intel_dp.c 179.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Keith Packard <keithp@keithp.com>
 *
 */

#include <linux/i2c.h>
29
#include <linux/slab.h>
30
#include <linux/export.h>
31
#include <linux/types.h>
32 33
#include <linux/notifier.h>
#include <linux/reboot.h>
34
#include <asm/byteorder.h>
35
#include <drm/drmP.h>
36
#include <drm/drm_atomic_helper.h>
37 38
#include <drm/drm_crtc.h>
#include <drm/drm_crtc_helper.h>
39
#include <drm/drm_dp_helper.h>
40
#include <drm/drm_edid.h>
41
#include <drm/drm_hdcp.h>
42
#include "intel_drv.h"
43
#include <drm/i915_drm.h>
44 45
#include "i915_drv.h"

46
#define DP_DPRX_ESI_LEN 14
47

48 49 50 51 52 53
/* Compliance test status bits  */
#define INTEL_DP_RESOLUTION_SHIFT_MASK	0
#define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)

54
struct dp_link_dpll {
55
	int clock;
56 57 58
	struct dpll dpll;
};

59
static const struct dp_link_dpll g4x_dpll[] = {
60
	{ 162000,
61
		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
62
	{ 270000,
63 64 65 66
		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
};

static const struct dp_link_dpll pch_dpll[] = {
67
	{ 162000,
68
		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
69
	{ 270000,
70 71 72
		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
};

73
static const struct dp_link_dpll vlv_dpll[] = {
74
	{ 162000,
C
Chon Ming Lee 已提交
75
		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
76
	{ 270000,
77 78 79
		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
};

80 81 82 83 84 85 86 87 88 89
/*
 * CHV supports eDP 1.4 that have  more link rates.
 * Below only provides the fixed rate but exclude variable rate.
 */
static const struct dp_link_dpll chv_dpll[] = {
	/*
	 * CHV requires to program fractional division for m2.
	 * m2 is stored in fixed point format using formula below
	 * (m2_int << 22) | m2_fraction
	 */
90
	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
91
		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
92
	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
93 94
		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
};
95

96
/**
97
 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
98 99 100 101 102
 * @intel_dp: DP struct
 *
 * If a CPU or PCH DP output is attached to an eDP panel, this function
 * will return true, and false otherwise.
 */
103
bool intel_dp_is_edp(struct intel_dp *intel_dp)
104
{
105 106 107
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);

	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
108 109
}

110
static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
111
{
112 113 114
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);

	return intel_dig_port->base.base.dev;
115 116
}

117 118
static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
{
119
	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
120 121
}

122 123
static void intel_dp_link_down(struct intel_encoder *encoder,
			       const struct intel_crtc_state *old_crtc_state);
124
static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
125
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
126 127
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state);
128
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
129
				      enum pipe pipe);
130
static void intel_dp_unset_edid(struct intel_dp *intel_dp);
131

132 133 134
/* update sink rates from dpcd */
static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
{
135
	static const int dp_rates[] = {
136
		162000, 270000, 540000, 810000
137
	};
138
	int i, max_rate;
139

140
	max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
141

142 143
	for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
		if (dp_rates[i] > max_rate)
144
			break;
145
		intel_dp->sink_rates[i] = dp_rates[i];
146
	}
147

148
	intel_dp->num_sink_rates = i;
149 150
}

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
/* Get length of rates array potentially limited by max_rate. */
static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
{
	int i;

	/* Limit results by potentially reduced max rate */
	for (i = 0; i < len; i++) {
		if (rates[len - i - 1] <= max_rate)
			return len - i;
	}

	return 0;
}

/* Get length of common rates array potentially limited by max_rate. */
static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
					  int max_rate)
{
	return intel_dp_rate_limit_len(intel_dp->common_rates,
				       intel_dp->num_common_rates, max_rate);
}

173 174
/* Theoretical max between source and sink */
static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
175
{
176
	return intel_dp->common_rates[intel_dp->num_common_rates - 1];
177 178
}

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
static int intel_dp_get_fia_supported_lane_count(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
	u32 lane_info;

	if (tc_port == PORT_TC_NONE || dig_port->tc_type != TC_PORT_TYPEC)
		return 4;

	lane_info = (I915_READ(PORT_TX_DFLEXDPSP) &
		     DP_LANE_ASSIGNMENT_MASK(tc_port)) >>
		    DP_LANE_ASSIGNMENT_SHIFT(tc_port);

	switch (lane_info) {
	default:
		MISSING_CASE(lane_info);
	case 1:
	case 2:
	case 4:
	case 8:
		return 1;
	case 3:
	case 12:
		return 2;
	case 15:
		return 4;
	}
}

209 210
/* Theoretical max between source and sink */
static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
211 212
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
213 214
	int source_max = intel_dig_port->max_lanes;
	int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
215
	int fia_max = intel_dp_get_fia_supported_lane_count(intel_dp);
216

217
	return min3(source_max, sink_max, fia_max);
218 219
}

220
int intel_dp_max_lane_count(struct intel_dp *intel_dp)
221 222 223 224
{
	return intel_dp->max_link_lane_count;
}

225
int
226
intel_dp_link_required(int pixel_clock, int bpp)
227
{
228 229
	/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
	return DIV_ROUND_UP(pixel_clock * bpp, 8);
230 231
}

232
int
233 234
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
{
235 236 237 238 239 240 241
	/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
	 * link rate that is generally expressed in Gbps. Since, 8 bits of data
	 * is transmitted every LS_Clk per lane, there is no need to account for
	 * the channel encoding that is done in the PHY layer here.
	 */

	return max_link_clock * max_lanes;
242 243
}

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
static int
intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &intel_dig_port->base;
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	int max_dotclk = dev_priv->max_dotclk_freq;
	int ds_max_dotclk;

	int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;

	if (type != DP_DS_PORT_TYPE_VGA)
		return max_dotclk;

	ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
						    intel_dp->downstream_ports);

	if (ds_max_dotclk != 0)
		max_dotclk = min(max_dotclk, ds_max_dotclk);

	return max_dotclk;
}

267
static int cnl_max_source_rate(struct intel_dp *intel_dp)
268 269 270 271 272 273 274 275 276
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum port port = dig_port->base.port;

	u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;

	/* Low voltage SKUs are limited to max of 5.4G */
	if (voltage == VOLTAGE_INFO_0_85V)
277
		return 540000;
278 279 280

	/* For this SKU 8.1G is supported in all ports */
	if (IS_CNL_WITH_PORT_F(dev_priv))
281
		return 810000;
282

283
	/* For other SKUs, max rate on ports A and D is 5.4G */
284
	if (port == PORT_A || port == PORT_D)
285
		return 540000;
286

287
	return 810000;
288 289
}

290 291 292 293 294 295 296 297 298 299 300
static int icl_max_source_rate(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum port port = dig_port->base.port;

	if (port == PORT_B)
		return 540000;

	return 810000;
}

301 302
static void
intel_dp_set_source_rates(struct intel_dp *intel_dp)
303
{
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
	/* The values must be in increasing order */
	static const int cnl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
	};
	static const int bxt_rates[] = {
		162000, 216000, 243000, 270000, 324000, 432000, 540000
	};
	static const int skl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000
	};
	static const int hsw_rates[] = {
		162000, 270000, 540000
	};
	static const int g4x_rates[] = {
		162000, 270000
	};
320 321
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
322 323
	const struct ddi_vbt_port_info *info =
		&dev_priv->vbt.ddi_port_info[dig_port->base.port];
324
	const int *source_rates;
325
	int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
326

327 328 329
	/* This should only be done once */
	WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);

330
	if (INTEL_GEN(dev_priv) >= 10) {
331
		source_rates = cnl_rates;
332
		size = ARRAY_SIZE(cnl_rates);
333 334 335 336
		if (INTEL_GEN(dev_priv) == 10)
			max_rate = cnl_max_source_rate(intel_dp);
		else
			max_rate = icl_max_source_rate(intel_dp);
337 338 339
	} else if (IS_GEN9_LP(dev_priv)) {
		source_rates = bxt_rates;
		size = ARRAY_SIZE(bxt_rates);
340
	} else if (IS_GEN9_BC(dev_priv)) {
341
		source_rates = skl_rates;
342
		size = ARRAY_SIZE(skl_rates);
343 344
	} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
		   IS_BROADWELL(dev_priv)) {
345 346
		source_rates = hsw_rates;
		size = ARRAY_SIZE(hsw_rates);
347
	} else {
348 349
		source_rates = g4x_rates;
		size = ARRAY_SIZE(g4x_rates);
350 351
	}

352 353 354 355 356
	if (max_rate && vbt_max_rate)
		max_rate = min(max_rate, vbt_max_rate);
	else if (vbt_max_rate)
		max_rate = vbt_max_rate;

357 358 359
	if (max_rate)
		size = intel_dp_rate_limit_len(source_rates, size, max_rate);

360 361
	intel_dp->source_rates = source_rates;
	intel_dp->num_source_rates = size;
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
}

static int intersect_rates(const int *source_rates, int source_len,
			   const int *sink_rates, int sink_len,
			   int *common_rates)
{
	int i = 0, j = 0, k = 0;

	while (i < source_len && j < sink_len) {
		if (source_rates[i] == sink_rates[j]) {
			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
				return k;
			common_rates[k] = source_rates[i];
			++k;
			++i;
			++j;
		} else if (source_rates[i] < sink_rates[j]) {
			++i;
		} else {
			++j;
		}
	}
	return k;
}

387 388 389 390 391 392 393 394 395 396 397 398
/* return index of rate in rates array, or -1 if not found */
static int intel_dp_rate_index(const int *rates, int len, int rate)
{
	int i;

	for (i = 0; i < len; i++)
		if (rate == rates[i])
			return i;

	return -1;
}

399
static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
400
{
401
	WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
402

403 404 405 406 407 408 409 410
	intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
						     intel_dp->num_source_rates,
						     intel_dp->sink_rates,
						     intel_dp->num_sink_rates,
						     intel_dp->common_rates);

	/* Paranoia, there should always be something in common. */
	if (WARN_ON(intel_dp->num_common_rates == 0)) {
411
		intel_dp->common_rates[0] = 162000;
412 413 414 415
		intel_dp->num_common_rates = 1;
	}
}

416 417
static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
				       uint8_t lane_count)
418 419 420 421 422 423
{
	/*
	 * FIXME: we need to synchronize the current link parameters with
	 * hardware readout. Currently fast link training doesn't work on
	 * boot-up.
	 */
424 425
	if (link_rate == 0 ||
	    link_rate > intel_dp->max_link_rate)
426 427
		return false;

428 429
	if (lane_count == 0 ||
	    lane_count > intel_dp_max_lane_count(intel_dp))
430 431 432 433 434
		return false;

	return true;
}

435 436 437
int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
					    int link_rate, uint8_t lane_count)
{
438
	int index;
439

440 441 442 443
	index = intel_dp_rate_index(intel_dp->common_rates,
				    intel_dp->num_common_rates,
				    link_rate);
	if (index > 0) {
444 445
		intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
		intel_dp->max_link_lane_count = lane_count;
446
	} else if (lane_count > 1) {
447
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
448
		intel_dp->max_link_lane_count = lane_count >> 1;
449 450 451 452 453 454 455 456
	} else {
		DRM_ERROR("Link Training Unsuccessful\n");
		return -1;
	}

	return 0;
}

457
static enum drm_mode_status
458 459 460
intel_dp_mode_valid(struct drm_connector *connector,
		    struct drm_display_mode *mode)
{
461
	struct intel_dp *intel_dp = intel_attached_dp(connector);
462 463
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
464 465
	int target_clock = mode->clock;
	int max_rate, mode_rate, max_lanes, max_link_clock;
466 467
	int max_dotclk;

468 469 470
	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
		return MODE_NO_DBLESCAN;

471
	max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
472

473
	if (intel_dp_is_edp(intel_dp) && fixed_mode) {
474
		if (mode->hdisplay > fixed_mode->hdisplay)
475 476
			return MODE_PANEL;

477
		if (mode->vdisplay > fixed_mode->vdisplay)
478
			return MODE_PANEL;
479 480

		target_clock = fixed_mode->clock;
481 482
	}

483
	max_link_clock = intel_dp_max_link_rate(intel_dp);
484
	max_lanes = intel_dp_max_lane_count(intel_dp);
485 486 487 488

	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
	mode_rate = intel_dp_link_required(target_clock, 18);

489
	if (mode_rate > max_rate || target_clock > max_dotclk)
490
		return MODE_CLOCK_HIGH;
491 492 493 494

	if (mode->clock < 10000)
		return MODE_CLOCK_LOW;

495 496 497
	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
		return MODE_H_ILLEGAL;

498 499 500
	return MODE_OK;
}

501
uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
502 503 504 505 506 507 508 509 510 511 512
{
	int	i;
	uint32_t v = 0;

	if (src_bytes > 4)
		src_bytes = 4;
	for (i = 0; i < src_bytes; i++)
		v |= ((uint32_t) src[i]) << ((3-i) * 8);
	return v;
}

513
static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
514 515 516 517 518 519 520 521
{
	int i;
	if (dst_bytes > 4)
		dst_bytes = 4;
	for (i = 0; i < dst_bytes; i++)
		dst[i] = src >> ((3-i) * 8);
}

522
static void
523
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
524
static void
525
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
526
					      bool force_disable_vdd);
527
static void
528
intel_dp_pps_init(struct intel_dp *intel_dp);
529

530 531
static void pps_lock(struct intel_dp *intel_dp)
{
532
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
533 534

	/*
535
	 * See intel_power_sequencer_reset() why we need
536 537
	 * a power domain reference here.
	 */
538
	intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
539 540 541 542 543 544

	mutex_lock(&dev_priv->pps_mutex);
}

static void pps_unlock(struct intel_dp *intel_dp)
{
545
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
546 547 548

	mutex_unlock(&dev_priv->pps_mutex);

549
	intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
550 551
}

552 553 554
static void
vlv_power_sequencer_kick(struct intel_dp *intel_dp)
{
555
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
556 557
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	enum pipe pipe = intel_dp->pps_pipe;
558 559 560
	bool pll_enabled, release_cl_override = false;
	enum dpio_phy phy = DPIO_PHY(pipe);
	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
561 562 563
	uint32_t DP;

	if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
564
		 "skipping pipe %c power sequencer kick due to port %c being active\n",
565
		 pipe_name(pipe), port_name(intel_dig_port->base.port)))
566 567 568
		return;

	DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
569
		      pipe_name(pipe), port_name(intel_dig_port->base.port));
570 571 572 573 574 575 576 577 578

	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
	DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
	DP |= DP_PORT_WIDTH(1);
	DP |= DP_LINK_TRAIN_PAT_1;

579
	if (IS_CHERRYVIEW(dev_priv))
580 581 582
		DP |= DP_PIPE_SEL_CHV(pipe);
	else
		DP |= DP_PIPE_SEL(pipe);
583

584 585 586 587 588 589
	pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;

	/*
	 * The DPLL for the pipe must be enabled for this to work.
	 * So enable temporarily it if it's not already enabled.
	 */
590
	if (!pll_enabled) {
591
		release_cl_override = IS_CHERRYVIEW(dev_priv) &&
592 593
			!chv_phy_powergate_ch(dev_priv, phy, ch, true);

594
		if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
595 596 597 598 599
				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
			DRM_ERROR("Failed to force on pll for pipe %c!\n",
				  pipe_name(pipe));
			return;
		}
600
	}
601

602 603 604
	/*
	 * Similar magic as in intel_dp_enable_port().
	 * We _must_ do this port enable + disable trick
605
	 * to make this power sequencer lock onto the port.
606 607 608 609 610 611 612 613 614 615
	 * Otherwise even VDD force bit won't work.
	 */
	I915_WRITE(intel_dp->output_reg, DP);
	POSTING_READ(intel_dp->output_reg);

	I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
	POSTING_READ(intel_dp->output_reg);

	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
	POSTING_READ(intel_dp->output_reg);
616

617
	if (!pll_enabled) {
618
		vlv_force_pll_off(dev_priv, pipe);
619 620 621 622

		if (release_cl_override)
			chv_phy_powergate_ch(dev_priv, phy, ch, false);
	}
623 624
}

625 626 627 628 629 630 631 632 633
static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
{
	struct intel_encoder *encoder;
	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);

	/*
	 * We don't have power sequencer currently.
	 * Pick one that's not used by other ports.
	 */
634 635
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656

		if (encoder->type == INTEL_OUTPUT_EDP) {
			WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
				intel_dp->active_pipe != intel_dp->pps_pipe);

			if (intel_dp->pps_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->pps_pipe);
		} else {
			WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);

			if (intel_dp->active_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->active_pipe);
		}
	}

	if (pipes == 0)
		return INVALID_PIPE;

	return ffs(pipes) - 1;
}

657 658 659
static enum pipe
vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
{
660
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
661
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
662
	enum pipe pipe;
663

V
Ville Syrjälä 已提交
664
	lockdep_assert_held(&dev_priv->pps_mutex);
665

666
	/* We should never land here with regular DP ports */
667
	WARN_ON(!intel_dp_is_edp(intel_dp));
668

669 670 671
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
		intel_dp->active_pipe != intel_dp->pps_pipe);

672 673 674
	if (intel_dp->pps_pipe != INVALID_PIPE)
		return intel_dp->pps_pipe;

675
	pipe = vlv_find_free_pps(dev_priv);
676 677 678 679 680

	/*
	 * Didn't find one. This should not happen since there
	 * are two power sequencers and up to two eDP ports.
	 */
681
	if (WARN_ON(pipe == INVALID_PIPE))
682
		pipe = PIPE_A;
683

684
	vlv_steal_power_sequencer(dev_priv, pipe);
685
	intel_dp->pps_pipe = pipe;
686 687 688

	DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
		      pipe_name(intel_dp->pps_pipe),
689
		      port_name(intel_dig_port->base.port));
690 691

	/* init power sequencer on this pipe and port */
692 693
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
694

695 696 697 698 699
	/*
	 * Even vdd force doesn't work until we've made
	 * the power sequencer lock in on the port.
	 */
	vlv_power_sequencer_kick(intel_dp);
700 701 702 703

	return intel_dp->pps_pipe;
}

704 705 706
static int
bxt_power_sequencer_idx(struct intel_dp *intel_dp)
{
707
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
708
	int backlight_controller = dev_priv->vbt.backlight.controller;
709 710 711 712

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* We should never land here with regular DP ports */
713
	WARN_ON(!intel_dp_is_edp(intel_dp));
714 715

	if (!intel_dp->pps_reset)
716
		return backlight_controller;
717 718 719 720 721 722 723

	intel_dp->pps_reset = false;

	/*
	 * Only the HW needs to be reprogrammed, the SW state is fixed and
	 * has been setup during connector init.
	 */
724
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
725

726
	return backlight_controller;
727 728
}

729 730 731 732 733 734
typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
			       enum pipe pipe);

static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
			       enum pipe pipe)
{
735
	return I915_READ(PP_STATUS(pipe)) & PP_ON;
736 737 738 739 740
}

static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
				enum pipe pipe)
{
741
	return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
742 743 744 745 746 747 748
}

static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
			 enum pipe pipe)
{
	return true;
}
749

750
static enum pipe
751 752 753
vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
		     enum port port,
		     vlv_pipe_check pipe_check)
754 755
{
	enum pipe pipe;
756 757

	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
758
		u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
759
			PANEL_PORT_SELECT_MASK;
760 761 762 763

		if (port_sel != PANEL_PORT_SELECT_VLV(port))
			continue;

764 765 766
		if (!pipe_check(dev_priv, pipe))
			continue;

767
		return pipe;
768 769
	}

770 771 772 773 774 775
	return INVALID_PIPE;
}

static void
vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
{
776
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
777
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
778
	enum port port = intel_dig_port->base.port;
779 780 781 782

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* try to find a pipe with this port selected */
783 784 785 786 787 788 789 790 791 792 793
	/* first pick one where the panel is on */
	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
						  vlv_pipe_has_pp_on);
	/* didn't find one? pick one where vdd is on */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_has_vdd_on);
	/* didn't find one? pick one with just the correct port */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_any);
794 795 796 797 798 799

	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
	if (intel_dp->pps_pipe == INVALID_PIPE) {
		DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
			      port_name(port));
		return;
800 801
	}

802 803 804
	DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
		      port_name(port), pipe_name(intel_dp->pps_pipe));

805 806
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
807 808
}

809
void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
810 811 812
{
	struct intel_encoder *encoder;

813
	if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
814
		    !IS_GEN9_LP(dev_priv)))
815 816 817 818 819 820 821 822 823 824 825 826
		return;

	/*
	 * We can't grab pps_mutex here due to deadlock with power_domain
	 * mutex when power_domain functions are called while holding pps_mutex.
	 * That also means that in order to use pps_pipe the code needs to
	 * hold both a power domain reference and pps_mutex, and the power domain
	 * reference get/put must be done while _not_ holding pps_mutex.
	 * pps_{lock,unlock}() do these steps in the correct order, so one
	 * should use them always.
	 */

827 828
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
829

830 831 832 833 834
		WARN_ON(intel_dp->active_pipe != INVALID_PIPE);

		if (encoder->type != INTEL_OUTPUT_EDP)
			continue;

835
		if (IS_GEN9_LP(dev_priv))
836 837 838
			intel_dp->pps_reset = true;
		else
			intel_dp->pps_pipe = INVALID_PIPE;
839
	}
840 841
}

842 843 844 845 846 847 848 849
struct pps_registers {
	i915_reg_t pp_ctrl;
	i915_reg_t pp_stat;
	i915_reg_t pp_on;
	i915_reg_t pp_off;
	i915_reg_t pp_div;
};

850
static void intel_pps_get_registers(struct intel_dp *intel_dp,
851 852
				    struct pps_registers *regs)
{
853
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
854 855
	int pps_idx = 0;

856 857
	memset(regs, 0, sizeof(*regs));

858
	if (IS_GEN9_LP(dev_priv))
859 860 861
		pps_idx = bxt_power_sequencer_idx(intel_dp);
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		pps_idx = vlv_power_sequencer_pipe(intel_dp);
862

863 864 865 866
	regs->pp_ctrl = PP_CONTROL(pps_idx);
	regs->pp_stat = PP_STATUS(pps_idx);
	regs->pp_on = PP_ON_DELAYS(pps_idx);
	regs->pp_off = PP_OFF_DELAYS(pps_idx);
867 868
	if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv) &&
	    !HAS_PCH_ICP(dev_priv))
869
		regs->pp_div = PP_DIVISOR(pps_idx);
870 871
}

872 873
static i915_reg_t
_pp_ctrl_reg(struct intel_dp *intel_dp)
874
{
875
	struct pps_registers regs;
876

877
	intel_pps_get_registers(intel_dp, &regs);
878 879

	return regs.pp_ctrl;
880 881
}

882 883
static i915_reg_t
_pp_stat_reg(struct intel_dp *intel_dp)
884
{
885
	struct pps_registers regs;
886

887
	intel_pps_get_registers(intel_dp, &regs);
888 889

	return regs.pp_stat;
890 891
}

892 893 894 895 896 897 898
/* Reboot notifier handler to shutdown panel power to guarantee T12 timing
   This function only applicable when panel PM state is not to be tracked */
static int edp_notify_handler(struct notifier_block *this, unsigned long code,
			      void *unused)
{
	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
						 edp_notifier);
899
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
900

901
	if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
902 903
		return 0;

904
	pps_lock(intel_dp);
V
Ville Syrjälä 已提交
905

906
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
V
Ville Syrjälä 已提交
907
		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
908
		i915_reg_t pp_ctrl_reg, pp_div_reg;
909
		u32 pp_div;
V
Ville Syrjälä 已提交
910

911 912
		pp_ctrl_reg = PP_CONTROL(pipe);
		pp_div_reg  = PP_DIVISOR(pipe);
913 914 915 916 917 918 919 920 921
		pp_div = I915_READ(pp_div_reg);
		pp_div &= PP_REFERENCE_DIVIDER_MASK;

		/* 0x1F write to PP_DIV_REG sets max cycle delay */
		I915_WRITE(pp_div_reg, pp_div | 0x1F);
		I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
		msleep(intel_dp->panel_power_cycle_delay);
	}

922
	pps_unlock(intel_dp);
V
Ville Syrjälä 已提交
923

924 925 926
	return 0;
}

927
static bool edp_have_panel_power(struct intel_dp *intel_dp)
928
{
929
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
930

V
Ville Syrjälä 已提交
931 932
	lockdep_assert_held(&dev_priv->pps_mutex);

933
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
934 935 936
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

937
	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
938 939
}

940
static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
941
{
942
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
943

V
Ville Syrjälä 已提交
944 945
	lockdep_assert_held(&dev_priv->pps_mutex);

946
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
947 948 949
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

950
	return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
951 952
}

953 954 955
static void
intel_dp_check_edp(struct intel_dp *intel_dp)
{
956
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
957

958
	if (!intel_dp_is_edp(intel_dp))
959
		return;
960

961
	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
962 963
		WARN(1, "eDP powered off while attempting aux channel communication.\n");
		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
964 965
			      I915_READ(_pp_stat_reg(intel_dp)),
			      I915_READ(_pp_ctrl_reg(intel_dp)));
966 967 968
	}
}

969
static uint32_t
970
intel_dp_aux_wait_done(struct intel_dp *intel_dp)
971
{
972
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
973
	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
974 975 976
	uint32_t status;
	bool done;

977
#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
978 979
	done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
				  msecs_to_jiffies_timeout(10));
980
	if (!done)
981
		DRM_ERROR("dp aux hw did not signal timeout!\n");
982 983 984 985 986
#undef C

	return status;
}

987
static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
988
{
989
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
990

991 992 993
	if (index)
		return 0;

994 995
	/*
	 * The clock divider is based off the hrawclk, and would like to run at
996
	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
997
	 */
998
	return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
999 1000 1001 1002
}

static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
1003
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1004 1005 1006 1007

	if (index)
		return 0;

1008 1009 1010 1011 1012
	/*
	 * The clock divider is based off the cdclk or PCH rawclk, and would
	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
	 * divide by 2000 and use that
	 */
1013
	if (intel_dp->aux_ch == AUX_CH_A)
1014
		return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
1015 1016
	else
		return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1017 1018 1019 1020
}

static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
1021
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1022

1023
	if (intel_dp->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1024
		/* Workaround for non-ULT HSW */
1025 1026 1027 1028 1029
		switch (index) {
		case 0: return 63;
		case 1: return 72;
		default: return 0;
		}
1030
	}
1031 1032

	return ilk_get_aux_clock_divider(intel_dp, index);
1033 1034
}

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
	/*
	 * SKL doesn't need us to program the AUX clock divider (Hardware will
	 * derive the clock from CDCLK automatically). We still implement the
	 * get_aux_clock_divider vfunc to plug-in into the existing code.
	 */
	return index ? 0 : 1;
}

1045 1046 1047
static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
				     int send_bytes,
				     uint32_t aux_clock_divider)
1048 1049
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1050 1051
	struct drm_i915_private *dev_priv =
			to_i915(intel_dig_port->base.base.dev);
1052 1053
	uint32_t precharge, timeout;

1054
	if (IS_GEN6(dev_priv))
1055 1056 1057 1058
		precharge = 3;
	else
		precharge = 5;

1059
	if (IS_BROADWELL(dev_priv))
1060 1061 1062 1063 1064
		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
	else
		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;

	return DP_AUX_CH_CTL_SEND_BUSY |
1065
	       DP_AUX_CH_CTL_DONE |
1066
	       DP_AUX_CH_CTL_INTERRUPT |
1067
	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
1068
	       timeout |
1069
	       DP_AUX_CH_CTL_RECEIVE_ERROR |
1070 1071
	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1072
	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1073 1074
}

1075 1076 1077 1078 1079 1080
static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
				      int send_bytes,
				      uint32_t unused)
{
	return DP_AUX_CH_CTL_SEND_BUSY |
	       DP_AUX_CH_CTL_DONE |
1081
	       DP_AUX_CH_CTL_INTERRUPT |
1082
	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
1083
	       DP_AUX_CH_CTL_TIME_OUT_MAX |
1084 1085
	       DP_AUX_CH_CTL_RECEIVE_ERROR |
	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1086
	       DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1087 1088 1089
	       DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
}

1090
static int
1091 1092
intel_dp_aux_xfer(struct intel_dp *intel_dp,
		  const uint8_t *send, int send_bytes,
1093 1094
		  uint8_t *recv, int recv_size,
		  u32 aux_send_ctl_flags)
1095 1096
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1097 1098
	struct drm_i915_private *dev_priv =
			to_i915(intel_dig_port->base.base.dev);
1099
	i915_reg_t ch_ctl, ch_data[5];
1100
	uint32_t aux_clock_divider;
1101 1102
	int i, ret, recv_bytes;
	uint32_t status;
1103
	int try, clock = 0;
1104 1105
	bool vdd;

1106 1107 1108 1109
	ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
	for (i = 0; i < ARRAY_SIZE(ch_data); i++)
		ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);

1110
	pps_lock(intel_dp);
V
Ville Syrjälä 已提交
1111

1112 1113 1114 1115 1116 1117
	/*
	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
	 * In such cases we want to leave VDD enabled and it's up to upper layers
	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
	 * ourselves.
	 */
1118
	vdd = edp_panel_vdd_on(intel_dp);
1119 1120 1121 1122 1123 1124 1125 1126

	/* dp aux is extremely sensitive to irq latency, hence request the
	 * lowest possible wakeup latency and so prevent the cpu from going into
	 * deep sleep states.
	 */
	pm_qos_update_request(&dev_priv->pm_qos, 0);

	intel_dp_check_edp(intel_dp);
1127

1128 1129
	/* Try to wait for any previous AUX channel activity */
	for (try = 0; try < 3; try++) {
1130
		status = I915_READ_NOTRACE(ch_ctl);
1131 1132 1133 1134 1135 1136
		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
			break;
		msleep(1);
	}

	if (try == 3) {
1137 1138 1139 1140 1141 1142 1143 1144 1145
		static u32 last_status = -1;
		const u32 status = I915_READ(ch_ctl);

		if (status != last_status) {
			WARN(1, "dp_aux_ch not started status 0x%08x\n",
			     status);
			last_status = status;
		}

1146 1147
		ret = -EBUSY;
		goto out;
1148 1149
	}

1150 1151 1152 1153 1154 1155
	/* Only 5 data registers! */
	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
		ret = -E2BIG;
		goto out;
	}

1156
	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1157 1158 1159 1160 1161
		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
							  send_bytes,
							  aux_clock_divider);

		send_ctl |= aux_send_ctl_flags;
1162

1163 1164 1165 1166
		/* Must try at least 3 times according to DP spec */
		for (try = 0; try < 5; try++) {
			/* Load the send data into the aux channel data registers */
			for (i = 0; i < send_bytes; i += 4)
1167
				I915_WRITE(ch_data[i >> 2],
1168 1169
					   intel_dp_pack_aux(send + i,
							     send_bytes - i));
1170 1171

			/* Send the command and wait for it to complete */
1172
			I915_WRITE(ch_ctl, send_ctl);
1173

1174
			status = intel_dp_aux_wait_done(intel_dp);
1175 1176 1177 1178 1179 1180 1181 1182

			/* Clear done status and any errors */
			I915_WRITE(ch_ctl,
				   status |
				   DP_AUX_CH_CTL_DONE |
				   DP_AUX_CH_CTL_TIME_OUT_ERROR |
				   DP_AUX_CH_CTL_RECEIVE_ERROR);

1183 1184 1185 1186 1187
			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
			 *   400us delay required for errors and timeouts
			 *   Timeout errors from the HW already meet this
			 *   requirement so skip to next iteration
			 */
1188 1189 1190
			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
				continue;

1191 1192
			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
				usleep_range(400, 500);
1193
				continue;
1194
			}
1195
			if (status & DP_AUX_CH_CTL_DONE)
1196
				goto done;
1197
		}
1198 1199 1200
	}

	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1201
		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1202 1203
		ret = -EBUSY;
		goto out;
1204 1205
	}

1206
done:
1207 1208 1209
	/* Check for timeout or receive error.
	 * Timeouts occur when the sink is not connected
	 */
1210
	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1211
		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1212 1213
		ret = -EIO;
		goto out;
1214
	}
1215 1216 1217

	/* Timeouts occur when the device isn't connected, so they're
	 * "normal" -- don't fill the kernel log with these */
1218
	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1219
		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1220 1221
		ret = -ETIMEDOUT;
		goto out;
1222 1223 1224 1225 1226
	}

	/* Unload any bytes sent back from the other side */
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239

	/*
	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
	 * We have no idea of what happened so we return -EBUSY so
	 * drm layer takes care for the necessary retries.
	 */
	if (recv_bytes == 0 || recv_bytes > 20) {
		DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
			      recv_bytes);
		ret = -EBUSY;
		goto out;
	}

1240 1241
	if (recv_bytes > recv_size)
		recv_bytes = recv_size;
1242

1243
	for (i = 0; i < recv_bytes; i += 4)
1244
		intel_dp_unpack_aux(I915_READ(ch_data[i >> 2]),
1245
				    recv + i, recv_bytes - i);
1246

1247 1248 1249 1250
	ret = recv_bytes;
out:
	pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);

1251 1252 1253
	if (vdd)
		edp_panel_vdd_off(intel_dp, false);

1254
	pps_unlock(intel_dp);
V
Ville Syrjälä 已提交
1255

1256
	return ret;
1257 1258
}

1259 1260
#define BARE_ADDRESS_SIZE	3
#define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271

static void
intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
		    const struct drm_dp_aux_msg *msg)
{
	txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
	txbuf[1] = (msg->address >> 8) & 0xff;
	txbuf[2] = msg->address & 0xff;
	txbuf[3] = msg->size - 1;
}

1272 1273
static ssize_t
intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1274
{
1275 1276 1277
	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
	uint8_t txbuf[20], rxbuf[20];
	size_t txsize, rxsize;
1278 1279
	int ret;

1280
	intel_dp_aux_header(txbuf, msg);
1281

1282 1283 1284
	switch (msg->request & ~DP_AUX_I2C_MOT) {
	case DP_AUX_NATIVE_WRITE:
	case DP_AUX_I2C_WRITE:
1285
	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1286
		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1287
		rxsize = 2; /* 0 or 1 data bytes */
1288

1289 1290
		if (WARN_ON(txsize > 20))
			return -E2BIG;
1291

1292 1293
		WARN_ON(!msg->buffer != !msg->size);

1294 1295
		if (msg->buffer)
			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1296

1297
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1298
					rxbuf, rxsize, 0);
1299 1300
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
1301

1302 1303 1304 1305 1306 1307 1308
			if (ret > 1) {
				/* Number of bytes written in a short write. */
				ret = clamp_t(int, rxbuf[1], 0, msg->size);
			} else {
				/* Return payload size. */
				ret = msg->size;
			}
1309 1310
		}
		break;
1311

1312 1313
	case DP_AUX_NATIVE_READ:
	case DP_AUX_I2C_READ:
1314
		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1315
		rxsize = msg->size + 1;
1316

1317 1318
		if (WARN_ON(rxsize > 20))
			return -E2BIG;
1319

1320
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1321
					rxbuf, rxsize, 0);
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
			/*
			 * Assume happy day, and copy the data. The caller is
			 * expected to check msg->reply before touching it.
			 *
			 * Return payload size.
			 */
			ret--;
			memcpy(msg->buffer, rxbuf + 1, ret);
1332
		}
1333 1334 1335 1336 1337
		break;

	default:
		ret = -EINVAL;
		break;
1338
	}
1339

1340
	return ret;
1341 1342
}

1343
static enum aux_ch intel_aux_ch(struct intel_dp *intel_dp)
1344
{
1345 1346 1347
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	enum port port = encoder->port;
1348 1349
	const struct ddi_vbt_port_info *info =
		&dev_priv->vbt.ddi_port_info[port];
1350
	enum aux_ch aux_ch;
1351 1352

	if (!info->alternate_aux_channel) {
1353 1354
		aux_ch = (enum aux_ch) port;

1355
		DRM_DEBUG_KMS("using AUX %c for port %c (platform default)\n",
1356 1357
			      aux_ch_name(aux_ch), port_name(port));
		return aux_ch;
1358 1359 1360 1361
	}

	switch (info->alternate_aux_channel) {
	case DP_AUX_A:
1362
		aux_ch = AUX_CH_A;
1363 1364
		break;
	case DP_AUX_B:
1365
		aux_ch = AUX_CH_B;
1366 1367
		break;
	case DP_AUX_C:
1368
		aux_ch = AUX_CH_C;
1369 1370
		break;
	case DP_AUX_D:
1371
		aux_ch = AUX_CH_D;
1372
		break;
1373 1374 1375
	case DP_AUX_E:
		aux_ch = AUX_CH_E;
		break;
R
Rodrigo Vivi 已提交
1376
	case DP_AUX_F:
1377
		aux_ch = AUX_CH_F;
R
Rodrigo Vivi 已提交
1378
		break;
1379 1380
	default:
		MISSING_CASE(info->alternate_aux_channel);
1381
		aux_ch = AUX_CH_A;
1382 1383 1384 1385
		break;
	}

	DRM_DEBUG_KMS("using AUX %c for port %c (VBT)\n",
1386
		      aux_ch_name(aux_ch), port_name(port));
1387

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
	return aux_ch;
}

static enum intel_display_power_domain
intel_aux_power_domain(struct intel_dp *intel_dp)
{
	switch (intel_dp->aux_ch) {
	case AUX_CH_A:
		return POWER_DOMAIN_AUX_A;
	case AUX_CH_B:
		return POWER_DOMAIN_AUX_B;
	case AUX_CH_C:
		return POWER_DOMAIN_AUX_C;
	case AUX_CH_D:
		return POWER_DOMAIN_AUX_D;
1403 1404
	case AUX_CH_E:
		return POWER_DOMAIN_AUX_E;
1405 1406 1407 1408 1409 1410
	case AUX_CH_F:
		return POWER_DOMAIN_AUX_F;
	default:
		MISSING_CASE(intel_dp->aux_ch);
		return POWER_DOMAIN_AUX_A;
	}
1411 1412
}

1413
static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1414
{
1415 1416 1417
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
	enum aux_ch aux_ch = intel_dp->aux_ch;

1418 1419 1420 1421 1422
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_CTL(aux_ch);
1423
	default:
1424 1425
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_B);
1426 1427 1428
	}
}

1429
static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1430
{
1431 1432 1433
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
	enum aux_ch aux_ch = intel_dp->aux_ch;

1434 1435 1436 1437 1438
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_DATA(aux_ch, index);
1439
	default:
1440 1441
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_B, index);
1442 1443 1444
	}
}

1445
static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1446
{
1447 1448 1449
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
	enum aux_ch aux_ch = intel_dp->aux_ch;

1450 1451 1452 1453 1454 1455 1456
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_CTL(aux_ch);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_CTL(aux_ch);
1457
	default:
1458 1459
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1460 1461 1462
	}
}

1463
static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1464
{
1465 1466 1467
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
	enum aux_ch aux_ch = intel_dp->aux_ch;

1468 1469 1470 1471 1472 1473 1474
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_DATA(aux_ch, index);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_DATA(aux_ch, index);
1475
	default:
1476 1477
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1478 1479 1480
	}
}

1481
static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1482
{
1483 1484 1485
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
	enum aux_ch aux_ch = intel_dp->aux_ch;

1486 1487 1488 1489 1490
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1491
	case AUX_CH_E:
1492 1493
	case AUX_CH_F:
		return DP_AUX_CH_CTL(aux_ch);
1494
	default:
1495 1496
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1497 1498 1499
	}
}

1500
static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1501
{
1502 1503 1504
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
	enum aux_ch aux_ch = intel_dp->aux_ch;

1505 1506 1507 1508 1509
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1510
	case AUX_CH_E:
1511 1512
	case AUX_CH_F:
		return DP_AUX_CH_DATA(aux_ch, index);
1513
	default:
1514 1515
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1516 1517 1518
	}
}

1519 1520 1521 1522 1523 1524 1525 1526
static void
intel_dp_aux_fini(struct intel_dp *intel_dp)
{
	kfree(intel_dp->aux.name);
}

static void
intel_dp_aux_init(struct intel_dp *intel_dp)
1527 1528
{
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1529 1530 1531 1532
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;

	intel_dp->aux_ch = intel_aux_ch(intel_dp);
	intel_dp->aux_power_domain = intel_aux_power_domain(intel_dp);
1533

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
	if (INTEL_GEN(dev_priv) >= 9) {
		intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = skl_aux_data_reg;
	} else if (HAS_PCH_SPLIT(dev_priv)) {
		intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
	} else {
		intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
	}
1544

1545 1546 1547 1548 1549 1550 1551 1552
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
	else if (HAS_PCH_SPLIT(dev_priv))
		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
	else
		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1553

1554 1555 1556 1557
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
	else
		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1558

1559
	drm_dp_aux_init(&intel_dp->aux);
1560

1561
	/* Failure to allocate our preferred name is not critical */
1562 1563
	intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
				       port_name(encoder->port));
1564
	intel_dp->aux.transfer = intel_dp_aux_transfer;
1565 1566
}

1567
bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1568
{
1569
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1570

1571
	return max_rate >= 540000;
1572 1573
}

1574 1575 1576 1577 1578 1579 1580
bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
{
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];

	return max_rate >= 810000;
}

1581 1582
static void
intel_dp_set_clock(struct intel_encoder *encoder,
1583
		   struct intel_crtc_state *pipe_config)
1584
{
1585
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1586 1587
	const struct dp_link_dpll *divisor = NULL;
	int i, count = 0;
1588

1589
	if (IS_G4X(dev_priv)) {
1590 1591
		divisor = g4x_dpll;
		count = ARRAY_SIZE(g4x_dpll);
1592
	} else if (HAS_PCH_SPLIT(dev_priv)) {
1593 1594
		divisor = pch_dpll;
		count = ARRAY_SIZE(pch_dpll);
1595
	} else if (IS_CHERRYVIEW(dev_priv)) {
1596 1597
		divisor = chv_dpll;
		count = ARRAY_SIZE(chv_dpll);
1598
	} else if (IS_VALLEYVIEW(dev_priv)) {
1599 1600
		divisor = vlv_dpll;
		count = ARRAY_SIZE(vlv_dpll);
1601
	}
1602 1603 1604

	if (divisor && count) {
		for (i = 0; i < count; i++) {
1605
			if (pipe_config->port_clock == divisor[i].clock) {
1606 1607 1608 1609 1610
				pipe_config->dpll = divisor[i].dpll;
				pipe_config->clock_set = true;
				break;
			}
		}
1611 1612 1613
	}
}

1614 1615 1616 1617 1618 1619 1620 1621
static void snprintf_int_array(char *str, size_t len,
			       const int *array, int nelem)
{
	int i;

	str[0] = '\0';

	for (i = 0; i < nelem; i++) {
1622
		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
		if (r >= len)
			return;
		str += r;
		len -= r;
	}
}

static void intel_dp_print_rates(struct intel_dp *intel_dp)
{
	char str[128]; /* FIXME: too big for stack? */

	if ((drm_debug & DRM_UT_KMS) == 0)
		return;

1637 1638
	snprintf_int_array(str, sizeof(str),
			   intel_dp->source_rates, intel_dp->num_source_rates);
1639 1640
	DRM_DEBUG_KMS("source rates: %s\n", str);

1641 1642
	snprintf_int_array(str, sizeof(str),
			   intel_dp->sink_rates, intel_dp->num_sink_rates);
1643 1644
	DRM_DEBUG_KMS("sink rates: %s\n", str);

1645 1646
	snprintf_int_array(str, sizeof(str),
			   intel_dp->common_rates, intel_dp->num_common_rates);
1647
	DRM_DEBUG_KMS("common rates: %s\n", str);
1648 1649
}

1650 1651 1652 1653 1654
int
intel_dp_max_link_rate(struct intel_dp *intel_dp)
{
	int len;

1655
	len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1656 1657 1658
	if (WARN_ON(len <= 0))
		return 162000;

1659
	return intel_dp->common_rates[len - 1];
1660 1661
}

1662 1663
int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
{
1664 1665
	int i = intel_dp_rate_index(intel_dp->sink_rates,
				    intel_dp->num_sink_rates, rate);
1666 1667 1668 1669 1670

	if (WARN_ON(i < 0))
		i = 0;

	return i;
1671 1672
}

1673 1674
void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
			   uint8_t *link_bw, uint8_t *rate_select)
1675
{
1676 1677
	/* eDP 1.4 rate select method. */
	if (intel_dp->use_rate_select) {
1678 1679 1680 1681 1682 1683 1684 1685 1686
		*link_bw = 0;
		*rate_select =
			intel_dp_rate_select(intel_dp, port_clock);
	} else {
		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
		*rate_select = 0;
	}
}

1687 1688 1689 1690 1691 1692
struct link_config_limits {
	int min_clock, max_clock;
	int min_lane_count, max_lane_count;
	int min_bpp, max_bpp;
};

1693 1694
static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
				struct intel_crtc_state *pipe_config)
1695
{
1696 1697
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
	struct intel_connector *intel_connector = intel_dp->attached_connector;
1698 1699 1700 1701 1702 1703 1704 1705
	int bpp, bpc;

	bpp = pipe_config->pipe_bpp;
	bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);

	if (bpc > 0)
		bpp = min(bpp, 3*bpc);

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
	if (intel_dp_is_edp(intel_dp)) {
		/* Get bpp from vbt only for panels that dont have bpp in edid */
		if (intel_connector->base.display_info.bpc == 0 &&
		    dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
			DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
				      dev_priv->vbt.edp.bpp);
			bpp = dev_priv->vbt.edp.bpp;
		}
	}

1716 1717 1718
	return bpp;
}

1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
/* Adjust link config limits based on compliance test requests. */
static void
intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  struct link_config_limits *limits)
{
	/* For DP Compliance we override the computed bpp for the pipe */
	if (intel_dp->compliance.test_data.bpc != 0) {
		int bpp = 3 * intel_dp->compliance.test_data.bpc;

		limits->min_bpp = limits->max_bpp = bpp;
		pipe_config->dither_force_disable = bpp == 6 * 3;

		DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
	}

	/* Use values requested by Compliance Test Request */
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
		int index;

		/* Validate the compliance test data since max values
		 * might have changed due to link train fallback.
		 */
		if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
					       intel_dp->compliance.test_lane_count)) {
			index = intel_dp_rate_index(intel_dp->common_rates,
						    intel_dp->num_common_rates,
						    intel_dp->compliance.test_link_rate);
			if (index >= 0)
				limits->min_clock = limits->max_clock = index;
			limits->min_lane_count = limits->max_lane_count =
				intel_dp->compliance.test_lane_count;
		}
	}
}

1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
/* Optimize link config in order: max bpp, min clock, min lanes */
static bool
intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  const struct link_config_limits *limits)
{
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	int bpp, clock, lane_count;
	int mode_rate, link_clock, link_avail;

	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
						   bpp);

		for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
			for (lane_count = limits->min_lane_count;
			     lane_count <= limits->max_lane_count;
			     lane_count <<= 1) {
				link_clock = intel_dp->common_rates[clock];
				link_avail = intel_dp_max_data_rate(link_clock,
								    lane_count);

				if (mode_rate <= link_avail) {
					pipe_config->lane_count = lane_count;
					pipe_config->pipe_bpp = bpp;
					pipe_config->port_clock = link_clock;

					return true;
				}
			}
		}
	}

	return false;
}

1791 1792 1793
static bool
intel_dp_compute_link_config(struct intel_encoder *encoder,
			     struct intel_crtc_state *pipe_config)
1794
{
1795
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1796
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1797
	struct link_config_limits limits;
1798
	int common_len;
1799

1800
	common_len = intel_dp_common_len_rate_limit(intel_dp,
1801
						    intel_dp->max_link_rate);
1802 1803

	/* No common link rates between source and sink */
1804
	WARN_ON(common_len <= 0);
1805

1806 1807 1808 1809 1810 1811 1812 1813
	limits.min_clock = 0;
	limits.max_clock = common_len - 1;

	limits.min_lane_count = 1;
	limits.max_lane_count = intel_dp_max_lane_count(intel_dp);

	limits.min_bpp = 6 * 3;
	limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
1814

1815
	if (intel_dp_is_edp(intel_dp)) {
1816 1817 1818 1819 1820 1821 1822
		/*
		 * Use the maximum clock and number of lanes the eDP panel
		 * advertizes being capable of. The panels are generally
		 * designed to support only a single clock and lane
		 * configuration, and typically these values correspond to the
		 * native resolution of the panel.
		 */
1823 1824
		limits.min_lane_count = limits.max_lane_count;
		limits.min_clock = limits.max_clock;
1825
	}
1826

1827 1828
	intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);

1829 1830 1831 1832 1833 1834
	DRM_DEBUG_KMS("DP link computation with max lane count %i "
		      "max rate %d max bpp %d pixel clock %iKHz\n",
		      limits.max_lane_count,
		      intel_dp->common_rates[limits.max_clock],
		      limits.max_bpp, adjusted_mode->crtc_clock);

1835 1836 1837 1838 1839 1840
	/*
	 * Optimize for slow and wide. This is the place to add alternative
	 * optimization policy.
	 */
	if (!intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits))
		return false;
1841 1842

	DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
1843 1844 1845 1846 1847 1848 1849 1850
		      pipe_config->lane_count, pipe_config->port_clock,
		      pipe_config->pipe_bpp);

	DRM_DEBUG_KMS("DP link rate required %i available %i\n",
		      intel_dp_link_required(adjusted_mode->crtc_clock,
					     pipe_config->pipe_bpp),
		      intel_dp_max_data_rate(pipe_config->port_clock,
					     pipe_config->lane_count));
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882

	return true;
}

bool
intel_dp_compute_config(struct intel_encoder *encoder,
			struct intel_crtc_state *pipe_config,
			struct drm_connector_state *conn_state)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	enum port port = encoder->port;
	struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct intel_digital_connector_state *intel_conn_state =
		to_intel_digital_connector_state(conn_state);
	bool reduce_m_n = drm_dp_has_quirk(&intel_dp->desc,
					   DP_DPCD_QUIRK_LIMITED_M_N);

	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
		pipe_config->has_pch_encoder = true;

	pipe_config->has_drrs = false;
	if (IS_G4X(dev_priv) || port == PORT_A)
		pipe_config->has_audio = false;
	else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
		pipe_config->has_audio = intel_dp->has_audio;
	else
		pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;

	if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1883 1884
		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
				       adjusted_mode);
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901

		if (INTEL_GEN(dev_priv) >= 9) {
			int ret;

			ret = skl_update_scaler_crtc(pipe_config);
			if (ret)
				return ret;
		}

		if (HAS_GMCH_DISPLAY(dev_priv))
			intel_gmch_panel_fitting(intel_crtc, pipe_config,
						 conn_state->scaling_mode);
		else
			intel_pch_panel_fitting(intel_crtc, pipe_config,
						conn_state->scaling_mode);
	}

1902 1903 1904
	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
		return false;

1905
	if (HAS_GMCH_DISPLAY(dev_priv) &&
1906 1907 1908 1909 1910 1911 1912 1913 1914
	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
		return false;

	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
		return false;

	if (!intel_dp_compute_link_config(encoder, pipe_config))
		return false;

1915
	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
1916 1917 1918 1919 1920
		/*
		 * See:
		 * CEA-861-E - 5.1 Default Encoding Parameters
		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
		 */
1921
		pipe_config->limited_color_range =
1922
			pipe_config->pipe_bpp != 18 &&
1923 1924
			drm_default_rgb_quant_range(adjusted_mode) ==
			HDMI_QUANTIZATION_RANGE_LIMITED;
1925 1926
	} else {
		pipe_config->limited_color_range =
1927
			intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
1928 1929
	}

1930
	intel_link_compute_m_n(pipe_config->pipe_bpp, pipe_config->lane_count,
1931 1932
			       adjusted_mode->crtc_clock,
			       pipe_config->port_clock,
1933 1934
			       &pipe_config->dp_m_n,
			       reduce_m_n);
1935

1936
	if (intel_connector->panel.downclock_mode != NULL &&
1937
		dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1938
			pipe_config->has_drrs = true;
1939 1940 1941 1942 1943 1944
			intel_link_compute_m_n(pipe_config->pipe_bpp,
					       pipe_config->lane_count,
					       intel_connector->panel.downclock_mode->clock,
					       pipe_config->port_clock,
					       &pipe_config->dp_m2_n2,
					       reduce_m_n);
1945 1946
	}

1947
	if (!HAS_DDI(dev_priv))
1948
		intel_dp_set_clock(encoder, pipe_config);
1949

1950 1951
	intel_psr_compute_config(intel_dp, pipe_config);

1952
	return true;
1953 1954
}

1955
void intel_dp_set_link_params(struct intel_dp *intel_dp,
1956 1957
			      int link_rate, uint8_t lane_count,
			      bool link_mst)
1958
{
1959
	intel_dp->link_trained = false;
1960 1961 1962
	intel_dp->link_rate = link_rate;
	intel_dp->lane_count = lane_count;
	intel_dp->link_mst = link_mst;
1963 1964
}

1965
static void intel_dp_prepare(struct intel_encoder *encoder,
1966
			     const struct intel_crtc_state *pipe_config)
1967
{
1968
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1969
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1970
	enum port port = encoder->port;
1971
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
1972
	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1973

1974 1975 1976 1977
	intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
				 pipe_config->lane_count,
				 intel_crtc_has_type(pipe_config,
						     INTEL_OUTPUT_DP_MST));
1978

1979
	/*
K
Keith Packard 已提交
1980
	 * There are four kinds of DP registers:
1981 1982
	 *
	 * 	IBX PCH
K
Keith Packard 已提交
1983 1984
	 * 	SNB CPU
	 *	IVB CPU
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
	 * 	CPT PCH
	 *
	 * IBX PCH and CPU are the same for almost everything,
	 * except that the CPU DP PLL is configured in this
	 * register
	 *
	 * CPT PCH is quite different, having many bits moved
	 * to the TRANS_DP_CTL register instead. That
	 * configuration happens (oddly) in ironlake_pch_enable
	 */
1995

1996 1997 1998 1999
	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
2000

2001 2002
	/* Handle DP bits in common between all three register formats */
	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2003
	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2004

2005
	/* Split out the IBX/CPU vs CPT settings */
2006

2007
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
K
Keith Packard 已提交
2008 2009 2010 2011 2012 2013
		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;

2014
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
K
Keith Packard 已提交
2015 2016
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2017
		intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2018
	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2019 2020
		u32 trans_dp;

2021
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2022 2023 2024 2025 2026 2027 2028

		trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
			trans_dp |= TRANS_DP_ENH_FRAMING;
		else
			trans_dp &= ~TRANS_DP_ENH_FRAMING;
		I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
2029
	} else {
2030
		if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2031
			intel_dp->DP |= DP_COLOR_RANGE_16_235;
2032 2033 2034 2035 2036 2037 2038

		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF;

2039
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2040 2041
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2042
		if (IS_CHERRYVIEW(dev_priv))
2043 2044 2045
			intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
		else
			intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2046
	}
2047 2048
}

2049 2050
#define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
#define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2051

2052 2053
#define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
#define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
2054

2055 2056
#define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
#define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2057

2058
static void intel_pps_verify_state(struct intel_dp *intel_dp);
I
Imre Deak 已提交
2059

2060
static void wait_panel_status(struct intel_dp *intel_dp,
2061 2062
				       u32 mask,
				       u32 value)
2063
{
2064
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2065
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2066

V
Ville Syrjälä 已提交
2067 2068
	lockdep_assert_held(&dev_priv->pps_mutex);

2069
	intel_pps_verify_state(intel_dp);
I
Imre Deak 已提交
2070

2071 2072
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2073

2074
	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
2075 2076 2077
			mask, value,
			I915_READ(pp_stat_reg),
			I915_READ(pp_ctrl_reg));
2078

2079 2080 2081
	if (intel_wait_for_register(dev_priv,
				    pp_stat_reg, mask, value,
				    5000))
2082
		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
2083 2084
				I915_READ(pp_stat_reg),
				I915_READ(pp_ctrl_reg));
2085 2086

	DRM_DEBUG_KMS("Wait complete\n");
2087
}
2088

2089
static void wait_panel_on(struct intel_dp *intel_dp)
2090 2091
{
	DRM_DEBUG_KMS("Wait for panel power on\n");
2092
	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2093 2094
}

2095
static void wait_panel_off(struct intel_dp *intel_dp)
2096 2097
{
	DRM_DEBUG_KMS("Wait for panel power off time\n");
2098
	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2099 2100
}

2101
static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2102
{
2103 2104 2105
	ktime_t panel_power_on_time;
	s64 panel_power_off_duration;

2106
	DRM_DEBUG_KMS("Wait for panel power cycle\n");
2107

2108 2109 2110 2111 2112
	/* take the difference of currrent time and panel power off time
	 * and then make panel wait for t11_t12 if needed. */
	panel_power_on_time = ktime_get_boottime();
	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);

2113 2114
	/* When we disable the VDD override bit last we have to do the manual
	 * wait. */
2115 2116 2117
	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
		wait_remaining_ms_from_jiffies(jiffies,
				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2118

2119
	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2120 2121
}

2122
static void wait_backlight_on(struct intel_dp *intel_dp)
2123 2124 2125 2126 2127
{
	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
				       intel_dp->backlight_on_delay);
}

2128
static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2129 2130 2131 2132
{
	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
				       intel_dp->backlight_off_delay);
}
2133

2134 2135 2136 2137
/* Read the current pp_control value, unlocking the register if it
 * is locked
 */

2138
static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
2139
{
2140
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2141
	u32 control;
2142

V
Ville Syrjälä 已提交
2143 2144
	lockdep_assert_held(&dev_priv->pps_mutex);

2145
	control = I915_READ(_pp_ctrl_reg(intel_dp));
2146 2147
	if (WARN_ON(!HAS_DDI(dev_priv) &&
		    (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2148 2149 2150
		control &= ~PANEL_UNLOCK_MASK;
		control |= PANEL_UNLOCK_REGS;
	}
2151
	return control;
2152 2153
}

2154 2155 2156 2157 2158
/*
 * Must be paired with edp_panel_vdd_off().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2159
static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2160
{
2161
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2162
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2163
	u32 pp;
2164
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2165
	bool need_to_disable = !intel_dp->want_panel_vdd;
2166

V
Ville Syrjälä 已提交
2167 2168
	lockdep_assert_held(&dev_priv->pps_mutex);

2169
	if (!intel_dp_is_edp(intel_dp))
2170
		return false;
2171

2172
	cancel_delayed_work(&intel_dp->panel_vdd_work);
2173
	intel_dp->want_panel_vdd = true;
2174

2175
	if (edp_have_panel_vdd(intel_dp))
2176
		return need_to_disable;
2177

2178
	intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
2179

V
Ville Syrjälä 已提交
2180
	DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
2181
		      port_name(intel_dig_port->base.port));
2182

2183 2184
	if (!edp_have_panel_power(intel_dp))
		wait_panel_power_cycle(intel_dp);
2185

2186
	pp = ironlake_get_pp_control(intel_dp);
2187
	pp |= EDP_FORCE_VDD;
2188

2189 2190
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2191 2192 2193 2194 2195

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2196 2197 2198
	/*
	 * If the panel wasn't on, delay before accessing aux channel
	 */
2199
	if (!edp_have_panel_power(intel_dp)) {
V
Ville Syrjälä 已提交
2200
		DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
2201
			      port_name(intel_dig_port->base.port));
2202 2203
		msleep(intel_dp->panel_power_up_delay);
	}
2204 2205 2206 2207

	return need_to_disable;
}

2208 2209 2210 2211 2212 2213 2214
/*
 * Must be paired with intel_edp_panel_vdd_off() or
 * intel_edp_panel_off().
 * Nested calls to these functions are not allowed since
 * we drop the lock. Caller must use some higher level
 * locking to prevent nested calls from other threads.
 */
2215
void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2216
{
2217
	bool vdd;
2218

2219
	if (!intel_dp_is_edp(intel_dp))
2220 2221
		return;

2222
	pps_lock(intel_dp);
2223
	vdd = edp_panel_vdd_on(intel_dp);
2224
	pps_unlock(intel_dp);
2225

R
Rob Clark 已提交
2226
	I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
2227
	     port_name(dp_to_dig_port(intel_dp)->base.port));
2228 2229
}

2230
static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2231
{
2232
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2233 2234
	struct intel_digital_port *intel_dig_port =
		dp_to_dig_port(intel_dp);
2235
	u32 pp;
2236
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2237

V
Ville Syrjälä 已提交
2238
	lockdep_assert_held(&dev_priv->pps_mutex);
2239

2240
	WARN_ON(intel_dp->want_panel_vdd);
2241

2242
	if (!edp_have_panel_vdd(intel_dp))
2243
		return;
2244

V
Ville Syrjälä 已提交
2245
	DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
2246
		      port_name(intel_dig_port->base.port));
2247

2248 2249
	pp = ironlake_get_pp_control(intel_dp);
	pp &= ~EDP_FORCE_VDD;
2250

2251 2252
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
	pp_stat_reg = _pp_stat_reg(intel_dp);
2253

2254 2255
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
P
Paulo Zanoni 已提交
2256

2257 2258 2259
	/* Make sure sequencer is idle before allowing subsequent activity */
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
	I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2260

2261
	if ((pp & PANEL_POWER_ON) == 0)
2262
		intel_dp->panel_power_off_time = ktime_get_boottime();
2263

2264
	intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
2265
}
2266

2267
static void edp_panel_vdd_work(struct work_struct *__work)
2268 2269 2270 2271
{
	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
						 struct intel_dp, panel_vdd_work);

2272
	pps_lock(intel_dp);
2273 2274
	if (!intel_dp->want_panel_vdd)
		edp_panel_vdd_off_sync(intel_dp);
2275
	pps_unlock(intel_dp);
2276 2277
}

2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
{
	unsigned long delay;

	/*
	 * Queue the timer to fire a long time from now (relative to the power
	 * down delay) to keep the panel power up across a sequence of
	 * operations.
	 */
	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
}

2291 2292 2293 2294 2295
/*
 * Must be paired with edp_panel_vdd_on().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2296
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2297
{
2298
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
V
Ville Syrjälä 已提交
2299 2300 2301

	lockdep_assert_held(&dev_priv->pps_mutex);

2302
	if (!intel_dp_is_edp(intel_dp))
2303
		return;
2304

R
Rob Clark 已提交
2305
	I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2306
	     port_name(dp_to_dig_port(intel_dp)->base.port));
2307

2308 2309
	intel_dp->want_panel_vdd = false;

2310
	if (sync)
2311
		edp_panel_vdd_off_sync(intel_dp);
2312 2313
	else
		edp_panel_vdd_schedule_off(intel_dp);
2314 2315
}

2316
static void edp_panel_on(struct intel_dp *intel_dp)
2317
{
2318
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2319
	u32 pp;
2320
	i915_reg_t pp_ctrl_reg;
2321

2322 2323
	lockdep_assert_held(&dev_priv->pps_mutex);

2324
	if (!intel_dp_is_edp(intel_dp))
2325
		return;
2326

V
Ville Syrjälä 已提交
2327
	DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2328
		      port_name(dp_to_dig_port(intel_dp)->base.port));
V
Ville Syrjälä 已提交
2329

2330 2331
	if (WARN(edp_have_panel_power(intel_dp),
		 "eDP port %c panel power already on\n",
2332
		 port_name(dp_to_dig_port(intel_dp)->base.port)))
2333
		return;
2334

2335
	wait_panel_power_cycle(intel_dp);
2336

2337
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2338
	pp = ironlake_get_pp_control(intel_dp);
2339
	if (IS_GEN5(dev_priv)) {
2340 2341
		/* ILK workaround: disable reset around power sequence */
		pp &= ~PANEL_POWER_RESET;
2342 2343
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
2344
	}
2345

2346
	pp |= PANEL_POWER_ON;
2347
	if (!IS_GEN5(dev_priv))
2348 2349
		pp |= PANEL_POWER_RESET;

2350 2351
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2352

2353
	wait_panel_on(intel_dp);
2354
	intel_dp->last_power_on = jiffies;
2355

2356
	if (IS_GEN5(dev_priv)) {
2357
		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2358 2359
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
2360
	}
2361
}
V
Ville Syrjälä 已提交
2362

2363 2364
void intel_edp_panel_on(struct intel_dp *intel_dp)
{
2365
	if (!intel_dp_is_edp(intel_dp))
2366 2367 2368 2369
		return;

	pps_lock(intel_dp);
	edp_panel_on(intel_dp);
2370
	pps_unlock(intel_dp);
2371 2372
}

2373 2374

static void edp_panel_off(struct intel_dp *intel_dp)
2375
{
2376
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2377
	u32 pp;
2378
	i915_reg_t pp_ctrl_reg;
2379

2380 2381
	lockdep_assert_held(&dev_priv->pps_mutex);

2382
	if (!intel_dp_is_edp(intel_dp))
2383
		return;
2384

V
Ville Syrjälä 已提交
2385
	DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2386
		      port_name(dp_to_dig_port(intel_dp)->base.port));
2387

V
Ville Syrjälä 已提交
2388
	WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2389
	     port_name(dp_to_dig_port(intel_dp)->base.port));
2390

2391
	pp = ironlake_get_pp_control(intel_dp);
2392 2393
	/* We need to switch off panel power _and_ force vdd, for otherwise some
	 * panels get very unhappy and cease to work. */
2394
	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2395
		EDP_BLC_ENABLE);
2396

2397
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2398

2399 2400
	intel_dp->want_panel_vdd = false;

2401 2402
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2403

2404
	wait_panel_off(intel_dp);
2405
	intel_dp->panel_power_off_time = ktime_get_boottime();
2406 2407

	/* We got a reference when we enabled the VDD. */
2408
	intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
2409
}
V
Ville Syrjälä 已提交
2410

2411 2412
void intel_edp_panel_off(struct intel_dp *intel_dp)
{
2413
	if (!intel_dp_is_edp(intel_dp))
2414
		return;
V
Ville Syrjälä 已提交
2415

2416 2417
	pps_lock(intel_dp);
	edp_panel_off(intel_dp);
2418
	pps_unlock(intel_dp);
2419 2420
}

2421 2422
/* Enable backlight in the panel power control. */
static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2423
{
2424
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2425
	u32 pp;
2426
	i915_reg_t pp_ctrl_reg;
2427

2428 2429 2430 2431 2432 2433
	/*
	 * If we enable the backlight right away following a panel power
	 * on, we may see slight flicker as the panel syncs with the eDP
	 * link.  So delay a bit to make sure the image is solid before
	 * allowing it to appear.
	 */
2434
	wait_backlight_on(intel_dp);
V
Ville Syrjälä 已提交
2435

2436
	pps_lock(intel_dp);
V
Ville Syrjälä 已提交
2437

2438
	pp = ironlake_get_pp_control(intel_dp);
2439
	pp |= EDP_BLC_ENABLE;
2440

2441
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2442 2443 2444

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
V
Ville Syrjälä 已提交
2445

2446
	pps_unlock(intel_dp);
2447 2448
}

2449
/* Enable backlight PWM and backlight PP control. */
2450 2451
void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
			    const struct drm_connector_state *conn_state)
2452
{
2453 2454
	struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);

2455
	if (!intel_dp_is_edp(intel_dp))
2456 2457 2458 2459
		return;

	DRM_DEBUG_KMS("\n");

2460
	intel_panel_enable_backlight(crtc_state, conn_state);
2461 2462 2463 2464 2465
	_intel_edp_backlight_on(intel_dp);
}

/* Disable backlight in the panel power control. */
static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2466
{
2467
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2468
	u32 pp;
2469
	i915_reg_t pp_ctrl_reg;
2470

2471
	if (!intel_dp_is_edp(intel_dp))
2472 2473
		return;

2474
	pps_lock(intel_dp);
V
Ville Syrjälä 已提交
2475

2476
	pp = ironlake_get_pp_control(intel_dp);
2477
	pp &= ~EDP_BLC_ENABLE;
2478

2479
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2480 2481 2482

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2483

2484
	pps_unlock(intel_dp);
V
Ville Syrjälä 已提交
2485 2486

	intel_dp->last_backlight_off = jiffies;
2487
	edp_wait_backlight_off(intel_dp);
2488
}
2489

2490
/* Disable backlight PP control and backlight PWM. */
2491
void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
2492
{
2493 2494
	struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);

2495
	if (!intel_dp_is_edp(intel_dp))
2496 2497 2498
		return;

	DRM_DEBUG_KMS("\n");
2499

2500
	_intel_edp_backlight_off(intel_dp);
2501
	intel_panel_disable_backlight(old_conn_state);
2502
}
2503

2504 2505 2506 2507 2508 2509 2510 2511
/*
 * Hook for controlling the panel power control backlight through the bl_power
 * sysfs attribute. Take care to handle multiple calls.
 */
static void intel_edp_backlight_power(struct intel_connector *connector,
				      bool enable)
{
	struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
V
Ville Syrjälä 已提交
2512 2513
	bool is_enabled;

2514
	pps_lock(intel_dp);
V
Ville Syrjälä 已提交
2515
	is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2516
	pps_unlock(intel_dp);
2517 2518 2519 2520

	if (is_enabled == enable)
		return;

2521 2522
	DRM_DEBUG_KMS("panel power control backlight %s\n",
		      enable ? "enable" : "disable");
2523 2524 2525 2526 2527 2528 2529

	if (enable)
		_intel_edp_backlight_on(intel_dp);
	else
		_intel_edp_backlight_off(intel_dp);
}

2530 2531 2532 2533 2534 2535 2536 2537
static void assert_dp_port(struct intel_dp *intel_dp, bool state)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;

	I915_STATE_WARN(cur_state != state,
			"DP port %c state assertion failure (expected %s, current %s)\n",
2538
			port_name(dig_port->base.port),
2539
			onoff(state), onoff(cur_state));
2540 2541 2542 2543 2544 2545 2546 2547 2548
}
#define assert_dp_port_disabled(d) assert_dp_port((d), false)

static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
{
	bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;

	I915_STATE_WARN(cur_state != state,
			"eDP PLL state assertion failure (expected %s, current %s)\n",
2549
			onoff(state), onoff(cur_state));
2550 2551 2552 2553
}
#define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
#define assert_edp_pll_disabled(d) assert_edp_pll((d), false)

2554
static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2555
				const struct intel_crtc_state *pipe_config)
2556
{
2557
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2558
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2559

2560 2561 2562
	assert_pipe_disabled(dev_priv, crtc->pipe);
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_disabled(dev_priv);
2563

2564
	DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2565
		      pipe_config->port_clock);
2566 2567 2568

	intel_dp->DP &= ~DP_PLL_FREQ_MASK;

2569
	if (pipe_config->port_clock == 162000)
2570 2571 2572 2573 2574 2575 2576 2577
		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
	else
		intel_dp->DP |= DP_PLL_FREQ_270MHZ;

	I915_WRITE(DP_A, intel_dp->DP);
	POSTING_READ(DP_A);
	udelay(500);

2578 2579 2580 2581 2582 2583 2584
	/*
	 * [DevILK] Work around required when enabling DP PLL
	 * while a pipe is enabled going to FDI:
	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
	 * 2. Program DP PLL enable
	 */
	if (IS_GEN5(dev_priv))
2585
		intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
2586

2587
	intel_dp->DP |= DP_PLL_ENABLE;
2588

2589
	I915_WRITE(DP_A, intel_dp->DP);
2590 2591
	POSTING_READ(DP_A);
	udelay(200);
2592 2593
}

2594 2595
static void ironlake_edp_pll_off(struct intel_dp *intel_dp,
				 const struct intel_crtc_state *old_crtc_state)
2596
{
2597
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
2598
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2599

2600 2601 2602
	assert_pipe_disabled(dev_priv, crtc->pipe);
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_enabled(dev_priv);
2603

2604 2605
	DRM_DEBUG_KMS("disabling eDP PLL\n");

2606
	intel_dp->DP &= ~DP_PLL_ENABLE;
2607

2608
	I915_WRITE(DP_A, intel_dp->DP);
2609
	POSTING_READ(DP_A);
2610 2611 2612
	udelay(200);
}

2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
{
	/*
	 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
	 * be capable of signalling downstream hpd with a long pulse.
	 * Whether or not that means D3 is safe to use is not clear,
	 * but let's assume so until proven otherwise.
	 *
	 * FIXME should really check all downstream ports...
	 */
	return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
		intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
		intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
}

2628
/* If the sink supports it, try to set the power state appropriately */
2629
void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2630 2631 2632 2633 2634 2635 2636 2637
{
	int ret, i;

	/* Should have a valid DPCD by this point */
	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (mode != DRM_MODE_DPMS_ON) {
2638 2639 2640
		if (downstream_hpd_needs_d0(intel_dp))
			return;

2641 2642
		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
					 DP_SET_POWER_D3);
2643
	} else {
2644 2645
		struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);

2646 2647 2648 2649 2650
		/*
		 * When turning on, we need to retry for 1ms to give the sink
		 * time to wake up.
		 */
		for (i = 0; i < 3; i++) {
2651 2652
			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
						 DP_SET_POWER_D0);
2653 2654 2655 2656
			if (ret == 1)
				break;
			msleep(1);
		}
2657 2658 2659

		if (ret == 1 && lspcon->active)
			lspcon_wait_pcon_mode(lspcon);
2660
	}
2661 2662 2663 2664

	if (ret != 1)
		DRM_DEBUG_KMS("failed to %s sink power state\n",
			      mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2665 2666
}

2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
				 enum port port, enum pipe *pipe)
{
	enum pipe p;

	for_each_pipe(dev_priv, p) {
		u32 val = I915_READ(TRANS_DP_CTL(p));

		if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
			*pipe = p;
			return true;
		}
	}

	DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));

	/* must initialize pipe to something for the asserts */
	*pipe = PIPE_A;

	return false;
}

bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
			   i915_reg_t dp_reg, enum port port,
			   enum pipe *pipe)
{
	bool ret;
	u32 val;

	val = I915_READ(dp_reg);

	ret = val & DP_PORT_EN;

	/* asserts want to know the pipe even if the port is disabled */
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
		*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
		ret &= cpt_dp_port_selected(dev_priv, port, pipe);
	else if (IS_CHERRYVIEW(dev_priv))
		*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
	else
		*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;

	return ret;
}

2713 2714
static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
				  enum pipe *pipe)
2715
{
2716
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2717
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2718
	bool ret;
2719

2720 2721
	if (!intel_display_power_get_if_enabled(dev_priv,
						encoder->power_domain))
2722 2723
		return false;

2724 2725
	ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				    encoder->port, pipe);
2726

2727
	intel_display_power_put(dev_priv, encoder->power_domain);
2728 2729

	return ret;
2730
}
2731

2732
static void intel_dp_get_config(struct intel_encoder *encoder,
2733
				struct intel_crtc_state *pipe_config)
2734
{
2735
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2736 2737
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	u32 tmp, flags = 0;
2738
	enum port port = encoder->port;
2739
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2740

2741 2742 2743 2744
	if (encoder->type == INTEL_OUTPUT_EDP)
		pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
	else
		pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
2745

2746
	tmp = I915_READ(intel_dp->output_reg);
2747 2748

	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2749

2750
	if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2751 2752 2753
		u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));

		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2754 2755 2756
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
2757

2758
		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2759 2760 2761 2762
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	} else {
2763
		if (tmp & DP_SYNC_HS_HIGH)
2764 2765 2766
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
2767

2768
		if (tmp & DP_SYNC_VS_HIGH)
2769 2770 2771 2772
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	}
2773

2774
	pipe_config->base.adjusted_mode.flags |= flags;
2775

2776
	if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
2777 2778
		pipe_config->limited_color_range = true;

2779 2780 2781
	pipe_config->lane_count =
		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;

2782 2783
	intel_dp_get_m_n(crtc, pipe_config);

2784
	if (port == PORT_A) {
2785
		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2786 2787 2788 2789
			pipe_config->port_clock = 162000;
		else
			pipe_config->port_clock = 270000;
	}
2790

2791 2792 2793
	pipe_config->base.adjusted_mode.crtc_clock =
		intel_dotclock_calculate(pipe_config->port_clock,
					 &pipe_config->dp_m_n);
2794

2795
	if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
2796
	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
		/*
		 * This is a big fat ugly hack.
		 *
		 * Some machines in UEFI boot mode provide us a VBT that has 18
		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
		 * unknown we fail to light up. Yet the same BIOS boots up with
		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
		 * max, not what it tells us to use.
		 *
		 * Note: This will still be broken if the eDP panel is not lit
		 * up by the BIOS, and thus we can't get the mode at module
		 * load.
		 */
		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2811 2812
			      pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
2813
	}
2814 2815
}

2816
static void intel_disable_dp(struct intel_encoder *encoder,
2817 2818
			     const struct intel_crtc_state *old_crtc_state,
			     const struct drm_connector_state *old_conn_state)
2819
{
2820
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2821

2822 2823
	intel_dp->link_trained = false;

2824
	if (old_crtc_state->has_audio)
2825 2826
		intel_audio_codec_disable(encoder,
					  old_crtc_state, old_conn_state);
2827 2828 2829

	/* Make sure the panel is off before trying to change the mode. But also
	 * ensure that we have vdd while we switch off the panel. */
2830
	intel_edp_panel_vdd_on(intel_dp);
2831
	intel_edp_backlight_off(old_conn_state);
2832
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2833
	intel_edp_panel_off(intel_dp);
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
}

static void g4x_disable_dp(struct intel_encoder *encoder,
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
}

static void vlv_disable_dp(struct intel_encoder *encoder,
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
2848 2849
}

2850
static void g4x_post_disable_dp(struct intel_encoder *encoder,
2851 2852
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
2853
{
2854
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2855
	enum port port = encoder->port;
2856

2857 2858 2859 2860 2861 2862
	/*
	 * Bspec does not list a specific disable sequence for g4x DP.
	 * Follow the ilk+ sequence (disable pipe before the port) for
	 * g4x DP as it does not suffer from underruns like the normal
	 * g4x modeset sequence (disable pipe after the port).
	 */
2863
	intel_dp_link_down(encoder, old_crtc_state);
2864 2865

	/* Only ilk+ has port A */
2866
	if (port == PORT_A)
2867
		ironlake_edp_pll_off(intel_dp, old_crtc_state);
2868 2869
}

2870
static void vlv_post_disable_dp(struct intel_encoder *encoder,
2871 2872
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
2873
{
2874
	intel_dp_link_down(encoder, old_crtc_state);
2875 2876
}

2877
static void chv_post_disable_dp(struct intel_encoder *encoder,
2878 2879
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
2880
{
2881
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2882

2883
	intel_dp_link_down(encoder, old_crtc_state);
2884 2885 2886 2887

	mutex_lock(&dev_priv->sb_lock);

	/* Assert data lane reset */
2888
	chv_data_lane_soft_reset(encoder, old_crtc_state, true);
2889

V
Ville Syrjälä 已提交
2890
	mutex_unlock(&dev_priv->sb_lock);
2891 2892
}

2893 2894 2895 2896 2897
static void
_intel_dp_set_link_train(struct intel_dp *intel_dp,
			 uint32_t *DP,
			 uint8_t dp_train_pat)
{
2898
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2899
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2900
	enum port port = intel_dig_port->base.port;
2901
	uint8_t train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
2902

2903
	if (dp_train_pat & train_pat_mask)
2904
		DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
2905
			      dp_train_pat & train_pat_mask);
2906

2907
	if (HAS_DDI(dev_priv)) {
2908 2909 2910 2911 2912 2913 2914 2915
		uint32_t temp = I915_READ(DP_TP_CTL(port));

		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
		else
			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;

		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2916
		switch (dp_train_pat & train_pat_mask) {
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
		case DP_TRAINING_PATTERN_DISABLE:
			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;

			break;
		case DP_TRAINING_PATTERN_1:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
			break;
		case DP_TRAINING_PATTERN_2:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
			break;
		case DP_TRAINING_PATTERN_3:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
			break;
2930 2931 2932
		case DP_TRAINING_PATTERN_4:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
			break;
2933 2934 2935
		}
		I915_WRITE(DP_TP_CTL(port), temp);

2936
	} else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
2937
		   (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
		*DP &= ~DP_LINK_TRAIN_MASK_CPT;

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF_CPT;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		case DP_TRAINING_PATTERN_3:
2951
			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2952 2953 2954 2955 2956
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		}

	} else {
2957
		*DP &= ~DP_LINK_TRAIN_MASK;
2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2;
			break;
		case DP_TRAINING_PATTERN_3:
2970 2971
			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
			*DP |= DP_LINK_TRAIN_PAT_2;
2972 2973 2974 2975 2976
			break;
		}
	}
}

2977
static void intel_dp_enable_port(struct intel_dp *intel_dp,
2978
				 const struct intel_crtc_state *old_crtc_state)
2979
{
2980
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2981 2982 2983

	/* enable with pattern 1 (as per spec) */

2984
	intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
2985 2986 2987 2988 2989 2990 2991 2992

	/*
	 * Magic for VLV/CHV. We _must_ first set up the register
	 * without actually enabling the port, and then do another
	 * write to enable the port. Otherwise link training will
	 * fail when the power sequencer is freshly used for this port.
	 */
	intel_dp->DP |= DP_PORT_EN;
2993
	if (old_crtc_state->has_audio)
2994
		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2995 2996 2997

	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
	POSTING_READ(intel_dp->output_reg);
2998 2999
}

3000
static void intel_enable_dp(struct intel_encoder *encoder,
3001 3002
			    const struct intel_crtc_state *pipe_config,
			    const struct drm_connector_state *conn_state)
3003
{
3004
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3005
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3006
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3007
	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
3008
	enum pipe pipe = crtc->pipe;
3009

3010 3011
	if (WARN_ON(dp_reg & DP_PORT_EN))
		return;
3012

3013 3014
	pps_lock(intel_dp);

3015
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3016
		vlv_init_panel_power_sequencer(encoder, pipe_config);
3017

3018
	intel_dp_enable_port(intel_dp, pipe_config);
3019 3020 3021 3022 3023 3024 3025

	edp_panel_vdd_on(intel_dp);
	edp_panel_on(intel_dp);
	edp_panel_vdd_off(intel_dp, true);

	pps_unlock(intel_dp);

3026
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3027 3028
		unsigned int lane_mask = 0x0;

3029
		if (IS_CHERRYVIEW(dev_priv))
3030
			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3031

3032 3033
		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
				    lane_mask);
3034
	}
3035

3036
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3037
	intel_dp_start_link_train(intel_dp);
3038
	intel_dp_stop_link_train(intel_dp);
3039

3040
	if (pipe_config->has_audio) {
3041
		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
3042
				 pipe_name(pipe));
3043
		intel_audio_codec_enable(encoder, pipe_config, conn_state);
3044
	}
3045
}
3046

3047
static void g4x_enable_dp(struct intel_encoder *encoder,
3048 3049
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3050
{
3051
	intel_enable_dp(encoder, pipe_config, conn_state);
3052
	intel_edp_backlight_on(pipe_config, conn_state);
3053
}
3054

3055
static void vlv_enable_dp(struct intel_encoder *encoder,
3056 3057
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3058
{
3059
	intel_edp_backlight_on(pipe_config, conn_state);
3060 3061
}

3062
static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3063 3064
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3065 3066
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3067
	enum port port = encoder->port;
3068

3069
	intel_dp_prepare(encoder, pipe_config);
3070

3071
	/* Only ilk+ has port A */
3072
	if (port == PORT_A)
3073
		ironlake_edp_pll_on(intel_dp, pipe_config);
3074 3075
}

3076 3077 3078
static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3079
	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3080
	enum pipe pipe = intel_dp->pps_pipe;
3081
	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3082

3083 3084
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);

3085 3086 3087
	if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
		return;

3088 3089 3090
	edp_panel_vdd_off_sync(intel_dp);

	/*
3091
	 * VLV seems to get confused when multiple power sequencers
3092 3093 3094
	 * have the same port selected (even if only one has power/vdd
	 * enabled). The failure manifests as vlv_wait_port_ready() failing
	 * CHV on the other hand doesn't seem to mind having the same port
3095
	 * selected in multiple power sequencers, but let's clear the
3096 3097 3098 3099
	 * port select always when logically disconnecting a power sequencer
	 * from a port.
	 */
	DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
3100
		      pipe_name(pipe), port_name(intel_dig_port->base.port));
3101 3102 3103 3104 3105 3106
	I915_WRITE(pp_on_reg, 0);
	POSTING_READ(pp_on_reg);

	intel_dp->pps_pipe = INVALID_PIPE;
}

3107
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3108 3109 3110 3111 3112 3113
				      enum pipe pipe)
{
	struct intel_encoder *encoder;

	lockdep_assert_held(&dev_priv->pps_mutex);

3114 3115 3116
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
		enum port port = encoder->port;
3117

3118 3119 3120 3121
		WARN(intel_dp->active_pipe == pipe,
		     "stealing pipe %c power sequencer from active (e)DP port %c\n",
		     pipe_name(pipe), port_name(port));

3122 3123 3124 3125
		if (intel_dp->pps_pipe != pipe)
			continue;

		DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
3126
			      pipe_name(pipe), port_name(port));
3127 3128

		/* make sure vdd is off before we steal it */
3129
		vlv_detach_power_sequencer(intel_dp);
3130 3131 3132
	}
}

3133 3134
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state)
3135
{
3136
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3137 3138
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3139 3140 3141

	lockdep_assert_held(&dev_priv->pps_mutex);

3142
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3143

3144 3145 3146 3147 3148 3149 3150
	if (intel_dp->pps_pipe != INVALID_PIPE &&
	    intel_dp->pps_pipe != crtc->pipe) {
		/*
		 * If another power sequencer was being used on this
		 * port previously make sure to turn off vdd there while
		 * we still have control of it.
		 */
3151
		vlv_detach_power_sequencer(intel_dp);
3152
	}
3153 3154 3155 3156 3157

	/*
	 * We may be stealing the power
	 * sequencer from another port.
	 */
3158
	vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3159

3160 3161
	intel_dp->active_pipe = crtc->pipe;

3162
	if (!intel_dp_is_edp(intel_dp))
3163 3164
		return;

3165 3166 3167 3168
	/* now it's all ours */
	intel_dp->pps_pipe = crtc->pipe;

	DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
3169
		      pipe_name(intel_dp->pps_pipe), port_name(encoder->port));
3170 3171

	/* init power sequencer on this pipe and port */
3172 3173
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3174 3175
}

3176
static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3177 3178
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3179
{
3180
	vlv_phy_pre_encoder_enable(encoder, pipe_config);
3181

3182
	intel_enable_dp(encoder, pipe_config, conn_state);
3183 3184
}

3185
static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3186 3187
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3188
{
3189
	intel_dp_prepare(encoder, pipe_config);
3190

3191
	vlv_phy_pre_pll_enable(encoder, pipe_config);
3192 3193
}

3194
static void chv_pre_enable_dp(struct intel_encoder *encoder,
3195 3196
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3197
{
3198
	chv_phy_pre_encoder_enable(encoder, pipe_config);
3199

3200
	intel_enable_dp(encoder, pipe_config, conn_state);
3201 3202

	/* Second common lane will stay alive on its own now */
3203
	chv_phy_release_cl2_override(encoder);
3204 3205
}

3206
static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3207 3208
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3209
{
3210
	intel_dp_prepare(encoder, pipe_config);
3211

3212
	chv_phy_pre_pll_enable(encoder, pipe_config);
3213 3214
}

3215
static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3216 3217
				    const struct intel_crtc_state *old_crtc_state,
				    const struct drm_connector_state *old_conn_state)
3218
{
3219
	chv_phy_post_pll_disable(encoder, old_crtc_state);
3220 3221
}

3222 3223 3224 3225
/*
 * Fetch AUX CH registers 0x202 - 0x207 which contain
 * link status information
 */
3226
bool
3227
intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
3228
{
3229 3230
	return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
				DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3231 3232
}

3233
/* These are source-specific values. */
3234
uint8_t
K
Keith Packard 已提交
3235
intel_dp_voltage_max(struct intel_dp *intel_dp)
3236
{
3237
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3238 3239
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;
K
Keith Packard 已提交
3240

3241
	if (HAS_DDI(dev_priv))
3242
		return intel_ddi_dp_voltage_max(encoder);
3243
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3244
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3245
	else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3246
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3247
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3248
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
K
Keith Packard 已提交
3249
	else
3250
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
K
Keith Packard 已提交
3251 3252
}

3253
uint8_t
K
Keith Packard 已提交
3254 3255
intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
{
3256
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3257 3258
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;
K
Keith Packard 已提交
3259

3260 3261
	if (HAS_DDI(dev_priv)) {
		return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3262
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3263
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3264 3265 3266 3267 3268 3269 3270
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_3;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3271
		default:
3272
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3273
		}
3274
	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
K
Keith Packard 已提交
3275
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3276 3277 3278 3279 3280
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
K
Keith Packard 已提交
3281
		default:
3282
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
K
Keith Packard 已提交
3283 3284 3285
		}
	} else {
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3286 3287 3288 3289 3290 3291 3292
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
K
Keith Packard 已提交
3293
		default:
3294
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
K
Keith Packard 已提交
3295
		}
3296 3297 3298
	}
}

3299
static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3300
{
3301
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3302 3303 3304 3305 3306
	unsigned long demph_reg_value, preemph_reg_value,
		uniqtranscale_reg_value;
	uint8_t train_set = intel_dp->train_set[0];

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3307
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3308 3309
		preemph_reg_value = 0x0004000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3310
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3311 3312 3313
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x552AB83A;
			break;
3314
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3315 3316 3317
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5548B83A;
			break;
3318
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3319 3320 3321
			demph_reg_value = 0x2B245555;
			uniqtranscale_reg_value = 0x5560B83A;
			break;
3322
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3323 3324 3325 3326 3327 3328 3329
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x5598DA3A;
			break;
		default:
			return 0;
		}
		break;
3330
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3331 3332
		preemph_reg_value = 0x0002000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3333
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3334 3335 3336
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5552B83A;
			break;
3337
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3338 3339 3340
			demph_reg_value = 0x2B404848;
			uniqtranscale_reg_value = 0x5580B83A;
			break;
3341
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3342 3343 3344 3345 3346 3347 3348
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
3349
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3350 3351
		preemph_reg_value = 0x0000000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3352
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3353 3354 3355
			demph_reg_value = 0x2B305555;
			uniqtranscale_reg_value = 0x5570B83A;
			break;
3356
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3357 3358 3359 3360 3361 3362 3363
			demph_reg_value = 0x2B2B4040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
3364
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3365 3366
		preemph_reg_value = 0x0006000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3367
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
			demph_reg_value = 0x1B405555;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

3379 3380
	vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
				 uniqtranscale_reg_value, 0);
3381 3382 3383 3384

	return 0;
}

3385
static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3386
{
3387 3388 3389
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	u32 deemph_reg_value, margin_reg_value;
	bool uniq_trans_scale = false;
3390 3391 3392
	uint8_t train_set = intel_dp->train_set[0];

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3393
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3394
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3395
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3396 3397 3398
			deemph_reg_value = 128;
			margin_reg_value = 52;
			break;
3399
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3400 3401 3402
			deemph_reg_value = 128;
			margin_reg_value = 77;
			break;
3403
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3404 3405 3406
			deemph_reg_value = 128;
			margin_reg_value = 102;
			break;
3407
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3408 3409
			deemph_reg_value = 128;
			margin_reg_value = 154;
3410
			uniq_trans_scale = true;
3411 3412 3413 3414 3415
			break;
		default:
			return 0;
		}
		break;
3416
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3417
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3418
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3419 3420 3421
			deemph_reg_value = 85;
			margin_reg_value = 78;
			break;
3422
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3423 3424 3425
			deemph_reg_value = 85;
			margin_reg_value = 116;
			break;
3426
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3427 3428 3429 3430 3431 3432 3433
			deemph_reg_value = 85;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
3434
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3435
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3436
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3437 3438 3439
			deemph_reg_value = 64;
			margin_reg_value = 104;
			break;
3440
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3441 3442 3443 3444 3445 3446 3447
			deemph_reg_value = 64;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
3448
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3449
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3450
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
			deemph_reg_value = 43;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

3462 3463
	chv_set_phy_signal_level(encoder, deemph_reg_value,
				 margin_reg_value, uniq_trans_scale);
3464 3465 3466 3467

	return 0;
}

3468
static uint32_t
3469
g4x_signal_levels(uint8_t train_set)
3470
{
3471
	uint32_t	signal_levels = 0;
3472

3473
	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3474
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3475 3476 3477
	default:
		signal_levels |= DP_VOLTAGE_0_4;
		break;
3478
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3479 3480
		signal_levels |= DP_VOLTAGE_0_6;
		break;
3481
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3482 3483
		signal_levels |= DP_VOLTAGE_0_8;
		break;
3484
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3485 3486 3487
		signal_levels |= DP_VOLTAGE_1_2;
		break;
	}
3488
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3489
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3490 3491 3492
	default:
		signal_levels |= DP_PRE_EMPHASIS_0;
		break;
3493
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3494 3495
		signal_levels |= DP_PRE_EMPHASIS_3_5;
		break;
3496
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3497 3498
		signal_levels |= DP_PRE_EMPHASIS_6;
		break;
3499
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3500 3501 3502 3503 3504 3505
		signal_levels |= DP_PRE_EMPHASIS_9_5;
		break;
	}
	return signal_levels;
}

3506
/* SNB CPU eDP voltage swing and pre-emphasis control */
3507
static uint32_t
3508
snb_cpu_edp_signal_levels(uint8_t train_set)
3509
{
3510 3511 3512
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
3513 3514
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3515
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3516
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3517
		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3518 3519
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3520
		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3521 3522
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3523
		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3524 3525
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3526
		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3527
	default:
3528 3529 3530
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3531 3532 3533
	}
}

3534
/* IVB CPU eDP voltage swing and pre-emphasis control */
K
Keith Packard 已提交
3535
static uint32_t
3536
ivb_cpu_edp_signal_levels(uint8_t train_set)
K
Keith Packard 已提交
3537 3538 3539 3540
{
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
3541
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
3542
		return EDP_LINK_TRAIN_400MV_0DB_IVB;
3543
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
3544
		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3545
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
K
Keith Packard 已提交
3546 3547
		return EDP_LINK_TRAIN_400MV_6DB_IVB;

3548
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
3549
		return EDP_LINK_TRAIN_600MV_0DB_IVB;
3550
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
3551 3552
		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;

3553
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
3554
		return EDP_LINK_TRAIN_800MV_0DB_IVB;
3555
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
3556 3557 3558 3559 3560 3561 3562 3563 3564
		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;

	default:
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_500MV_0DB_IVB;
	}
}

3565
void
3566
intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3567
{
3568
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3569
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3570
	enum port port = intel_dig_port->base.port;
3571
	uint32_t signal_levels, mask = 0;
3572 3573
	uint8_t train_set = intel_dp->train_set[0];

3574 3575 3576
	if (IS_GEN9_LP(dev_priv) || IS_CANNONLAKE(dev_priv)) {
		signal_levels = bxt_signal_levels(intel_dp);
	} else if (HAS_DDI(dev_priv)) {
3577
		signal_levels = ddi_signal_levels(intel_dp);
3578
		mask = DDI_BUF_EMP_MASK;
3579
	} else if (IS_CHERRYVIEW(dev_priv)) {
3580
		signal_levels = chv_signal_levels(intel_dp);
3581
	} else if (IS_VALLEYVIEW(dev_priv)) {
3582
		signal_levels = vlv_signal_levels(intel_dp);
3583
	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3584
		signal_levels = ivb_cpu_edp_signal_levels(train_set);
3585
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3586
	} else if (IS_GEN6(dev_priv) && port == PORT_A) {
3587
		signal_levels = snb_cpu_edp_signal_levels(train_set);
3588 3589
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
	} else {
3590
		signal_levels = g4x_signal_levels(train_set);
3591 3592 3593
		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
	}

3594 3595 3596 3597 3598 3599 3600 3601
	if (mask)
		DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);

	DRM_DEBUG_KMS("Using vswing level %d\n",
		train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
	DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
		(train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
			DP_TRAIN_PRE_EMPHASIS_SHIFT);
3602

3603
	intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3604 3605 3606

	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
	POSTING_READ(intel_dp->output_reg);
3607 3608
}

3609
void
3610 3611
intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
				       uint8_t dp_train_pat)
3612
{
3613
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3614 3615
	struct drm_i915_private *dev_priv =
		to_i915(intel_dig_port->base.base.dev);
3616

3617
	_intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3618

3619
	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
C
Chris Wilson 已提交
3620
	POSTING_READ(intel_dp->output_reg);
3621 3622
}

3623
void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3624
{
3625
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3626
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3627
	enum port port = intel_dig_port->base.port;
3628 3629
	uint32_t val;

3630
	if (!HAS_DDI(dev_priv))
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
		return;

	val = I915_READ(DP_TP_CTL(port));
	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
	I915_WRITE(DP_TP_CTL(port), val);

	/*
	 * On PORT_A we can have only eDP in SST mode. There the only reason
	 * we need to set idle transmission mode is to work around a HW issue
	 * where we enable the pipe while not in idle link-training mode.
	 * In this case there is requirement to wait for a minimum number of
	 * idle patterns to be sent.
	 */
	if (port == PORT_A)
		return;

3648 3649 3650 3651
	if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port),
				    DP_TP_STATUS_IDLE_DONE,
				    DP_TP_STATUS_IDLE_DONE,
				    1))
3652 3653 3654
		DRM_ERROR("Timed out waiting for DP idle patterns\n");
}

3655
static void
3656 3657
intel_dp_link_down(struct intel_encoder *encoder,
		   const struct intel_crtc_state *old_crtc_state)
3658
{
3659 3660 3661 3662
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
	enum port port = encoder->port;
C
Chris Wilson 已提交
3663
	uint32_t DP = intel_dp->DP;
3664

3665
	if (WARN_ON(HAS_DDI(dev_priv)))
3666 3667
		return;

3668
	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3669 3670
		return;

3671
	DRM_DEBUG_KMS("\n");
3672

3673
	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3674
	    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3675
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
3676
		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3677
	} else {
3678
		DP &= ~DP_LINK_TRAIN_MASK;
3679
		DP |= DP_LINK_TRAIN_PAT_IDLE;
3680
	}
3681
	I915_WRITE(intel_dp->output_reg, DP);
3682
	POSTING_READ(intel_dp->output_reg);
3683

3684 3685 3686 3687 3688 3689 3690 3691 3692
	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
	I915_WRITE(intel_dp->output_reg, DP);
	POSTING_READ(intel_dp->output_reg);

	/*
	 * HW workaround for IBX, we need to move the port
	 * to transcoder A after disabling it to allow the
	 * matching HDMI port to be enabled on transcoder A.
	 */
3693
	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
3694 3695 3696 3697 3698 3699 3700
		/*
		 * We get CPU/PCH FIFO underruns on the other pipe when
		 * doing the workaround. Sweep them under the rug.
		 */
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);

3701
		/* always enable with pattern 1 (as per spec) */
3702 3703 3704
		DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
		DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
			DP_LINK_TRAIN_PAT_1;
3705 3706 3707 3708
		I915_WRITE(intel_dp->output_reg, DP);
		POSTING_READ(intel_dp->output_reg);

		DP &= ~DP_PORT_EN;
3709
		I915_WRITE(intel_dp->output_reg, DP);
3710
		POSTING_READ(intel_dp->output_reg);
3711

3712
		intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
3713 3714
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3715 3716
	}

3717
	msleep(intel_dp->panel_power_down_delay);
3718 3719

	intel_dp->DP = DP;
3720 3721 3722 3723 3724 3725

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
		pps_lock(intel_dp);
		intel_dp->active_pipe = INVALID_PIPE;
		pps_unlock(intel_dp);
	}
3726 3727
}

3728
bool
3729
intel_dp_read_dpcd(struct intel_dp *intel_dp)
3730
{
3731 3732
	if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
			     sizeof(intel_dp->dpcd)) < 0)
3733
		return false; /* aux transfer failed */
3734

3735
	DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3736

3737 3738
	return intel_dp->dpcd[DP_DPCD_REV] != 0;
}
3739

3740 3741 3742 3743 3744
static bool
intel_edp_init_dpcd(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv =
		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
3745

3746 3747
	/* this function is meant to be called only once */
	WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
3748

3749
	if (!intel_dp_read_dpcd(intel_dp))
3750 3751
		return false;

3752 3753
	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
			 drm_dp_is_branch(intel_dp->dpcd));
3754

3755 3756 3757
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
		dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
			DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3758

3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
	/*
	 * Read the eDP display control registers.
	 *
	 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
	 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
	 * set, but require eDP 1.4+ detection (e.g. for supported link rates
	 * method). The display control registers should read zero if they're
	 * not supported anyway.
	 */
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
D
Dan Carpenter 已提交
3769 3770
			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
			     sizeof(intel_dp->edp_dpcd))
3771
		DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
3772
			      intel_dp->edp_dpcd);
3773

3774 3775 3776 3777 3778 3779
	/*
	 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
	 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
	 */
	intel_psr_init_dpcd(intel_dp);

3780 3781
	/* Read the eDP 1.4+ supported link rates. */
	if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
3782
		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3783 3784
		int i;

3785 3786
		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
				sink_rates, sizeof(sink_rates));
3787

3788 3789
		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
			int val = le16_to_cpu(sink_rates[i]);
3790 3791 3792 3793

			if (val == 0)
				break;

3794 3795 3796 3797 3798 3799
			/* Value read multiplied by 200kHz gives the per-lane
			 * link rate in kHz. The source rates are, however,
			 * stored in terms of LS_Clk kHz. The full conversion
			 * back to symbols is
			 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
			 */
3800
			intel_dp->sink_rates[i] = (val * 200) / 10;
3801
		}
3802
		intel_dp->num_sink_rates = i;
3803
	}
3804

3805 3806 3807 3808
	/*
	 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
	 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
	 */
3809 3810 3811 3812 3813
	if (intel_dp->num_sink_rates)
		intel_dp->use_rate_select = true;
	else
		intel_dp_set_sink_rates(intel_dp);

3814 3815
	intel_dp_set_common_rates(intel_dp);

3816 3817 3818 3819 3820 3821 3822
	return true;
}


static bool
intel_dp_get_dpcd(struct intel_dp *intel_dp)
{
3823 3824
	u8 sink_count;

3825 3826 3827
	if (!intel_dp_read_dpcd(intel_dp))
		return false;

3828
	/* Don't clobber cached eDP rates. */
3829
	if (!intel_dp_is_edp(intel_dp)) {
3830
		intel_dp_set_sink_rates(intel_dp);
3831 3832
		intel_dp_set_common_rates(intel_dp);
	}
3833

3834
	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &sink_count) <= 0)
3835 3836 3837 3838 3839 3840 3841
		return false;

	/*
	 * Sink count can change between short pulse hpd hence
	 * a member variable in intel_dp will track any changes
	 * between short pulse interrupts.
	 */
3842
	intel_dp->sink_count = DP_GET_SINK_COUNT(sink_count);
3843 3844 3845 3846 3847 3848 3849 3850

	/*
	 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
	 * a dongle is present but no display. Unless we require to know
	 * if a dongle is present or not, we don't need to update
	 * downstream port information. So, an early return here saves
	 * time from performing other operations which are not required.
	 */
3851
	if (!intel_dp_is_edp(intel_dp) && !intel_dp->sink_count)
3852
		return false;
3853

3854
	if (!drm_dp_is_branch(intel_dp->dpcd))
3855 3856 3857 3858 3859
		return true; /* native DP sink */

	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
		return true; /* no per-port downstream info */

3860 3861 3862
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
			     intel_dp->downstream_ports,
			     DP_MAX_DOWNSTREAM_PORTS) < 0)
3863 3864 3865
		return false; /* downstream port status fetch failed */

	return true;
3866 3867
}

3868
static bool
3869
intel_dp_can_mst(struct intel_dp *intel_dp)
3870
{
3871
	u8 mstm_cap;
3872

3873
	if (!i915_modparams.enable_dp_mst)
3874 3875
		return false;

3876 3877 3878 3879 3880 3881
	if (!intel_dp->can_mst)
		return false;

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
		return false;

3882
	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
3883
		return false;
3884

3885
	return mstm_cap & DP_MST_CAP;
3886 3887 3888 3889 3890
}

static void
intel_dp_configure_mst(struct intel_dp *intel_dp)
{
3891
	if (!i915_modparams.enable_dp_mst)
3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
		return;

	if (!intel_dp->can_mst)
		return;

	intel_dp->is_mst = intel_dp_can_mst(intel_dp);

	if (intel_dp->is_mst)
		DRM_DEBUG_KMS("Sink is MST capable\n");
	else
		DRM_DEBUG_KMS("Sink is not MST capable\n");

	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
					intel_dp->is_mst);
3906 3907
}

3908 3909 3910
static bool
intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
{
3911 3912
	return drm_dp_dpcd_readb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
				 sink_irq_vector) == 1;
3913 3914
}

3915 3916 3917
static bool
intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
{
3918 3919 3920
	return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
				sink_irq_vector, DP_DPRX_ESI_LEN) ==
		DP_DPRX_ESI_LEN;
3921 3922
}

3923 3924
static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
{
3925
	int status = 0;
3926
	int test_link_rate;
3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
	uint8_t test_lane_count, test_link_bw;
	/* (DP CTS 1.2)
	 * 4.3.1.11
	 */
	/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
				   &test_lane_count);

	if (status <= 0) {
		DRM_DEBUG_KMS("Lane count read failed\n");
		return DP_TEST_NAK;
	}
	test_lane_count &= DP_MAX_LANE_COUNT_MASK;

	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
				   &test_link_bw);
	if (status <= 0) {
		DRM_DEBUG_KMS("Link Rate read failed\n");
		return DP_TEST_NAK;
	}
	test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
3948 3949 3950 3951

	/* Validate the requested link rate and lane count */
	if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
					test_lane_count))
3952 3953 3954 3955 3956 3957
		return DP_TEST_NAK;

	intel_dp->compliance.test_lane_count = test_lane_count;
	intel_dp->compliance.test_link_rate = test_link_rate;

	return DP_TEST_ACK;
3958 3959 3960 3961
}

static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
{
3962
	uint8_t test_pattern;
3963
	uint8_t test_misc;
3964 3965 3966 3967
	__be16 h_width, v_height;
	int status = 0;

	/* Read the TEST_PATTERN (DP CTS 3.1.5) */
3968 3969
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
				   &test_pattern);
3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990
	if (status <= 0) {
		DRM_DEBUG_KMS("Test pattern read failed\n");
		return DP_TEST_NAK;
	}
	if (test_pattern != DP_COLOR_RAMP)
		return DP_TEST_NAK;

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
				  &h_width, 2);
	if (status <= 0) {
		DRM_DEBUG_KMS("H Width read failed\n");
		return DP_TEST_NAK;
	}

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
				  &v_height, 2);
	if (status <= 0) {
		DRM_DEBUG_KMS("V Height read failed\n");
		return DP_TEST_NAK;
	}

3991 3992
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
				   &test_misc);
3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018
	if (status <= 0) {
		DRM_DEBUG_KMS("TEST MISC read failed\n");
		return DP_TEST_NAK;
	}
	if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
		return DP_TEST_NAK;
	if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
		return DP_TEST_NAK;
	switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
	case DP_TEST_BIT_DEPTH_6:
		intel_dp->compliance.test_data.bpc = 6;
		break;
	case DP_TEST_BIT_DEPTH_8:
		intel_dp->compliance.test_data.bpc = 8;
		break;
	default:
		return DP_TEST_NAK;
	}

	intel_dp->compliance.test_data.video_pattern = test_pattern;
	intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
	intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
	/* Set test active flag here so userspace doesn't interrupt things */
	intel_dp->compliance.test_active = 1;

	return DP_TEST_ACK;
4019 4020 4021
}

static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
4022
{
4023
	uint8_t test_result = DP_TEST_ACK;
4024 4025 4026 4027
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct drm_connector *connector = &intel_connector->base;

	if (intel_connector->detect_edid == NULL ||
4028
	    connector->edid_corrupt ||
4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
	    intel_dp->aux.i2c_defer_count > 6) {
		/* Check EDID read for NACKs, DEFERs and corruption
		 * (DP CTS 1.2 Core r1.1)
		 *    4.2.2.4 : Failed EDID read, I2C_NAK
		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
		 *    4.2.2.6 : EDID corruption detected
		 * Use failsafe mode for all cases
		 */
		if (intel_dp->aux.i2c_nack_count > 0 ||
			intel_dp->aux.i2c_defer_count > 0)
			DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
				      intel_dp->aux.i2c_nack_count,
				      intel_dp->aux.i2c_defer_count);
4042
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4043
	} else {
4044 4045 4046 4047 4048 4049 4050
		struct edid *block = intel_connector->detect_edid;

		/* We have to write the checksum
		 * of the last block read
		 */
		block += intel_connector->detect_edid->extensions;

4051 4052
		if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
				       block->checksum) <= 0)
4053 4054 4055
			DRM_DEBUG_KMS("Failed to write EDID checksum\n");

		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4056
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4057 4058 4059
	}

	/* Set test active flag here so userspace doesn't interrupt things */
4060
	intel_dp->compliance.test_active = 1;
4061

4062 4063 4064 4065
	return test_result;
}

static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4066
{
4067 4068 4069 4070 4071 4072 4073
	uint8_t test_result = DP_TEST_NAK;
	return test_result;
}

static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
{
	uint8_t response = DP_TEST_NAK;
4074 4075
	uint8_t request = 0;
	int status;
4076

4077
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4078 4079 4080 4081 4082
	if (status <= 0) {
		DRM_DEBUG_KMS("Could not read test request from sink\n");
		goto update_status;
	}

4083
	switch (request) {
4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100
	case DP_TEST_LINK_TRAINING:
		DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
		response = intel_dp_autotest_link_training(intel_dp);
		break;
	case DP_TEST_LINK_VIDEO_PATTERN:
		DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
		response = intel_dp_autotest_video_pattern(intel_dp);
		break;
	case DP_TEST_LINK_EDID_READ:
		DRM_DEBUG_KMS("EDID test requested\n");
		response = intel_dp_autotest_edid(intel_dp);
		break;
	case DP_TEST_LINK_PHY_TEST_PATTERN:
		DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
		response = intel_dp_autotest_phy_pattern(intel_dp);
		break;
	default:
4101
		DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4102 4103 4104
		break;
	}

4105 4106 4107
	if (response & DP_TEST_ACK)
		intel_dp->compliance.test_type = request;

4108
update_status:
4109
	status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
4110 4111
	if (status <= 0)
		DRM_DEBUG_KMS("Could not write test response to sink\n");
4112 4113
}

4114 4115 4116 4117 4118 4119
static int
intel_dp_check_mst_status(struct intel_dp *intel_dp)
{
	bool bret;

	if (intel_dp->is_mst) {
4120
		u8 esi[DP_DPRX_ESI_LEN] = { 0 };
4121 4122 4123 4124 4125 4126 4127 4128
		int ret = 0;
		int retry;
		bool handled;
		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
go_again:
		if (bret == true) {

			/* check link status - esi[10] = 0x200c */
4129
			if (intel_dp->active_mst_links &&
4130
			    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4131 4132 4133 4134 4135
				DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
				intel_dp_start_link_train(intel_dp);
				intel_dp_stop_link_train(intel_dp);
			}

4136
			DRM_DEBUG_KMS("got esi %3ph\n", esi);
4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151
			ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);

			if (handled) {
				for (retry = 0; retry < 3; retry++) {
					int wret;
					wret = drm_dp_dpcd_write(&intel_dp->aux,
								 DP_SINK_COUNT_ESI+1,
								 &esi[1], 3);
					if (wret == 3) {
						break;
					}
				}

				bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
				if (bret == true) {
4152
					DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
					goto go_again;
				}
			} else
				ret = 0;

			return ret;
		} else {
			struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
			DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
			/* send a hotplug event */
			drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
		}
	}
	return -EINVAL;
}

4171 4172 4173 4174 4175
static bool
intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
{
	u8 link_status[DP_LINK_STATUS_SIZE];

4176 4177 4178 4179
	if (!intel_dp->link_trained)
		return false;

	if (!intel_dp_get_link_status(intel_dp, link_status))
4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
		return false;

	/*
	 * Validate the cached values of intel_dp->link_rate and
	 * intel_dp->lane_count before attempting to retrain.
	 */
	if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
					intel_dp->lane_count))
		return false;

	/* Retrain if Channel EQ or CR not ok */
	return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
}

/*
 * If display is now connected check links status,
 * there has been known issues of link loss triggering
 * long pulse.
 *
 * Some sinks (eg. ASUS PB287Q) seem to perform some
 * weird HPD ping pong during modesets. So we can apparently
 * end up with HPD going low during a modeset, and then
 * going back up soon after. And once that happens we must
 * retrain the link to get a picture. That's in case no
 * userspace component reacted to intermittent HPD dip.
 */
int intel_dp_retrain_link(struct intel_encoder *encoder,
			  struct drm_modeset_acquire_ctx *ctx)
4208 4209
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_connector *connector = intel_dp->attached_connector;
	struct drm_connector_state *conn_state;
	struct intel_crtc_state *crtc_state;
	struct intel_crtc *crtc;
	int ret;

	/* FIXME handle the MST connectors as well */

	if (!connector || connector->base.status != connector_status_connected)
		return 0;

	ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
			       ctx);
	if (ret)
		return ret;

	conn_state = connector->base.state;

	crtc = to_intel_crtc(conn_state->crtc);
	if (!crtc)
		return 0;

	ret = drm_modeset_lock(&crtc->base.mutex, ctx);
	if (ret)
		return ret;

	crtc_state = to_intel_crtc_state(crtc->base.state);

	WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));

	if (!crtc_state->base.active)
		return 0;

	if (conn_state->commit &&
	    !try_wait_for_completion(&conn_state->commit->hw_done))
		return 0;

	if (!intel_dp_needs_link_retrain(intel_dp))
		return 0;
4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260

	/* Suppress underruns caused by re-training */
	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
	if (crtc->config->has_pch_encoder)
		intel_set_pch_fifo_underrun_reporting(dev_priv,
						      intel_crtc_pch_transcoder(crtc), false);

	intel_dp_start_link_train(intel_dp);
	intel_dp_stop_link_train(intel_dp);

	/* Keep underrun reporting disabled until things are stable */
4261
	intel_wait_for_vblank(dev_priv, crtc->pipe);
4262 4263 4264 4265 4266

	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
	if (crtc->config->has_pch_encoder)
		intel_set_pch_fifo_underrun_reporting(dev_priv,
						      intel_crtc_pch_transcoder(crtc), true);
4267 4268

	return 0;
4269 4270
}

4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284
/*
 * If display is now connected check links status,
 * there has been known issues of link loss triggering
 * long pulse.
 *
 * Some sinks (eg. ASUS PB287Q) seem to perform some
 * weird HPD ping pong during modesets. So we can apparently
 * end up with HPD going low during a modeset, and then
 * going back up soon after. And once that happens we must
 * retrain the link to get a picture. That's in case no
 * userspace component reacted to intermittent HPD dip.
 */
static bool intel_dp_hotplug(struct intel_encoder *encoder,
			     struct intel_connector *connector)
4285
{
4286 4287 4288
	struct drm_modeset_acquire_ctx ctx;
	bool changed;
	int ret;
4289

4290
	changed = intel_encoder_hotplug(encoder, connector);
4291

4292
	drm_modeset_acquire_init(&ctx, 0);
4293

4294 4295
	for (;;) {
		ret = intel_dp_retrain_link(encoder, &ctx);
4296

4297 4298 4299 4300
		if (ret == -EDEADLK) {
			drm_modeset_backoff(&ctx);
			continue;
		}
4301

4302 4303
		break;
	}
4304

4305 4306 4307
	drm_modeset_drop_locks(&ctx);
	drm_modeset_acquire_fini(&ctx);
	WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
4308

4309
	return changed;
4310 4311
}

4312 4313 4314 4315 4316 4317 4318
/*
 * According to DP spec
 * 5.1.2:
 *  1. Read DPCD
 *  2. Configure link according to Receiver Capabilities
 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
 *  4. Check link status on receipt of hot-plug interrupt
4319 4320 4321 4322 4323
 *
 * intel_dp_short_pulse -  handles short pulse interrupts
 * when full detection is not required.
 * Returns %true if short pulse is handled and full detection
 * is NOT required and %false otherwise.
4324
 */
4325
static bool
4326
intel_dp_short_pulse(struct intel_dp *intel_dp)
4327
{
4328
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
4329
	u8 sink_irq_vector = 0;
4330 4331
	u8 old_sink_count = intel_dp->sink_count;
	bool ret;
4332

4333 4334 4335 4336
	/*
	 * Clearing compliance test variables to allow capturing
	 * of values for next automated test request.
	 */
4337
	memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4338

4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349
	/*
	 * Now read the DPCD to see if it's actually running
	 * If the current value of sink count doesn't match with
	 * the value that was stored earlier or dpcd read failed
	 * we need to do full detection
	 */
	ret = intel_dp_get_dpcd(intel_dp);

	if ((old_sink_count != intel_dp->sink_count) || !ret) {
		/* No need to proceed if we are going to do full detect */
		return false;
4350 4351
	}

4352 4353
	/* Try to read the source of the interrupt */
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4354 4355
	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
	    sink_irq_vector != 0) {
4356
		/* Clear interrupt source */
4357 4358 4359
		drm_dp_dpcd_writeb(&intel_dp->aux,
				   DP_DEVICE_SERVICE_IRQ_VECTOR,
				   sink_irq_vector);
4360 4361

		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4362
			intel_dp_handle_test_request(intel_dp);
4363 4364 4365 4366
		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
	}

4367 4368 4369
	/* Handle CEC interrupts, if any */
	drm_dp_cec_irq(&intel_dp->aux);

4370 4371 4372
	/* defer to the hotplug work for link retraining if needed */
	if (intel_dp_needs_link_retrain(intel_dp))
		return false;
4373

4374 4375
	intel_psr_short_pulse(intel_dp);

4376 4377 4378
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
		DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
		/* Send a Hotplug Uevent to userspace to start modeset */
4379
		drm_kms_helper_hotplug_event(&dev_priv->drm);
4380
	}
4381 4382

	return true;
4383 4384
}

4385
/* XXX this is probably wrong for multiple downstream ports */
4386
static enum drm_connector_status
4387
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4388
{
4389
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
4390 4391 4392
	uint8_t *dpcd = intel_dp->dpcd;
	uint8_t type;

4393 4394 4395
	if (lspcon->active)
		lspcon_resume(lspcon);

4396 4397 4398
	if (!intel_dp_get_dpcd(intel_dp))
		return connector_status_disconnected;

4399
	if (intel_dp_is_edp(intel_dp))
4400 4401
		return connector_status_connected;

4402
	/* if there's no downstream port, we're done */
4403
	if (!drm_dp_is_branch(dpcd))
4404
		return connector_status_connected;
4405 4406

	/* If we're HPD-aware, SINK_COUNT changes dynamically */
4407 4408
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4409

4410 4411
		return intel_dp->sink_count ?
		connector_status_connected : connector_status_disconnected;
4412 4413
	}

4414 4415 4416
	if (intel_dp_can_mst(intel_dp))
		return connector_status_connected;

4417
	/* If no HPD, poke DDC gently */
4418
	if (drm_probe_ddc(&intel_dp->aux.ddc))
4419
		return connector_status_connected;
4420 4421

	/* Well we tried, say unknown for unreliable port types */
4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
		if (type == DP_DS_PORT_TYPE_VGA ||
		    type == DP_DS_PORT_TYPE_NON_EDID)
			return connector_status_unknown;
	} else {
		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
			DP_DWN_STRM_PORT_TYPE_MASK;
		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
			return connector_status_unknown;
	}
4434 4435 4436

	/* Anything else is out of spec, warn and ignore */
	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4437
	return connector_status_disconnected;
4438 4439
}

4440 4441 4442
static enum drm_connector_status
edp_detect(struct intel_dp *intel_dp)
{
4443
	return connector_status_connected;
4444 4445
}

4446
static bool ibx_digital_port_connected(struct intel_encoder *encoder)
4447
{
4448
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4449
	u32 bit;
4450

4451 4452
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4453 4454
		bit = SDE_PORTB_HOTPLUG;
		break;
4455
	case HPD_PORT_C:
4456 4457
		bit = SDE_PORTC_HOTPLUG;
		break;
4458
	case HPD_PORT_D:
4459 4460 4461
		bit = SDE_PORTD_HOTPLUG;
		break;
	default:
4462
		MISSING_CASE(encoder->hpd_pin);
4463 4464 4465 4466 4467 4468
		return false;
	}

	return I915_READ(SDEISR) & bit;
}

4469
static bool cpt_digital_port_connected(struct intel_encoder *encoder)
4470
{
4471
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4472 4473
	u32 bit;

4474 4475
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4476 4477
		bit = SDE_PORTB_HOTPLUG_CPT;
		break;
4478
	case HPD_PORT_C:
4479 4480
		bit = SDE_PORTC_HOTPLUG_CPT;
		break;
4481
	case HPD_PORT_D:
4482 4483
		bit = SDE_PORTD_HOTPLUG_CPT;
		break;
4484
	default:
4485
		MISSING_CASE(encoder->hpd_pin);
4486 4487 4488 4489 4490 4491
		return false;
	}

	return I915_READ(SDEISR) & bit;
}

4492
static bool spt_digital_port_connected(struct intel_encoder *encoder)
4493
{
4494
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4495 4496
	u32 bit;

4497 4498
	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
4499 4500
		bit = SDE_PORTA_HOTPLUG_SPT;
		break;
4501
	case HPD_PORT_E:
4502 4503
		bit = SDE_PORTE_HOTPLUG_SPT;
		break;
4504
	default:
4505
		return cpt_digital_port_connected(encoder);
4506
	}
4507

4508
	return I915_READ(SDEISR) & bit;
4509 4510
}

4511
static bool g4x_digital_port_connected(struct intel_encoder *encoder)
4512
{
4513
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4514
	u32 bit;
4515

4516 4517
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4518 4519
		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
		break;
4520
	case HPD_PORT_C:
4521 4522
		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
		break;
4523
	case HPD_PORT_D:
4524 4525 4526
		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
		break;
	default:
4527
		MISSING_CASE(encoder->hpd_pin);
4528 4529 4530 4531 4532 4533
		return false;
	}

	return I915_READ(PORT_HOTPLUG_STAT) & bit;
}

4534
static bool gm45_digital_port_connected(struct intel_encoder *encoder)
4535
{
4536
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4537 4538
	u32 bit;

4539 4540
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4541
		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4542
		break;
4543
	case HPD_PORT_C:
4544
		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4545
		break;
4546
	case HPD_PORT_D:
4547
		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4548 4549
		break;
	default:
4550
		MISSING_CASE(encoder->hpd_pin);
4551
		return false;
4552 4553
	}

4554
	return I915_READ(PORT_HOTPLUG_STAT) & bit;
4555 4556
}

4557
static bool ilk_digital_port_connected(struct intel_encoder *encoder)
4558
{
4559 4560 4561
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
4562 4563
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
	else
4564
		return ibx_digital_port_connected(encoder);
4565 4566
}

4567
static bool snb_digital_port_connected(struct intel_encoder *encoder)
4568
{
4569 4570 4571
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
4572 4573
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
	else
4574
		return cpt_digital_port_connected(encoder);
4575 4576
}

4577
static bool ivb_digital_port_connected(struct intel_encoder *encoder)
4578
{
4579 4580 4581
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
4582 4583
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
	else
4584
		return cpt_digital_port_connected(encoder);
4585 4586
}

4587
static bool bdw_digital_port_connected(struct intel_encoder *encoder)
4588
{
4589 4590 4591
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
4592 4593
		return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
	else
4594
		return cpt_digital_port_connected(encoder);
4595 4596
}

4597
static bool bxt_digital_port_connected(struct intel_encoder *encoder)
4598
{
4599
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4600 4601
	u32 bit;

4602 4603
	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
4604 4605
		bit = BXT_DE_PORT_HP_DDIA;
		break;
4606
	case HPD_PORT_B:
4607 4608
		bit = BXT_DE_PORT_HP_DDIB;
		break;
4609
	case HPD_PORT_C:
4610 4611 4612
		bit = BXT_DE_PORT_HP_DDIC;
		break;
	default:
4613
		MISSING_CASE(encoder->hpd_pin);
4614 4615 4616 4617 4618 4619
		return false;
	}

	return I915_READ(GEN8_DE_PORT_ISR) & bit;
}

4620 4621 4622 4623 4624 4625 4626 4627
static bool icl_combo_port_connected(struct drm_i915_private *dev_priv,
				     struct intel_digital_port *intel_dig_port)
{
	enum port port = intel_dig_port->base.port;

	return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(port);
}

4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
static void icl_update_tc_port_type(struct drm_i915_private *dev_priv,
				    struct intel_digital_port *intel_dig_port,
				    bool is_legacy, bool is_typec, bool is_tbt)
{
	enum port port = intel_dig_port->base.port;
	enum tc_port_type old_type = intel_dig_port->tc_type;
	const char *type_str;

	WARN_ON(is_legacy + is_typec + is_tbt != 1);

	if (is_legacy) {
		intel_dig_port->tc_type = TC_PORT_LEGACY;
		type_str = "legacy";
	} else if (is_typec) {
		intel_dig_port->tc_type = TC_PORT_TYPEC;
		type_str = "typec";
	} else if (is_tbt) {
		intel_dig_port->tc_type = TC_PORT_TBT;
		type_str = "tbt";
	} else {
		return;
	}

	/* Types are not supposed to be changed at runtime. */
	WARN_ON(old_type != TC_PORT_UNKNOWN &&
		old_type != intel_dig_port->tc_type);

	if (old_type != intel_dig_port->tc_type)
		DRM_DEBUG_KMS("Port %c has TC type %s\n", port_name(port),
			      type_str);
}

4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677
static bool icl_tc_port_connected(struct drm_i915_private *dev_priv,
				  struct intel_digital_port *intel_dig_port)
{
	enum port port = intel_dig_port->base.port;
	enum tc_port tc_port = intel_port_to_tc(dev_priv, port);
	bool is_legacy, is_typec, is_tbt;
	u32 dpsp;

	is_legacy = I915_READ(SDEISR) & SDE_TC_HOTPLUG_ICP(tc_port);

	/*
	 * The spec says we shouldn't be using the ISR bits for detecting
	 * between TC and TBT. We should use DFLEXDPSP.
	 */
	dpsp = I915_READ(PORT_TX_DFLEXDPSP);
	is_typec = dpsp & TC_LIVE_STATE_TC(tc_port);
	is_tbt = dpsp & TC_LIVE_STATE_TBT(tc_port);

4678 4679 4680 4681 4682
	if (!is_legacy && !is_typec && !is_tbt)
		return false;

	icl_update_tc_port_type(dev_priv, intel_dig_port, is_legacy, is_typec,
				is_tbt);
4683

4684
	return true;
4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706
}

static bool icl_digital_port_connected(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);

	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
	case HPD_PORT_B:
		return icl_combo_port_connected(dev_priv, dig_port);
	case HPD_PORT_C:
	case HPD_PORT_D:
	case HPD_PORT_E:
	case HPD_PORT_F:
		return icl_tc_port_connected(dev_priv, dig_port);
	default:
		MISSING_CASE(encoder->hpd_pin);
		return false;
	}
}

4707 4708
/*
 * intel_digital_port_connected - is the specified port connected?
4709
 * @encoder: intel_encoder
4710
 *
4711
 * Return %true if port is connected, %false otherwise.
4712
 */
4713
bool intel_digital_port_connected(struct intel_encoder *encoder)
4714
{
4715 4716
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

4717 4718
	if (HAS_GMCH_DISPLAY(dev_priv)) {
		if (IS_GM45(dev_priv))
4719
			return gm45_digital_port_connected(encoder);
4720
		else
4721
			return g4x_digital_port_connected(encoder);
4722 4723 4724
	}

	if (IS_GEN5(dev_priv))
4725
		return ilk_digital_port_connected(encoder);
4726
	else if (IS_GEN6(dev_priv))
4727
		return snb_digital_port_connected(encoder);
4728
	else if (IS_GEN7(dev_priv))
4729
		return ivb_digital_port_connected(encoder);
4730
	else if (IS_GEN8(dev_priv))
4731
		return bdw_digital_port_connected(encoder);
4732
	else if (IS_GEN9_LP(dev_priv))
4733
		return bxt_digital_port_connected(encoder);
4734
	else if (IS_GEN9_BC(dev_priv) || IS_GEN10(dev_priv))
4735
		return spt_digital_port_connected(encoder);
4736 4737
	else
		return icl_digital_port_connected(encoder);
4738 4739
}

4740
static struct edid *
4741
intel_dp_get_edid(struct intel_dp *intel_dp)
4742
{
4743
	struct intel_connector *intel_connector = intel_dp->attached_connector;
4744

4745 4746 4747 4748
	/* use cached edid if we have one */
	if (intel_connector->edid) {
		/* invalid edid */
		if (IS_ERR(intel_connector->edid))
4749 4750
			return NULL;

J
Jani Nikula 已提交
4751
		return drm_edid_duplicate(intel_connector->edid);
4752 4753 4754 4755
	} else
		return drm_get_edid(&intel_connector->base,
				    &intel_dp->aux.ddc);
}
4756

4757 4758 4759 4760 4761
static void
intel_dp_set_edid(struct intel_dp *intel_dp)
{
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct edid *edid;
4762

4763
	intel_dp_unset_edid(intel_dp);
4764 4765 4766
	edid = intel_dp_get_edid(intel_dp);
	intel_connector->detect_edid = edid;

4767
	intel_dp->has_audio = drm_detect_monitor_audio(edid);
4768
	drm_dp_cec_set_edid(&intel_dp->aux, edid);
4769 4770
}

4771 4772
static void
intel_dp_unset_edid(struct intel_dp *intel_dp)
4773
{
4774
	struct intel_connector *intel_connector = intel_dp->attached_connector;
4775

4776
	drm_dp_cec_unset_edid(&intel_dp->aux);
4777 4778
	kfree(intel_connector->detect_edid);
	intel_connector->detect_edid = NULL;
4779

4780 4781
	intel_dp->has_audio = false;
}
4782

4783
static int
4784
intel_dp_long_pulse(struct intel_connector *connector)
Z
Zhenyu Wang 已提交
4785
{
4786 4787
	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
	struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
Z
Zhenyu Wang 已提交
4788
	enum drm_connector_status status;
4789
	u8 sink_irq_vector = 0;
Z
Zhenyu Wang 已提交
4790

4791
	WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
4792

4793
	intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
Z
Zhenyu Wang 已提交
4794

4795
	/* Can't disconnect eDP */
4796
	if (intel_dp_is_edp(intel_dp))
4797
		status = edp_detect(intel_dp);
4798
	else if (intel_digital_port_connected(&dp_to_dig_port(intel_dp)->base))
4799
		status = intel_dp_detect_dpcd(intel_dp);
Z
Zhenyu Wang 已提交
4800
	else
4801 4802
		status = connector_status_disconnected;

4803
	if (status == connector_status_disconnected) {
4804
		memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4805

4806 4807 4808 4809 4810 4811 4812 4813 4814
		if (intel_dp->is_mst) {
			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
				      intel_dp->is_mst,
				      intel_dp->mst_mgr.mst_state);
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
		}

4815
		goto out;
4816
	}
Z
Zhenyu Wang 已提交
4817

4818
	if (intel_dp->reset_link_params) {
4819 4820
		/* Initial max link lane count */
		intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
4821

4822 4823
		/* Initial max link rate */
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
4824 4825 4826

		intel_dp->reset_link_params = false;
	}
4827

4828 4829
	intel_dp_print_rates(intel_dp);

4830 4831
	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
			 drm_dp_is_branch(intel_dp->dpcd));
4832

4833 4834 4835
	intel_dp_configure_mst(intel_dp);

	if (intel_dp->is_mst) {
4836 4837 4838 4839 4840
		/*
		 * If we are in MST mode then this connector
		 * won't appear connected or have anything
		 * with EDID on it
		 */
4841 4842 4843 4844
		status = connector_status_disconnected;
		goto out;
	}

4845 4846 4847 4848 4849 4850 4851 4852
	/*
	 * Clearing NACK and defer counts to get their exact values
	 * while reading EDID which are required by Compliance tests
	 * 4.2.2.4 and 4.2.2.5
	 */
	intel_dp->aux.i2c_nack_count = 0;
	intel_dp->aux.i2c_defer_count = 0;

4853
	intel_dp_set_edid(intel_dp);
4854
	if (intel_dp_is_edp(intel_dp) || connector->detect_edid)
4855
		status = connector_status_connected;
4856
	intel_dp->detect_done = true;
4857

4858 4859
	/* Try to read the source of the interrupt */
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4860 4861
	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
	    sink_irq_vector != 0) {
4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872
		/* Clear interrupt source */
		drm_dp_dpcd_writeb(&intel_dp->aux,
				   DP_DEVICE_SERVICE_IRQ_VECTOR,
				   sink_irq_vector);

		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
			intel_dp_handle_test_request(intel_dp);
		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
	}

4873
out:
4874
	if (status != connector_status_connected && !intel_dp->is_mst)
4875
		intel_dp_unset_edid(intel_dp);
4876

4877
	intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
4878
	return status;
4879 4880
}

4881 4882 4883 4884
static int
intel_dp_detect(struct drm_connector *connector,
		struct drm_modeset_acquire_ctx *ctx,
		bool force)
4885 4886
{
	struct intel_dp *intel_dp = intel_attached_dp(connector);
4887
	int status = connector->status;
4888 4889 4890 4891

	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);

4892
	/* If full detect is not performed yet, do a full detect */
4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903
	if (!intel_dp->detect_done) {
		struct drm_crtc *crtc;
		int ret;

		crtc = connector->state->crtc;
		if (crtc) {
			ret = drm_modeset_lock(&crtc->mutex, ctx);
			if (ret)
				return ret;
		}

4904
		status = intel_dp_long_pulse(intel_dp->attached_connector);
4905
	}
4906 4907

	intel_dp->detect_done = false;
4908

4909
	return status;
4910 4911
}

4912 4913
static void
intel_dp_force(struct drm_connector *connector)
4914
{
4915
	struct intel_dp *intel_dp = intel_attached_dp(connector);
4916
	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4917
	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
4918

4919 4920 4921
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);
	intel_dp_unset_edid(intel_dp);
4922

4923 4924
	if (connector->status != connector_status_connected)
		return;
4925

4926
	intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
4927 4928 4929

	intel_dp_set_edid(intel_dp);

4930
	intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943
}

static int intel_dp_get_modes(struct drm_connector *connector)
{
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct edid *edid;

	edid = intel_connector->detect_edid;
	if (edid) {
		int ret = intel_connector_update_modes(connector, edid);
		if (ret)
			return ret;
	}
4944

4945
	/* if eDP has no EDID, fall back to fixed mode */
4946
	if (intel_dp_is_edp(intel_attached_dp(connector)) &&
4947
	    intel_connector->panel.fixed_mode) {
4948
		struct drm_display_mode *mode;
4949 4950

		mode = drm_mode_duplicate(connector->dev,
4951
					  intel_connector->panel.fixed_mode);
4952
		if (mode) {
4953 4954 4955 4956
			drm_mode_probed_add(connector, mode);
			return 1;
		}
	}
4957

4958
	return 0;
4959 4960
}

4961 4962 4963 4964
static int
intel_dp_connector_register(struct drm_connector *connector)
{
	struct intel_dp *intel_dp = intel_attached_dp(connector);
4965
	struct drm_device *dev = connector->dev;
4966 4967 4968 4969 4970
	int ret;

	ret = intel_connector_register(connector);
	if (ret)
		return ret;
4971 4972 4973 4974 4975 4976 4977

	i915_debugfs_connector_add(connector);

	DRM_DEBUG_KMS("registering %s bus for %s\n",
		      intel_dp->aux.name, connector->kdev->kobj.name);

	intel_dp->aux.dev = connector->kdev;
4978 4979 4980 4981 4982
	ret = drm_dp_aux_register(&intel_dp->aux);
	if (!ret)
		drm_dp_cec_register_connector(&intel_dp->aux,
					      connector->name, dev->dev);
	return ret;
4983 4984
}

4985 4986 4987
static void
intel_dp_connector_unregister(struct drm_connector *connector)
{
4988 4989 4990 4991
	struct intel_dp *intel_dp = intel_attached_dp(connector);

	drm_dp_cec_unregister_connector(&intel_dp->aux);
	drm_dp_aux_unregister(&intel_dp->aux);
4992 4993 4994
	intel_connector_unregister(connector);
}

4995
static void
4996
intel_dp_connector_destroy(struct drm_connector *connector)
4997
{
4998
	struct intel_connector *intel_connector = to_intel_connector(connector);
4999

5000
	kfree(intel_connector->detect_edid);
5001

5002 5003 5004
	if (!IS_ERR_OR_NULL(intel_connector->edid))
		kfree(intel_connector->edid);

5005 5006 5007 5008
	/*
	 * Can't call intel_dp_is_edp() since the encoder may have been
	 * destroyed already.
	 */
5009
	if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5010
		intel_panel_fini(&intel_connector->panel);
5011

5012
	drm_connector_cleanup(connector);
5013
	kfree(connector);
5014 5015
}

P
Paulo Zanoni 已提交
5016
void intel_dp_encoder_destroy(struct drm_encoder *encoder)
5017
{
5018 5019
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
	struct intel_dp *intel_dp = &intel_dig_port->dp;
5020

5021
	intel_dp_mst_encoder_cleanup(intel_dig_port);
5022
	if (intel_dp_is_edp(intel_dp)) {
5023
		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5024 5025 5026 5027
		/*
		 * vdd might still be enabled do to the delayed vdd off.
		 * Make sure vdd is actually turned off here.
		 */
5028
		pps_lock(intel_dp);
5029
		edp_panel_vdd_off_sync(intel_dp);
5030 5031
		pps_unlock(intel_dp);

5032 5033 5034 5035
		if (intel_dp->edp_notifier.notifier_call) {
			unregister_reboot_notifier(&intel_dp->edp_notifier);
			intel_dp->edp_notifier.notifier_call = NULL;
		}
5036
	}
5037 5038 5039

	intel_dp_aux_fini(intel_dp);

5040
	drm_encoder_cleanup(encoder);
5041
	kfree(intel_dig_port);
5042 5043
}

5044
void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5045 5046 5047
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);

5048
	if (!intel_dp_is_edp(intel_dp))
5049 5050
		return;

5051 5052 5053 5054
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
5055
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5056
	pps_lock(intel_dp);
5057
	edp_panel_vdd_off_sync(intel_dp);
5058
	pps_unlock(intel_dp);
5059 5060
}

5061 5062 5063 5064 5065
static
int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
				u8 *an)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base);
5066 5067 5068 5069 5070 5071
	static const struct drm_dp_aux_msg msg = {
		.request = DP_AUX_NATIVE_WRITE,
		.address = DP_AUX_HDCP_AKSV,
		.size = DRM_HDCP_KSV_LEN,
	};
	uint8_t txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088
	ssize_t dpcd_ret;
	int ret;

	/* Output An first, that's easy */
	dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
				     an, DRM_HDCP_AN_LEN);
	if (dpcd_ret != DRM_HDCP_AN_LEN) {
		DRM_ERROR("Failed to write An over DP/AUX (%zd)\n", dpcd_ret);
		return dpcd_ret >= 0 ? -EIO : dpcd_ret;
	}

	/*
	 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
	 * order to get it on the wire, we need to create the AUX header as if
	 * we were writing the data, and then tickle the hardware to output the
	 * data once the header is sent out.
	 */
5089
	intel_dp_aux_header(txbuf, &msg);
5090

5091
	ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
5092 5093
				rxbuf, sizeof(rxbuf),
				DP_AUX_CH_CTL_AUX_AKSV_SELECT);
5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137
	if (ret < 0) {
		DRM_ERROR("Write Aksv over DP/AUX failed (%d)\n", ret);
		return ret;
	} else if (ret == 0) {
		DRM_ERROR("Aksv write over DP/AUX was empty\n");
		return -EIO;
	}

	reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
	return reply == DP_AUX_NATIVE_REPLY_ACK ? 0 : -EIO;
}

static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
				   u8 *bksv)
{
	ssize_t ret;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
			       DRM_HDCP_KSV_LEN);
	if (ret != DRM_HDCP_KSV_LEN) {
		DRM_ERROR("Read Bksv from DP/AUX failed (%zd)\n", ret);
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
				      u8 *bstatus)
{
	ssize_t ret;
	/*
	 * For some reason the HDMI and DP HDCP specs call this register
	 * definition by different names. In the HDMI spec, it's called BSTATUS,
	 * but in DP it's called BINFO.
	 */
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
			       bstatus, DRM_HDCP_BSTATUS_LEN);
	if (ret != DRM_HDCP_BSTATUS_LEN) {
		DRM_ERROR("Read bstatus from DP/AUX failed (%zd)\n", ret);
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
5138 5139
int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
			     u8 *bcaps)
5140 5141
{
	ssize_t ret;
5142

5143
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
5144
			       bcaps, 1);
5145 5146 5147 5148
	if (ret != 1) {
		DRM_ERROR("Read bcaps from DP/AUX failed (%zd)\n", ret);
		return ret >= 0 ? -EIO : ret;
	}
5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163

	return 0;
}

static
int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
				   bool *repeater_present)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252
	*repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
	return 0;
}

static
int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
				u8 *ri_prime)
{
	ssize_t ret;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
			       ri_prime, DRM_HDCP_RI_LEN);
	if (ret != DRM_HDCP_RI_LEN) {
		DRM_ERROR("Read Ri' from DP/AUX failed (%zd)\n", ret);
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
				 bool *ksv_ready)
{
	ssize_t ret;
	u8 bstatus;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
		DRM_ERROR("Read bstatus from DP/AUX failed (%zd)\n", ret);
		return ret >= 0 ? -EIO : ret;
	}
	*ksv_ready = bstatus & DP_BSTATUS_READY;
	return 0;
}

static
int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
				int num_downstream, u8 *ksv_fifo)
{
	ssize_t ret;
	int i;

	/* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
	for (i = 0; i < num_downstream; i += 3) {
		size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
				       DP_AUX_HDCP_KSV_FIFO,
				       ksv_fifo + i * DRM_HDCP_KSV_LEN,
				       len);
		if (ret != len) {
			DRM_ERROR("Read ksv[%d] from DP/AUX failed (%zd)\n", i,
				  ret);
			return ret >= 0 ? -EIO : ret;
		}
	}
	return 0;
}

static
int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
				    int i, u32 *part)
{
	ssize_t ret;

	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
		return -EINVAL;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_AUX_HDCP_V_PRIME(i), part,
			       DRM_HDCP_V_PRIME_PART_LEN);
	if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
		DRM_ERROR("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
				    bool enable)
{
	/* Not used for single stream DisplayPort setups */
	return 0;
}

static
bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
{
	ssize_t ret;
	u8 bstatus;
5253

5254 5255 5256 5257
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
		DRM_ERROR("Read bstatus from DP/AUX failed (%zd)\n", ret);
5258
		return false;
5259
	}
5260

5261 5262 5263
	return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
}

5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278
static
int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
			  bool *hdcp_capable)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

	*hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
	return 0;
}

5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289
static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
	.write_an_aksv = intel_dp_hdcp_write_an_aksv,
	.read_bksv = intel_dp_hdcp_read_bksv,
	.read_bstatus = intel_dp_hdcp_read_bstatus,
	.repeater_present = intel_dp_hdcp_repeater_present,
	.read_ri_prime = intel_dp_hdcp_read_ri_prime,
	.read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
	.read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
	.read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
	.toggle_signalling = intel_dp_hdcp_toggle_signalling,
	.check_link = intel_dp_hdcp_check_link,
5290
	.hdcp_capable = intel_dp_hdcp_capable,
5291 5292
};

5293 5294
static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
{
5295
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308

	lockdep_assert_held(&dev_priv->pps_mutex);

	if (!edp_have_panel_vdd(intel_dp))
		return;

	/*
	 * The VDD bit needs a power domain reference, so if the bit is
	 * already enabled when we boot or resume, grab this reference and
	 * schedule a vdd off, so we don't hold on to the reference
	 * indefinitely.
	 */
	DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
5309
	intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
5310 5311 5312 5313

	edp_panel_vdd_schedule_off(intel_dp);
}

5314 5315 5316
static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5317 5318
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum pipe pipe;
5319

5320 5321 5322
	if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				  encoder->port, &pipe))
		return pipe;
5323

5324
	return INVALID_PIPE;
5325 5326
}

5327
void intel_dp_encoder_reset(struct drm_encoder *encoder)
5328
{
5329
	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
5330 5331
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5332 5333 5334

	if (!HAS_DDI(dev_priv))
		intel_dp->DP = I915_READ(intel_dp->output_reg);
5335

5336
	if (lspcon->active)
5337 5338
		lspcon_resume(lspcon);

5339 5340
	intel_dp->reset_link_params = true;

5341 5342
	pps_lock(intel_dp);

5343 5344 5345
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		intel_dp->active_pipe = vlv_active_pipe(intel_dp);

5346
	if (intel_dp_is_edp(intel_dp)) {
5347
		/* Reinit the power sequencer, in case BIOS did something with it. */
5348
		intel_dp_pps_init(intel_dp);
5349 5350
		intel_edp_panel_vdd_sanitize(intel_dp);
	}
5351 5352

	pps_unlock(intel_dp);
5353 5354
}

5355
static const struct drm_connector_funcs intel_dp_connector_funcs = {
5356
	.force = intel_dp_force,
5357
	.fill_modes = drm_helper_probe_single_connector_modes,
5358 5359
	.atomic_get_property = intel_digital_connector_atomic_get_property,
	.atomic_set_property = intel_digital_connector_atomic_set_property,
5360
	.late_register = intel_dp_connector_register,
5361
	.early_unregister = intel_dp_connector_unregister,
5362
	.destroy = intel_dp_connector_destroy,
5363
	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
5364
	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
5365 5366 5367
};

static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
5368
	.detect_ctx = intel_dp_detect,
5369 5370
	.get_modes = intel_dp_get_modes,
	.mode_valid = intel_dp_mode_valid,
5371
	.atomic_check = intel_digital_connector_atomic_check,
5372 5373 5374
};

static const struct drm_encoder_funcs intel_dp_enc_funcs = {
5375
	.reset = intel_dp_encoder_reset,
5376
	.destroy = intel_dp_encoder_destroy,
5377 5378
};

5379
enum irqreturn
5380 5381 5382
intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
{
	struct intel_dp *intel_dp = &intel_dig_port->dp;
5383
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5384
	enum irqreturn ret = IRQ_NONE;
5385

5386 5387 5388 5389 5390 5391 5392 5393
	if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
		/*
		 * vdd off can generate a long pulse on eDP which
		 * would require vdd on to handle it, and thus we
		 * would end up in an endless cycle of
		 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
		 */
		DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
5394
			      port_name(intel_dig_port->base.port));
5395
		return IRQ_HANDLED;
5396 5397
	}

5398
	DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
5399
		      port_name(intel_dig_port->base.port),
5400
		      long_hpd ? "long" : "short");
5401

5402
	if (long_hpd) {
5403
		intel_dp->reset_link_params = true;
5404 5405 5406 5407
		intel_dp->detect_done = false;
		return IRQ_NONE;
	}

5408
	intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
5409

5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422
	if (intel_dp->is_mst) {
		if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
			/*
			 * If we were in MST mode, and device is not
			 * there, get out of MST mode
			 */
			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
				      intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
			intel_dp->detect_done = false;
			goto put_power;
5423
		}
5424
	}
5425

5426
	if (!intel_dp->is_mst) {
5427
		bool handled;
5428 5429 5430

		handled = intel_dp_short_pulse(intel_dp);

5431 5432 5433
		/* Short pulse can signify loss of hdcp authentication */
		intel_hdcp_check_link(intel_dp->attached_connector);

5434
		if (!handled) {
5435 5436
			intel_dp->detect_done = false;
			goto put_power;
5437
		}
5438
	}
5439 5440 5441

	ret = IRQ_HANDLED;

5442
put_power:
5443
	intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
5444 5445

	return ret;
5446 5447
}

5448
/* check the VBT to see whether the eDP is on another port */
5449
bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
5450
{
5451 5452 5453 5454
	/*
	 * eDP not supported on g4x. so bail out early just
	 * for a bit extra safety in case the VBT is bonkers.
	 */
5455
	if (INTEL_GEN(dev_priv) < 5)
5456 5457
		return false;

5458
	if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
5459 5460
		return true;

5461
	return intel_bios_is_port_edp(dev_priv, port);
5462 5463
}

5464
static void
5465 5466
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
{
5467
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
5468 5469 5470 5471
	enum port port = dp_to_dig_port(intel_dp)->base.port;

	if (!IS_G4X(dev_priv) && port != PORT_A)
		intel_attach_force_audio_property(connector);
5472

5473
	intel_attach_broadcast_rgb_property(connector);
5474

5475
	if (intel_dp_is_edp(intel_dp)) {
5476 5477 5478 5479 5480 5481 5482 5483
		u32 allowed_scalers;

		allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
		if (!HAS_GMCH_DISPLAY(dev_priv))
			allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);

		drm_connector_attach_scaling_mode_property(connector, allowed_scalers);

5484
		connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
5485

5486
	}
5487 5488
}

5489 5490
static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
{
5491
	intel_dp->panel_power_off_time = ktime_get_boottime();
5492 5493 5494 5495
	intel_dp->last_power_on = jiffies;
	intel_dp->last_backlight_off = jiffies;
}

5496
static void
5497
intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
5498
{
5499
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5500
	u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
5501
	struct pps_registers regs;
5502

5503
	intel_pps_get_registers(intel_dp, &regs);
5504 5505 5506

	/* Workaround: Need to write PP_CONTROL with the unlock key as
	 * the very first thing. */
5507
	pp_ctl = ironlake_get_pp_control(intel_dp);
5508

5509 5510
	pp_on = I915_READ(regs.pp_on);
	pp_off = I915_READ(regs.pp_off);
5511 5512
	if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv) &&
	    !HAS_PCH_ICP(dev_priv)) {
5513 5514
		I915_WRITE(regs.pp_ctrl, pp_ctl);
		pp_div = I915_READ(regs.pp_div);
5515
	}
5516 5517

	/* Pull timing values out of registers */
5518 5519
	seq->t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
		     PANEL_POWER_UP_DELAY_SHIFT;
5520

5521 5522
	seq->t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
		  PANEL_LIGHT_ON_DELAY_SHIFT;
5523

5524 5525
	seq->t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
		  PANEL_LIGHT_OFF_DELAY_SHIFT;
5526

5527 5528
	seq->t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
		   PANEL_POWER_DOWN_DELAY_SHIFT;
5529

5530 5531
	if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
	    HAS_PCH_ICP(dev_priv)) {
5532 5533
		seq->t11_t12 = ((pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
				BXT_POWER_CYCLE_DELAY_SHIFT) * 1000;
5534
	} else {
5535
		seq->t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
5536
		       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
5537
	}
5538 5539
}

I
Imre Deak 已提交
5540 5541 5542 5543 5544 5545 5546 5547 5548
static void
intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
{
	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
		      state_name,
		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
}

static void
5549
intel_pps_verify_state(struct intel_dp *intel_dp)
I
Imre Deak 已提交
5550 5551 5552 5553
{
	struct edp_power_seq hw;
	struct edp_power_seq *sw = &intel_dp->pps_delays;

5554
	intel_pps_readout_hw_state(intel_dp, &hw);
I
Imre Deak 已提交
5555 5556 5557 5558 5559 5560 5561 5562 5563

	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
		DRM_ERROR("PPS state mismatch\n");
		intel_pps_dump_state("sw", sw);
		intel_pps_dump_state("hw", &hw);
	}
}

5564
static void
5565
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
5566
{
5567
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5568 5569 5570 5571 5572 5573 5574 5575 5576
	struct edp_power_seq cur, vbt, spec,
		*final = &intel_dp->pps_delays;

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* already initialized? */
	if (final->t11_t12 != 0)
		return;

5577
	intel_pps_readout_hw_state(intel_dp, &cur);
5578

I
Imre Deak 已提交
5579
	intel_pps_dump_state("cur", &cur);
5580

5581
	vbt = dev_priv->vbt.edp.pps;
5582 5583 5584 5585 5586 5587
	/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
	 * of 500ms appears to be too short. Ocassionally the panel
	 * just fails to power back on. Increasing the delay to 800ms
	 * seems sufficient to avoid this problem.
	 */
	if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
5588
		vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
5589 5590 5591
		DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
			      vbt.t11_t12);
	}
5592 5593 5594 5595 5596
	/* T11_T12 delay is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	vbt.t11_t12 += 100 * 10;
5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609

	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
	 * our hw here, which are all in 100usec. */
	spec.t1_t3 = 210 * 10;
	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
	spec.t10 = 500 * 10;
	/* This one is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	spec.t11_t12 = (510 + 100) * 10;

I
Imre Deak 已提交
5610
	intel_pps_dump_state("vbt", &vbt);
5611 5612 5613

	/* Use the max of the register settings and vbt. If both are
	 * unset, fall back to the spec limits. */
5614
#define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
5615 5616 5617 5618 5619 5620 5621 5622 5623
				       spec.field : \
				       max(cur.field, vbt.field))
	assign_final(t1_t3);
	assign_final(t8);
	assign_final(t9);
	assign_final(t10);
	assign_final(t11_t12);
#undef assign_final

5624
#define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
5625 5626 5627 5628 5629 5630 5631
	intel_dp->panel_power_up_delay = get_delay(t1_t3);
	intel_dp->backlight_on_delay = get_delay(t8);
	intel_dp->backlight_off_delay = get_delay(t9);
	intel_dp->panel_power_down_delay = get_delay(t10);
	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
#undef get_delay

5632 5633 5634 5635 5636 5637
	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
		      intel_dp->panel_power_cycle_delay);

	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
I
Imre Deak 已提交
5638 5639 5640 5641 5642 5643 5644 5645 5646 5647

	/*
	 * We override the HW backlight delays to 1 because we do manual waits
	 * on them. For T8, even BSpec recommends doing it. For T9, if we
	 * don't do this, we'll end up waiting for the backlight off delay
	 * twice: once when we do the manual sleep, and once when we disable
	 * the panel and wait for the PP_STATUS bit to become zero.
	 */
	final->t8 = 1;
	final->t9 = 1;
5648 5649 5650 5651 5652 5653

	/*
	 * HW has only a 100msec granularity for t11_t12 so round it up
	 * accordingly.
	 */
	final->t11_t12 = roundup(final->t11_t12, 100 * 10);
5654 5655 5656
}

static void
5657
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
5658
					      bool force_disable_vdd)
5659
{
5660
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5661
	u32 pp_on, pp_off, pp_div, port_sel = 0;
5662
	int div = dev_priv->rawclk_freq / 1000;
5663
	struct pps_registers regs;
5664
	enum port port = dp_to_dig_port(intel_dp)->base.port;
5665
	const struct edp_power_seq *seq = &intel_dp->pps_delays;
5666

V
Ville Syrjälä 已提交
5667
	lockdep_assert_held(&dev_priv->pps_mutex);
5668

5669
	intel_pps_get_registers(intel_dp, &regs);
5670

5671 5672
	/*
	 * On some VLV machines the BIOS can leave the VDD
5673
	 * enabled even on power sequencers which aren't
5674 5675 5676 5677 5678 5679 5680
	 * hooked up to any port. This would mess up the
	 * power domain tracking the first time we pick
	 * one of these power sequencers for use since
	 * edp_panel_vdd_on() would notice that the VDD was
	 * already on and therefore wouldn't grab the power
	 * domain reference. Disable VDD first to avoid this.
	 * This also avoids spuriously turning the VDD on as
5681
	 * soon as the new power sequencer gets initialized.
5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695
	 */
	if (force_disable_vdd) {
		u32 pp = ironlake_get_pp_control(intel_dp);

		WARN(pp & PANEL_POWER_ON, "Panel power already on\n");

		if (pp & EDP_FORCE_VDD)
			DRM_DEBUG_KMS("VDD already on, disabling first\n");

		pp &= ~EDP_FORCE_VDD;

		I915_WRITE(regs.pp_ctrl, pp);
	}

5696
	pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
I
Imre Deak 已提交
5697 5698
		(seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
	pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5699
		 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5700 5701
	/* Compute the divisor for the pp clock, simply match the Bspec
	 * formula. */
5702 5703
	if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
	    HAS_PCH_ICP(dev_priv)) {
5704
		pp_div = I915_READ(regs.pp_ctrl);
5705
		pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5706
		pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5707 5708 5709 5710 5711 5712
				<< BXT_POWER_CYCLE_DELAY_SHIFT);
	} else {
		pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
		pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
				<< PANEL_POWER_CYCLE_DELAY_SHIFT);
	}
5713 5714 5715

	/* Haswell doesn't have any port selection bits for the panel
	 * power sequencer any more. */
5716
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5717
		port_sel = PANEL_PORT_SELECT_VLV(port);
5718
	} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
5719 5720
		switch (port) {
		case PORT_A:
5721
			port_sel = PANEL_PORT_SELECT_DPA;
5722 5723 5724 5725 5726
			break;
		case PORT_C:
			port_sel = PANEL_PORT_SELECT_DPC;
			break;
		case PORT_D:
5727
			port_sel = PANEL_PORT_SELECT_DPD;
5728 5729 5730 5731 5732
			break;
		default:
			MISSING_CASE(port);
			break;
		}
5733 5734
	}

5735 5736
	pp_on |= port_sel;

5737 5738
	I915_WRITE(regs.pp_on, pp_on);
	I915_WRITE(regs.pp_off, pp_off);
5739 5740
	if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
	    HAS_PCH_ICP(dev_priv))
5741
		I915_WRITE(regs.pp_ctrl, pp_div);
5742
	else
5743
		I915_WRITE(regs.pp_div, pp_div);
5744 5745

	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5746 5747
		      I915_READ(regs.pp_on),
		      I915_READ(regs.pp_off),
5748 5749
		      (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv)  ||
		       HAS_PCH_ICP(dev_priv)) ?
5750 5751
		      (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK) :
		      I915_READ(regs.pp_div));
5752 5753
}

5754
static void intel_dp_pps_init(struct intel_dp *intel_dp)
5755
{
5756
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5757 5758

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5759 5760
		vlv_initial_power_sequencer_setup(intel_dp);
	} else {
5761 5762
		intel_dp_init_panel_power_sequencer(intel_dp);
		intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
5763 5764 5765
	}
}

5766 5767
/**
 * intel_dp_set_drrs_state - program registers for RR switch to take effect
5768
 * @dev_priv: i915 device
5769
 * @crtc_state: a pointer to the active intel_crtc_state
5770 5771 5772 5773 5774 5775 5776 5777 5778
 * @refresh_rate: RR to be programmed
 *
 * This function gets called when refresh rate (RR) has to be changed from
 * one frequency to another. Switches can be between high and low RR
 * supported by the panel or to any other RR based on media playback (in
 * this case, RR value needs to be passed from user space).
 *
 * The caller of this function needs to take a lock on dev_priv->drrs.
 */
5779
static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
5780
				    const struct intel_crtc_state *crtc_state,
5781
				    int refresh_rate)
5782 5783
{
	struct intel_encoder *encoder;
5784 5785
	struct intel_digital_port *dig_port = NULL;
	struct intel_dp *intel_dp = dev_priv->drrs.dp;
5786
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
5787
	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5788 5789 5790 5791 5792 5793

	if (refresh_rate <= 0) {
		DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
		return;
	}

5794 5795
	if (intel_dp == NULL) {
		DRM_DEBUG_KMS("DRRS not supported.\n");
5796 5797 5798
		return;
	}

5799 5800
	dig_port = dp_to_dig_port(intel_dp);
	encoder = &dig_port->base;
5801 5802 5803 5804 5805 5806

	if (!intel_crtc) {
		DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
		return;
	}

5807
	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5808 5809 5810 5811
		DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
		return;
	}

5812 5813
	if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
			refresh_rate)
5814 5815
		index = DRRS_LOW_RR;

5816
	if (index == dev_priv->drrs.refresh_rate_type) {
5817 5818 5819 5820 5821
		DRM_DEBUG_KMS(
			"DRRS requested for previously set RR...ignoring\n");
		return;
	}

5822
	if (!crtc_state->base.active) {
5823 5824 5825 5826
		DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
		return;
	}

5827
	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838
		switch (index) {
		case DRRS_HIGH_RR:
			intel_dp_set_m_n(intel_crtc, M1_N1);
			break;
		case DRRS_LOW_RR:
			intel_dp_set_m_n(intel_crtc, M2_N2);
			break;
		case DRRS_MAX_RR:
		default:
			DRM_ERROR("Unsupported refreshrate type\n");
		}
5839 5840
	} else if (INTEL_GEN(dev_priv) > 6) {
		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
5841
		u32 val;
5842

5843
		val = I915_READ(reg);
5844
		if (index > DRRS_HIGH_RR) {
5845
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5846 5847 5848
				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val |= PIPECONF_EDP_RR_MODE_SWITCH;
5849
		} else {
5850
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5851 5852 5853
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5854 5855 5856 5857
		}
		I915_WRITE(reg, val);
	}

5858 5859 5860 5861 5862
	dev_priv->drrs.refresh_rate_type = index;

	DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
}

5863 5864 5865
/**
 * intel_edp_drrs_enable - init drrs struct if supported
 * @intel_dp: DP struct
5866
 * @crtc_state: A pointer to the active crtc state.
5867 5868 5869
 *
 * Initializes frontbuffer_bits and drrs.dp
 */
5870
void intel_edp_drrs_enable(struct intel_dp *intel_dp,
5871
			   const struct intel_crtc_state *crtc_state)
V
Vandana Kannan 已提交
5872
{
5873
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
V
Vandana Kannan 已提交
5874

5875
	if (!crtc_state->has_drrs) {
V
Vandana Kannan 已提交
5876 5877 5878 5879
		DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
		return;
	}

5880 5881 5882 5883 5884
	if (dev_priv->psr.enabled) {
		DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
		return;
	}

V
Vandana Kannan 已提交
5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898
	mutex_lock(&dev_priv->drrs.mutex);
	if (WARN_ON(dev_priv->drrs.dp)) {
		DRM_ERROR("DRRS already enabled\n");
		goto unlock;
	}

	dev_priv->drrs.busy_frontbuffer_bits = 0;

	dev_priv->drrs.dp = intel_dp;

unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
}

5899 5900 5901
/**
 * intel_edp_drrs_disable - Disable DRRS
 * @intel_dp: DP struct
5902
 * @old_crtc_state: Pointer to old crtc_state.
5903 5904
 *
 */
5905
void intel_edp_drrs_disable(struct intel_dp *intel_dp,
5906
			    const struct intel_crtc_state *old_crtc_state)
V
Vandana Kannan 已提交
5907
{
5908
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
V
Vandana Kannan 已提交
5909

5910
	if (!old_crtc_state->has_drrs)
V
Vandana Kannan 已提交
5911 5912 5913 5914 5915 5916 5917 5918 5919
		return;

	mutex_lock(&dev_priv->drrs.mutex);
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5920 5921
		intel_dp_set_drrs_state(dev_priv, old_crtc_state,
			intel_dp->attached_connector->panel.fixed_mode->vrefresh);
V
Vandana Kannan 已提交
5922 5923 5924 5925 5926 5927 5928

	dev_priv->drrs.dp = NULL;
	mutex_unlock(&dev_priv->drrs.mutex);

	cancel_delayed_work_sync(&dev_priv->drrs.work);
}

5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941
static void intel_edp_drrs_downclock_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), drrs.work.work);
	struct intel_dp *intel_dp;

	mutex_lock(&dev_priv->drrs.mutex);

	intel_dp = dev_priv->drrs.dp;

	if (!intel_dp)
		goto unlock;

5942
	/*
5943 5944
	 * The delayed work can race with an invalidate hence we need to
	 * recheck.
5945 5946
	 */

5947 5948
	if (dev_priv->drrs.busy_frontbuffer_bits)
		goto unlock;
5949

5950 5951 5952 5953 5954 5955
	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
		struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;

		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			intel_dp->attached_connector->panel.downclock_mode->vrefresh);
	}
5956

5957 5958
unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
5959 5960
}

5961
/**
5962
 * intel_edp_drrs_invalidate - Disable Idleness DRRS
5963
 * @dev_priv: i915 device
5964 5965
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
5966 5967
 * This function gets called everytime rendering on the given planes start.
 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5968 5969 5970
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
5971 5972
void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
			       unsigned int frontbuffer_bits)
5973 5974 5975 5976
{
	struct drm_crtc *crtc;
	enum pipe pipe;

5977
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5978 5979
		return;

5980
	cancel_delayed_work(&dev_priv->drrs.work);
5981

5982
	mutex_lock(&dev_priv->drrs.mutex);
5983 5984 5985 5986 5987
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

5988 5989 5990
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;

5991 5992 5993
	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;

5994
	/* invalidate means busy screen hence upclock */
5995
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5996 5997
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5998 5999 6000 6001

	mutex_unlock(&dev_priv->drrs.mutex);
}

6002
/**
6003
 * intel_edp_drrs_flush - Restart Idleness DRRS
6004
 * @dev_priv: i915 device
6005 6006
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
6007 6008 6009 6010
 * This function gets called every time rendering on the given planes has
 * completed or flip on a crtc is completed. So DRRS should be upclocked
 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
 * if no other planes are dirty.
6011 6012 6013
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
6014 6015
void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
			  unsigned int frontbuffer_bits)
6016 6017 6018 6019
{
	struct drm_crtc *crtc;
	enum pipe pipe;

6020
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6021 6022
		return;

6023
	cancel_delayed_work(&dev_priv->drrs.work);
6024

6025
	mutex_lock(&dev_priv->drrs.mutex);
6026 6027 6028 6029 6030
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

6031 6032
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;
6033 6034

	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
6035 6036
	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;

6037
	/* flush means busy screen hence upclock */
6038
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6039 6040
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
				dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6041 6042 6043 6044 6045 6046

	/*
	 * flush also means no more activity hence schedule downclock, if all
	 * other fbs are quiescent too
	 */
	if (!dev_priv->drrs.busy_frontbuffer_bits)
6047 6048 6049 6050 6051
		schedule_delayed_work(&dev_priv->drrs.work,
				msecs_to_jiffies(1000));
	mutex_unlock(&dev_priv->drrs.mutex);
}

6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074
/**
 * DOC: Display Refresh Rate Switching (DRRS)
 *
 * Display Refresh Rate Switching (DRRS) is a power conservation feature
 * which enables swtching between low and high refresh rates,
 * dynamically, based on the usage scenario. This feature is applicable
 * for internal panels.
 *
 * Indication that the panel supports DRRS is given by the panel EDID, which
 * would list multiple refresh rates for one resolution.
 *
 * DRRS is of 2 types - static and seamless.
 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
 * (may appear as a blink on screen) and is used in dock-undock scenario.
 * Seamless DRRS involves changing RR without any visual effect to the user
 * and can be used during normal system usage. This is done by programming
 * certain registers.
 *
 * Support for static/seamless DRRS may be indicated in the VBT based on
 * inputs from the panel spec.
 *
 * DRRS saves power by switching to low RR based on usage scenarios.
 *
D
Daniel Vetter 已提交
6075 6076 6077 6078 6079 6080 6081 6082
 * The implementation is based on frontbuffer tracking implementation.  When
 * there is a disturbance on the screen triggered by user activity or a periodic
 * system activity, DRRS is disabled (RR is changed to high RR).  When there is
 * no movement on screen, after a timeout of 1 second, a switch to low RR is
 * made.
 *
 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
 * and intel_edp_drrs_flush() are called.
6083 6084 6085 6086 6087 6088 6089 6090
 *
 * DRRS can be further extended to support other internal panels and also
 * the scenario of video playback wherein RR is set based on the rate
 * requested by userspace.
 */

/**
 * intel_dp_drrs_init - Init basic DRRS work and mutex.
6091
 * @connector: eDP connector
6092 6093 6094 6095 6096 6097 6098 6099 6100 6101
 * @fixed_mode: preferred mode of panel
 *
 * This function is  called only once at driver load to initialize basic
 * DRRS stuff.
 *
 * Returns:
 * Downclock mode if panel supports it, else return NULL.
 * DRRS support is determined by the presence of downclock mode (apart
 * from VBT setting).
 */
6102
static struct drm_display_mode *
6103 6104
intel_dp_drrs_init(struct intel_connector *connector,
		   struct drm_display_mode *fixed_mode)
6105
{
6106
	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
6107 6108
	struct drm_display_mode *downclock_mode = NULL;

6109 6110 6111
	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
	mutex_init(&dev_priv->drrs.mutex);

6112
	if (INTEL_GEN(dev_priv) <= 6) {
6113 6114 6115 6116 6117
		DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
		return NULL;
	}

	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
6118
		DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
6119 6120 6121
		return NULL;
	}

6122 6123
	downclock_mode = intel_find_panel_downclock(dev_priv, fixed_mode,
						    &connector->base);
6124 6125

	if (!downclock_mode) {
6126
		DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
6127 6128 6129
		return NULL;
	}

6130
	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
6131

6132
	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
6133
	DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
6134 6135 6136
	return downclock_mode;
}

6137
static bool intel_edp_init_connector(struct intel_dp *intel_dp,
6138
				     struct intel_connector *intel_connector)
6139
{
6140
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
6141
	struct drm_i915_private *dev_priv = to_i915(dev);
6142
	struct drm_connector *connector = &intel_connector->base;
6143
	struct drm_display_mode *fixed_mode = NULL;
6144
	struct drm_display_mode *downclock_mode = NULL;
6145 6146 6147
	bool has_dpcd;
	struct drm_display_mode *scan;
	struct edid *edid;
6148
	enum pipe pipe = INVALID_PIPE;
6149

6150
	if (!intel_dp_is_edp(intel_dp))
6151 6152
		return true;

6153 6154 6155 6156 6157 6158
	/*
	 * On IBX/CPT we may get here with LVDS already registered. Since the
	 * driver uses the only internal power sequencer available for both
	 * eDP and LVDS bail out early in this case to prevent interfering
	 * with an already powered-on LVDS power sequencer.
	 */
6159
	if (intel_get_lvds_encoder(&dev_priv->drm)) {
6160 6161 6162 6163 6164 6165
		WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
		DRM_INFO("LVDS was detected, not registering eDP\n");

		return false;
	}

6166
	pps_lock(intel_dp);
6167 6168

	intel_dp_init_panel_power_timestamps(intel_dp);
6169
	intel_dp_pps_init(intel_dp);
6170
	intel_edp_panel_vdd_sanitize(intel_dp);
6171

6172
	pps_unlock(intel_dp);
6173

6174
	/* Cache DPCD and EDID for edp. */
6175
	has_dpcd = intel_edp_init_dpcd(intel_dp);
6176

6177
	if (!has_dpcd) {
6178 6179
		/* if this fails, presume the device is a ghost */
		DRM_INFO("failed to retrieve link info, disabling eDP\n");
6180
		goto out_vdd_off;
6181 6182
	}

6183
	mutex_lock(&dev->mode_config.mutex);
6184
	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
6185 6186
	if (edid) {
		if (drm_add_edid_modes(connector, edid)) {
6187
			drm_connector_update_edid_property(connector,
6188 6189 6190 6191 6192 6193 6194 6195 6196 6197
								edid);
		} else {
			kfree(edid);
			edid = ERR_PTR(-EINVAL);
		}
	} else {
		edid = ERR_PTR(-ENOENT);
	}
	intel_connector->edid = edid;

6198
	/* prefer fixed mode from EDID if available */
6199 6200 6201
	list_for_each_entry(scan, &connector->probed_modes, head) {
		if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
			fixed_mode = drm_mode_duplicate(dev, scan);
6202 6203
			downclock_mode = intel_dp_drrs_init(
						intel_connector, fixed_mode);
6204
			break;
6205 6206 6207 6208 6209 6210 6211
		}
	}

	/* fallback to VBT if available for eDP */
	if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
		fixed_mode = drm_mode_duplicate(dev,
					dev_priv->vbt.lfp_lvds_vbt_mode);
6212
		if (fixed_mode) {
6213
			fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
6214 6215 6216
			connector->display_info.width_mm = fixed_mode->width_mm;
			connector->display_info.height_mm = fixed_mode->height_mm;
		}
6217
	}
6218
	mutex_unlock(&dev->mode_config.mutex);
6219

6220
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6221 6222
		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
		register_reboot_notifier(&intel_dp->edp_notifier);
6223 6224 6225 6226 6227 6228

		/*
		 * Figure out the current pipe for the initial backlight setup.
		 * If the current pipe isn't valid, try the PPS pipe, and if that
		 * fails just assume pipe A.
		 */
6229
		pipe = vlv_active_pipe(intel_dp);
6230 6231 6232 6233 6234 6235 6236 6237 6238

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = intel_dp->pps_pipe;

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = PIPE_A;

		DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
			      pipe_name(pipe));
6239 6240
	}

6241
	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
6242
	intel_connector->panel.backlight.power = intel_edp_backlight_power;
6243
	intel_panel_setup_backlight(connector, pipe);
6244 6245

	return true;
6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257

out_vdd_off:
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
	pps_lock(intel_dp);
	edp_panel_vdd_off_sync(intel_dp);
	pps_unlock(intel_dp);

	return false;
6258 6259
}

6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275
static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
{
	struct intel_connector *intel_connector;
	struct drm_connector *connector;

	intel_connector = container_of(work, typeof(*intel_connector),
				       modeset_retry_work);
	connector = &intel_connector->base;
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
		      connector->name);

	/* Grab the locks before changing connector property*/
	mutex_lock(&connector->dev->mode_config.mutex);
	/* Set connector link status to BAD and send a Uevent to notify
	 * userspace to do a modeset.
	 */
6276 6277
	drm_connector_set_link_status_property(connector,
					       DRM_MODE_LINK_STATUS_BAD);
6278 6279 6280 6281 6282
	mutex_unlock(&connector->dev->mode_config.mutex);
	/* Send Hotplug uevent so userspace can reprobe */
	drm_kms_helper_hotplug_event(connector->dev);
}

6283
bool
6284 6285
intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
			struct intel_connector *intel_connector)
6286
{
6287 6288 6289 6290
	struct drm_connector *connector = &intel_connector->base;
	struct intel_dp *intel_dp = &intel_dig_port->dp;
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
	struct drm_device *dev = intel_encoder->base.dev;
6291
	struct drm_i915_private *dev_priv = to_i915(dev);
6292
	enum port port = intel_encoder->port;
6293
	int type;
6294

6295 6296 6297 6298
	/* Initialize the work for modeset in case of link train failure */
	INIT_WORK(&intel_connector->modeset_retry_work,
		  intel_dp_modeset_retry_work_fn);

6299 6300 6301 6302 6303
	if (WARN(intel_dig_port->max_lanes < 1,
		 "Not enough lanes (%d) for DP on port %c\n",
		 intel_dig_port->max_lanes, port_name(port)))
		return false;

6304 6305
	intel_dp_set_source_rates(intel_dp);

6306
	intel_dp->reset_link_params = true;
6307
	intel_dp->pps_pipe = INVALID_PIPE;
6308
	intel_dp->active_pipe = INVALID_PIPE;
6309

6310
	/* intel_dp vfuncs */
6311
	if (HAS_DDI(dev_priv))
6312 6313
		intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;

6314 6315
	/* Preserve the current hw state. */
	intel_dp->DP = I915_READ(intel_dp->output_reg);
6316
	intel_dp->attached_connector = intel_connector;
6317

6318
	if (intel_dp_is_port_edp(dev_priv, port))
6319
		type = DRM_MODE_CONNECTOR_eDP;
6320 6321
	else
		type = DRM_MODE_CONNECTOR_DisplayPort;
6322

6323 6324 6325
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		intel_dp->active_pipe = vlv_active_pipe(intel_dp);

6326 6327 6328 6329 6330 6331 6332 6333
	/*
	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
	 * for DP the encoder type can be set by the caller to
	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
	 */
	if (type == DRM_MODE_CONNECTOR_eDP)
		intel_encoder->type = INTEL_OUTPUT_EDP;

6334
	/* eDP only on port B and/or C on vlv/chv */
6335
	if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
6336 6337
		    intel_dp_is_edp(intel_dp) &&
		    port != PORT_B && port != PORT_C))
6338 6339
		return false;

6340 6341 6342 6343
	DRM_DEBUG_KMS("Adding %s connector on port %c\n",
			type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
			port_name(port));

6344
	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
6345 6346
	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);

6347
	if (!HAS_GMCH_DISPLAY(dev_priv))
6348
		connector->interlace_allowed = true;
6349 6350
	connector->doublescan_allowed = 0;

6351
	intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
6352

6353
	intel_dp_aux_init(intel_dp);
6354

6355
	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
6356
			  edp_panel_vdd_work);
6357

6358
	intel_connector_attach_encoder(intel_connector, intel_encoder);
6359

6360
	if (HAS_DDI(dev_priv))
6361 6362 6363 6364
		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
	else
		intel_connector->get_hw_state = intel_connector_get_hw_state;

6365
	/* init MST on ports that can support it */
6366
	if (HAS_DP_MST(dev_priv) && !intel_dp_is_edp(intel_dp) &&
6367 6368
	    (port == PORT_B || port == PORT_C ||
	     port == PORT_D || port == PORT_F))
6369 6370
		intel_dp_mst_encoder_init(intel_dig_port,
					  intel_connector->base.base.id);
6371

6372
	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
6373 6374 6375
		intel_dp_aux_fini(intel_dp);
		intel_dp_mst_encoder_cleanup(intel_dig_port);
		goto fail;
6376
	}
6377

6378
	intel_dp_add_properties(intel_dp, connector);
6379

6380
	if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
6381 6382 6383 6384
		int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
		if (ret)
			DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
	}
6385

6386 6387 6388 6389
	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
	 * 0xd.  Failure to do so will result in spurious interrupts being
	 * generated on the port when a cable is not attached.
	 */
6390
	if (IS_G45(dev_priv)) {
6391 6392 6393
		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
	}
6394 6395

	return true;
6396 6397 6398 6399 6400

fail:
	drm_connector_cleanup(connector);

	return false;
6401
}
6402

6403
bool intel_dp_init(struct drm_i915_private *dev_priv,
6404 6405
		   i915_reg_t output_reg,
		   enum port port)
6406 6407 6408 6409 6410 6411
{
	struct intel_digital_port *intel_dig_port;
	struct intel_encoder *intel_encoder;
	struct drm_encoder *encoder;
	struct intel_connector *intel_connector;

6412
	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
6413
	if (!intel_dig_port)
6414
		return false;
6415

6416
	intel_connector = intel_connector_alloc();
S
Sudip Mukherjee 已提交
6417 6418
	if (!intel_connector)
		goto err_connector_alloc;
6419 6420 6421 6422

	intel_encoder = &intel_dig_port->base;
	encoder = &intel_encoder->base;

6423 6424 6425
	if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
			     &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
			     "DP %c", port_name(port)))
S
Sudip Mukherjee 已提交
6426
		goto err_encoder_init;
6427

6428
	intel_encoder->hotplug = intel_dp_hotplug;
6429
	intel_encoder->compute_config = intel_dp_compute_config;
P
Paulo Zanoni 已提交
6430
	intel_encoder->get_hw_state = intel_dp_get_hw_state;
6431
	intel_encoder->get_config = intel_dp_get_config;
6432
	intel_encoder->suspend = intel_dp_encoder_suspend;
6433
	if (IS_CHERRYVIEW(dev_priv)) {
6434
		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
6435 6436
		intel_encoder->pre_enable = chv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
6437
		intel_encoder->disable = vlv_disable_dp;
6438
		intel_encoder->post_disable = chv_post_disable_dp;
6439
		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
6440
	} else if (IS_VALLEYVIEW(dev_priv)) {
6441
		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
6442 6443
		intel_encoder->pre_enable = vlv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
6444
		intel_encoder->disable = vlv_disable_dp;
6445
		intel_encoder->post_disable = vlv_post_disable_dp;
6446
	} else {
6447 6448
		intel_encoder->pre_enable = g4x_pre_enable_dp;
		intel_encoder->enable = g4x_enable_dp;
6449
		intel_encoder->disable = g4x_disable_dp;
6450
		intel_encoder->post_disable = g4x_post_disable_dp;
6451
	}
6452 6453

	intel_dig_port->dp.output_reg = output_reg;
6454
	intel_dig_port->max_lanes = 4;
6455

6456
	intel_encoder->type = INTEL_OUTPUT_DP;
6457
	intel_encoder->power_domain = intel_port_to_power_domain(port);
6458
	if (IS_CHERRYVIEW(dev_priv)) {
6459 6460 6461 6462 6463 6464 6465
		if (port == PORT_D)
			intel_encoder->crtc_mask = 1 << 2;
		else
			intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
	} else {
		intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
	}
6466
	intel_encoder->cloneable = 0;
6467
	intel_encoder->port = port;
6468

6469 6470
	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;

6471 6472 6473
	if (port != PORT_A)
		intel_infoframe_init(intel_dig_port);

S
Sudip Mukherjee 已提交
6474 6475 6476
	if (!intel_dp_init_connector(intel_dig_port, intel_connector))
		goto err_init_connector;

6477
	return true;
S
Sudip Mukherjee 已提交
6478 6479 6480

err_init_connector:
	drm_encoder_cleanup(encoder);
S
Sudip Mukherjee 已提交
6481
err_encoder_init:
S
Sudip Mukherjee 已提交
6482 6483 6484
	kfree(intel_connector);
err_connector_alloc:
	kfree(intel_dig_port);
6485
	return false;
6486
}
6487

6488
void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
6489
{
6490 6491 6492 6493
	struct intel_encoder *encoder;

	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
6494

6495 6496
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;
6497

6498
		intel_dp = enc_to_intel_dp(&encoder->base);
6499

6500
		if (!intel_dp->can_mst)
6501 6502
			continue;

6503 6504
		if (intel_dp->is_mst)
			drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
6505 6506 6507
	}
}

6508
void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
6509
{
6510
	struct intel_encoder *encoder;
6511

6512 6513
	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
6514
		int ret;
6515

6516 6517 6518 6519 6520 6521
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;

		intel_dp = enc_to_intel_dp(&encoder->base);

		if (!intel_dp->can_mst)
6522
			continue;
6523

6524
		ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr);
6525
		if (ret)
6526
			intel_dp_check_mst_status(intel_dp);
6527 6528
	}
}