436 1437 1438 1439
	}

	/* Unload any bytes sent back from the other side */
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452

	/*
	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
	 * We have no idea of what happened so we return -EBUSY so
	 * drm layer takes care for the necessary retries.
	 */
	if (recv_bytes == 0 || recv_bytes > 20) {
		DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
			      recv_bytes);
		ret = -EBUSY;
		goto out;
	}

1453 1454
	if (recv_bytes > recv_size)
		recv_bytes = recv_size;
1455

1456
	for (i = 0; i < recv_bytes; i += 4)
1457
		intel_dp_unpack_aux(I915_READ(ch_data[i >> 2]),
1458
				    recv + i, recv_bytes - i);
1459

1460 1461 1462 1463
	ret = recv_bytes;
out:
	pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);

1464 1465 1466
	if (vdd)
		edp_panel_vdd_off(intel_dp, false);

1467
	pps_unlock(intel_dp);
V
Ville Syrjälä 已提交
1468

1469
	return ret;
1470 1471
}

1472 1473
#define BARE_ADDRESS_SIZE	3
#define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484

static void
intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
		    const struct drm_dp_aux_msg *msg)
{
	txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
	txbuf[1] = (msg->address >> 8) & 0xff;
	txbuf[2] = msg->address & 0xff;
	txbuf[3] = msg->size - 1;
}

1485 1486
static ssize_t
intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1487
{
1488 1489 1490
	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
	uint8_t txbuf[20], rxbuf[20];
	size_t txsize, rxsize;
1491 1492
	int ret;

1493
	intel_dp_aux_header(txbuf, msg);
1494

1495 1496 1497
	switch (msg->request & ~DP_AUX_I2C_MOT) {
	case DP_AUX_NATIVE_WRITE:
	case DP_AUX_I2C_WRITE:
1498
	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1499
		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1500
		rxsize = 2; /* 0 or 1 data bytes */
1501

1502 1503
		if (WARN_ON(txsize > 20))
			return -E2BIG;
1504

1505 1506
		WARN_ON(!msg->buffer != !msg->size);

1507 1508
		if (msg->buffer)
			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1509

1510
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1511
					rxbuf, rxsize, 0);
1512 1513
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
1514

1515 1516 1517 1518 1519 1520 1521
			if (ret > 1) {
				/* Number of bytes written in a short write. */
				ret = clamp_t(int, rxbuf[1], 0, msg->size);
			} else {
				/* Return payload size. */
				ret = msg->size;
			}
1522 1523
		}
		break;
1524

1525 1526
	case DP_AUX_NATIVE_READ:
	case DP_AUX_I2C_READ:
1527
		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1528
		rxsize = msg->size + 1;
1529

1530 1531
		if (WARN_ON(rxsize > 20))
			return -E2BIG;
1532

1533
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1534
					rxbuf, rxsize, 0);
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
			/*
			 * Assume happy day, and copy the data. The caller is
			 * expected to check msg->reply before touching it.
			 *
			 * Return payload size.
			 */
			ret--;
			memcpy(msg->buffer, rxbuf + 1, ret);
1545
		}
1546 1547 1548 1549 1550
		break;

	default:
		ret = -EINVAL;
		break;
1551
	}
1552

1553
	return ret;
1554 1555
}

1556 1557 1558
static enum intel_display_power_domain
intel_aux_power_domain(struct intel_dp *intel_dp)
{
1559 1560 1561
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);

	switch (dig_port->aux_ch) {
1562 1563 1564 1565 1566 1567 1568 1569
	case AUX_CH_A:
		return POWER_DOMAIN_AUX_A;
	case AUX_CH_B:
		return POWER_DOMAIN_AUX_B;
	case AUX_CH_C:
		return POWER_DOMAIN_AUX_C;
	case AUX_CH_D:
		return POWER_DOMAIN_AUX_D;
1570 1571
	case AUX_CH_E:
		return POWER_DOMAIN_AUX_E;
1572 1573 1574
	case AUX_CH_F:
		return POWER_DOMAIN_AUX_F;
	default:
1575
		MISSING_CASE(dig_port->aux_ch);
1576 1577
		return POWER_DOMAIN_AUX_A;
	}
1578 1579
}

1580
static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1581
{
1582
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1583 1584
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1585

1586 1587 1588 1589 1590
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_CTL(aux_ch);
1591
	default:
1592 1593
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_B);
1594 1595 1596
	}
}

1597
static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1598
{
1599
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1600 1601
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1602

1603 1604 1605 1606 1607
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_DATA(aux_ch, index);
1608
	default:
1609 1610
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_B, index);
1611 1612 1613
	}
}

1614
static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1615
{
1616
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1617 1618
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1619

1620 1621 1622 1623 1624 1625 1626
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_CTL(aux_ch);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_CTL(aux_ch);
1627
	default:
1628 1629
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1630 1631 1632
	}
}

1633
static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1634
{
1635
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1636 1637
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1638

1639 1640 1641 1642 1643 1644 1645
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_DATA(aux_ch, index);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_DATA(aux_ch, index);
1646
	default:
1647 1648
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1649 1650 1651
	}
}

1652
static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1653
{
1654
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1655 1656
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1657

1658 1659 1660 1661 1662
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1663
	case AUX_CH_E:
1664 1665
	case AUX_CH_F:
		return DP_AUX_CH_CTL(aux_ch);
1666
	default:
1667 1668
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1669 1670 1671
	}
}

1672
static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1673
{
1674
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1675 1676
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1677

1678 1679 1680 1681 1682
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1683
	case AUX_CH_E:
1684 1685
	case AUX_CH_F:
		return DP_AUX_CH_DATA(aux_ch, index);
1686
	default:
1687 1688
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1689 1690 1691
	}
}

1692 1693 1694 1695 1696 1697 1698 1699
static void
intel_dp_aux_fini(struct intel_dp *intel_dp)
{
	kfree(intel_dp->aux.name);
}

static void
intel_dp_aux_init(struct intel_dp *intel_dp)
1700
{
1701
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1702 1703
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &dig_port->base;
1704

1705
	dig_port->aux_ch = intel_aux_ch(dev_priv, encoder->port);
1706
	intel_dp->aux_power_domain = intel_aux_power_domain(intel_dp);
1707

1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
	if (INTEL_GEN(dev_priv) >= 9) {
		intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = skl_aux_data_reg;
	} else if (HAS_PCH_SPLIT(dev_priv)) {
		intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
	} else {
		intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
	}
1718

1719 1720 1721 1722 1723 1724 1725 1726
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
	else if (HAS_PCH_SPLIT(dev_priv))
		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
	else
		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1727

1728 1729 1730 1731
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
	else
		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1732

1733
	drm_dp_aux_init(&intel_dp->aux);
1734

1735
	/* Failure to allocate our preferred name is not critical */
1736 1737
	intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
				       port_name(encoder->port));
1738
	intel_dp->aux.transfer = intel_dp_aux_transfer;
1739 1740
}

1741
bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1742
{
1743
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1744

1745
	return max_rate >= 540000;
1746 1747
}

1748 1749 1750 1751 1752 1753 1754
bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
{
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];

	return max_rate >= 810000;
}

1755 1756
static void
intel_dp_set_clock(struct intel_encoder *encoder,
1757
		   struct intel_crtc_state *pipe_config)
1758
{
1759
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1760 1761
	const struct dp_link_dpll *divisor = NULL;
	int i, count = 0;
1762

1763
	if (IS_G4X(dev_priv)) {
1764 1765
		divisor = g4x_dpll;
		count = ARRAY_SIZE(g4x_dpll);
1766
	} else if (HAS_PCH_SPLIT(dev_priv)) {
1767 1768
		divisor = pch_dpll;
		count = ARRAY_SIZE(pch_dpll);
1769
	} else if (IS_CHERRYVIEW(dev_priv)) {
1770 1771
		divisor = chv_dpll;
		count = ARRAY_SIZE(chv_dpll);
1772
	} else if (IS_VALLEYVIEW(dev_priv)) {
1773 1774
		divisor = vlv_dpll;
		count = ARRAY_SIZE(vlv_dpll);
1775
	}
1776 1777 1778

	if (divisor && count) {
		for (i = 0; i < count; i++) {
1779
			if (pipe_config->port_clock == divisor[i].clock) {
1780 1781 1782 1783 1784
				pipe_config->dpll = divisor[i].dpll;
				pipe_config->clock_set = true;
				break;
			}
		}
1785 1786 1787
	}
}

1788 1789 1790 1791 1792 1793 1794 1795
static void snprintf_int_array(char *str, size_t len,
			       const int *array, int nelem)
{
	int i;

	str[0] = '\0';

	for (i = 0; i < nelem; i++) {
1796
		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
		if (r >= len)
			return;
		str += r;
		len -= r;
	}
}

static void intel_dp_print_rates(struct intel_dp *intel_dp)
{
	char str[128]; /* FIXME: too big for stack? */

	if ((drm_debug & DRM_UT_KMS) == 0)
		return;

1811 1812
	snprintf_int_array(str, sizeof(str),
			   intel_dp->source_rates, intel_dp->num_source_rates);
1813 1814
	DRM_DEBUG_KMS("source rates: %s\n", str);

1815 1816
	snprintf_int_array(str, sizeof(str),
			   intel_dp->sink_rates, intel_dp->num_sink_rates);
1817 1818
	DRM_DEBUG_KMS("sink rates: %s\n", str);

1819 1820
	snprintf_int_array(str, sizeof(str),
			   intel_dp->common_rates, intel_dp->num_common_rates);
1821
	DRM_DEBUG_KMS("common rates: %s\n", str);
1822 1823
}

1824 1825 1826 1827 1828
int
intel_dp_max_link_rate(struct intel_dp *intel_dp)
{
	int len;

1829
	len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1830 1831 1832
	if (WARN_ON(len <= 0))
		return 162000;

1833
	return intel_dp->common_rates[len - 1];
1834 1835
}

1836 1837
int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
{
1838 1839
	int i = intel_dp_rate_index(intel_dp->sink_rates,
				    intel_dp->num_sink_rates, rate);
1840 1841 1842 1843 1844

	if (WARN_ON(i < 0))
		i = 0;

	return i;
1845 1846
}

1847 1848
void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
			   uint8_t *link_bw, uint8_t *rate_select)
1849
{
1850 1851
	/* eDP 1.4 rate select method. */
	if (intel_dp->use_rate_select) {
1852 1853 1854 1855 1856 1857 1858 1859 1860
		*link_bw = 0;
		*rate_select =
			intel_dp_rate_select(intel_dp, port_clock);
	} else {
		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
		*rate_select = 0;
	}
}

1861 1862 1863 1864 1865 1866
struct link_config_limits {
	int min_clock, max_clock;
	int min_lane_count, max_lane_count;
	int min_bpp, max_bpp;
};

1867 1868
static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
				struct intel_crtc_state *pipe_config)
1869
{
1870
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1871
	struct intel_connector *intel_connector = intel_dp->attached_connector;
1872 1873 1874 1875 1876 1877 1878 1879
	int bpp, bpc;

	bpp = pipe_config->pipe_bpp;
	bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);

	if (bpc > 0)
		bpp = min(bpp, 3*bpc);

1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
	if (intel_dp_is_edp(intel_dp)) {
		/* Get bpp from vbt only for panels that dont have bpp in edid */
		if (intel_connector->base.display_info.bpc == 0 &&
		    dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
			DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
				      dev_priv->vbt.edp.bpp);
			bpp = dev_priv->vbt.edp.bpp;
		}
	}

1890 1891 1892
	return bpp;
}

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
/* Adjust link config limits based on compliance test requests. */
static void
intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  struct link_config_limits *limits)
{
	/* For DP Compliance we override the computed bpp for the pipe */
	if (intel_dp->compliance.test_data.bpc != 0) {
		int bpp = 3 * intel_dp->compliance.test_data.bpc;

		limits->min_bpp = limits->max_bpp = bpp;
		pipe_config->dither_force_disable = bpp == 6 * 3;

		DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
	}

	/* Use values requested by Compliance Test Request */
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
		int index;

		/* Validate the compliance test data since max values
		 * might have changed due to link train fallback.
		 */
		if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
					       intel_dp->compliance.test_lane_count)) {
			index = intel_dp_rate_index(intel_dp->common_rates,
						    intel_dp->num_common_rates,
						    intel_dp->compliance.test_link_rate);
			if (index >= 0)
				limits->min_clock = limits->max_clock = index;
			limits->min_lane_count = limits->max_lane_count =
				intel_dp->compliance.test_lane_count;
		}
	}
}

1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
/* Optimize link config in order: max bpp, min clock, min lanes */
static bool
intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  const struct link_config_limits *limits)
{
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	int bpp, clock, lane_count;
	int mode_rate, link_clock, link_avail;

	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
						   bpp);

		for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
			for (lane_count = limits->min_lane_count;
			     lane_count <= limits->max_lane_count;
			     lane_count <<= 1) {
				link_clock = intel_dp->common_rates[clock];
				link_avail = intel_dp_max_data_rate(link_clock,
								    lane_count);

				if (mode_rate <= link_avail) {
					pipe_config->lane_count = lane_count;
					pipe_config->pipe_bpp = bpp;
					pipe_config->port_clock = link_clock;

					return true;
				}
			}
		}
	}

	return false;
}

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
/* Optimize link config in order: max bpp, min lanes, min clock */
static bool
intel_dp_compute_link_config_fast(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  const struct link_config_limits *limits)
{
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	int bpp, clock, lane_count;
	int mode_rate, link_clock, link_avail;

	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
						   bpp);

		for (lane_count = limits->min_lane_count;
		     lane_count <= limits->max_lane_count;
		     lane_count <<= 1) {
			for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
				link_clock = intel_dp->common_rates[clock];
				link_avail = intel_dp_max_data_rate(link_clock,
								    lane_count);

				if (mode_rate <= link_avail) {
					pipe_config->lane_count = lane_count;
					pipe_config->pipe_bpp = bpp;
					pipe_config->port_clock = link_clock;

					return true;
				}
			}
		}
	}

	return false;
}

2001 2002 2003
static bool
intel_dp_compute_link_config(struct intel_encoder *encoder,
			     struct intel_crtc_state *pipe_config)
2004
{
2005
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2006
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2007
	struct link_config_limits limits;
2008
	int common_len;
2009

2010
	common_len = intel_dp_common_len_rate_limit(intel_dp,
2011
						    intel_dp->max_link_rate);
2012 2013

	/* No common link rates between source and sink */
2014
	WARN_ON(common_len <= 0);
2015

2016 2017 2018 2019 2020 2021 2022 2023
	limits.min_clock = 0;
	limits.max_clock = common_len - 1;

	limits.min_lane_count = 1;
	limits.max_lane_count = intel_dp_max_lane_count(intel_dp);

	limits.min_bpp = 6 * 3;
	limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2024

2025
	if (intel_dp_is_edp(intel_dp) && intel_dp->edp_dpcd[0] < DP_EDP_14) {
2026 2027
		/*
		 * Use the maximum clock and number of lanes the eDP panel
2028 2029 2030 2031 2032 2033
		 * advertizes being capable of. The eDP 1.3 and earlier panels
		 * are generally designed to support only a single clock and
		 * lane configuration, and typically these values correspond to
		 * the native resolution of the panel. With eDP 1.4 rate select
		 * and DSC, this is decreasingly the case, and we need to be
		 * able to select less than maximum link config.
2034
		 */
2035 2036
		limits.min_lane_count = limits.max_lane_count;
		limits.min_clock = limits.max_clock;
2037
	}
2038

2039 2040
	intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);

2041 2042 2043 2044 2045 2046
	DRM_DEBUG_KMS("DP link computation with max lane count %i "
		      "max rate %d max bpp %d pixel clock %iKHz\n",
		      limits.max_lane_count,
		      intel_dp->common_rates[limits.max_clock],
		      limits.max_bpp, adjusted_mode->crtc_clock);

2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
	if (intel_dp_is_edp(intel_dp)) {
		/*
		 * Optimize for fast and narrow. eDP 1.3 section 3.3 and eDP 1.4
		 * section A.1: "It is recommended that the minimum number of
		 * lanes be used, using the minimum link rate allowed for that
		 * lane configuration."
		 *
		 * Note that we use the max clock and lane count for eDP 1.3 and
		 * earlier, and fast vs. wide is irrelevant.
		 */
		if (!intel_dp_compute_link_config_fast(intel_dp, pipe_config,
						       &limits))
			return false;
	} else {
		/* Optimize for slow and wide. */
		if (!intel_dp_compute_link_config_wide(intel_dp, pipe_config,
						       &limits))
			return false;
	}
2066 2067

	DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
2068 2069 2070 2071 2072 2073 2074 2075
		      pipe_config->lane_count, pipe_config->port_clock,
		      pipe_config->pipe_bpp);

	DRM_DEBUG_KMS("DP link rate required %i available %i\n",
		      intel_dp_link_required(adjusted_mode->crtc_clock,
					     pipe_config->pipe_bpp),
		      intel_dp_max_data_rate(pipe_config->port_clock,
					     pipe_config->lane_count));
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087

	return true;
}

bool
intel_dp_compute_config(struct intel_encoder *encoder,
			struct intel_crtc_state *pipe_config,
			struct drm_connector_state *conn_state)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2088
	struct intel_lspcon *lspcon = enc_to_intel_lspcon(&encoder->base);
2089 2090 2091 2092 2093
	enum port port = encoder->port;
	struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct intel_digital_connector_state *intel_conn_state =
		to_intel_digital_connector_state(conn_state);
2094 2095
	bool constant_n = drm_dp_has_quirk(&intel_dp->desc,
					   DP_DPCD_QUIRK_CONSTANT_N);
2096 2097 2098 2099

	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
		pipe_config->has_pch_encoder = true;

2100
	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2101 2102 2103
	if (lspcon->active)
		lspcon_ycbcr420_config(&intel_connector->base, pipe_config);

2104 2105 2106 2107 2108 2109 2110 2111 2112
	pipe_config->has_drrs = false;
	if (IS_G4X(dev_priv) || port == PORT_A)
		pipe_config->has_audio = false;
	else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
		pipe_config->has_audio = intel_dp->has_audio;
	else
		pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;

	if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2113 2114
		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
				       adjusted_mode);
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131

		if (INTEL_GEN(dev_priv) >= 9) {
			int ret;

			ret = skl_update_scaler_crtc(pipe_config);
			if (ret)
				return ret;
		}

		if (HAS_GMCH_DISPLAY(dev_priv))
			intel_gmch_panel_fitting(intel_crtc, pipe_config,
						 conn_state->scaling_mode);
		else
			intel_pch_panel_fitting(intel_crtc, pipe_config,
						conn_state->scaling_mode);
	}

2132 2133 2134
	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
		return false;

2135
	if (HAS_GMCH_DISPLAY(dev_priv) &&
2136 2137 2138 2139 2140 2141 2142 2143 2144
	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
		return false;

	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
		return false;

	if (!intel_dp_compute_link_config(encoder, pipe_config))
		return false;

2145
	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2146 2147 2148 2149 2150
		/*
		 * See:
		 * CEA-861-E - 5.1 Default Encoding Parameters
		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
		 */
2151
		pipe_config->limited_color_range =
2152
			pipe_config->pipe_bpp != 18 &&
2153 2154
			drm_default_rgb_quant_range(adjusted_mode) ==
			HDMI_QUANTIZATION_RANGE_LIMITED;
2155 2156
	} else {
		pipe_config->limited_color_range =
2157
			intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2158 2159
	}

2160
	intel_link_compute_m_n(pipe_config->pipe_bpp, pipe_config->lane_count,
2161 2162
			       adjusted_mode->crtc_clock,
			       pipe_config->port_clock,
2163
			       &pipe_config->dp_m_n,
2164
			       constant_n);
2165

2166
	if (intel_connector->panel.downclock_mode != NULL &&
2167
		dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2168
			pipe_config->has_drrs = true;
2169 2170 2171 2172 2173
			intel_link_compute_m_n(pipe_config->pipe_bpp,
					       pipe_config->lane_count,
					       intel_connector->panel.downclock_mode->clock,
					       pipe_config->port_clock,
					       &pipe_config->dp_m2_n2,
2174
					       constant_n);
2175 2176
	}

2177
	if (!HAS_DDI(dev_priv))
2178
		intel_dp_set_clock(encoder, pipe_config);
2179

2180 2181
	intel_psr_compute_config(intel_dp, pipe_config);

2182
	return true;
2183 2184
}

2185
void intel_dp_set_link_params(struct intel_dp *intel_dp,
2186 2187
			      int link_rate, uint8_t lane_count,
			      bool link_mst)
2188
{
2189
	intel_dp->link_trained = false;
2190 2191 2192
	intel_dp->link_rate = link_rate;
	intel_dp->lane_count = lane_count;
	intel_dp->link_mst = link_mst;
2193 2194
}

2195
static void intel_dp_prepare(struct intel_encoder *encoder,
2196
			     const struct intel_crtc_state *pipe_config)
2197
{
2198
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2199
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2200
	enum port port = encoder->port;
2201
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2202
	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2203

2204 2205 2206 2207
	intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
				 pipe_config->lane_count,
				 intel_crtc_has_type(pipe_config,
						     INTEL_OUTPUT_DP_MST));
2208

2209
	/*
K
Keith Packard 已提交
2210
	 * There are four kinds of DP registers:
2211 2212
	 *
	 * 	IBX PCH
K
Keith Packard 已提交
2213 2214
	 * 	SNB CPU
	 *	IVB CPU
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
	 * 	CPT PCH
	 *
	 * IBX PCH and CPU are the same for almost everything,
	 * except that the CPU DP PLL is configured in this
	 * register
	 *
	 * CPT PCH is quite different, having many bits moved
	 * to the TRANS_DP_CTL register instead. That
	 * configuration happens (oddly) in ironlake_pch_enable
	 */
2225

2226 2227 2228 2229
	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
2230

2231 2232
	/* Handle DP bits in common between all three register formats */
	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2233
	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2234

2235
	/* Split out the IBX/CPU vs CPT settings */
2236

2237
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
K
Keith Packard 已提交
2238 2239 2240 2241 2242 2243
		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;

2244
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
K
Keith Packard 已提交
2245 2246
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2247
		intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2248
	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2249 2250
		u32 trans_dp;

2251
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2252 2253 2254 2255 2256 2257 2258

		trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
			trans_dp |= TRANS_DP_ENH_FRAMING;
		else
			trans_dp &= ~TRANS_DP_ENH_FRAMING;
		I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
2259
	} else {
2260
		if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2261
			intel_dp->DP |= DP_COLOR_RANGE_16_235;
2262 2263 2264 2265 2266 2267 2268

		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF;

2269
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2270 2271
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2272
		if (IS_CHERRYVIEW(dev_priv))
2273 2274 2275
			intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
		else
			intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2276
	}
2277 2278
}

2279 2280
#define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
#define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2281

2282 2283
#define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
#define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
2284

2285 2286
#define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
#define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2287

2288
static void intel_pps_verify_state(struct intel_dp *intel_dp);
I
Imre Deak 已提交
2289

2290
static void wait_panel_status(struct intel_dp *intel_dp,
2291 2292
				       u32 mask,
				       u32 value)
2293
{
2294
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2295
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2296

V
Ville Syrjälä 已提交
2297 2298
	lockdep_assert_held(&dev_priv->pps_mutex);

2299
	intel_pps_verify_state(intel_dp);
I
Imre Deak 已提交
2300

2301 2302
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2303

2304
	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
2305 2306 2307
			mask, value,
			I915_READ(pp_stat_reg),
			I915_READ(pp_ctrl_reg));
2308

2309 2310 2311
	if (intel_wait_for_register(dev_priv,
				    pp_stat_reg, mask, value,
				    5000))
2312
		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
2313 2314
				I915_READ(pp_stat_reg),
				I915_READ(pp_ctrl_reg));
2315 2316

	DRM_DEBUG_KMS("Wait complete\n");
2317
}
2318

2319
static void wait_panel_on(struct intel_dp *intel_dp)
2320 2321
{
	DRM_DEBUG_KMS("Wait for panel power on\n");
2322
	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2323 2324
}

2325
static void wait_panel_off(struct intel_dp *intel_dp)
2326 2327
{
	DRM_DEBUG_KMS("Wait for panel power off time\n");
2328
	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2329 2330
}

2331
static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2332
{
2333 2334 2335
	ktime_t panel_power_on_time;
	s64 panel_power_off_duration;

2336
	DRM_DEBUG_KMS("Wait for panel power cycle\n");
2337

2338 2339 2340 2341 2342
	/* take the difference of currrent time and panel power off time
	 * and then make panel wait for t11_t12 if needed. */
	panel_power_on_time = ktime_get_boottime();
	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);

2343 2344
	/* When we disable the VDD override bit last we have to do the manual
	 * wait. */
2345 2346 2347
	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
		wait_remaining_ms_from_jiffies(jiffies,
				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2348

2349
	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2350 2351
}

2352
static void wait_backlight_on(struct intel_dp *intel_dp)
2353 2354 2355 2356 2357
{
	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
				       intel_dp->backlight_on_delay);
}

2358
static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2359 2360 2361 2362
{
	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
				       intel_dp->backlight_off_delay);
}
2363

2364 2365 2366 2367
/* Read the current pp_control value, unlocking the register if it
 * is locked
 */

2368
static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
2369
{
2370
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2371
	u32 control;
2372

V
Ville Syrjälä 已提交
2373 2374
	lockdep_assert_held(&dev_priv->pps_mutex);

2375
	control = I915_READ(_pp_ctrl_reg(intel_dp));
2376 2377
	if (WARN_ON(!HAS_DDI(dev_priv) &&
		    (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2378 2379 2380
		control &= ~PANEL_UNLOCK_MASK;
		control |= PANEL_UNLOCK_REGS;
	}
2381
	return control;
2382 2383
}

2384 2385 2386 2387 2388
/*
 * Must be paired with edp_panel_vdd_off().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2389
static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2390
{
2391
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2392
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2393
	u32 pp;
2394
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2395
	bool need_to_disable = !intel_dp->want_panel_vdd;
2396

V
Ville Syrjälä 已提交
2397 2398
	lockdep_assert_held(&dev_priv->pps_mutex);

2399
	if (!intel_dp_is_edp(intel_dp))
2400
		return false;
2401

2402
	cancel_delayed_work(&intel_dp->panel_vdd_work);
2403
	intel_dp->want_panel_vdd = true;
2404

2405
	if (edp_have_panel_vdd(intel_dp))
2406
		return need_to_disable;
2407

2408
	intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
2409

V
Ville Syrjälä 已提交
2410
	DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
2411
		      port_name(intel_dig_port->base.port));
2412

2413 2414
	if (!edp_have_panel_power(intel_dp))
		wait_panel_power_cycle(intel_dp);
2415

2416
	pp = ironlake_get_pp_control(intel_dp);
2417
	pp |= EDP_FORCE_VDD;
2418

2419 2420
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2421 2422 2423 2424 2425

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2426 2427 2428
	/*
	 * If the panel wasn't on, delay before accessing aux channel
	 */
2429
	if (!edp_have_panel_power(intel_dp)) {
V
Ville Syrjälä 已提交
2430
		DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
2431
			      port_name(intel_dig_port->base.port));
2432 2433
		msleep(intel_dp->panel_power_up_delay);
	}
2434 2435 2436 2437

	return need_to_disable;
}

2438 2439 2440 2441 2442 2443 2444
/*
 * Must be paired with intel_edp_panel_vdd_off() or
 * intel_edp_panel_off().
 * Nested calls to these functions are not allowed since
 * we drop the lock. Caller must use some higher level
 * locking to prevent nested calls from other threads.
 */
2445
void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2446
{
2447
	bool vdd;
2448

2449
	if (!intel_dp_is_edp(intel_dp))
2450 2451
		return;

2452
	pps_lock(intel_dp);
2453
	vdd = edp_panel_vdd_on(intel_dp);
2454
	pps_unlock(intel_dp);
2455

R
Rob Clark 已提交
2456
	I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
2457
	     port_name(dp_to_dig_port(intel_dp)->base.port));
2458 2459
}

2460
static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2461
{
2462
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2463 2464
	struct intel_digital_port *intel_dig_port =
		dp_to_dig_port(intel_dp);
2465
	u32 pp;
2466
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2467

V
Ville Syrjälä 已提交
2468
	lockdep_assert_held(&dev_priv->pps_mutex);
2469

2470
	WARN_ON(intel_dp->want_panel_vdd);
2471

2472
	if (!edp_have_panel_vdd(intel_dp))
2473
		return;
2474

V
Ville Syrjälä 已提交
2475
	DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
2476
		      port_name(intel_dig_port->base.port));
2477

2478 2479
	pp = ironlake_get_pp_control(intel_dp);
	pp &= ~EDP_FORCE_VDD;
2480

2481 2482
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
	pp_stat_reg = _pp_stat_reg(intel_dp);
2483

2484 2485
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
P
Paulo Zanoni 已提交
2486

2487 2488 2489
	/* Make sure sequencer is idle before allowing subsequent activity */
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
	I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2490

2491
	if ((pp & PANEL_POWER_ON) == 0)
2492
		intel_dp->panel_power_off_time = ktime_get_boottime();
2493

2494
	intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
2495
}
2496

2497
static void edp_panel_vdd_work(struct work_struct *__work)
2498 2499 2500 2501
{
	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
						 struct intel_dp, panel_vdd_work);

2502
	pps_lock(intel_dp);
2503 2504
	if (!intel_dp->want_panel_vdd)
		edp_panel_vdd_off_sync(intel_dp);
2505
	pps_unlock(intel_dp);
2506 2507
}

2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
{
	unsigned long delay;

	/*
	 * Queue the timer to fire a long time from now (relative to the power
	 * down delay) to keep the panel power up across a sequence of
	 * operations.
	 */
	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
}

2521 2522 2523 2524 2525
/*
 * Must be paired with edp_panel_vdd_on().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2526
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2527
{
2528
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Ville Syrjälä 已提交
2529 2530 2531

	lockdep_assert_held(&dev_priv->pps_mutex);

2532
	if (!intel_dp_is_edp(intel_dp))
2533
		return;
2534

R
Rob Clark 已提交
2535
	I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2536
	     port_name(dp_to_dig_port(intel_dp)->base.port));
2537

2538 2539
	intel_dp->want_panel_vdd = false;

2540
	if (sync)
2541
		edp_panel_vdd_off_sync(intel_dp);
2542 2543
	else
		edp_panel_vdd_schedule_off(intel_dp);
2544 2545
}

2546
static void edp_panel_on(struct intel_dp *intel_dp)
2547
{
2548
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2549
	u32 pp;
2550
	i915_reg_t pp_ctrl_reg;
2551

2552 2553
	lockdep_assert_held(&dev_priv->pps_mutex);

2554
	if (!intel_dp_is_edp(intel_dp))
2555
		return;
2556

V
Ville Syrjälä 已提交
2557
	DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2558
		      port_name(dp_to_dig_port(intel_dp)->base.port));
V
Ville Syrjälä 已提交
2559

2560 2561
	if (WARN(edp_have_panel_power(intel_dp),
		 "eDP port %c panel power already on\n",
2562
		 port_name(dp_to_dig_port(intel_dp)->base.port)))
2563
		return;
2564

2565
	wait_panel_power_cycle(intel_dp);
2566

2567
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2568
	pp = ironlake_get_pp_control(intel_dp);
2569
	if (IS_GEN5(dev_priv)) {
2570 2571
		/* ILK workaround: disable reset around power sequence */
		pp &= ~PANEL_POWER_RESET;
2572 2573
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
2574
	}
2575

2576
	pp |= PANEL_POWER_ON;
2577
	if (!IS_GEN5(dev_priv))
2578 2579
		pp |= PANEL_POWER_RESET;

2580 2581
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2582

2583
	wait_panel_on(intel_dp);
2584
	intel_dp->last_power_on = jiffies;
2585

2586
	if (IS_GEN5(dev_priv)) {
2587
		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2588 2589
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
2590
	}
2591
}
V
Ville Syrjälä 已提交
2592

2593 2594
void intel_edp_panel_on(struct intel_dp *intel_dp)
{
2595
	if (!intel_dp_is_edp(intel_dp))
2596 2597 2598 2599
		return;

	pps_lock(intel_dp);
	edp_panel_on(intel_dp);
2600
	pps_unlock(intel_dp);
2601 2602
}

2603 2604

static void edp_panel_off(struct intel_dp *intel_dp)
2605
{
2606
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2607
	u32 pp;
2608
	i915_reg_t pp_ctrl_reg;
2609

2610 2611
	lockdep_assert_held(&dev_priv->pps_mutex);

2612
	if (!intel_dp_is_edp(intel_dp))
2613
		return;
2614

V
Ville Syrjälä 已提交
2615
	DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2616
		      port_name(dp_to_dig_port(intel_dp)->base.port));
2617

V
Ville Syrjälä 已提交
2618
	WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2619
	     port_name(dp_to_dig_port(intel_dp)->base.port));
2620

2621
	pp = ironlake_get_pp_control(intel_dp);
2622 2623
	/* We need to switch off panel power _and_ force vdd, for otherwise some
	 * panels get very unhappy and cease to work. */
2624
	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2625
		EDP_BLC_ENABLE);
2626

2627
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2628

2629 2630
	intel_dp->want_panel_vdd = false;

2631 2632
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2633

2634
	wait_panel_off(intel_dp);
2635
	intel_dp->panel_power_off_time = ktime_get_boottime();
2636 2637

	/* We got a reference when we enabled the VDD. */
2638
	intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
2639
}
V
Ville Syrjälä 已提交
2640

2641 2642
void intel_edp_panel_off(struct intel_dp *intel_dp)
{
2643
	if (!intel_dp_is_edp(intel_dp))
2644
		return;
V
Ville Syrjälä 已提交
2645

2646 2647
	pps_lock(intel_dp);
	edp_panel_off(intel_dp);
2648
	pps_unlock(intel_dp);
2649 2650
}

2651 2652
/* Enable backlight in the panel power control. */
static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2653
{
2654
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2655
	u32 pp;
2656
	i915_reg_t pp_ctrl_reg;
2657

2658 2659 2660 2661 2662 2663
	/*
	 * If we enable the backlight right away following a panel power
	 * on, we may see slight flicker as the panel syncs with the eDP
	 * link.  So delay a bit to make sure the image is solid before
	 * allowing it to appear.
	 */
2664
	wait_backlight_on(intel_dp);
V
Ville Syrjälä 已提交
2665

2666
	pps_lock(intel_dp);
V
Ville Syrjälä 已提交
2667

2668
	pp = ironlake_get_pp_control(intel_dp);
2669
	pp |= EDP_BLC_ENABLE;
2670

2671
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2672 2673 2674

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
V
Ville Syrjälä 已提交
2675

2676
	pps_unlock(intel_dp);
2677 2678
}

2679
/* Enable backlight PWM and backlight PP control. */
2680 2681
void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
			    const struct drm_connector_state *conn_state)
2682
{
2683 2684
	struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);

2685
	if (!intel_dp_is_edp(intel_dp))
2686 2687 2688 2689
		return;

	DRM_DEBUG_KMS("\n");

2690
	intel_panel_enable_backlight(crtc_state, conn_state);
2691 2692 2693 2694 2695
	_intel_edp_backlight_on(intel_dp);
}

/* Disable backlight in the panel power control. */
static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2696
{
2697
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2698
	u32 pp;
2699
	i915_reg_t pp_ctrl_reg;
2700

2701
	if (!intel_dp_is_edp(intel_dp))
2702 2703
		return;

2704
	pps_lock(intel_dp);
V
Ville Syrjälä 已提交
2705

2706
	pp = ironlake_get_pp_control(intel_dp);
2707
	pp &= ~EDP_BLC_ENABLE;
2708

2709
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2710 2711 2712

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2713

2714
	pps_unlock(intel_dp);
V
Ville Syrjälä 已提交
2715 2716

	intel_dp->last_backlight_off = jiffies;
2717
	edp_wait_backlight_off(intel_dp);
2718
}
2719

2720
/* Disable backlight PP control and backlight PWM. */
2721
void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
2722
{
2723 2724
	struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);

2725
	if (!intel_dp_is_edp(intel_dp))
2726 2727 2728
		return;

	DRM_DEBUG_KMS("\n");
2729

2730
	_intel_edp_backlight_off(intel_dp);
2731
	intel_panel_disable_backlight(old_conn_state);
2732
}
2733

2734 2735 2736 2737 2738 2739 2740 2741
/*
 * Hook for controlling the panel power control backlight through the bl_power
 * sysfs attribute. Take care to handle multiple calls.
 */
static void intel_edp_backlight_power(struct intel_connector *connector,
				      bool enable)
{
	struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
V
Ville Syrjälä 已提交
2742 2743
	bool is_enabled;

2744
	pps_lock(intel_dp);
V
Ville Syrjälä 已提交
2745
	is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2746
	pps_unlock(intel_dp);
2747 2748 2749 2750

	if (is_enabled == enable)
		return;

2751 2752
	DRM_DEBUG_KMS("panel power control backlight %s\n",
		      enable ? "enable" : "disable");
2753 2754 2755 2756 2757 2758 2759

	if (enable)
		_intel_edp_backlight_on(intel_dp);
	else
		_intel_edp_backlight_off(intel_dp);
}

2760 2761 2762 2763 2764 2765 2766 2767
static void assert_dp_port(struct intel_dp *intel_dp, bool state)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;

	I915_STATE_WARN(cur_state != state,
			"DP port %c state assertion failure (expected %s, current %s)\n",
2768
			port_name(dig_port->base.port),
2769
			onoff(state), onoff(cur_state));
2770 2771 2772 2773 2774 2775 2776 2777 2778
}
#define assert_dp_port_disabled(d) assert_dp_port((d), false)

static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
{
	bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;

	I915_STATE_WARN(cur_state != state,
			"eDP PLL state assertion failure (expected %s, current %s)\n",
2779
			onoff(state), onoff(cur_state));
2780 2781 2782 2783
}
#define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
#define assert_edp_pll_disabled(d) assert_edp_pll((d), false)

2784
static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2785
				const struct intel_crtc_state *pipe_config)
2786
{
2787
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2788
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2789

2790 2791 2792
	assert_pipe_disabled(dev_priv, crtc->pipe);
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_disabled(dev_priv);
2793

2794
	DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2795
		      pipe_config->port_clock);
2796 2797 2798

	intel_dp->DP &= ~DP_PLL_FREQ_MASK;

2799
	if (pipe_config->port_clock == 162000)
2800 2801 2802 2803 2804 2805 2806 2807
		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
	else
		intel_dp->DP |= DP_PLL_FREQ_270MHZ;

	I915_WRITE(DP_A, intel_dp->DP);
	POSTING_READ(DP_A);
	udelay(500);

2808 2809 2810 2811 2812 2813 2814
	/*
	 * [DevILK] Work around required when enabling DP PLL
	 * while a pipe is enabled going to FDI:
	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
	 * 2. Program DP PLL enable
	 */
	if (IS_GEN5(dev_priv))
2815
		intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
2816

2817
	intel_dp->DP |= DP_PLL_ENABLE;
2818

2819
	I915_WRITE(DP_A, intel_dp->DP);
2820 2821
	POSTING_READ(DP_A);
	udelay(200);
2822 2823
}

2824 2825
static void ironlake_edp_pll_off(struct intel_dp *intel_dp,
				 const struct intel_crtc_state *old_crtc_state)
2826
{
2827
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
2828
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2829

2830 2831 2832
	assert_pipe_disabled(dev_priv, crtc->pipe);
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_enabled(dev_priv);
2833

2834 2835
	DRM_DEBUG_KMS("disabling eDP PLL\n");

2836
	intel_dp->DP &= ~DP_PLL_ENABLE;
2837

2838
	I915_WRITE(DP_A, intel_dp->DP);
2839
	POSTING_READ(DP_A);
2840 2841 2842
	udelay(200);
}

2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
{
	/*
	 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
	 * be capable of signalling downstream hpd with a long pulse.
	 * Whether or not that means D3 is safe to use is not clear,
	 * but let's assume so until proven otherwise.
	 *
	 * FIXME should really check all downstream ports...
	 */
	return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
		intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
		intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
}

2858
/* If the sink supports it, try to set the power state appropriately */
2859
void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2860 2861 2862 2863 2864 2865 2866 2867
{
	int ret, i;

	/* Should have a valid DPCD by this point */
	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (mode != DRM_MODE_DPMS_ON) {
2868 2869 2870
		if (downstream_hpd_needs_d0(intel_dp))
			return;

2871 2872
		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
					 DP_SET_POWER_D3);
2873
	} else {
2874 2875
		struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);

2876 2877 2878 2879 2880
		/*
		 * When turning on, we need to retry for 1ms to give the sink
		 * time to wake up.
		 */
		for (i = 0; i < 3; i++) {
2881 2882
			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
						 DP_SET_POWER_D0);
2883 2884 2885 2886
			if (ret == 1)
				break;
			msleep(1);
		}
2887 2888 2889

		if (ret == 1 && lspcon->active)
			lspcon_wait_pcon_mode(lspcon);
2890
	}
2891 2892 2893 2894

	if (ret != 1)
		DRM_DEBUG_KMS("failed to %s sink power state\n",
			      mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2895 2896
}

2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
				 enum port port, enum pipe *pipe)
{
	enum pipe p;

	for_each_pipe(dev_priv, p) {
		u32 val = I915_READ(TRANS_DP_CTL(p));

		if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
			*pipe = p;
			return true;
		}
	}

	DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));

	/* must initialize pipe to something for the asserts */
	*pipe = PIPE_A;

	return false;
}

bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
			   i915_reg_t dp_reg, enum port port,
			   enum pipe *pipe)
{
	bool ret;
	u32 val;

	val = I915_READ(dp_reg);

	ret = val & DP_PORT_EN;

	/* asserts want to know the pipe even if the port is disabled */
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
		*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
		ret &= cpt_dp_port_selected(dev_priv, port, pipe);
	else if (IS_CHERRYVIEW(dev_priv))
		*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
	else
		*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;

	return ret;
}

2943 2944
static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
				  enum pipe *pipe)
2945
{
2946
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2947
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2948
	bool ret;
2949

2950 2951
	if (!intel_display_power_get_if_enabled(dev_priv,
						encoder->power_domain))
2952 2953
		return false;

2954 2955
	ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				    encoder->port, pipe);
2956

2957
	intel_display_power_put(dev_priv, encoder->power_domain);
2958 2959

	return ret;
2960
}
2961

2962
static void intel_dp_get_config(struct intel_encoder *encoder,
2963
				struct intel_crtc_state *pipe_config)
2964
{
2965
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2966 2967
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	u32 tmp, flags = 0;
2968
	enum port port = encoder->port;
2969
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2970

2971 2972 2973 2974
	if (encoder->type == INTEL_OUTPUT_EDP)
		pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
	else
		pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
2975

2976
	tmp = I915_READ(intel_dp->output_reg);
2977 2978

	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2979

2980
	if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2981 2982 2983
		u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));

		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2984 2985 2986
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
2987

2988
		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2989 2990 2991 2992
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	} else {
2993
		if (tmp & DP_SYNC_HS_HIGH)
2994 2995 2996
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
2997

2998
		if (tmp & DP_SYNC_VS_HIGH)
2999 3000 3001 3002
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	}
3003

3004
	pipe_config->base.adjusted_mode.flags |= flags;
3005

3006
	if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3007 3008
		pipe_config->limited_color_range = true;

3009 3010 3011
	pipe_config->lane_count =
		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;

3012 3013
	intel_dp_get_m_n(crtc, pipe_config);

3014
	if (port == PORT_A) {
3015
		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3016 3017 3018 3019
			pipe_config->port_clock = 162000;
		else
			pipe_config->port_clock = 270000;
	}
3020

3021 3022 3023
	pipe_config->base.adjusted_mode.crtc_clock =
		intel_dotclock_calculate(pipe_config->port_clock,
					 &pipe_config->dp_m_n);
3024

3025
	if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3026
	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
		/*
		 * This is a big fat ugly hack.
		 *
		 * Some machines in UEFI boot mode provide us a VBT that has 18
		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
		 * unknown we fail to light up. Yet the same BIOS boots up with
		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
		 * max, not what it tells us to use.
		 *
		 * Note: This will still be broken if the eDP panel is not lit
		 * up by the BIOS, and thus we can't get the mode at module
		 * load.
		 */
		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3041 3042
			      pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3043
	}
3044 3045
}

3046
static void intel_disable_dp(struct intel_encoder *encoder,
3047 3048
			     const struct intel_crtc_state *old_crtc_state,
			     const struct drm_connector_state *old_conn_state)
3049
{
3050
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3051

3052 3053
	intel_dp->link_trained = false;

3054
	if (old_crtc_state->has_audio)
3055 3056
		intel_audio_codec_disable(encoder,
					  old_crtc_state, old_conn_state);
3057 3058 3059

	/* Make sure the panel is off before trying to change the mode. But also
	 * ensure that we have vdd while we switch off the panel. */
3060
	intel_edp_panel_vdd_on(intel_dp);
3061
	intel_edp_backlight_off(old_conn_state);
3062
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3063
	intel_edp_panel_off(intel_dp);
3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
}

static void g4x_disable_dp(struct intel_encoder *encoder,
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
}

static void vlv_disable_dp(struct intel_encoder *encoder,
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3078 3079
}

3080
static void g4x_post_disable_dp(struct intel_encoder *encoder,
3081 3082
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3083
{
3084
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3085
	enum port port = encoder->port;
3086

3087 3088 3089 3090 3091 3092
	/*
	 * Bspec does not list a specific disable sequence for g4x DP.
	 * Follow the ilk+ sequence (disable pipe before the port) for
	 * g4x DP as it does not suffer from underruns like the normal
	 * g4x modeset sequence (disable pipe after the port).
	 */
3093
	intel_dp_link_down(encoder, old_crtc_state);
3094 3095

	/* Only ilk+ has port A */
3096
	if (port == PORT_A)
3097
		ironlake_edp_pll_off(intel_dp, old_crtc_state);
3098 3099
}

3100
static void vlv_post_disable_dp(struct intel_encoder *encoder,
3101 3102
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3103
{
3104
	intel_dp_link_down(encoder, old_crtc_state);
3105 3106
}

3107
static void chv_post_disable_dp(struct intel_encoder *encoder,
3108 3109
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3110
{
3111
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3112

3113
	intel_dp_link_down(encoder, old_crtc_state);
3114 3115 3116 3117

	mutex_lock(&dev_priv->sb_lock);

	/* Assert data lane reset */
3118
	chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3119

V
Ville Syrjälä 已提交
3120
	mutex_unlock(&dev_priv->sb_lock);
3121 3122
}

3123 3124 3125 3126 3127
static void
_intel_dp_set_link_train(struct intel_dp *intel_dp,
			 uint32_t *DP,
			 uint8_t dp_train_pat)
{
3128
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3129
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3130
	enum port port = intel_dig_port->base.port;
3131
	uint8_t train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3132

3133
	if (dp_train_pat & train_pat_mask)
3134
		DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
3135
			      dp_train_pat & train_pat_mask);
3136

3137
	if (HAS_DDI(dev_priv)) {
3138 3139 3140 3141 3142 3143 3144 3145
		uint32_t temp = I915_READ(DP_TP_CTL(port));

		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
		else
			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;

		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3146
		switch (dp_train_pat & train_pat_mask) {
3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
		case DP_TRAINING_PATTERN_DISABLE:
			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;

			break;
		case DP_TRAINING_PATTERN_1:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
			break;
		case DP_TRAINING_PATTERN_2:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
			break;
		case DP_TRAINING_PATTERN_3:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
			break;
3160 3161 3162
		case DP_TRAINING_PATTERN_4:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
			break;
3163 3164 3165
		}
		I915_WRITE(DP_TP_CTL(port), temp);

3166
	} else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3167
		   (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
		*DP &= ~DP_LINK_TRAIN_MASK_CPT;

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF_CPT;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		case DP_TRAINING_PATTERN_3:
3181
			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3182 3183 3184 3185 3186
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		}

	} else {
3187
		*DP &= ~DP_LINK_TRAIN_MASK;
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2;
			break;
		case DP_TRAINING_PATTERN_3:
3200 3201
			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
			*DP |= DP_LINK_TRAIN_PAT_2;
3202 3203 3204 3205 3206
			break;
		}
	}
}

3207
static void intel_dp_enable_port(struct intel_dp *intel_dp,
3208
				 const struct intel_crtc_state *old_crtc_state)
3209
{
3210
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3211 3212 3213

	/* enable with pattern 1 (as per spec) */

3214
	intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3215 3216 3217 3218 3219 3220 3221 3222

	/*
	 * Magic for VLV/CHV. We _must_ first set up the register
	 * without actually enabling the port, and then do another
	 * write to enable the port. Otherwise link training will
	 * fail when the power sequencer is freshly used for this port.
	 */
	intel_dp->DP |= DP_PORT_EN;
3223
	if (old_crtc_state->has_audio)
3224
		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3225 3226 3227

	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
	POSTING_READ(intel_dp->output_reg);
3228 3229
}

3230
static void intel_enable_dp(struct intel_encoder *encoder,
3231 3232
			    const struct intel_crtc_state *pipe_config,
			    const struct drm_connector_state *conn_state)
3233
{
3234
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3235
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3236
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3237
	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
3238
	enum pipe pipe = crtc->pipe;
3239

3240 3241
	if (WARN_ON(dp_reg & DP_PORT_EN))
		return;
3242

3243 3244
	pps_lock(intel_dp);

3245
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3246
		vlv_init_panel_power_sequencer(encoder, pipe_config);
3247

3248
	intel_dp_enable_port(intel_dp, pipe_config);
3249 3250 3251 3252 3253 3254 3255

	edp_panel_vdd_on(intel_dp);
	edp_panel_on(intel_dp);
	edp_panel_vdd_off(intel_dp, true);

	pps_unlock(intel_dp);

3256
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3257 3258
		unsigned int lane_mask = 0x0;

3259
		if (IS_CHERRYVIEW(dev_priv))
3260
			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3261

3262 3263
		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
				    lane_mask);
3264
	}
3265

3266
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3267
	intel_dp_start_link_train(intel_dp);
3268
	intel_dp_stop_link_train(intel_dp);
3269

3270
	if (pipe_config->has_audio) {
3271
		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
3272
				 pipe_name(pipe));
3273
		intel_audio_codec_enable(encoder, pipe_config, conn_state);
3274
	}
3275
}
3276

3277
static void g4x_enable_dp(struct intel_encoder *encoder,
3278 3279
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3280
{
3281
	intel_enable_dp(encoder, pipe_config, conn_state);
3282
	intel_edp_backlight_on(pipe_config, conn_state);
3283
}
3284

3285
static void vlv_enable_dp(struct intel_encoder *encoder,
3286 3287
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3288
{
3289
	intel_edp_backlight_on(pipe_config, conn_state);
3290 3291
}

3292
static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3293 3294
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3295 3296
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3297
	enum port port = encoder->port;
3298

3299
	intel_dp_prepare(encoder, pipe_config);
3300

3301
	/* Only ilk+ has port A */
3302
	if (port == PORT_A)
3303
		ironlake_edp_pll_on(intel_dp, pipe_config);
3304 3305
}

3306 3307 3308
static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3309
	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3310
	enum pipe pipe = intel_dp->pps_pipe;
3311
	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3312

3313 3314
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);

3315 3316 3317
	if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
		return;

3318 3319 3320
	edp_panel_vdd_off_sync(intel_dp);

	/*
3321
	 * VLV seems to get confused when multiple power sequencers
3322 3323 3324
	 * have the same port selected (even if only one has power/vdd
	 * enabled). The failure manifests as vlv_wait_port_ready() failing
	 * CHV on the other hand doesn't seem to mind having the same port
3325
	 * selected in multiple power sequencers, but let's clear the
3326 3327 3328 3329
	 * port select always when logically disconnecting a power sequencer
	 * from a port.
	 */
	DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
3330
		      pipe_name(pipe), port_name(intel_dig_port->base.port));
3331 3332 3333 3334 3335 3336
	I915_WRITE(pp_on_reg, 0);
	POSTING_READ(pp_on_reg);

	intel_dp->pps_pipe = INVALID_PIPE;
}

3337
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3338 3339 3340 3341 3342 3343
				      enum pipe pipe)
{
	struct intel_encoder *encoder;

	lockdep_assert_held(&dev_priv->pps_mutex);

3344 3345 3346
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
		enum port port = encoder->port;
3347

3348 3349 3350 3351
		WARN(intel_dp->active_pipe == pipe,
		     "stealing pipe %c power sequencer from active (e)DP port %c\n",
		     pipe_name(pipe), port_name(port));

3352 3353 3354 3355
		if (intel_dp->pps_pipe != pipe)
			continue;

		DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
3356
			      pipe_name(pipe), port_name(port));
3357 3358

		/* make sure vdd is off before we steal it */
3359
		vlv_detach_power_sequencer(intel_dp);
3360 3361 3362
	}
}

3363 3364
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state)
3365
{
3366
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3367 3368
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3369 3370 3371

	lockdep_assert_held(&dev_priv->pps_mutex);

3372
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3373

3374 3375 3376 3377 3378 3379 3380
	if (intel_dp->pps_pipe != INVALID_PIPE &&
	    intel_dp->pps_pipe != crtc->pipe) {
		/*
		 * If another power sequencer was being used on this
		 * port previously make sure to turn off vdd there while
		 * we still have control of it.
		 */
3381
		vlv_detach_power_sequencer(intel_dp);
3382
	}
3383 3384 3385 3386 3387

	/*
	 * We may be stealing the power
	 * sequencer from another port.
	 */
3388
	vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3389

3390 3391
	intel_dp->active_pipe = crtc->pipe;

3392
	if (!intel_dp_is_edp(intel_dp))
3393 3394
		return;

3395 3396 3397 3398
	/* now it's all ours */
	intel_dp->pps_pipe = crtc->pipe;

	DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
3399
		      pipe_name(intel_dp->pps_pipe), port_name(encoder->port));
3400 3401

	/* init power sequencer on this pipe and port */
3402 3403
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3404 3405
}

3406
static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3407 3408
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3409
{
3410
	vlv_phy_pre_encoder_enable(encoder, pipe_config);
3411

3412
	intel_enable_dp(encoder, pipe_config, conn_state);
3413 3414
}

3415
static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3416 3417
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3418
{
3419
	intel_dp_prepare(encoder, pipe_config);
3420

3421
	vlv_phy_pre_pll_enable(encoder, pipe_config);
3422 3423
}

3424
static void chv_pre_enable_dp(struct intel_encoder *encoder,
3425 3426
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3427
{
3428
	chv_phy_pre_encoder_enable(encoder, pipe_config);
3429

3430
	intel_enable_dp(encoder, pipe_config, conn_state);
3431 3432

	/* Second common lane will stay alive on its own now */
3433
	chv_phy_release_cl2_override(encoder);
3434 3435
}

3436
static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3437 3438
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3439
{
3440
	intel_dp_prepare(encoder, pipe_config);
3441

3442
	chv_phy_pre_pll_enable(encoder, pipe_config);
3443 3444
}

3445
static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3446 3447
				    const struct intel_crtc_state *old_crtc_state,
				    const struct drm_connector_state *old_conn_state)
3448
{
3449
	chv_phy_post_pll_disable(encoder, old_crtc_state);
3450 3451
}

3452 3453 3454 3455
/*
 * Fetch AUX CH registers 0x202 - 0x207 which contain
 * link status information
 */
3456
bool
3457
intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
3458
{
3459 3460
	return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
				DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3461 3462
}

3463
/* These are source-specific values. */
3464
uint8_t
K
Keith Packard 已提交
3465
intel_dp_voltage_max(struct intel_dp *intel_dp)
3466
{
3467
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3468 3469
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;
K
Keith Packard 已提交
3470

3471
	if (HAS_DDI(dev_priv))
3472
		return intel_ddi_dp_voltage_max(encoder);
3473
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3474
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3475
	else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3476
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3477
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3478
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
K
Keith Packard 已提交
3479
	else
3480
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
K
Keith Packard 已提交
3481 3482
}

3483
uint8_t
K
Keith Packard 已提交
3484 3485
intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
{
3486
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3487 3488
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;
K
Keith Packard 已提交
3489

3490 3491
	if (HAS_DDI(dev_priv)) {
		return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3492
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3493
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3494 3495 3496 3497 3498 3499 3500
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_3;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3501
		default:
3502
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3503
		}
3504
	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
K
Keith Packard 已提交
3505
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3506 3507 3508 3509 3510
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
K
Keith Packard 已提交
3511
		default:
3512
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
K
Keith Packard 已提交
3513 3514 3515
		}
	} else {
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3516 3517 3518 3519 3520 3521 3522
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
K
Keith Packard 已提交
3523
		default:
3524
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
K
Keith Packard 已提交
3525
		}
3526 3527 3528
	}
}

3529
static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3530
{
3531
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3532 3533 3534 3535 3536
	unsigned long demph_reg_value, preemph_reg_value,
		uniqtranscale_reg_value;
	uint8_t train_set = intel_dp->train_set[0];

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3537
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3538 3539
		preemph_reg_value = 0x0004000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3540
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3541 3542 3543
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x552AB83A;
			break;
3544
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3545 3546 3547
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5548B83A;
			break;
3548
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3549 3550 3551
			demph_reg_value = 0x2B245555;
			uniqtranscale_reg_value = 0x5560B83A;
			break;
3552
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3553 3554 3555 3556 3557 3558 3559
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x5598DA3A;
			break;
		default:
			return 0;
		}
		break;
3560
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3561 3562
		preemph_reg_value = 0x0002000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3563
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3564 3565 3566
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5552B83A;
			break;
3567
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3568 3569 3570
			demph_reg_value = 0x2B404848;
			uniqtranscale_reg_value = 0x5580B83A;
			break;
3571
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3572 3573 3574 3575 3576 3577 3578
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
3579
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3580 3581
		preemph_reg_value = 0x0000000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3582
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3583 3584 3585
			demph_reg_value = 0x2B305555;
			uniqtranscale_reg_value = 0x5570B83A;
			break;
3586
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3587 3588 3589 3590 3591 3592 3593
			demph_reg_value = 0x2B2B4040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
3594
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3595 3596
		preemph_reg_value = 0x0006000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3597
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608
			demph_reg_value = 0x1B405555;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

3609 3610
	vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
				 uniqtranscale_reg_value, 0);
3611 3612 3613 3614

	return 0;
}

3615
static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3616
{
3617 3618 3619
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	u32 deemph_reg_value, margin_reg_value;
	bool uniq_trans_scale = false;
3620 3621 3622
	uint8_t train_set = intel_dp->train_set[0];

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3623
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3624
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3625
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3626 3627 3628
			deemph_reg_value = 128;
			margin_reg_value = 52;
			break;
3629
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3630 3631 3632
			deemph_reg_value = 128;
			margin_reg_value = 77;
			break;
3633
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3634 3635 3636
			deemph_reg_value = 128;
			margin_reg_value = 102;
			break;
3637
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3638 3639
			deemph_reg_value = 128;
			margin_reg_value = 154;
3640
			uniq_trans_scale = true;
3641 3642 3643 3644 3645
			break;
		default:
			return 0;
		}
		break;
3646
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3647
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3648
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3649 3650 3651
			deemph_reg_value = 85;
			margin_reg_value = 78;
			break;
3652
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3653 3654 3655
			deemph_reg_value = 85;
			margin_reg_value = 116;
			break;
3656
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3657 3658 3659 3660 3661 3662 3663
			deemph_reg_value = 85;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
3664
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3665
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3666
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3667 3668 3669
			deemph_reg_value = 64;
			margin_reg_value = 104;
			break;
3670
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3671 3672 3673 3674 3675 3676 3677
			deemph_reg_value = 64;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
3678
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3679
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3680
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
			deemph_reg_value = 43;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

3692 3693
	chv_set_phy_signal_level(encoder, deemph_reg_value,
				 margin_reg_value, uniq_trans_scale);
3694 3695 3696 3697

	return 0;
}

3698
static uint32_t
3699
g4x_signal_levels(uint8_t train_set)
3700
{
3701
	uint32_t	signal_levels = 0;
3702

3703
	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3704
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3705 3706 3707
	default:
		signal_levels |= DP_VOLTAGE_0_4;
		break;
3708
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3709 3710
		signal_levels |= DP_VOLTAGE_0_6;
		break;
3711
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3712 3713
		signal_levels |= DP_VOLTAGE_0_8;
		break;
3714
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3715 3716 3717
		signal_levels |= DP_VOLTAGE_1_2;
		break;
	}
3718
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3719
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3720 3721 3722
	default:
		signal_levels |= DP_PRE_EMPHASIS_0;
		break;
3723
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3724 3725
		signal_levels |= DP_PRE_EMPHASIS_3_5;
		break;
3726
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3727 3728
		signal_levels |= DP_PRE_EMPHASIS_6;
		break;
3729
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3730 3731 3732 3733 3734 3735
		signal_levels |= DP_PRE_EMPHASIS_9_5;
		break;
	}
	return signal_levels;
}

3736
/* SNB CPU eDP voltage swing and pre-emphasis control */
3737
static uint32_t
3738
snb_cpu_edp_signal_levels(uint8_t train_set)
3739
{
3740 3741 3742
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
3743 3744
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3745
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3746
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3747
		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3748 3749
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3750
		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3751 3752
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3753
		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3754 3755
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3756
		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3757
	default:
3758 3759 3760
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3761 3762 3763
	}
}

3764
/* IVB CPU eDP voltage swing and pre-emphasis control */
K
Keith Packard 已提交
3765
static uint32_t
3766
ivb_cpu_edp_signal_levels(uint8_t train_set)
K
Keith Packard 已提交
3767 3768 3769 3770
{
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
3771
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
3772
		return EDP_LINK_TRAIN_400MV_0DB_IVB;
3773
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
3774
		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3775
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
K
Keith Packard 已提交
3776 3777
		return EDP_LINK_TRAIN_400MV_6DB_IVB;

3778
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
3779
		return EDP_LINK_TRAIN_600MV_0DB_IVB;
3780
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
3781 3782
		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;

3783
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
3784
		return EDP_LINK_TRAIN_800MV_0DB_IVB;
3785
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
3786 3787 3788 3789 3790 3791 3792 3793 3794
		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;

	default:
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_500MV_0DB_IVB;
	}
}

3795
void
3796
intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3797
{
3798
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3799
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3800
	enum port port = intel_dig_port->base.port;
3801
	uint32_t signal_levels, mask = 0;
3802 3803
	uint8_t train_set = intel_dp->train_set[0];

R
Rodrigo Vivi 已提交
3804
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
3805 3806
		signal_levels = bxt_signal_levels(intel_dp);
	} else if (HAS_DDI(dev_priv)) {
3807
		signal_levels = ddi_signal_levels(intel_dp);
3808
		mask = DDI_BUF_EMP_MASK;
3809
	} else if (IS_CHERRYVIEW(dev_priv)) {
3810
		signal_levels = chv_signal_levels(intel_dp);
3811
	} else if (IS_VALLEYVIEW(dev_priv)) {
3812
		signal_levels = vlv_signal_levels(intel_dp);
3813
	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3814
		signal_levels = ivb_cpu_edp_signal_levels(train_set);
3815
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3816
	} else if (IS_GEN6(dev_priv) && port == PORT_A) {
3817
		signal_levels = snb_cpu_edp_signal_levels(train_set);
3818 3819
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
	} else {
3820
		signal_levels = g4x_signal_levels(train_set);
3821 3822 3823
		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
	}

3824 3825 3826 3827 3828 3829 3830 3831
	if (mask)
		DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);

	DRM_DEBUG_KMS("Using vswing level %d\n",
		train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
	DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
		(train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
			DP_TRAIN_PRE_EMPHASIS_SHIFT);
3832

3833
	intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3834 3835 3836

	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
	POSTING_READ(intel_dp->output_reg);
3837 3838
}

3839
void
3840 3841
intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
				       uint8_t dp_train_pat)
3842
{
3843
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3844 3845
	struct drm_i915_private *dev_priv =
		to_i915(intel_dig_port->base.base.dev);
3846

3847
	_intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3848

3849
	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
C
Chris Wilson 已提交
3850
	POSTING_READ(intel_dp->output_reg);
3851 3852
}

3853
void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3854
{
3855
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3856
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3857
	enum port port = intel_dig_port->base.port;
3858 3859
	uint32_t val;

3860
	if (!HAS_DDI(dev_priv))
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
		return;

	val = I915_READ(DP_TP_CTL(port));
	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
	I915_WRITE(DP_TP_CTL(port), val);

	/*
	 * On PORT_A we can have only eDP in SST mode. There the only reason
	 * we need to set idle transmission mode is to work around a HW issue
	 * where we enable the pipe while not in idle link-training mode.
	 * In this case there is requirement to wait for a minimum number of
	 * idle patterns to be sent.
	 */
	if (port == PORT_A)
		return;

3878 3879 3880 3881
	if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port),
				    DP_TP_STATUS_IDLE_DONE,
				    DP_TP_STATUS_IDLE_DONE,
				    1))
3882 3883 3884
		DRM_ERROR("Timed out waiting for DP idle patterns\n");
}

3885
static void
3886 3887
intel_dp_link_down(struct intel_encoder *encoder,
		   const struct intel_crtc_state *old_crtc_state)
3888
{
3889 3890 3891 3892
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
	enum port port = encoder->port;
C
Chris Wilson 已提交
3893
	uint32_t DP = intel_dp->DP;
3894

3895
	if (WARN_ON(HAS_DDI(dev_priv)))
3896 3897
		return;

3898
	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3899 3900
		return;

3901
	DRM_DEBUG_KMS("\n");
3902

3903
	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3904
	    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3905
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
3906
		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3907
	} else {
3908
		DP &= ~DP_LINK_TRAIN_MASK;
3909
		DP |= DP_LINK_TRAIN_PAT_IDLE;
3910
	}
3911
	I915_WRITE(intel_dp->output_reg, DP);
3912
	POSTING_READ(intel_dp->output_reg);
3913

3914 3915 3916 3917 3918 3919 3920 3921 3922
	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
	I915_WRITE(intel_dp->output_reg, DP);
	POSTING_READ(intel_dp->output_reg);

	/*
	 * HW workaround for IBX, we need to move the port
	 * to transcoder A after disabling it to allow the
	 * matching HDMI port to be enabled on transcoder A.
	 */
3923
	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
3924 3925 3926 3927 3928 3929 3930
		/*
		 * We get CPU/PCH FIFO underruns on the other pipe when
		 * doing the workaround. Sweep them under the rug.
		 */
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);

3931
		/* always enable with pattern 1 (as per spec) */
3932 3933 3934
		DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
		DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
			DP_LINK_TRAIN_PAT_1;
3935 3936 3937 3938
		I915_WRITE(intel_dp->output_reg, DP);
		POSTING_READ(intel_dp->output_reg);

		DP &= ~DP_PORT_EN;
3939
		I915_WRITE(intel_dp->output_reg, DP);
3940
		POSTING_READ(intel_dp->output_reg);
3941

3942
		intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
3943 3944
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3945 3946
	}

3947
	msleep(intel_dp->panel_power_down_delay);
3948 3949

	intel_dp->DP = DP;
3950 3951 3952 3953 3954 3955

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
		pps_lock(intel_dp);
		intel_dp->active_pipe = INVALID_PIPE;
		pps_unlock(intel_dp);
	}
3956 3957
}

3958
bool
3959
intel_dp_read_dpcd(struct intel_dp *intel_dp)
3960
{
3961 3962
	if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
			     sizeof(intel_dp->dpcd)) < 0)
3963
		return false; /* aux transfer failed */
3964

3965
	DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3966

3967 3968
	return intel_dp->dpcd[DP_DPCD_REV] != 0;
}
3969

3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
{
	/*
	 * Clear the cached register set to avoid using stale values
	 * for the sinks that do not support DSC.
	 */
	memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));

	/* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
	    intel_dp->edp_dpcd[0] >= DP_EDP_14) {
		if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
				     intel_dp->dsc_dpcd,
				     sizeof(intel_dp->dsc_dpcd)) < 0)
			DRM_ERROR("Failed to read DPCD register 0x%x\n",
				  DP_DSC_SUPPORT);

		DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
			      (int)sizeof(intel_dp->dsc_dpcd),
			      intel_dp->dsc_dpcd);
	}
}

3993 3994 3995 3996 3997
static bool
intel_edp_init_dpcd(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv =
		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
3998

3999 4000
	/* this function is meant to be called only once */
	WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
4001

4002
	if (!intel_dp_read_dpcd(intel_dp))
4003 4004
		return false;

4005 4006
	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
			 drm_dp_is_branch(intel_dp->dpcd));
4007

4008 4009 4010
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
		dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
			DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4011

4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
	/*
	 * Read the eDP display control registers.
	 *
	 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
	 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
	 * set, but require eDP 1.4+ detection (e.g. for supported link rates
	 * method). The display control registers should read zero if they're
	 * not supported anyway.
	 */
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
D
Dan Carpenter 已提交
4022 4023
			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
			     sizeof(intel_dp->edp_dpcd))
4024
		DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
4025
			      intel_dp->edp_dpcd);
4026

4027 4028 4029 4030 4031 4032
	/*
	 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
	 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
	 */
	intel_psr_init_dpcd(intel_dp);

4033 4034
	/* Read the eDP 1.4+ supported link rates. */
	if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4035
		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4036 4037
		int i;

4038 4039
		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
				sink_rates, sizeof(sink_rates));
4040

4041 4042
		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
			int val = le16_to_cpu(sink_rates[i]);
4043 4044 4045 4046

			if (val == 0)
				break;

4047 4048 4049 4050 4051 4052
			/* Value read multiplied by 200kHz gives the per-lane
			 * link rate in kHz. The source rates are, however,
			 * stored in terms of LS_Clk kHz. The full conversion
			 * back to symbols is
			 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
			 */
4053
			intel_dp->sink_rates[i] = (val * 200) / 10;
4054
		}
4055
		intel_dp->num_sink_rates = i;
4056
	}
4057

4058 4059 4060 4061
	/*
	 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
	 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
	 */
4062 4063 4064 4065 4066
	if (intel_dp->num_sink_rates)
		intel_dp->use_rate_select = true;
	else
		intel_dp_set_sink_rates(intel_dp);

4067 4068
	intel_dp_set_common_rates(intel_dp);

4069 4070 4071 4072
	/* Read the eDP DSC DPCD registers */
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		intel_dp_get_dsc_sink_cap(intel_dp);

4073 4074 4075 4076 4077 4078 4079
	return true;
}


static bool
intel_dp_get_dpcd(struct intel_dp *intel_dp)
{
4080 4081
	u8 sink_count;

4082 4083 4084
	if (!intel_dp_read_dpcd(intel_dp))
		return false;

4085
	/* Don't clobber cached eDP rates. */
4086
	if (!intel_dp_is_edp(intel_dp)) {
4087
		intel_dp_set_sink_rates(intel_dp);
4088 4089
		intel_dp_set_common_rates(intel_dp);
	}
4090

4091
	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &sink_count) <= 0)
4092 4093 4094 4095 4096 4097 4098
		return false;

	/*
	 * Sink count can change between short pulse hpd hence
	 * a member variable in intel_dp will track any changes
	 * between short pulse interrupts.
	 */
4099
	intel_dp->sink_count = DP_GET_SINK_COUNT(sink_count);
4100 4101 4102 4103 4104 4105 4106 4107

	/*
	 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
	 * a dongle is present but no display. Unless we require to know
	 * if a dongle is present or not, we don't need to update
	 * downstream port information. So, an early return here saves
	 * time from performing other operations which are not required.
	 */
4108
	if (!intel_dp_is_edp(intel_dp) && !intel_dp->sink_count)
4109
		return false;
4110

4111
	if (!drm_dp_is_branch(intel_dp->dpcd))
4112 4113 4114 4115 4116
		return true; /* native DP sink */

	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
		return true; /* no per-port downstream info */

4117 4118 4119
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
			     intel_dp->downstream_ports,
			     DP_MAX_DOWNSTREAM_PORTS) < 0)
4120 4121 4122
		return false; /* downstream port status fetch failed */

	return true;
4123 4124
}

4125
static bool
4126
intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4127
{
4128
	u8 mstm_cap;
4129 4130 4131 4132

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
		return false;

4133
	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4134
		return false;
4135

4136
	return mstm_cap & DP_MST_CAP;
4137 4138
}

4139 4140 4141 4142 4143 4144 4145 4146
static bool
intel_dp_can_mst(struct intel_dp *intel_dp)
{
	return i915_modparams.enable_dp_mst &&
		intel_dp->can_mst &&
		intel_dp_sink_can_mst(intel_dp);
}

4147 4148 4149
static void
intel_dp_configure_mst(struct intel_dp *intel_dp)
{
4150 4151 4152 4153 4154 4155 4156
	struct intel_encoder *encoder =
		&dp_to_dig_port(intel_dp)->base;
	bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);

	DRM_DEBUG_KMS("MST support? port %c: %s, sink: %s, modparam: %s\n",
		      port_name(encoder->port), yesno(intel_dp->can_mst),
		      yesno(sink_can_mst), yesno(i915_modparams.enable_dp_mst));
4157 4158 4159 4160

	if (!intel_dp->can_mst)
		return;

4161 4162
	intel_dp->is_mst = sink_can_mst &&
		i915_modparams.enable_dp_mst;
4163 4164 4165

	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
					intel_dp->is_mst);
4166 4167 4168 4169 4170
}

static bool
intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
{
4171 4172 4173
	return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
				sink_irq_vector, DP_DPRX_ESI_LEN) ==
		DP_DPRX_ESI_LEN;
4174 4175
}

4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
u16 intel_dp_dsc_get_output_bpp(int link_clock, uint8_t lane_count,
				int mode_clock, int mode_hdisplay)
{
	u16 bits_per_pixel, max_bpp_small_joiner_ram;
	int i;

	/*
	 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
	 * (LinkSymbolClock)* 8 * ((100-FECOverhead)/100)*(TimeSlotsPerMTP)
	 * FECOverhead = 2.4%, for SST -> TimeSlotsPerMTP is 1,
	 * for MST -> TimeSlotsPerMTP has to be calculated
	 */
	bits_per_pixel = (link_clock * lane_count * 8 *
			  DP_DSC_FEC_OVERHEAD_FACTOR) /
		mode_clock;

	/* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
	max_bpp_small_joiner_ram = DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER /
		mode_hdisplay;

	/*
	 * Greatest allowed DSC BPP = MIN (output BPP from avaialble Link BW
	 * check, output bpp from small joiner RAM check)
	 */
	bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);

	/* Error out if the max bpp is less than smallest allowed valid bpp */
	if (bits_per_pixel < valid_dsc_bpp[0]) {
		DRM_DEBUG_KMS("Unsupported BPP %d\n", bits_per_pixel);
		return 0;
	}

	/* Find the nearest match in the array of known BPPs from VESA */
	for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
		if (bits_per_pixel < valid_dsc_bpp[i + 1])
			break;
	}
	bits_per_pixel = valid_dsc_bpp[i];

	/*
	 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
	 * fractional part is 0
	 */
	return bits_per_pixel << 4;
}

u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
				int mode_clock,
				int mode_hdisplay)
{
	u8 min_slice_count, i;
	int max_slice_width;

	if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
		min_slice_count = DIV_ROUND_UP(mode_clock,
					       DP_DSC_MAX_ENC_THROUGHPUT_0);
	else
		min_slice_count = DIV_ROUND_UP(mode_clock,
					       DP_DSC_MAX_ENC_THROUGHPUT_1);

	max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
	if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
		DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
			      max_slice_width);
		return 0;
	}
	/* Also take into account max slice width */
	min_slice_count = min_t(uint8_t, min_slice_count,
				DIV_ROUND_UP(mode_hdisplay,
					     max_slice_width));

	/* Find the closest match to the valid slice count values */
	for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
		if (valid_dsc_slicecount[i] >
		    drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
						    false))
			break;
		if (min_slice_count  <= valid_dsc_slicecount[i])
			return valid_dsc_slicecount[i];
	}

	DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count);
	return 0;
}

4261 4262
static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
{
4263
	int status = 0;
4264
	int test_link_rate;
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285
	uint8_t test_lane_count, test_link_bw;
	/* (DP CTS 1.2)
	 * 4.3.1.11
	 */
	/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
				   &test_lane_count);

	if (status <= 0) {
		DRM_DEBUG_KMS("Lane count read failed\n");
		return DP_TEST_NAK;
	}
	test_lane_count &= DP_MAX_LANE_COUNT_MASK;

	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
				   &test_link_bw);
	if (status <= 0) {
		DRM_DEBUG_KMS("Link Rate read failed\n");
		return DP_TEST_NAK;
	}
	test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4286 4287 4288 4289

	/* Validate the requested link rate and lane count */
	if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
					test_lane_count))
4290 4291 4292 4293 4294 4295
		return DP_TEST_NAK;

	intel_dp->compliance.test_lane_count = test_lane_count;
	intel_dp->compliance.test_link_rate = test_link_rate;

	return DP_TEST_ACK;
4296 4297 4298 4299
}

static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
{
4300
	uint8_t test_pattern;
4301
	uint8_t test_misc;
4302 4303 4304 4305
	__be16 h_width, v_height;
	int status = 0;

	/* Read the TEST_PATTERN (DP CTS 3.1.5) */
4306 4307
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
				   &test_pattern);
4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328
	if (status <= 0) {
		DRM_DEBUG_KMS("Test pattern read failed\n");
		return DP_TEST_NAK;
	}
	if (test_pattern != DP_COLOR_RAMP)
		return DP_TEST_NAK;

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
				  &h_width, 2);
	if (status <= 0) {
		DRM_DEBUG_KMS("H Width read failed\n");
		return DP_TEST_NAK;
	}

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
				  &v_height, 2);
	if (status <= 0) {
		DRM_DEBUG_KMS("V Height read failed\n");
		return DP_TEST_NAK;
	}

4329 4330
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
				   &test_misc);
4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356
	if (status <= 0) {
		DRM_DEBUG_KMS("TEST MISC read failed\n");
		return DP_TEST_NAK;
	}
	if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
		return DP_TEST_NAK;
	if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
		return DP_TEST_NAK;
	switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
	case DP_TEST_BIT_DEPTH_6:
		intel_dp->compliance.test_data.bpc = 6;
		break;
	case DP_TEST_BIT_DEPTH_8:
		intel_dp->compliance.test_data.bpc = 8;
		break;
	default:
		return DP_TEST_NAK;
	}

	intel_dp->compliance.test_data.video_pattern = test_pattern;
	intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
	intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
	/* Set test active flag here so userspace doesn't interrupt things */
	intel_dp->compliance.test_active = 1;

	return DP_TEST_ACK;
4357 4358 4359
}

static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
4360
{
4361
	uint8_t test_result = DP_TEST_ACK;
4362 4363 4364 4365
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct drm_connector *connector = &intel_connector->base;

	if (intel_connector->detect_edid == NULL ||
4366
	    connector->edid_corrupt ||
4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379
	    intel_dp->aux.i2c_defer_count > 6) {
		/* Check EDID read for NACKs, DEFERs and corruption
		 * (DP CTS 1.2 Core r1.1)
		 *    4.2.2.4 : Failed EDID read, I2C_NAK
		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
		 *    4.2.2.6 : EDID corruption detected
		 * Use failsafe mode for all cases
		 */
		if (intel_dp->aux.i2c_nack_count > 0 ||
			intel_dp->aux.i2c_defer_count > 0)
			DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
				      intel_dp->aux.i2c_nack_count,
				      intel_dp->aux.i2c_defer_count);
4380
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4381
	} else {
4382 4383 4384 4385 4386 4387 4388
		struct edid *block = intel_connector->detect_edid;

		/* We have to write the checksum
		 * of the last block read
		 */
		block += intel_connector->detect_edid->extensions;

4389 4390
		if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
				       block->checksum) <= 0)
4391 4392 4393
			DRM_DEBUG_KMS("Failed to write EDID checksum\n");

		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4394
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4395 4396 4397
	}

	/* Set test active flag here so userspace doesn't interrupt things */
4398
	intel_dp->compliance.test_active = 1;
4399

4400 4401 4402 4403
	return test_result;
}

static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4404
{
4405 4406 4407 4408 4409 4410 4411
	uint8_t test_result = DP_TEST_NAK;
	return test_result;
}

static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
{
	uint8_t response = DP_TEST_NAK;
4412 4413
	uint8_t request = 0;
	int status;
4414

4415
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4416 4417 4418 4419 4420
	if (status <= 0) {
		DRM_DEBUG_KMS("Could not read test request from sink\n");
		goto update_status;
	}

4421
	switch (request) {
4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438
	case DP_TEST_LINK_TRAINING:
		DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
		response = intel_dp_autotest_link_training(intel_dp);
		break;
	case DP_TEST_LINK_VIDEO_PATTERN:
		DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
		response = intel_dp_autotest_video_pattern(intel_dp);
		break;
	case DP_TEST_LINK_EDID_READ:
		DRM_DEBUG_KMS("EDID test requested\n");
		response = intel_dp_autotest_edid(intel_dp);
		break;
	case DP_TEST_LINK_PHY_TEST_PATTERN:
		DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
		response = intel_dp_autotest_phy_pattern(intel_dp);
		break;
	default:
4439
		DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4440 4441 4442
		break;
	}

4443 4444 4445
	if (response & DP_TEST_ACK)
		intel_dp->compliance.test_type = request;

4446
update_status:
4447
	status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
4448 4449
	if (status <= 0)
		DRM_DEBUG_KMS("Could not write test response to sink\n");
4450 4451
}

4452 4453 4454 4455 4456 4457
static int
intel_dp_check_mst_status(struct intel_dp *intel_dp)
{
	bool bret;

	if (intel_dp->is_mst) {
4458
		u8 esi[DP_DPRX_ESI_LEN] = { 0 };
4459 4460 4461
		int ret = 0;
		int retry;
		bool handled;
4462 4463

		WARN_ON_ONCE(intel_dp->active_mst_links < 0);
4464 4465 4466 4467 4468
		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
go_again:
		if (bret == true) {

			/* check link status - esi[10] = 0x200c */
4469
			if (intel_dp->active_mst_links > 0 &&
4470
			    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4471 4472 4473 4474 4475
				DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
				intel_dp_start_link_train(intel_dp);
				intel_dp_stop_link_train(intel_dp);
			}

4476
			DRM_DEBUG_KMS("got esi %3ph\n", esi);
4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491
			ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);

			if (handled) {
				for (retry = 0; retry < 3; retry++) {
					int wret;
					wret = drm_dp_dpcd_write(&intel_dp->aux,
								 DP_SINK_COUNT_ESI+1,
								 &esi[1], 3);
					if (wret == 3) {
						break;
					}
				}

				bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
				if (bret == true) {
4492
					DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510
					goto go_again;
				}
			} else
				ret = 0;

			return ret;
		} else {
			struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
			DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
			/* send a hotplug event */
			drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
		}
	}
	return -EINVAL;
}

4511 4512 4513 4514 4515
static bool
intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
{
	u8 link_status[DP_LINK_STATUS_SIZE];

4516 4517 4518 4519
	if (!intel_dp->link_trained)
		return false;

	if (!intel_dp_get_link_status(intel_dp, link_status))
4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535
		return false;

	/*
	 * Validate the cached values of intel_dp->link_rate and
	 * intel_dp->lane_count before attempting to retrain.
	 */
	if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
					intel_dp->lane_count))
		return false;

	/* Retrain if Channel EQ or CR not ok */
	return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
}

int intel_dp_retrain_link(struct intel_encoder *encoder,
			  struct drm_modeset_acquire_ctx *ctx)
4536 4537
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_connector *connector = intel_dp->attached_connector;
	struct drm_connector_state *conn_state;
	struct intel_crtc_state *crtc_state;
	struct intel_crtc *crtc;
	int ret;

	/* FIXME handle the MST connectors as well */

	if (!connector || connector->base.status != connector_status_connected)
		return 0;

	ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
			       ctx);
	if (ret)
		return ret;

	conn_state = connector->base.state;

	crtc = to_intel_crtc(conn_state->crtc);
	if (!crtc)
		return 0;

	ret = drm_modeset_lock(&crtc->base.mutex, ctx);
	if (ret)
		return ret;

	crtc_state = to_intel_crtc_state(crtc->base.state);

	WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));

	if (!crtc_state->base.active)
		return 0;

	if (conn_state->commit &&
	    !try_wait_for_completion(&conn_state->commit->hw_done))
		return 0;

	if (!intel_dp_needs_link_retrain(intel_dp))
		return 0;
4578 4579 4580

	/* Suppress underruns caused by re-training */
	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
4581
	if (crtc_state->has_pch_encoder)
4582 4583 4584 4585 4586 4587 4588
		intel_set_pch_fifo_underrun_reporting(dev_priv,
						      intel_crtc_pch_transcoder(crtc), false);

	intel_dp_start_link_train(intel_dp);
	intel_dp_stop_link_train(intel_dp);

	/* Keep underrun reporting disabled until things are stable */
4589
	intel_wait_for_vblank(dev_priv, crtc->pipe);
4590 4591

	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
4592
	if (crtc_state->has_pch_encoder)
4593 4594
		intel_set_pch_fifo_underrun_reporting(dev_priv,
						      intel_crtc_pch_transcoder(crtc), true);
4595 4596

	return 0;
4597 4598
}

4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612
/*
 * If display is now connected check links status,
 * there has been known issues of link loss triggering
 * long pulse.
 *
 * Some sinks (eg. ASUS PB287Q) seem to perform some
 * weird HPD ping pong during modesets. So we can apparently
 * end up with HPD going low during a modeset, and then
 * going back up soon after. And once that happens we must
 * retrain the link to get a picture. That's in case no
 * userspace component reacted to intermittent HPD dip.
 */
static bool intel_dp_hotplug(struct intel_encoder *encoder,
			     struct intel_connector *connector)
4613
{
4614 4615 4616
	struct drm_modeset_acquire_ctx ctx;
	bool changed;
	int ret;
4617

4618
	changed = intel_encoder_hotplug(encoder, connector);
4619

4620
	drm_modeset_acquire_init(&ctx, 0);
4621

4622 4623
	for (;;) {
		ret = intel_dp_retrain_link(encoder, &ctx);
4624

4625 4626 4627 4628
		if (ret == -EDEADLK) {
			drm_modeset_backoff(&ctx);
			continue;
		}
4629

4630 4631
		break;
	}
4632

4633 4634 4635
	drm_modeset_drop_locks(&ctx);
	drm_modeset_acquire_fini(&ctx);
	WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
4636

4637
	return changed;
4638 4639
}

4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655
static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
{
	u8 val;

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (drm_dp_dpcd_readb(&intel_dp->aux,
			      DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
		return;

	drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);

	if (val & DP_AUTOMATED_TEST_REQUEST)
		intel_dp_handle_test_request(intel_dp);

4656 4657 4658 4659 4660
	if (val & DP_CP_IRQ)
		intel_hdcp_check_link(intel_dp->attached_connector);

	if (val & DP_SINK_SPECIFIC_IRQ)
		DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
4661 4662
}

4663 4664 4665 4666 4667 4668 4669
/*
 * According to DP spec
 * 5.1.2:
 *  1. Read DPCD
 *  2. Configure link according to Receiver Capabilities
 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
 *  4. Check link status on receipt of hot-plug interrupt
4670 4671 4672 4673 4674
 *
 * intel_dp_short_pulse -  handles short pulse interrupts
 * when full detection is not required.
 * Returns %true if short pulse is handled and full detection
 * is NOT required and %false otherwise.
4675
 */
4676
static bool
4677
intel_dp_short_pulse(struct intel_dp *intel_dp)
4678
{
4679
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4680 4681
	u8 old_sink_count = intel_dp->sink_count;
	bool ret;
4682

4683 4684 4685 4686
	/*
	 * Clearing compliance test variables to allow capturing
	 * of values for next automated test request.
	 */
4687
	memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4688

4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699
	/*
	 * Now read the DPCD to see if it's actually running
	 * If the current value of sink count doesn't match with
	 * the value that was stored earlier or dpcd read failed
	 * we need to do full detection
	 */
	ret = intel_dp_get_dpcd(intel_dp);

	if ((old_sink_count != intel_dp->sink_count) || !ret) {
		/* No need to proceed if we are going to do full detect */
		return false;
4700 4701
	}

4702
	intel_dp_check_service_irq(intel_dp);
4703

4704 4705 4706
	/* Handle CEC interrupts, if any */
	drm_dp_cec_irq(&intel_dp->aux);

4707 4708 4709
	/* defer to the hotplug work for link retraining if needed */
	if (intel_dp_needs_link_retrain(intel_dp))
		return false;
4710

4711 4712
	intel_psr_short_pulse(intel_dp);

4713 4714 4715
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
		DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
		/* Send a Hotplug Uevent to userspace to start modeset */
4716
		drm_kms_helper_hotplug_event(&dev_priv->drm);
4717
	}
4718 4719

	return true;
4720 4721
}

4722
/* XXX this is probably wrong for multiple downstream ports */
4723
static enum drm_connector_status
4724
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4725
{
4726
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
4727 4728 4729
	uint8_t *dpcd = intel_dp->dpcd;
	uint8_t type;

4730 4731 4732
	if (lspcon->active)
		lspcon_resume(lspcon);

4733 4734 4735
	if (!intel_dp_get_dpcd(intel_dp))
		return connector_status_disconnected;

4736
	if (intel_dp_is_edp(intel_dp))
4737 4738
		return connector_status_connected;

4739
	/* if there's no downstream port, we're done */
4740
	if (!drm_dp_is_branch(dpcd))
4741
		return connector_status_connected;
4742 4743

	/* If we're HPD-aware, SINK_COUNT changes dynamically */
4744 4745
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4746

4747 4748
		return intel_dp->sink_count ?
		connector_status_connected : connector_status_disconnected;
4749 4750
	}

4751 4752 4753
	if (intel_dp_can_mst(intel_dp))
		return connector_status_connected;

4754
	/* If no HPD, poke DDC gently */
4755
	if (drm_probe_ddc(&intel_dp->aux.ddc))
4756
		return connector_status_connected;
4757 4758

	/* Well we tried, say unknown for unreliable port types */
4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
		if (type == DP_DS_PORT_TYPE_VGA ||
		    type == DP_DS_PORT_TYPE_NON_EDID)
			return connector_status_unknown;
	} else {
		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
			DP_DWN_STRM_PORT_TYPE_MASK;
		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
			return connector_status_unknown;
	}
4771 4772 4773

	/* Anything else is out of spec, warn and ignore */
	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4774
	return connector_status_disconnected;
4775 4776
}

4777 4778 4779
static enum drm_connector_status
edp_detect(struct intel_dp *intel_dp)
{
4780
	return connector_status_connected;
4781 4782
}

4783
static bool ibx_digital_port_connected(struct intel_encoder *encoder)
4784
{
4785
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4786
	u32 bit;
4787

4788 4789
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4790 4791
		bit = SDE_PORTB_HOTPLUG;
		break;
4792
	case HPD_PORT_C:
4793 4794
		bit = SDE_PORTC_HOTPLUG;
		break;
4795
	case HPD_PORT_D:
4796 4797 4798
		bit = SDE_PORTD_HOTPLUG;
		break;
	default:
4799
		MISSING_CASE(encoder->hpd_pin);
4800 4801 4802 4803 4804 4805
		return false;
	}

	return I915_READ(SDEISR) & bit;
}

4806
static bool cpt_digital_port_connected(struct intel_encoder *encoder)
4807
{
4808
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4809 4810
	u32 bit;

4811 4812
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4813 4814
		bit = SDE_PORTB_HOTPLUG_CPT;
		break;
4815
	case HPD_PORT_C:
4816 4817
		bit = SDE_PORTC_HOTPLUG_CPT;
		break;
4818
	case HPD_PORT_D:
4819 4820
		bit = SDE_PORTD_HOTPLUG_CPT;
		break;
4821
	default:
4822
		MISSING_CASE(encoder->hpd_pin);
4823 4824 4825 4826 4827 4828
		return false;
	}

	return I915_READ(SDEISR) & bit;
}

4829
static bool spt_digital_port_connected(struct intel_encoder *encoder)
4830
{
4831
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4832 4833
	u32 bit;

4834 4835
	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
4836 4837
		bit = SDE_PORTA_HOTPLUG_SPT;
		break;
4838
	case HPD_PORT_E:
4839 4840
		bit = SDE_PORTE_HOTPLUG_SPT;
		break;
4841
	default:
4842
		return cpt_digital_port_connected(encoder);
4843
	}
4844

4845
	return I915_READ(SDEISR) & bit;
4846 4847
}

4848
static bool g4x_digital_port_connected(struct intel_encoder *encoder)
4849
{
4850
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4851
	u32 bit;
4852

4853 4854
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4855 4856
		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
		break;
4857
	case HPD_PORT_C:
4858 4859
		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
		break;
4860
	case HPD_PORT_D:
4861 4862 4863
		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
		break;
	default:
4864
		MISSING_CASE(encoder->hpd_pin);
4865 4866 4867 4868 4869 4870
		return false;
	}

	return I915_READ(PORT_HOTPLUG_STAT) & bit;
}

4871
static bool gm45_digital_port_connected(struct intel_encoder *encoder)
4872
{
4873
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4874 4875
	u32 bit;

4876 4877
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4878
		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4879
		break;
4880
	case HPD_PORT_C:
4881
		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4882
		break;
4883
	case HPD_PORT_D:
4884
		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4885 4886
		break;
	default:
4887
		MISSING_CASE(encoder->hpd_pin);
4888
		return false;
4889 4890
	}

4891
	return I915_READ(PORT_HOTPLUG_STAT) & bit;
4892 4893
}

4894
static bool ilk_digital_port_connected(struct intel_encoder *encoder)
4895
{
4896 4897 4898
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
4899 4900
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
	else
4901
		return ibx_digital_port_connected(encoder);
4902 4903
}

4904
static bool snb_digital_port_connected(struct intel_encoder *encoder)
4905
{
4906 4907 4908
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
4909 4910
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
	else
4911
		return cpt_digital_port_connected(encoder);
4912 4913
}

4914
static bool ivb_digital_port_connected(struct intel_encoder *encoder)
4915
{
4916 4917 4918
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
4919 4920
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
	else
4921
		return cpt_digital_port_connected(encoder);
4922 4923
}

4924
static bool bdw_digital_port_connected(struct intel_encoder *encoder)
4925
{
4926 4927 4928
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
4929 4930
		return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
	else
4931
		return cpt_digital_port_connected(encoder);
4932 4933
}

4934
static bool bxt_digital_port_connected(struct intel_encoder *encoder)
4935
{
4936
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4937 4938
	u32 bit;

4939 4940
	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
4941 4942
		bit = BXT_DE_PORT_HP_DDIA;
		break;
4943
	case HPD_PORT_B:
4944 4945
		bit = BXT_DE_PORT_HP_DDIB;
		break;
4946
	case HPD_PORT_C:
4947 4948 4949
		bit = BXT_DE_PORT_HP_DDIC;
		break;
	default:
4950
		MISSING_CASE(encoder->hpd_pin);
4951 4952 4953 4954 4955 4956
		return false;
	}

	return I915_READ(GEN8_DE_PORT_ISR) & bit;
}

4957 4958 4959 4960 4961 4962 4963 4964
static bool icl_combo_port_connected(struct drm_i915_private *dev_priv,
				     struct intel_digital_port *intel_dig_port)
{
	enum port port = intel_dig_port->base.port;

	return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(port);
}

4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996
static void icl_update_tc_port_type(struct drm_i915_private *dev_priv,
				    struct intel_digital_port *intel_dig_port,
				    bool is_legacy, bool is_typec, bool is_tbt)
{
	enum port port = intel_dig_port->base.port;
	enum tc_port_type old_type = intel_dig_port->tc_type;
	const char *type_str;

	WARN_ON(is_legacy + is_typec + is_tbt != 1);

	if (is_legacy) {
		intel_dig_port->tc_type = TC_PORT_LEGACY;
		type_str = "legacy";
	} else if (is_typec) {
		intel_dig_port->tc_type = TC_PORT_TYPEC;
		type_str = "typec";
	} else if (is_tbt) {
		intel_dig_port->tc_type = TC_PORT_TBT;
		type_str = "tbt";
	} else {
		return;
	}

	/* Types are not supposed to be changed at runtime. */
	WARN_ON(old_type != TC_PORT_UNKNOWN &&
		old_type != intel_dig_port->tc_type);

	if (old_type != intel_dig_port->tc_type)
		DRM_DEBUG_KMS("Port %c has TC type %s\n", port_name(port),
			      type_str);
}

4997 4998 4999
static void icl_tc_phy_disconnect(struct drm_i915_private *dev_priv,
				  struct intel_digital_port *dig_port);

5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
/*
 * This function implements the first part of the Connect Flow described by our
 * specification, Gen11 TypeC Programming chapter. The rest of the flow (reading
 * lanes, EDID, etc) is done as needed in the typical places.
 *
 * Unlike the other ports, type-C ports are not available to use as soon as we
 * get a hotplug. The type-C PHYs can be shared between multiple controllers:
 * display, USB, etc. As a result, handshaking through FIA is required around
 * connect and disconnect to cleanly transfer ownership with the controller and
 * set the type-C power state.
 *
 * We could opt to only do the connect flow when we actually try to use the AUX
 * channels or do a modeset, then immediately run the disconnect flow after
 * usage, but there are some implications on this for a dynamic environment:
 * things may go away or change behind our backs. So for now our driver is
 * always trying to acquire ownership of the controller as soon as it gets an
 * interrupt (or polls state and sees a port is connected) and only gives it
 * back when it sees a disconnect. Implementation of a more fine-grained model
 * will require a lot of coordination with user space and thorough testing for
 * the extra possible cases.
 */
static bool icl_tc_phy_connect(struct drm_i915_private *dev_priv,
			       struct intel_digital_port *dig_port)
{
	enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
	u32 val;

	if (dig_port->tc_type != TC_PORT_LEGACY &&
	    dig_port->tc_type != TC_PORT_TYPEC)
		return true;

	val = I915_READ(PORT_TX_DFLEXDPPMS);
	if (!(val & DP_PHY_MODE_STATUS_COMPLETED(tc_port))) {
		DRM_DEBUG_KMS("DP PHY for TC port %d not ready\n", tc_port);
		return false;
	}

	/*
	 * This function may be called many times in a row without an HPD event
	 * in between, so try to avoid the write when we can.
	 */
	val = I915_READ(PORT_TX_DFLEXDPCSSS);
	if (!(val & DP_PHY_MODE_STATUS_NOT_SAFE(tc_port))) {
		val |= DP_PHY_MODE_STATUS_NOT_SAFE(tc_port);
		I915_WRITE(PORT_TX_DFLEXDPCSSS, val);
	}

	/*
	 * Now we have to re-check the live state, in case the port recently
	 * became disconnected. Not necessary for legacy mode.
	 */
	if (dig_port->tc_type == TC_PORT_TYPEC &&
	    !(I915_READ(PORT_TX_DFLEXDPSP) & TC_LIVE_STATE_TC(tc_port))) {
		DRM_DEBUG_KMS("TC PHY %d sudden disconnect.\n", tc_port);
5054
		icl_tc_phy_disconnect(dev_priv, dig_port);
5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069
		return false;
	}

	return true;
}

/*
 * See the comment at the connect function. This implements the Disconnect
 * Flow.
 */
static void icl_tc_phy_disconnect(struct drm_i915_private *dev_priv,
				  struct intel_digital_port *dig_port)
{
	enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);

5070
	if (dig_port->tc_type == TC_PORT_UNKNOWN)
5071 5072 5073
		return;

	/*
5074 5075
	 * TBT disconnection flow is read the live status, what was done in
	 * caller.
5076
	 */
5077 5078 5079 5080 5081
	if (dig_port->tc_type == TC_PORT_TYPEC ||
	    dig_port->tc_type == TC_PORT_LEGACY) {
		u32 val;

		val = I915_READ(PORT_TX_DFLEXDPCSSS);
5082 5083 5084
		val &= ~DP_PHY_MODE_STATUS_NOT_SAFE(tc_port);
		I915_WRITE(PORT_TX_DFLEXDPCSSS, val);
	}
5085 5086

	dig_port->tc_type = TC_PORT_UNKNOWN;
5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098
}

/*
 * The type-C ports are different because even when they are connected, they may
 * not be available/usable by the graphics driver: see the comment on
 * icl_tc_phy_connect(). So in our driver instead of adding the additional
 * concept of "usable" and make everything check for "connected and usable" we
 * define a port as "connected" when it is not only connected, but also when it
 * is usable by the rest of the driver. That maintains the old assumption that
 * connected ports are usable, and avoids exposing to the users objects they
 * can't really use.
 */
5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116
static bool icl_tc_port_connected(struct drm_i915_private *dev_priv,
				  struct intel_digital_port *intel_dig_port)
{
	enum port port = intel_dig_port->base.port;
	enum tc_port tc_port = intel_port_to_tc(dev_priv, port);
	bool is_legacy, is_typec, is_tbt;
	u32 dpsp;

	is_legacy = I915_READ(SDEISR) & SDE_TC_HOTPLUG_ICP(tc_port);

	/*
	 * The spec says we shouldn't be using the ISR bits for detecting
	 * between TC and TBT. We should use DFLEXDPSP.
	 */
	dpsp = I915_READ(PORT_TX_DFLEXDPSP);
	is_typec = dpsp & TC_LIVE_STATE_TC(tc_port);
	is_tbt = dpsp & TC_LIVE_STATE_TBT(tc_port);

5117 5118
	if (!is_legacy && !is_typec && !is_tbt) {
		icl_tc_phy_disconnect(dev_priv, intel_dig_port);
5119
		return false;
5120
	}
5121 5122 5123

	icl_update_tc_port_type(dev_priv, intel_dig_port, is_legacy, is_typec,
				is_tbt);
5124

5125 5126 5127
	if (!icl_tc_phy_connect(dev_priv, intel_dig_port))
		return false;

5128
	return true;
5129 5130 5131 5132 5133 5134 5135
}

static bool icl_digital_port_connected(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);

5136
	if (intel_port_is_combophy(dev_priv, encoder->port))
5137
		return icl_combo_port_connected(dev_priv, dig_port);
5138
	else if (intel_port_is_tc(dev_priv, encoder->port))
5139
		return icl_tc_port_connected(dev_priv, dig_port);
5140
	else
5141
		MISSING_CASE(encoder->hpd_pin);
5142 5143

	return false;
5144 5145
}

5146 5147
/*
 * intel_digital_port_connected - is the specified port connected?
5148
 * @encoder: intel_encoder
5149
 *
5150 5151 5152 5153 5154
 * In cases where there's a connector physically connected but it can't be used
 * by our hardware we also return false, since the rest of the driver should
 * pretty much treat the port as disconnected. This is relevant for type-C
 * (starting on ICL) where there's ownership involved.
 *
5155
 * Return %true if port is connected, %false otherwise.
5156
 */
5157
bool intel_digital_port_connected(struct intel_encoder *encoder)
5158
{
5159 5160
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

5161 5162
	if (HAS_GMCH_DISPLAY(dev_priv)) {
		if (IS_GM45(dev_priv))
5163
			return gm45_digital_port_connected(encoder);
5164
		else
5165
			return g4x_digital_port_connected(encoder);
5166 5167
	}

5168 5169 5170 5171
	if (INTEL_GEN(dev_priv) >= 11)
		return icl_digital_port_connected(encoder);
	else if (IS_GEN10(dev_priv) || IS_GEN9_BC(dev_priv))
		return spt_digital_port_connected(encoder);
5172
	else if (IS_GEN9_LP(dev_priv))
5173
		return bxt_digital_port_connected(encoder);
5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184
	else if (IS_GEN8(dev_priv))
		return bdw_digital_port_connected(encoder);
	else if (IS_GEN7(dev_priv))
		return ivb_digital_port_connected(encoder);
	else if (IS_GEN6(dev_priv))
		return snb_digital_port_connected(encoder);
	else if (IS_GEN5(dev_priv))
		return ilk_digital_port_connected(encoder);

	MISSING_CASE(INTEL_GEN(dev_priv));
	return false;
5185 5186
}

5187
static struct edid *
5188
intel_dp_get_edid(struct intel_dp *intel_dp)
5189
{
5190
	struct intel_connector *intel_connector = intel_dp->attached_connector;
5191

5192 5193 5194 5195
	/* use cached edid if we have one */
	if (intel_connector->edid) {
		/* invalid edid */
		if (IS_ERR(intel_connector->edid))
5196 5197
			return NULL;

J
Jani Nikula 已提交
5198
		return drm_edid_duplicate(intel_connector->edid);
5199 5200 5201 5202
	} else
		return drm_get_edid(&intel_connector->base,
				    &intel_dp->aux.ddc);
}
5203

5204 5205 5206 5207 5208
static void
intel_dp_set_edid(struct intel_dp *intel_dp)
{
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct edid *edid;
5209

5210
	intel_dp_unset_edid(intel_dp);
5211 5212 5213
	edid = intel_dp_get_edid(intel_dp);
	intel_connector->detect_edid = edid;

5214
	intel_dp->has_audio = drm_detect_monitor_audio(edid);
5215
	drm_dp_cec_set_edid(&intel_dp->aux, edid);
5216 5217
}

5218 5219
static void
intel_dp_unset_edid(struct intel_dp *intel_dp)
5220
{
5221
	struct intel_connector *intel_connector = intel_dp->attached_connector;
5222

5223
	drm_dp_cec_unset_edid(&intel_dp->aux);
5224 5225
	kfree(intel_connector->detect_edid);
	intel_connector->detect_edid = NULL;
5226

5227 5228
	intel_dp->has_audio = false;
}
5229

5230
static int
5231 5232 5233
intel_dp_detect(struct drm_connector *connector,
		struct drm_modeset_acquire_ctx *ctx,
		bool force)
Z
Zhenyu Wang 已提交
5234
{
5235 5236
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5237
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
Z
Zhenyu Wang 已提交
5238 5239
	enum drm_connector_status status;

5240 5241
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);
5242
	WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
5243

5244
	intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
Z
Zhenyu Wang 已提交
5245

5246
	/* Can't disconnect eDP */
5247
	if (intel_dp_is_edp(intel_dp))
5248
		status = edp_detect(intel_dp);
5249
	else if (intel_digital_port_connected(encoder))
5250
		status = intel_dp_detect_dpcd(intel_dp);
Z
Zhenyu Wang 已提交
5251
	else
5252 5253
		status = connector_status_disconnected;

5254
	if (status == connector_status_disconnected) {
5255
		memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5256
		memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
5257

5258 5259 5260 5261 5262 5263 5264 5265 5266
		if (intel_dp->is_mst) {
			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
				      intel_dp->is_mst,
				      intel_dp->mst_mgr.mst_state);
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
		}

5267
		goto out;
5268
	}
Z
Zhenyu Wang 已提交
5269

5270
	if (intel_dp->reset_link_params) {
5271 5272
		/* Initial max link lane count */
		intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
5273

5274 5275
		/* Initial max link rate */
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
5276 5277 5278

		intel_dp->reset_link_params = false;
	}
5279

5280 5281
	intel_dp_print_rates(intel_dp);

5282 5283 5284 5285
	/* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
	if (INTEL_GEN(dev_priv) >= 11)
		intel_dp_get_dsc_sink_cap(intel_dp);

5286 5287
	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
			 drm_dp_is_branch(intel_dp->dpcd));
5288

5289 5290 5291
	intel_dp_configure_mst(intel_dp);

	if (intel_dp->is_mst) {
5292 5293 5294 5295 5296
		/*
		 * If we are in MST mode then this connector
		 * won't appear connected or have anything
		 * with EDID on it
		 */
5297 5298
		status = connector_status_disconnected;
		goto out;
5299 5300 5301 5302 5303 5304
	}

	/*
	 * Some external monitors do not signal loss of link synchronization
	 * with an IRQ_HPD, so force a link status check.
	 */
5305 5306 5307 5308 5309 5310 5311 5312 5313 5314
	if (!intel_dp_is_edp(intel_dp)) {
		int ret;

		ret = intel_dp_retrain_link(encoder, ctx);
		if (ret) {
			intel_display_power_put(dev_priv,
						intel_dp->aux_power_domain);
			return ret;
		}
	}
5315

5316 5317 5318 5319 5320 5321 5322 5323
	/*
	 * Clearing NACK and defer counts to get their exact values
	 * while reading EDID which are required by Compliance tests
	 * 4.2.2.4 and 4.2.2.5
	 */
	intel_dp->aux.i2c_nack_count = 0;
	intel_dp->aux.i2c_defer_count = 0;

5324
	intel_dp_set_edid(intel_dp);
5325 5326
	if (intel_dp_is_edp(intel_dp) ||
	    to_intel_connector(connector)->detect_edid)
5327
		status = connector_status_connected;
5328

5329
	intel_dp_check_service_irq(intel_dp);
5330

5331
out:
5332
	if (status != connector_status_connected && !intel_dp->is_mst)
5333
		intel_dp_unset_edid(intel_dp);
5334

5335
	intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
5336
	return status;
5337 5338
}

5339 5340
static void
intel_dp_force(struct drm_connector *connector)
5341
{
5342
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5343
	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
5344
	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5345

5346 5347 5348
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);
	intel_dp_unset_edid(intel_dp);
5349

5350 5351
	if (connector->status != connector_status_connected)
		return;
5352

5353
	intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
5354 5355 5356

	intel_dp_set_edid(intel_dp);

5357
	intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370
}

static int intel_dp_get_modes(struct drm_connector *connector)
{
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct edid *edid;

	edid = intel_connector->detect_edid;
	if (edid) {
		int ret = intel_connector_update_modes(connector, edid);
		if (ret)
			return ret;
	}
5371

5372
	/* if eDP has no EDID, fall back to fixed mode */
5373
	if (intel_dp_is_edp(intel_attached_dp(connector)) &&
5374
	    intel_connector->panel.fixed_mode) {
5375
		struct drm_display_mode *mode;
5376 5377

		mode = drm_mode_duplicate(connector->dev,
5378
					  intel_connector->panel.fixed_mode);
5379
		if (mode) {
5380 5381 5382 5383
			drm_mode_probed_add(connector, mode);
			return 1;
		}
	}
5384

5385
	return 0;
5386 5387
}

5388 5389 5390 5391
static int
intel_dp_connector_register(struct drm_connector *connector)
{
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5392
	struct drm_device *dev = connector->dev;
5393 5394 5395 5396 5397
	int ret;

	ret = intel_connector_register(connector);
	if (ret)
		return ret;
5398 5399 5400 5401 5402 5403 5404

	i915_debugfs_connector_add(connector);

	DRM_DEBUG_KMS("registering %s bus for %s\n",
		      intel_dp->aux.name, connector->kdev->kobj.name);

	intel_dp->aux.dev = connector->kdev;
5405 5406 5407 5408 5409
	ret = drm_dp_aux_register(&intel_dp->aux);
	if (!ret)
		drm_dp_cec_register_connector(&intel_dp->aux,
					      connector->name, dev->dev);
	return ret;
5410 5411
}

5412 5413 5414
static void
intel_dp_connector_unregister(struct drm_connector *connector)
{
5415 5416 5417 5418
	struct intel_dp *intel_dp = intel_attached_dp(connector);

	drm_dp_cec_unregister_connector(&intel_dp->aux);
	drm_dp_aux_unregister(&intel_dp->aux);
5419 5420 5421
	intel_connector_unregister(connector);
}

P
Paulo Zanoni 已提交
5422
void intel_dp_encoder_destroy(struct drm_encoder *encoder)
5423
{
5424 5425
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
	struct intel_dp *intel_dp = &intel_dig_port->dp;
5426

5427
	intel_dp_mst_encoder_cleanup(intel_dig_port);
5428
	if (intel_dp_is_edp(intel_dp)) {
5429
		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5430 5431 5432 5433
		/*
		 * vdd might still be enabled do to the delayed vdd off.
		 * Make sure vdd is actually turned off here.
		 */
5434
		pps_lock(intel_dp);
5435
		edp_panel_vdd_off_sync(intel_dp);
5436 5437
		pps_unlock(intel_dp);

5438 5439 5440 5441
		if (intel_dp->edp_notifier.notifier_call) {
			unregister_reboot_notifier(&intel_dp->edp_notifier);
			intel_dp->edp_notifier.notifier_call = NULL;
		}
5442
	}
5443 5444 5445

	intel_dp_aux_fini(intel_dp);

5446
	drm_encoder_cleanup(encoder);
5447
	kfree(intel_dig_port);
5448 5449
}

5450
void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5451 5452 5453
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);

5454
	if (!intel_dp_is_edp(intel_dp))
5455 5456
		return;

5457 5458 5459 5460
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
5461
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5462
	pps_lock(intel_dp);
5463
	edp_panel_vdd_off_sync(intel_dp);
5464
	pps_unlock(intel_dp);
5465 5466
}

5467 5468 5469 5470 5471
static
int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
				u8 *an)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base);
5472 5473 5474 5475 5476 5477
	static const struct drm_dp_aux_msg msg = {
		.request = DP_AUX_NATIVE_WRITE,
		.address = DP_AUX_HDCP_AKSV,
		.size = DRM_HDCP_KSV_LEN,
	};
	uint8_t txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
5478 5479 5480 5481 5482 5483 5484
	ssize_t dpcd_ret;
	int ret;

	/* Output An first, that's easy */
	dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
				     an, DRM_HDCP_AN_LEN);
	if (dpcd_ret != DRM_HDCP_AN_LEN) {
5485 5486
		DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
			      dpcd_ret);
5487 5488 5489 5490 5491 5492 5493 5494 5495
		return dpcd_ret >= 0 ? -EIO : dpcd_ret;
	}

	/*
	 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
	 * order to get it on the wire, we need to create the AUX header as if
	 * we were writing the data, and then tickle the hardware to output the
	 * data once the header is sent out.
	 */
5496
	intel_dp_aux_header(txbuf, &msg);
5497

5498
	ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
5499 5500
				rxbuf, sizeof(rxbuf),
				DP_AUX_CH_CTL_AUX_AKSV_SELECT);
5501
	if (ret < 0) {
5502
		DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret);
5503 5504
		return ret;
	} else if (ret == 0) {
5505
		DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519
		return -EIO;
	}

	reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
	return reply == DP_AUX_NATIVE_REPLY_ACK ? 0 : -EIO;
}

static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
				   u8 *bksv)
{
	ssize_t ret;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
			       DRM_HDCP_KSV_LEN);
	if (ret != DRM_HDCP_KSV_LEN) {
5520
		DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret);
5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
				      u8 *bstatus)
{
	ssize_t ret;
	/*
	 * For some reason the HDMI and DP HDCP specs call this register
	 * definition by different names. In the HDMI spec, it's called BSTATUS,
	 * but in DP it's called BINFO.
	 */
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
			       bstatus, DRM_HDCP_BSTATUS_LEN);
	if (ret != DRM_HDCP_BSTATUS_LEN) {
5538
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5539 5540 5541 5542 5543 5544
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
5545 5546
int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
			     u8 *bcaps)
5547 5548
{
	ssize_t ret;
5549

5550
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
5551
			       bcaps, 1);
5552
	if (ret != 1) {
5553
		DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret);
5554 5555
		return ret >= 0 ? -EIO : ret;
	}
5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570

	return 0;
}

static
int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
				   bool *repeater_present)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582
	*repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
	return 0;
}

static
int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
				u8 *ri_prime)
{
	ssize_t ret;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
			       ri_prime, DRM_HDCP_RI_LEN);
	if (ret != DRM_HDCP_RI_LEN) {
5583
		DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret);
5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
				 bool *ksv_ready)
{
	ssize_t ret;
	u8 bstatus;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
5598
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619
		return ret >= 0 ? -EIO : ret;
	}
	*ksv_ready = bstatus & DP_BSTATUS_READY;
	return 0;
}

static
int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
				int num_downstream, u8 *ksv_fifo)
{
	ssize_t ret;
	int i;

	/* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
	for (i = 0; i < num_downstream; i += 3) {
		size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
				       DP_AUX_HDCP_KSV_FIFO,
				       ksv_fifo + i * DRM_HDCP_KSV_LEN,
				       len);
		if (ret != len) {
5620 5621
			DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
				      i, ret);
5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640
			return ret >= 0 ? -EIO : ret;
		}
	}
	return 0;
}

static
int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
				    int i, u32 *part)
{
	ssize_t ret;

	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
		return -EINVAL;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_AUX_HDCP_V_PRIME(i), part,
			       DRM_HDCP_V_PRIME_PART_LEN);
	if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
5641
		DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
				    bool enable)
{
	/* Not used for single stream DisplayPort setups */
	return 0;
}

static
bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
{
	ssize_t ret;
	u8 bstatus;
5660

5661 5662 5663
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
5664
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5665
		return false;
5666
	}
5667

5668 5669 5670
	return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
}

5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685
static
int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
			  bool *hdcp_capable)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

	*hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
	return 0;
}

5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696
static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
	.write_an_aksv = intel_dp_hdcp_write_an_aksv,
	.read_bksv = intel_dp_hdcp_read_bksv,
	.read_bstatus = intel_dp_hdcp_read_bstatus,
	.repeater_present = intel_dp_hdcp_repeater_present,
	.read_ri_prime = intel_dp_hdcp_read_ri_prime,
	.read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
	.read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
	.read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
	.toggle_signalling = intel_dp_hdcp_toggle_signalling,
	.check_link = intel_dp_hdcp_check_link,
5697
	.hdcp_capable = intel_dp_hdcp_capable,
5698 5699
};

5700 5701
static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
{
5702
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715

	lockdep_assert_held(&dev_priv->pps_mutex);

	if (!edp_have_panel_vdd(intel_dp))
		return;

	/*
	 * The VDD bit needs a power domain reference, so if the bit is
	 * already enabled when we boot or resume, grab this reference and
	 * schedule a vdd off, so we don't hold on to the reference
	 * indefinitely.
	 */
	DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
5716
	intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
5717 5718 5719 5720

	edp_panel_vdd_schedule_off(intel_dp);
}

5721 5722
static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
{
5723
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5724 5725
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum pipe pipe;
5726

5727 5728 5729
	if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				  encoder->port, &pipe))
		return pipe;
5730

5731
	return INVALID_PIPE;
5732 5733
}

5734
void intel_dp_encoder_reset(struct drm_encoder *encoder)
5735
{
5736
	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
5737 5738
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5739 5740 5741

	if (!HAS_DDI(dev_priv))
		intel_dp->DP = I915_READ(intel_dp->output_reg);
5742

5743
	if (lspcon->active)
5744 5745
		lspcon_resume(lspcon);

5746 5747
	intel_dp->reset_link_params = true;

5748 5749
	pps_lock(intel_dp);

5750 5751 5752
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		intel_dp->active_pipe = vlv_active_pipe(intel_dp);

5753
	if (intel_dp_is_edp(intel_dp)) {
5754
		/* Reinit the power sequencer, in case BIOS did something with it. */
5755
		intel_dp_pps_init(intel_dp);
5756 5757
		intel_edp_panel_vdd_sanitize(intel_dp);
	}
5758 5759

	pps_unlock(intel_dp);
5760 5761
}

5762
static const struct drm_connector_funcs intel_dp_connector_funcs = {
5763
	.force = intel_dp_force,
5764
	.fill_modes = drm_helper_probe_single_connector_modes,
5765 5766
	.atomic_get_property = intel_digital_connector_atomic_get_property,
	.atomic_set_property = intel_digital_connector_atomic_set_property,
5767
	.late_register = intel_dp_connector_register,
5768
	.early_unregister = intel_dp_connector_unregister,
5769
	.destroy = intel_connector_destroy,
5770
	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
5771
	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
5772 5773 5774
};

static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
5775
	.detect_ctx = intel_dp_detect,
5776 5777
	.get_modes = intel_dp_get_modes,
	.mode_valid = intel_dp_mode_valid,
5778
	.atomic_check = intel_digital_connector_atomic_check,
5779 5780 5781
};

static const struct drm_encoder_funcs intel_dp_enc_funcs = {
5782
	.reset = intel_dp_encoder_reset,
5783
	.destroy = intel_dp_encoder_destroy,
5784 5785
};

5786
enum irqreturn
5787 5788 5789
intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
{
	struct intel_dp *intel_dp = &intel_dig_port->dp;
5790
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5791
	enum irqreturn ret = IRQ_NONE;
5792

5793 5794 5795 5796 5797 5798 5799 5800
	if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
		/*
		 * vdd off can generate a long pulse on eDP which
		 * would require vdd on to handle it, and thus we
		 * would end up in an endless cycle of
		 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
		 */
		DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
5801
			      port_name(intel_dig_port->base.port));
5802
		return IRQ_HANDLED;
5803 5804
	}

5805
	DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
5806
		      port_name(intel_dig_port->base.port),
5807
		      long_hpd ? "long" : "short");
5808

5809
	if (long_hpd) {
5810
		intel_dp->reset_link_params = true;
5811 5812 5813
		return IRQ_NONE;
	}

5814
	intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
5815

5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827
	if (intel_dp->is_mst) {
		if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
			/*
			 * If we were in MST mode, and device is not
			 * there, get out of MST mode
			 */
			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
				      intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
			goto put_power;
5828
		}
5829
	}
5830

5831
	if (!intel_dp->is_mst) {
5832
		bool handled;
5833 5834 5835

		handled = intel_dp_short_pulse(intel_dp);

5836
		if (!handled)
5837
			goto put_power;
5838
	}
5839 5840 5841

	ret = IRQ_HANDLED;

5842
put_power:
5843
	intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
5844 5845

	return ret;
5846 5847
}

5848
/* check the VBT to see whether the eDP is on another port */
5849
bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
5850
{
5851 5852 5853 5854
	/*
	 * eDP not supported on g4x. so bail out early just
	 * for a bit extra safety in case the VBT is bonkers.
	 */
5855
	if (INTEL_GEN(dev_priv) < 5)
5856 5857
		return false;

5858
	if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
5859 5860
		return true;

5861
	return intel_bios_is_port_edp(dev_priv, port);
5862 5863
}

5864
static void
5865 5866
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
{
5867
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
5868 5869 5870 5871
	enum port port = dp_to_dig_port(intel_dp)->base.port;

	if (!IS_G4X(dev_priv) && port != PORT_A)
		intel_attach_force_audio_property(connector);
5872

5873
	intel_attach_broadcast_rgb_property(connector);
5874

5875
	if (intel_dp_is_edp(intel_dp)) {
5876 5877 5878 5879 5880 5881 5882 5883
		u32 allowed_scalers;

		allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
		if (!HAS_GMCH_DISPLAY(dev_priv))
			allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);

		drm_connector_attach_scaling_mode_property(connector, allowed_scalers);

5884
		connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
5885

5886
	}
5887 5888
}

5889 5890
static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
{
5891
	intel_dp->panel_power_off_time = ktime_get_boottime();
5892 5893 5894 5895
	intel_dp->last_power_on = jiffies;
	intel_dp->last_backlight_off = jiffies;
}

5896
static void
5897
intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
5898
{
5899
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5900
	u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
5901
	struct pps_registers regs;
5902

5903
	intel_pps_get_registers(intel_dp, &regs);
5904 5905 5906

	/* Workaround: Need to write PP_CONTROL with the unlock key as
	 * the very first thing. */
5907
	pp_ctl = ironlake_get_pp_control(intel_dp);
5908

5909 5910
	pp_on = I915_READ(regs.pp_on);
	pp_off = I915_READ(regs.pp_off);
5911 5912
	if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv) &&
	    !HAS_PCH_ICP(dev_priv)) {
5913 5914
		I915_WRITE(regs.pp_ctrl, pp_ctl);
		pp_div = I915_READ(regs.pp_div);
5915
	}
5916 5917

	/* Pull timing values out of registers */
5918 5919
	seq->t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
		     PANEL_POWER_UP_DELAY_SHIFT;
5920

5921 5922
	seq->t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
		  PANEL_LIGHT_ON_DELAY_SHIFT;
5923

5924 5925
	seq->t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
		  PANEL_LIGHT_OFF_DELAY_SHIFT;
5926

5927 5928
	seq->t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
		   PANEL_POWER_DOWN_DELAY_SHIFT;
5929

5930 5931
	if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
	    HAS_PCH_ICP(dev_priv)) {
5932 5933
		seq->t11_t12 = ((pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
				BXT_POWER_CYCLE_DELAY_SHIFT) * 1000;
5934
	} else {
5935
		seq->t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
5936
		       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
5937
	}
5938 5939
}

I
Imre Deak 已提交
5940 5941 5942 5943 5944 5945 5946 5947 5948
static void
intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
{
	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
		      state_name,
		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
}

static void
5949
intel_pps_verify_state(struct intel_dp *intel_dp)
I
Imre Deak 已提交
5950 5951 5952 5953
{
	struct edp_power_seq hw;
	struct edp_power_seq *sw = &intel_dp->pps_delays;

5954
	intel_pps_readout_hw_state(intel_dp, &hw);
I
Imre Deak 已提交
5955 5956 5957 5958 5959 5960 5961 5962 5963

	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
		DRM_ERROR("PPS state mismatch\n");
		intel_pps_dump_state("sw", sw);
		intel_pps_dump_state("hw", &hw);
	}
}

5964
static void
5965
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
5966
{
5967
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5968 5969 5970 5971 5972 5973 5974 5975 5976
	struct edp_power_seq cur, vbt, spec,
		*final = &intel_dp->pps_delays;

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* already initialized? */
	if (final->t11_t12 != 0)
		return;

5977
	intel_pps_readout_hw_state(intel_dp, &cur);
5978

I
Imre Deak 已提交
5979
	intel_pps_dump_state("cur", &cur);
5980

5981
	vbt = dev_priv->vbt.edp.pps;
5982 5983 5984 5985 5986 5987
	/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
	 * of 500ms appears to be too short. Ocassionally the panel
	 * just fails to power back on. Increasing the delay to 800ms
	 * seems sufficient to avoid this problem.
	 */
	if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
5988
		vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
5989 5990 5991
		DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
			      vbt.t11_t12);
	}
5992 5993 5994 5995 5996
	/* T11_T12 delay is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	vbt.t11_t12 += 100 * 10;
5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009

	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
	 * our hw here, which are all in 100usec. */
	spec.t1_t3 = 210 * 10;
	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
	spec.t10 = 500 * 10;
	/* This one is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	spec.t11_t12 = (510 + 100) * 10;

I
Imre Deak 已提交
6010
	intel_pps_dump_state("vbt", &vbt);
6011 6012 6013

	/* Use the max of the register settings and vbt. If both are
	 * unset, fall back to the spec limits. */
6014
#define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
6015 6016 6017 6018 6019 6020 6021 6022 6023
				       spec.field : \
				       max(cur.field, vbt.field))
	assign_final(t1_t3);
	assign_final(t8);
	assign_final(t9);
	assign_final(t10);
	assign_final(t11_t12);
#undef assign_final

6024
#define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
6025 6026 6027 6028 6029 6030 6031
	intel_dp->panel_power_up_delay = get_delay(t1_t3);
	intel_dp->backlight_on_delay = get_delay(t8);
	intel_dp->backlight_off_delay = get_delay(t9);
	intel_dp->panel_power_down_delay = get_delay(t10);
	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
#undef get_delay

6032 6033 6034 6035 6036 6037
	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
		      intel_dp->panel_power_cycle_delay);

	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
I
Imre Deak 已提交
6038 6039 6040 6041 6042 6043 6044 6045 6046 6047

	/*
	 * We override the HW backlight delays to 1 because we do manual waits
	 * on them. For T8, even BSpec recommends doing it. For T9, if we
	 * don't do this, we'll end up waiting for the backlight off delay
	 * twice: once when we do the manual sleep, and once when we disable
	 * the panel and wait for the PP_STATUS bit to become zero.
	 */
	final->t8 = 1;
	final->t9 = 1;
6048 6049 6050 6051 6052 6053

	/*
	 * HW has only a 100msec granularity for t11_t12 so round it up
	 * accordingly.
	 */
	final->t11_t12 = roundup(final->t11_t12, 100 * 10);
6054 6055 6056
}

static void
6057
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
6058
					      bool force_disable_vdd)
6059
{
6060
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6061
	u32 pp_on, pp_off, pp_div, port_sel = 0;
6062
	int div = dev_priv->rawclk_freq / 1000;
6063
	struct pps_registers regs;
6064
	enum port port = dp_to_dig_port(intel_dp)->base.port;
6065
	const struct edp_power_seq *seq = &intel_dp->pps_delays;
6066

V
Ville Syrjälä 已提交
6067
	lockdep_assert_held(&dev_priv->pps_mutex);
6068

6069
	intel_pps_get_registers(intel_dp, &regs);
6070

6071 6072
	/*
	 * On some VLV machines the BIOS can leave the VDD
6073
	 * enabled even on power sequencers which aren't
6074 6075 6076 6077 6078 6079 6080
	 * hooked up to any port. This would mess up the
	 * power domain tracking the first time we pick
	 * one of these power sequencers for use since
	 * edp_panel_vdd_on() would notice that the VDD was
	 * already on and therefore wouldn't grab the power
	 * domain reference. Disable VDD first to avoid this.
	 * This also avoids spuriously turning the VDD on as
6081
	 * soon as the new power sequencer gets initialized.
6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095
	 */
	if (force_disable_vdd) {
		u32 pp = ironlake_get_pp_control(intel_dp);

		WARN(pp & PANEL_POWER_ON, "Panel power already on\n");

		if (pp & EDP_FORCE_VDD)
			DRM_DEBUG_KMS("VDD already on, disabling first\n");

		pp &= ~EDP_FORCE_VDD;

		I915_WRITE(regs.pp_ctrl, pp);
	}

6096
	pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
I
Imre Deak 已提交
6097 6098
		(seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
	pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
6099
		 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
6100 6101
	/* Compute the divisor for the pp clock, simply match the Bspec
	 * formula. */
6102 6103
	if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
	    HAS_PCH_ICP(dev_priv)) {
6104
		pp_div = I915_READ(regs.pp_ctrl);
6105
		pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
6106
		pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
6107 6108 6109 6110 6111 6112
				<< BXT_POWER_CYCLE_DELAY_SHIFT);
	} else {
		pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
		pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
				<< PANEL_POWER_CYCLE_DELAY_SHIFT);
	}
6113 6114 6115

	/* Haswell doesn't have any port selection bits for the panel
	 * power sequencer any more. */
6116
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6117
		port_sel = PANEL_PORT_SELECT_VLV(port);
6118
	} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
6119 6120
		switch (port) {
		case PORT_A:
6121
			port_sel = PANEL_PORT_SELECT_DPA;
6122 6123 6124 6125 6126
			break;
		case PORT_C:
			port_sel = PANEL_PORT_SELECT_DPC;
			break;
		case PORT_D:
6127
			port_sel = PANEL_PORT_SELECT_DPD;
6128 6129 6130 6131 6132
			break;
		default:
			MISSING_CASE(port);
			break;
		}
6133 6134
	}

6135 6136
	pp_on |= port_sel;

6137 6138
	I915_WRITE(regs.pp_on, pp_on);
	I915_WRITE(regs.pp_off, pp_off);
6139 6140
	if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
	    HAS_PCH_ICP(dev_priv))
6141
		I915_WRITE(regs.pp_ctrl, pp_div);
6142
	else
6143
		I915_WRITE(regs.pp_div, pp_div);
6144 6145

	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
6146 6147
		      I915_READ(regs.pp_on),
		      I915_READ(regs.pp_off),
6148 6149
		      (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv)  ||
		       HAS_PCH_ICP(dev_priv)) ?
6150 6151
		      (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK) :
		      I915_READ(regs.pp_div));
6152 6153
}

6154
static void intel_dp_pps_init(struct intel_dp *intel_dp)
6155
{
6156
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6157 6158

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6159 6160
		vlv_initial_power_sequencer_setup(intel_dp);
	} else {
6161 6162
		intel_dp_init_panel_power_sequencer(intel_dp);
		intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
6163 6164 6165
	}
}

6166 6167
/**
 * intel_dp_set_drrs_state - program registers for RR switch to take effect
6168
 * @dev_priv: i915 device
6169
 * @crtc_state: a pointer to the active intel_crtc_state
6170 6171 6172 6173 6174 6175 6176 6177 6178
 * @refresh_rate: RR to be programmed
 *
 * This function gets called when refresh rate (RR) has to be changed from
 * one frequency to another. Switches can be between high and low RR
 * supported by the panel or to any other RR based on media playback (in
 * this case, RR value needs to be passed from user space).
 *
 * The caller of this function needs to take a lock on dev_priv->drrs.
 */
6179
static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
6180
				    const struct intel_crtc_state *crtc_state,
6181
				    int refresh_rate)
6182 6183
{
	struct intel_encoder *encoder;
6184 6185
	struct intel_digital_port *dig_port = NULL;
	struct intel_dp *intel_dp = dev_priv->drrs.dp;
6186
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
6187
	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
6188 6189 6190 6191 6192 6193

	if (refresh_rate <= 0) {
		DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
		return;
	}

6194 6195
	if (intel_dp == NULL) {
		DRM_DEBUG_KMS("DRRS not supported.\n");
6196 6197 6198
		return;
	}

6199 6200
	dig_port = dp_to_dig_port(intel_dp);
	encoder = &dig_port->base;
6201 6202 6203 6204 6205 6206

	if (!intel_crtc) {
		DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
		return;
	}

6207
	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
6208 6209 6210 6211
		DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
		return;
	}

6212 6213
	if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
			refresh_rate)
6214 6215
		index = DRRS_LOW_RR;

6216
	if (index == dev_priv->drrs.refresh_rate_type) {
6217 6218 6219 6220 6221
		DRM_DEBUG_KMS(
			"DRRS requested for previously set RR...ignoring\n");
		return;
	}

6222
	if (!crtc_state->base.active) {
6223 6224 6225 6226
		DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
		return;
	}

6227
	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
6228 6229
		switch (index) {
		case DRRS_HIGH_RR:
6230
			intel_dp_set_m_n(crtc_state, M1_N1);
6231 6232
			break;
		case DRRS_LOW_RR:
6233
			intel_dp_set_m_n(crtc_state, M2_N2);
6234 6235 6236 6237 6238
			break;
		case DRRS_MAX_RR:
		default:
			DRM_ERROR("Unsupported refreshrate type\n");
		}
6239 6240
	} else if (INTEL_GEN(dev_priv) > 6) {
		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
6241
		u32 val;
6242

6243
		val = I915_READ(reg);
6244
		if (index > DRRS_HIGH_RR) {
6245
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6246 6247 6248
				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val |= PIPECONF_EDP_RR_MODE_SWITCH;
6249
		} else {
6250
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6251 6252 6253
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
6254 6255 6256 6257
		}
		I915_WRITE(reg, val);
	}

6258 6259 6260 6261 6262
	dev_priv->drrs.refresh_rate_type = index;

	DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
}

6263 6264 6265
/**
 * intel_edp_drrs_enable - init drrs struct if supported
 * @intel_dp: DP struct
6266
 * @crtc_state: A pointer to the active crtc state.
6267 6268 6269
 *
 * Initializes frontbuffer_bits and drrs.dp
 */
6270
void intel_edp_drrs_enable(struct intel_dp *intel_dp,
6271
			   const struct intel_crtc_state *crtc_state)
V
Vandana Kannan 已提交
6272
{
6273
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Vandana Kannan 已提交
6274

6275
	if (!crtc_state->has_drrs) {
V
Vandana Kannan 已提交
6276 6277 6278 6279
		DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
		return;
	}

6280 6281 6282 6283 6284
	if (dev_priv->psr.enabled) {
		DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
		return;
	}

V
Vandana Kannan 已提交
6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298
	mutex_lock(&dev_priv->drrs.mutex);
	if (WARN_ON(dev_priv->drrs.dp)) {
		DRM_ERROR("DRRS already enabled\n");
		goto unlock;
	}

	dev_priv->drrs.busy_frontbuffer_bits = 0;

	dev_priv->drrs.dp = intel_dp;

unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
}

6299 6300 6301
/**
 * intel_edp_drrs_disable - Disable DRRS
 * @intel_dp: DP struct
6302
 * @old_crtc_state: Pointer to old crtc_state.
6303 6304
 *
 */
6305
void intel_edp_drrs_disable(struct intel_dp *intel_dp,
6306
			    const struct intel_crtc_state *old_crtc_state)
V
Vandana Kannan 已提交
6307
{
6308
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Vandana Kannan 已提交
6309

6310
	if (!old_crtc_state->has_drrs)
V
Vandana Kannan 已提交
6311 6312 6313 6314 6315 6316 6317 6318 6319
		return;

	mutex_lock(&dev_priv->drrs.mutex);
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6320 6321
		intel_dp_set_drrs_state(dev_priv, old_crtc_state,
			intel_dp->attached_connector->panel.fixed_mode->vrefresh);
V
Vandana Kannan 已提交
6322 6323 6324 6325 6326 6327 6328

	dev_priv->drrs.dp = NULL;
	mutex_unlock(&dev_priv->drrs.mutex);

	cancel_delayed_work_sync(&dev_priv->drrs.work);
}

6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341
static void intel_edp_drrs_downclock_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), drrs.work.work);
	struct intel_dp *intel_dp;

	mutex_lock(&dev_priv->drrs.mutex);

	intel_dp = dev_priv->drrs.dp;

	if (!intel_dp)
		goto unlock;

6342
	/*
6343 6344
	 * The delayed work can race with an invalidate hence we need to
	 * recheck.
6345 6346
	 */

6347 6348
	if (dev_priv->drrs.busy_frontbuffer_bits)
		goto unlock;
6349

6350 6351 6352 6353 6354 6355
	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
		struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;

		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			intel_dp->attached_connector->panel.downclock_mode->vrefresh);
	}
6356

6357 6358
unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
6359 6360
}

6361
/**
6362
 * intel_edp_drrs_invalidate - Disable Idleness DRRS
6363
 * @dev_priv: i915 device
6364 6365
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
6366 6367
 * This function gets called everytime rendering on the given planes start.
 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
6368 6369 6370
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
6371 6372
void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
			       unsigned int frontbuffer_bits)
6373 6374 6375 6376
{
	struct drm_crtc *crtc;
	enum pipe pipe;

6377
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6378 6379
		return;

6380
	cancel_delayed_work(&dev_priv->drrs.work);
6381

6382
	mutex_lock(&dev_priv->drrs.mutex);
6383 6384 6385 6386 6387
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

6388 6389 6390
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;

6391 6392 6393
	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;

6394
	/* invalidate means busy screen hence upclock */
6395
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6396 6397
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6398 6399 6400 6401

	mutex_unlock(&dev_priv->drrs.mutex);
}

6402
/**
6403
 * intel_edp_drrs_flush - Restart Idleness DRRS
6404
 * @dev_priv: i915 device
6405 6406
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
6407 6408 6409 6410
 * This function gets called every time rendering on the given planes has
 * completed or flip on a crtc is completed. So DRRS should be upclocked
 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
 * if no other planes are dirty.
6411 6412 6413
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
6414 6415
void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
			  unsigned int frontbuffer_bits)
6416 6417 6418 6419
{
	struct drm_crtc *crtc;
	enum pipe pipe;

6420
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6421 6422
		return;

6423
	cancel_delayed_work(&dev_priv->drrs.work);
6424

6425
	mutex_lock(&dev_priv->drrs.mutex);
6426 6427 6428 6429 6430
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

6431 6432
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;
6433 6434

	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
6435 6436
	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;

6437
	/* flush means busy screen hence upclock */
6438
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6439 6440
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
				dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6441 6442 6443 6444 6445 6446

	/*
	 * flush also means no more activity hence schedule downclock, if all
	 * other fbs are quiescent too
	 */
	if (!dev_priv->drrs.busy_frontbuffer_bits)
6447 6448 6449 6450 6451
		schedule_delayed_work(&dev_priv->drrs.work,
				msecs_to_jiffies(1000));
	mutex_unlock(&dev_priv->drrs.mutex);
}

6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474
/**
 * DOC: Display Refresh Rate Switching (DRRS)
 *
 * Display Refresh Rate Switching (DRRS) is a power conservation feature
 * which enables swtching between low and high refresh rates,
 * dynamically, based on the usage scenario. This feature is applicable
 * for internal panels.
 *
 * Indication that the panel supports DRRS is given by the panel EDID, which
 * would list multiple refresh rates for one resolution.
 *
 * DRRS is of 2 types - static and seamless.
 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
 * (may appear as a blink on screen) and is used in dock-undock scenario.
 * Seamless DRRS involves changing RR without any visual effect to the user
 * and can be used during normal system usage. This is done by programming
 * certain registers.
 *
 * Support for static/seamless DRRS may be indicated in the VBT based on
 * inputs from the panel spec.
 *
 * DRRS saves power by switching to low RR based on usage scenarios.
 *
D
Daniel Vetter 已提交
6475 6476 6477 6478 6479 6480 6481 6482
 * The implementation is based on frontbuffer tracking implementation.  When
 * there is a disturbance on the screen triggered by user activity or a periodic
 * system activity, DRRS is disabled (RR is changed to high RR).  When there is
 * no movement on screen, after a timeout of 1 second, a switch to low RR is
 * made.
 *
 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
 * and intel_edp_drrs_flush() are called.
6483 6484 6485 6486 6487 6488 6489 6490
 *
 * DRRS can be further extended to support other internal panels and also
 * the scenario of video playback wherein RR is set based on the rate
 * requested by userspace.
 */

/**
 * intel_dp_drrs_init - Init basic DRRS work and mutex.
6491
 * @connector: eDP connector
6492 6493 6494 6495 6496 6497 6498 6499 6500 6501
 * @fixed_mode: preferred mode of panel
 *
 * This function is  called only once at driver load to initialize basic
 * DRRS stuff.
 *
 * Returns:
 * Downclock mode if panel supports it, else return NULL.
 * DRRS support is determined by the presence of downclock mode (apart
 * from VBT setting).
 */
6502
static struct drm_display_mode *
6503 6504
intel_dp_drrs_init(struct intel_connector *connector,
		   struct drm_display_mode *fixed_mode)
6505
{
6506
	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
6507 6508
	struct drm_display_mode *downclock_mode = NULL;

6509 6510 6511
	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
	mutex_init(&dev_priv->drrs.mutex);

6512
	if (INTEL_GEN(dev_priv) <= 6) {
6513 6514 6515 6516 6517
		DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
		return NULL;
	}

	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
6518
		DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
6519 6520 6521
		return NULL;
	}

6522 6523
	downclock_mode = intel_find_panel_downclock(dev_priv, fixed_mode,
						    &connector->base);
6524 6525

	if (!downclock_mode) {
6526
		DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
6527 6528 6529
		return NULL;
	}

6530
	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
6531

6532
	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
6533
	DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
6534 6535 6536
	return downclock_mode;
}

6537
static bool intel_edp_init_connector(struct intel_dp *intel_dp,
6538
				     struct intel_connector *intel_connector)
6539
{
6540 6541
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct drm_device *dev = &dev_priv->drm;
6542
	struct drm_connector *connector = &intel_connector->base;
6543
	struct drm_display_mode *fixed_mode = NULL;
6544
	struct drm_display_mode *downclock_mode = NULL;
6545 6546 6547
	bool has_dpcd;
	struct drm_display_mode *scan;
	struct edid *edid;
6548
	enum pipe pipe = INVALID_PIPE;
6549

6550
	if (!intel_dp_is_edp(intel_dp))
6551 6552
		return true;

6553 6554
	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);

6555 6556 6557 6558 6559 6560
	/*
	 * On IBX/CPT we may get here with LVDS already registered. Since the
	 * driver uses the only internal power sequencer available for both
	 * eDP and LVDS bail out early in this case to prevent interfering
	 * with an already powered-on LVDS power sequencer.
	 */
6561
	if (intel_get_lvds_encoder(&dev_priv->drm)) {
6562 6563 6564 6565 6566 6567
		WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
		DRM_INFO("LVDS was detected, not registering eDP\n");

		return false;
	}

6568
	pps_lock(intel_dp);
6569 6570

	intel_dp_init_panel_power_timestamps(intel_dp);
6571
	intel_dp_pps_init(intel_dp);
6572
	intel_edp_panel_vdd_sanitize(intel_dp);
6573

6574
	pps_unlock(intel_dp);
6575

6576
	/* Cache DPCD and EDID for edp. */
6577
	has_dpcd = intel_edp_init_dpcd(intel_dp);
6578

6579
	if (!has_dpcd) {
6580 6581
		/* if this fails, presume the device is a ghost */
		DRM_INFO("failed to retrieve link info, disabling eDP\n");
6582
		goto out_vdd_off;
6583 6584
	}

6585
	mutex_lock(&dev->mode_config.mutex);
6586
	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
6587 6588
	if (edid) {
		if (drm_add_edid_modes(connector, edid)) {
6589
			drm_connector_update_edid_property(connector,
6590 6591 6592 6593 6594 6595 6596 6597 6598 6599
								edid);
		} else {
			kfree(edid);
			edid = ERR_PTR(-EINVAL);
		}
	} else {
		edid = ERR_PTR(-ENOENT);
	}
	intel_connector->edid = edid;

6600
	/* prefer fixed mode from EDID if available */
6601 6602 6603
	list_for_each_entry(scan, &connector->probed_modes, head) {
		if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
			fixed_mode = drm_mode_duplicate(dev, scan);
6604 6605
			downclock_mode = intel_dp_drrs_init(
						intel_connector, fixed_mode);
6606
			break;
6607 6608 6609 6610 6611 6612 6613
		}
	}

	/* fallback to VBT if available for eDP */
	if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
		fixed_mode = drm_mode_duplicate(dev,
					dev_priv->vbt.lfp_lvds_vbt_mode);
6614
		if (fixed_mode) {
6615
			fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
6616 6617 6618
			connector->display_info.width_mm = fixed_mode->width_mm;
			connector->display_info.height_mm = fixed_mode->height_mm;
		}
6619
	}
6620
	mutex_unlock(&dev->mode_config.mutex);
6621

6622
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6623 6624
		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
		register_reboot_notifier(&intel_dp->edp_notifier);
6625 6626 6627 6628 6629 6630

		/*
		 * Figure out the current pipe for the initial backlight setup.
		 * If the current pipe isn't valid, try the PPS pipe, and if that
		 * fails just assume pipe A.
		 */
6631
		pipe = vlv_active_pipe(intel_dp);
6632 6633 6634 6635 6636 6637 6638 6639 6640

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = intel_dp->pps_pipe;

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = PIPE_A;

		DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
			      pipe_name(pipe));
6641 6642
	}

6643
	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
6644
	intel_connector->panel.backlight.power = intel_edp_backlight_power;
6645
	intel_panel_setup_backlight(connector, pipe);
6646

6647 6648 6649 6650
	if (fixed_mode)
		drm_connector_init_panel_orientation_property(
			connector, fixed_mode->hdisplay, fixed_mode->vdisplay);

6651
	return true;
6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663

out_vdd_off:
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
	pps_lock(intel_dp);
	edp_panel_vdd_off_sync(intel_dp);
	pps_unlock(intel_dp);

	return false;
6664 6665
}

6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681
static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
{
	struct intel_connector *intel_connector;
	struct drm_connector *connector;

	intel_connector = container_of(work, typeof(*intel_connector),
				       modeset_retry_work);
	connector = &intel_connector->base;
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
		      connector->name);

	/* Grab the locks before changing connector property*/
	mutex_lock(&connector->dev->mode_config.mutex);
	/* Set connector link status to BAD and send a Uevent to notify
	 * userspace to do a modeset.
	 */
6682 6683
	drm_connector_set_link_status_property(connector,
					       DRM_MODE_LINK_STATUS_BAD);
6684 6685 6686 6687 6688
	mutex_unlock(&connector->dev->mode_config.mutex);
	/* Send Hotplug uevent so userspace can reprobe */
	drm_kms_helper_hotplug_event(connector->dev);
}

6689
bool
6690 6691
intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
			struct intel_connector *intel_connector)
6692
{
6693 6694 6695 6696
	struct drm_connector *connector = &intel_connector->base;
	struct intel_dp *intel_dp = &intel_dig_port->dp;
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
	struct drm_device *dev = intel_encoder->base.dev;
6697
	struct drm_i915_private *dev_priv = to_i915(dev);
6698
	enum port port = intel_encoder->port;
6699
	int type;
6700

6701 6702 6703 6704
	/* Initialize the work for modeset in case of link train failure */
	INIT_WORK(&intel_connector->modeset_retry_work,
		  intel_dp_modeset_retry_work_fn);

6705 6706 6707 6708 6709
	if (WARN(intel_dig_port->max_lanes < 1,
		 "Not enough lanes (%d) for DP on port %c\n",
		 intel_dig_port->max_lanes, port_name(port)))
		return false;

6710 6711
	intel_dp_set_source_rates(intel_dp);

6712
	intel_dp->reset_link_params = true;
6713
	intel_dp->pps_pipe = INVALID_PIPE;
6714
	intel_dp->active_pipe = INVALID_PIPE;
6715

6716
	/* intel_dp vfuncs */
6717
	if (HAS_DDI(dev_priv))
6718 6719
		intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;

6720 6721
	/* Preserve the current hw state. */
	intel_dp->DP = I915_READ(intel_dp->output_reg);
6722
	intel_dp->attached_connector = intel_connector;
6723

6724
	if (intel_dp_is_port_edp(dev_priv, port))
6725
		type = DRM_MODE_CONNECTOR_eDP;
6726 6727
	else
		type = DRM_MODE_CONNECTOR_DisplayPort;
6728

6729 6730 6731
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		intel_dp->active_pipe = vlv_active_pipe(intel_dp);

6732 6733 6734 6735 6736 6737 6738 6739
	/*
	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
	 * for DP the encoder type can be set by the caller to
	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
	 */
	if (type == DRM_MODE_CONNECTOR_eDP)
		intel_encoder->type = INTEL_OUTPUT_EDP;

6740
	/* eDP only on port B and/or C on vlv/chv */
6741
	if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
6742 6743
		    intel_dp_is_edp(intel_dp) &&
		    port != PORT_B && port != PORT_C))
6744 6745
		return false;

6746 6747 6748 6749
	DRM_DEBUG_KMS("Adding %s connector on port %c\n",
			type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
			port_name(port));

6750
	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
6751 6752
	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);

6753
	if (!HAS_GMCH_DISPLAY(dev_priv))
6754
		connector->interlace_allowed = true;
6755 6756
	connector->doublescan_allowed = 0;

6757
	intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
6758

6759
	intel_dp_aux_init(intel_dp);
6760

6761
	intel_connector_attach_encoder(intel_connector, intel_encoder);
6762

6763
	if (HAS_DDI(dev_priv))
6764 6765 6766 6767
		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
	else
		intel_connector->get_hw_state = intel_connector_get_hw_state;

6768
	/* init MST on ports that can support it */
6769
	if (HAS_DP_MST(dev_priv) && !intel_dp_is_edp(intel_dp) &&
6770 6771
	    (port == PORT_B || port == PORT_C ||
	     port == PORT_D || port == PORT_F))
6772 6773
		intel_dp_mst_encoder_init(intel_dig_port,
					  intel_connector->base.base.id);
6774

6775
	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
6776 6777 6778
		intel_dp_aux_fini(intel_dp);
		intel_dp_mst_encoder_cleanup(intel_dig_port);
		goto fail;
6779
	}
6780

6781
	intel_dp_add_properties(intel_dp, connector);
6782

6783
	if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
6784 6785 6786 6787
		int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
		if (ret)
			DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
	}
6788

6789 6790 6791 6792
	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
	 * 0xd.  Failure to do so will result in spurious interrupts being
	 * generated on the port when a cable is not attached.
	 */
6793
	if (IS_G45(dev_priv)) {
6794 6795 6796
		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
	}
6797 6798

	return true;
6799 6800 6801 6802 6803

fail:
	drm_connector_cleanup(connector);

	return false;
6804
}
6805

6806
bool intel_dp_init(struct drm_i915_private *dev_priv,
6807 6808
		   i915_reg_t output_reg,
		   enum port port)
6809 6810 6811 6812 6813 6814
{
	struct intel_digital_port *intel_dig_port;
	struct intel_encoder *intel_encoder;
	struct drm_encoder *encoder;
	struct intel_connector *intel_connector;

6815
	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
6816
	if (!intel_dig_port)
6817
		return false;
6818

6819
	intel_connector = intel_connector_alloc();
S
Sudip Mukherjee 已提交
6820 6821
	if (!intel_connector)
		goto err_connector_alloc;
6822 6823 6824 6825

	intel_encoder = &intel_dig_port->base;
	encoder = &intel_encoder->base;

6826 6827 6828
	if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
			     &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
			     "DP %c", port_name(port)))
S
Sudip Mukherjee 已提交
6829
		goto err_encoder_init;
6830

6831
	intel_encoder->hotplug = intel_dp_hotplug;
6832
	intel_encoder->compute_config = intel_dp_compute_config;
P
Paulo Zanoni 已提交
6833
	intel_encoder->get_hw_state = intel_dp_get_hw_state;
6834
	intel_encoder->get_config = intel_dp_get_config;
6835
	intel_encoder->suspend = intel_dp_encoder_suspend;
6836
	if (IS_CHERRYVIEW(dev_priv)) {
6837
		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
6838 6839
		intel_encoder->pre_enable = chv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
6840
		intel_encoder->disable = vlv_disable_dp;
6841
		intel_encoder->post_disable = chv_post_disable_dp;
6842
		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
6843
	} else if (IS_VALLEYVIEW(dev_priv)) {
6844
		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
6845 6846
		intel_encoder->pre_enable = vlv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
6847
		intel_encoder->disable = vlv_disable_dp;
6848
		intel_encoder->post_disable = vlv_post_disable_dp;
6849
	} else {
6850 6851
		intel_encoder->pre_enable = g4x_pre_enable_dp;
		intel_encoder->enable = g4x_enable_dp;
6852
		intel_encoder->disable = g4x_disable_dp;
6853
		intel_encoder->post_disable = g4x_post_disable_dp;
6854
	}
6855 6856

	intel_dig_port->dp.output_reg = output_reg;
6857
	intel_dig_port->max_lanes = 4;
6858

6859
	intel_encoder->type = INTEL_OUTPUT_DP;
6860
	intel_encoder->power_domain = intel_port_to_power_domain(port);
6861
	if (IS_CHERRYVIEW(dev_priv)) {
6862 6863 6864 6865 6866 6867 6868
		if (port == PORT_D)
			intel_encoder->crtc_mask = 1 << 2;
		else
			intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
	} else {
		intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
	}
6869
	intel_encoder->cloneable = 0;
6870
	intel_encoder->port = port;
6871

6872 6873
	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;

6874 6875 6876
	if (port != PORT_A)
		intel_infoframe_init(intel_dig_port);

S
Sudip Mukherjee 已提交
6877 6878 6879
	if (!intel_dp_init_connector(intel_dig_port, intel_connector))
		goto err_init_connector;

6880
	return true;
S
Sudip Mukherjee 已提交
6881 6882 6883

err_init_connector:
	drm_encoder_cleanup(encoder);
S
Sudip Mukherjee 已提交
6884
err_encoder_init:
S
Sudip Mukherjee 已提交
6885 6886 6887
	kfree(intel_connector);
err_connector_alloc:
	kfree(intel_dig_port);
6888
	return false;
6889
}
6890

6891
void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
6892
{
6893 6894 6895 6896
	struct intel_encoder *encoder;

	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
6897

6898 6899
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;
6900

6901
		intel_dp = enc_to_intel_dp(&encoder->base);
6902

6903
		if (!intel_dp->can_mst)
6904 6905
			continue;

6906 6907
		if (intel_dp->is_mst)
			drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
6908 6909 6910
	}
}

6911
void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
6912
{
6913
	struct intel_encoder *encoder;
6914

6915 6916
	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
6917
		int ret;
6918

6919 6920 6921 6922 6923 6924
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;

		intel_dp = enc_to_intel_dp(&encoder->base);

		if (!intel_dp->can_mst)
6925
			continue;
6926

6927
		ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr);
6928
		if (ret)
6929
			intel_dp_check_mst_status(intel_dp);
6930 6931
	}
}