vmbus_drv.c 69.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7
/*
 * Copyright (c) 2009, Microsoft Corporation.
 *
 * Authors:
 *   Haiyang Zhang <haiyangz@microsoft.com>
 *   Hank Janssen  <hjanssen@microsoft.com>
8
 *   K. Y. Srinivasan <kys@microsoft.com>
9
 */
10 11
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

12 13 14 15 16
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/sysctl.h>
17
#include <linux/slab.h>
18
#include <linux/acpi.h>
19
#include <linux/completion.h>
20
#include <linux/hyperv.h>
21
#include <linux/kernel_stat.h>
22
#include <linux/clockchips.h>
23
#include <linux/cpu.h>
24 25
#include <linux/sched/task_stack.h>

26
#include <asm/mshyperv.h>
27
#include <linux/delay.h>
28 29
#include <linux/notifier.h>
#include <linux/ptrace.h>
30
#include <linux/screen_info.h>
31
#include <linux/kdebug.h>
32
#include <linux/efi.h>
33
#include <linux/random.h>
34
#include <linux/kernel.h>
35
#include <linux/syscore_ops.h>
36
#include <clocksource/hyperv_timer.h>
37
#include "hyperv_vmbus.h"
38

39 40 41 42 43
struct vmbus_dynid {
	struct list_head node;
	struct hv_vmbus_device_id id;
};

44
static struct acpi_device  *hv_acpi_dev;
45

46
static struct completion probe_event;
47

48
static int hyperv_cpuhp_online;
49

50 51
static void *hv_panic_page;

52 53 54 55 56 57 58 59 60 61 62 63
/*
 * Boolean to control whether to report panic messages over Hyper-V.
 *
 * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
 */
static int sysctl_record_panic_msg = 1;

static int hyperv_report_reg(void)
{
	return !sysctl_record_panic_msg || !hv_panic_page;
}

64 65 66 67 68
static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
			      void *args)
{
	struct pt_regs *regs;

69
	vmbus_initiate_unload(true);
70

71 72 73 74 75 76
	/*
	 * Hyper-V should be notified only once about a panic.  If we will be
	 * doing hyperv_report_panic_msg() later with kmsg data, don't do
	 * the notification here.
	 */
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE
77
	    && hyperv_report_reg()) {
78
		regs = current_pt_regs();
79
		hyperv_report_panic(regs, val, false);
80
	}
81 82 83
	return NOTIFY_DONE;
}

84 85 86 87 88 89
static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
			    void *args)
{
	struct die_args *die = (struct die_args *)args;
	struct pt_regs *regs = die->regs;

90 91 92 93
	/* Don't notify Hyper-V if the die event is other than oops */
	if (val != DIE_OOPS)
		return NOTIFY_DONE;

94 95 96 97 98
	/*
	 * Hyper-V should be notified only once about a panic.  If we will be
	 * doing hyperv_report_panic_msg() later with kmsg data, don't do
	 * the notification here.
	 */
99
	if (hyperv_report_reg())
100
		hyperv_report_panic(regs, val, true);
101 102 103 104 105 106
	return NOTIFY_DONE;
}

static struct notifier_block hyperv_die_block = {
	.notifier_call = hyperv_die_event,
};
107 108 109 110
static struct notifier_block hyperv_panic_block = {
	.notifier_call = hyperv_panic_event,
};

111 112
static const char *fb_mmio_name = "fb_range";
static struct resource *fb_mmio;
113
static struct resource *hyperv_mmio;
114
static DEFINE_MUTEX(hyperv_mmio_lock);
115

116 117 118 119 120 121 122 123
static int vmbus_exists(void)
{
	if (hv_acpi_dev == NULL)
		return -ENODEV;

	return 0;
}

124
static u8 channel_monitor_group(const struct vmbus_channel *channel)
125 126 127 128
{
	return (u8)channel->offermsg.monitorid / 32;
}

129
static u8 channel_monitor_offset(const struct vmbus_channel *channel)
130 131 132 133
{
	return (u8)channel->offermsg.monitorid % 32;
}

134 135
static u32 channel_pending(const struct vmbus_channel *channel,
			   const struct hv_monitor_page *monitor_page)
136 137
{
	u8 monitor_group = channel_monitor_group(channel);
138

139 140 141
	return monitor_page->trigger_group[monitor_group].pending;
}

142 143
static u32 channel_latency(const struct vmbus_channel *channel,
			   const struct hv_monitor_page *monitor_page)
144 145 146
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
147

148 149 150
	return monitor_page->latency[monitor_group][monitor_offset];
}

151 152 153 154 155 156 157 158
static u32 channel_conn_id(struct vmbus_channel *channel,
			   struct hv_monitor_page *monitor_page)
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
}

159 160 161 162 163 164 165 166 167 168 169
static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
		       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
}
static DEVICE_ATTR_RO(id);

170 171 172 173 174 175 176 177 178 179 180
static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
			  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->state);
}
static DEVICE_ATTR_RO(state);

181 182 183 184 185 186 187 188 189 190 191
static ssize_t monitor_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
}
static DEVICE_ATTR_RO(monitor_id);

192 193 194 195 196 197 198 199
static ssize_t class_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
200
		       &hv_dev->channel->offermsg.offer.if_type);
201 202 203
}
static DEVICE_ATTR_RO(class_id);

204 205 206 207 208 209 210 211
static ssize_t device_id_show(struct device *dev,
			      struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
212
		       &hv_dev->channel->offermsg.offer.if_instance);
213 214 215
}
static DEVICE_ATTR_RO(device_id);

216 217 218 219 220
static ssize_t modalias_show(struct device *dev,
			     struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

221
	return sprintf(buf, "vmbus:%*phN\n", UUID_SIZE, &hv_dev->dev_type);
222 223 224
}
static DEVICE_ATTR_RO(modalias);

225 226 227 228 229 230 231 232 233 234 235 236 237 238
#ifdef CONFIG_NUMA
static ssize_t numa_node_show(struct device *dev,
			      struct device_attribute *attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;

	return sprintf(buf, "%d\n", hv_dev->channel->numa_node);
}
static DEVICE_ATTR_RO(numa_node);
#endif

239 240 241 242 243 244 245 246 247 248
static ssize_t server_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
249
				       vmbus_connection.monitor_pages[0]));
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
}
static DEVICE_ATTR_RO(server_monitor_pending);

static ssize_t client_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_pending);
266

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
static ssize_t server_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_latency);

static ssize_t client_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_latency);

295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
static ssize_t server_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_conn_id);

static ssize_t client_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_conn_id);

323 324 325 326 327
static ssize_t out_intr_mask_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
328
	int ret;
329 330 331

	if (!hv_dev->channel)
		return -ENODEV;
332 333 334 335 336 337

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;

338 339 340 341 342 343 344 345 346
	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(out_intr_mask);

static ssize_t out_read_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
347
	int ret;
348 349 350

	if (!hv_dev->channel)
		return -ENODEV;
351 352 353 354 355

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
356 357 358 359 360 361 362 363 364 365
	return sprintf(buf, "%d\n", outbound.current_read_index);
}
static DEVICE_ATTR_RO(out_read_index);

static ssize_t out_write_index_show(struct device *dev,
				    struct device_attribute *dev_attr,
				    char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
366
	int ret;
367 368 369

	if (!hv_dev->channel)
		return -ENODEV;
370 371 372 373 374

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
375 376 377 378 379 380 381 382 383 384
	return sprintf(buf, "%d\n", outbound.current_write_index);
}
static DEVICE_ATTR_RO(out_write_index);

static ssize_t out_read_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
385
	int ret;
386 387 388

	if (!hv_dev->channel)
		return -ENODEV;
389 390 391 392 393

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
394 395 396 397 398 399 400 401 402 403
	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(out_read_bytes_avail);

static ssize_t out_write_bytes_avail_show(struct device *dev,
					  struct device_attribute *dev_attr,
					  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
404
	int ret;
405 406 407

	if (!hv_dev->channel)
		return -ENODEV;
408 409 410 411 412

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
413 414 415 416 417 418 419 420 421
	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(out_write_bytes_avail);

static ssize_t in_intr_mask_show(struct device *dev,
				 struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
422
	int ret;
423 424 425

	if (!hv_dev->channel)
		return -ENODEV;
426 427 428 429 430

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

431 432 433 434 435 436 437 438 439
	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(in_intr_mask);

static ssize_t in_read_index_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
440
	int ret;
441 442 443

	if (!hv_dev->channel)
		return -ENODEV;
444 445 446 447 448

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

449 450 451 452 453 454 455 456 457
	return sprintf(buf, "%d\n", inbound.current_read_index);
}
static DEVICE_ATTR_RO(in_read_index);

static ssize_t in_write_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
458
	int ret;
459 460 461

	if (!hv_dev->channel)
		return -ENODEV;
462 463 464 465 466

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

467 468 469 470 471 472 473 474 475 476
	return sprintf(buf, "%d\n", inbound.current_write_index);
}
static DEVICE_ATTR_RO(in_write_index);

static ssize_t in_read_bytes_avail_show(struct device *dev,
					struct device_attribute *dev_attr,
					char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
477
	int ret;
478 479 480

	if (!hv_dev->channel)
		return -ENODEV;
481 482 483 484 485

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

486 487 488 489 490 491 492 493 494 495
	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(in_read_bytes_avail);

static ssize_t in_write_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
496
	int ret;
497 498 499

	if (!hv_dev->channel)
		return -ENODEV;
500 501 502 503 504

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

505 506 507 508
	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(in_write_bytes_avail);

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
static ssize_t channel_vp_mapping_show(struct device *dev,
				       struct device_attribute *dev_attr,
				       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
	unsigned long flags;
	int buf_size = PAGE_SIZE, n_written, tot_written;
	struct list_head *cur;

	if (!channel)
		return -ENODEV;

	tot_written = snprintf(buf, buf_size, "%u:%u\n",
		channel->offermsg.child_relid, channel->target_cpu);

	spin_lock_irqsave(&channel->lock, flags);

	list_for_each(cur, &channel->sc_list) {
		if (tot_written >= buf_size - 1)
			break;

		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
		n_written = scnprintf(buf + tot_written,
				     buf_size - tot_written,
				     "%u:%u\n",
				     cur_sc->offermsg.child_relid,
				     cur_sc->target_cpu);
		tot_written += n_written;
	}

	spin_unlock_irqrestore(&channel->lock, flags);

	return tot_written;
}
static DEVICE_ATTR_RO(channel_vp_mapping);

546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
static ssize_t vendor_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
}
static DEVICE_ATTR_RO(vendor);

static ssize_t device_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->device_id);
}
static DEVICE_ATTR_RO(device);

564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
static ssize_t driver_override_store(struct device *dev,
				     struct device_attribute *attr,
				     const char *buf, size_t count)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	char *driver_override, *old, *cp;

	/* We need to keep extra room for a newline */
	if (count >= (PAGE_SIZE - 1))
		return -EINVAL;

	driver_override = kstrndup(buf, count, GFP_KERNEL);
	if (!driver_override)
		return -ENOMEM;

	cp = strchr(driver_override, '\n');
	if (cp)
		*cp = '\0';

	device_lock(dev);
	old = hv_dev->driver_override;
	if (strlen(driver_override)) {
		hv_dev->driver_override = driver_override;
	} else {
		kfree(driver_override);
		hv_dev->driver_override = NULL;
	}
	device_unlock(dev);

	kfree(old);

	return count;
}

static ssize_t driver_override_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	ssize_t len;

	device_lock(dev);
	len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
	device_unlock(dev);

	return len;
}
static DEVICE_ATTR_RW(driver_override);

612
/* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
613
static struct attribute *vmbus_dev_attrs[] = {
614
	&dev_attr_id.attr,
615
	&dev_attr_state.attr,
616
	&dev_attr_monitor_id.attr,
617
	&dev_attr_class_id.attr,
618
	&dev_attr_device_id.attr,
619
	&dev_attr_modalias.attr,
620 621 622
#ifdef CONFIG_NUMA
	&dev_attr_numa_node.attr,
#endif
623 624
	&dev_attr_server_monitor_pending.attr,
	&dev_attr_client_monitor_pending.attr,
625 626
	&dev_attr_server_monitor_latency.attr,
	&dev_attr_client_monitor_latency.attr,
627 628
	&dev_attr_server_monitor_conn_id.attr,
	&dev_attr_client_monitor_conn_id.attr,
629 630 631 632 633 634 635 636 637 638
	&dev_attr_out_intr_mask.attr,
	&dev_attr_out_read_index.attr,
	&dev_attr_out_write_index.attr,
	&dev_attr_out_read_bytes_avail.attr,
	&dev_attr_out_write_bytes_avail.attr,
	&dev_attr_in_intr_mask.attr,
	&dev_attr_in_read_index.attr,
	&dev_attr_in_write_index.attr,
	&dev_attr_in_read_bytes_avail.attr,
	&dev_attr_in_write_bytes_avail.attr,
639
	&dev_attr_channel_vp_mapping.attr,
640 641
	&dev_attr_vendor.attr,
	&dev_attr_device.attr,
642
	&dev_attr_driver_override.attr,
643 644
	NULL,
};
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674

/*
 * Device-level attribute_group callback function. Returns the permission for
 * each attribute, and returns 0 if an attribute is not visible.
 */
static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
{
	struct device *dev = kobj_to_dev(kobj);
	const struct hv_device *hv_dev = device_to_hv_device(dev);

	/* Hide the monitor attributes if the monitor mechanism is not used. */
	if (!hv_dev->channel->offermsg.monitor_allocated &&
	    (attr == &dev_attr_monitor_id.attr ||
	     attr == &dev_attr_server_monitor_pending.attr ||
	     attr == &dev_attr_client_monitor_pending.attr ||
	     attr == &dev_attr_server_monitor_latency.attr ||
	     attr == &dev_attr_client_monitor_latency.attr ||
	     attr == &dev_attr_server_monitor_conn_id.attr ||
	     attr == &dev_attr_client_monitor_conn_id.attr))
		return 0;

	return attr->mode;
}

static const struct attribute_group vmbus_dev_group = {
	.attrs = vmbus_dev_attrs,
	.is_visible = vmbus_dev_attr_is_visible
};
__ATTRIBUTE_GROUPS(vmbus_dev);
675

676 677 678 679 680 681
/*
 * vmbus_uevent - add uevent for our device
 *
 * This routine is invoked when a device is added or removed on the vmbus to
 * generate a uevent to udev in the userspace. The udev will then look at its
 * rule and the uevent generated here to load the appropriate driver
682 683 684 685
 *
 * The alias string will be of the form vmbus:guid where guid is the string
 * representation of the device guid (each byte of the guid will be
 * represented with two hex characters.
686 687 688 689
 */
static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
{
	struct hv_device *dev = device_to_hv_device(device);
690
	const char *format = "MODALIAS=vmbus:%*phN";
691

692
	return add_uevent_var(env, format, UUID_SIZE, &dev->dev_type);
693 694
}

695
static const struct hv_vmbus_device_id *
696
hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
697 698 699 700
{
	if (id == NULL)
		return NULL; /* empty device table */

701 702
	for (; !guid_is_null(&id->guid); id++)
		if (guid_equal(&id->guid, guid))
703 704 705 706 707 708
			return id;

	return NULL;
}

static const struct hv_vmbus_device_id *
709
hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
710
{
711 712 713 714 715
	const struct hv_vmbus_device_id *id = NULL;
	struct vmbus_dynid *dynid;

	spin_lock(&drv->dynids.lock);
	list_for_each_entry(dynid, &drv->dynids.list, node) {
716
		if (guid_equal(&dynid->id.guid, guid)) {
717 718 719 720 721 722
			id = &dynid->id;
			break;
		}
	}
	spin_unlock(&drv->dynids.lock);

723 724
	return id;
}
725

726
static const struct hv_vmbus_device_id vmbus_device_null;
727

728 729 730 731 732 733 734
/*
 * Return a matching hv_vmbus_device_id pointer.
 * If there is no match, return NULL.
 */
static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
							struct hv_device *dev)
{
735
	const guid_t *guid = &dev->dev_type;
736
	const struct hv_vmbus_device_id *id;
737

738 739 740 741 742 743 744 745 746 747 748 749 750 751
	/* When driver_override is set, only bind to the matching driver */
	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
		return NULL;

	/* Look at the dynamic ids first, before the static ones */
	id = hv_vmbus_dynid_match(drv, guid);
	if (!id)
		id = hv_vmbus_dev_match(drv->id_table, guid);

	/* driver_override will always match, send a dummy id */
	if (!id && dev->driver_override)
		id = &vmbus_device_null;

	return id;
752 753
}

754
/* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
755
static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
{
	struct vmbus_dynid *dynid;

	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
	if (!dynid)
		return -ENOMEM;

	dynid->id.guid = *guid;

	spin_lock(&drv->dynids.lock);
	list_add_tail(&dynid->node, &drv->dynids.list);
	spin_unlock(&drv->dynids.lock);

	return driver_attach(&drv->driver);
}

static void vmbus_free_dynids(struct hv_driver *drv)
{
	struct vmbus_dynid *dynid, *n;

	spin_lock(&drv->dynids.lock);
	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
		list_del(&dynid->node);
		kfree(dynid);
	}
	spin_unlock(&drv->dynids.lock);
}

/*
 * store_new_id - sysfs frontend to vmbus_add_dynid()
 *
 * Allow GUIDs to be added to an existing driver via sysfs.
 */
static ssize_t new_id_store(struct device_driver *driver, const char *buf,
			    size_t count)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
793
	guid_t guid;
794 795
	ssize_t retval;

796
	retval = guid_parse(buf, &guid);
797 798
	if (retval)
		return retval;
799

800
	if (hv_vmbus_dynid_match(drv, &guid))
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
		return -EEXIST;

	retval = vmbus_add_dynid(drv, &guid);
	if (retval)
		return retval;
	return count;
}
static DRIVER_ATTR_WO(new_id);

/*
 * store_remove_id - remove a PCI device ID from this driver
 *
 * Removes a dynamic pci device ID to this driver.
 */
static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
			       size_t count)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
	struct vmbus_dynid *dynid, *n;
820
	guid_t guid;
821
	ssize_t retval;
822

823
	retval = guid_parse(buf, &guid);
824 825
	if (retval)
		return retval;
826

827
	retval = -ENODEV;
828 829 830 831
	spin_lock(&drv->dynids.lock);
	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
		struct hv_vmbus_device_id *id = &dynid->id;

832
		if (guid_equal(&id->guid, &guid)) {
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
			list_del(&dynid->node);
			kfree(dynid);
			retval = count;
			break;
		}
	}
	spin_unlock(&drv->dynids.lock);

	return retval;
}
static DRIVER_ATTR_WO(remove_id);

static struct attribute *vmbus_drv_attrs[] = {
	&driver_attr_new_id.attr,
	&driver_attr_remove_id.attr,
	NULL,
};
ATTRIBUTE_GROUPS(vmbus_drv);
851

852 853 854 855 856 857 858

/*
 * vmbus_match - Attempt to match the specified device to the specified driver
 */
static int vmbus_match(struct device *device, struct device_driver *driver)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
859
	struct hv_device *hv_dev = device_to_hv_device(device);
860

861 862 863 864
	/* The hv_sock driver handles all hv_sock offers. */
	if (is_hvsock_channel(hv_dev->channel))
		return drv->hvsock;

865
	if (hv_vmbus_get_id(drv, hv_dev))
866
		return 1;
867

868
	return 0;
869 870
}

871 872 873 874 875 876 877 878
/*
 * vmbus_probe - Add the new vmbus's child device
 */
static int vmbus_probe(struct device *child_device)
{
	int ret = 0;
	struct hv_driver *drv =
			drv_to_hv_drv(child_device->driver);
879
	struct hv_device *dev = device_to_hv_device(child_device);
880
	const struct hv_vmbus_device_id *dev_id;
881

882
	dev_id = hv_vmbus_get_id(drv, dev);
883
	if (drv->probe) {
884
		ret = drv->probe(dev, dev_id);
885
		if (ret != 0)
886 887
			pr_err("probe failed for device %s (%d)\n",
			       dev_name(child_device), ret);
888 889

	} else {
890 891
		pr_err("probe not set for driver %s\n",
		       dev_name(child_device));
892
		ret = -ENODEV;
893 894 895 896
	}
	return ret;
}

897 898 899 900 901
/*
 * vmbus_remove - Remove a vmbus device
 */
static int vmbus_remove(struct device *child_device)
{
902
	struct hv_driver *drv;
903
	struct hv_device *dev = device_to_hv_device(child_device);
904

905 906 907 908 909
	if (child_device->driver) {
		drv = drv_to_hv_drv(child_device->driver);
		if (drv->remove)
			drv->remove(dev);
	}
910 911 912 913

	return 0;
}

914 915 916 917 918 919 920

/*
 * vmbus_shutdown - Shutdown a vmbus device
 */
static void vmbus_shutdown(struct device *child_device)
{
	struct hv_driver *drv;
921
	struct hv_device *dev = device_to_hv_device(child_device);
922 923 924 925 926 927 928 929


	/* The device may not be attached yet */
	if (!child_device->driver)
		return;

	drv = drv_to_hv_drv(child_device->driver);

930 931
	if (drv->shutdown)
		drv->shutdown(dev);
932 933
}

934
#ifdef CONFIG_PM_SLEEP
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
/*
 * vmbus_suspend - Suspend a vmbus device
 */
static int vmbus_suspend(struct device *child_device)
{
	struct hv_driver *drv;
	struct hv_device *dev = device_to_hv_device(child_device);

	/* The device may not be attached yet */
	if (!child_device->driver)
		return 0;

	drv = drv_to_hv_drv(child_device->driver);
	if (!drv->suspend)
		return -EOPNOTSUPP;

	return drv->suspend(dev);
}

/*
 * vmbus_resume - Resume a vmbus device
 */
static int vmbus_resume(struct device *child_device)
{
	struct hv_driver *drv;
	struct hv_device *dev = device_to_hv_device(child_device);

	/* The device may not be attached yet */
	if (!child_device->driver)
		return 0;

	drv = drv_to_hv_drv(child_device->driver);
	if (!drv->resume)
		return -EOPNOTSUPP;

	return drv->resume(dev);
}
972 973 974
#else
#define vmbus_suspend NULL
#define vmbus_resume NULL
975
#endif /* CONFIG_PM_SLEEP */
976 977 978 979 980 981

/*
 * vmbus_device_release - Final callback release of the vmbus child device
 */
static void vmbus_device_release(struct device *device)
{
982
	struct hv_device *hv_dev = device_to_hv_device(device);
983
	struct vmbus_channel *channel = hv_dev->channel;
984

985 986
	hv_debug_rm_dev_dir(hv_dev);

987
	mutex_lock(&vmbus_connection.channel_mutex);
988
	hv_process_channel_removal(channel);
989
	mutex_unlock(&vmbus_connection.channel_mutex);
990
	kfree(hv_dev);
991 992
}

993
/*
994 995 996 997 998 999 1000
 * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm.
 *
 * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we
 * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there
 * is no way to wake up a Generation-2 VM.
 *
 * The other 4 ops are for hibernation.
1001
 */
1002

1003
static const struct dev_pm_ops vmbus_pm = {
1004 1005 1006 1007 1008 1009
	.suspend_noirq	= NULL,
	.resume_noirq	= NULL,
	.freeze_noirq	= vmbus_suspend,
	.thaw_noirq	= vmbus_resume,
	.poweroff_noirq	= vmbus_suspend,
	.restore_noirq	= vmbus_resume,
1010 1011
};

1012
/* The one and only one */
1013 1014 1015 1016 1017 1018 1019
static struct bus_type  hv_bus = {
	.name =		"vmbus",
	.match =		vmbus_match,
	.shutdown =		vmbus_shutdown,
	.remove =		vmbus_remove,
	.probe =		vmbus_probe,
	.uevent =		vmbus_uevent,
1020 1021
	.dev_groups =		vmbus_dev_groups,
	.drv_groups =		vmbus_drv_groups,
1022
	.pm =			&vmbus_pm,
1023 1024
};

1025 1026
struct onmessage_work_context {
	struct work_struct work;
1027 1028 1029 1030
	struct {
		struct hv_message_header header;
		u8 payload[];
	} msg;
1031 1032 1033 1034 1035 1036
};

static void vmbus_onmessage_work(struct work_struct *work)
{
	struct onmessage_work_context *ctx;

1037 1038 1039 1040
	/* Do not process messages if we're in DISCONNECTED state */
	if (vmbus_connection.conn_state == DISCONNECTED)
		return;

1041 1042
	ctx = container_of(work, struct onmessage_work_context,
			   work);
1043 1044
	vmbus_onmessage((struct vmbus_channel_message_header *)
			&ctx->msg.payload);
1045 1046 1047
	kfree(ctx);
}

1048
void vmbus_on_msg_dpc(unsigned long data)
G
Greg Kroah-Hartman 已提交
1049
{
1050 1051
	struct hv_per_cpu_context *hv_cpu = (void *)data;
	void *page_addr = hv_cpu->synic_message_page;
G
Greg Kroah-Hartman 已提交
1052 1053
	struct hv_message *msg = (struct hv_message *)page_addr +
				  VMBUS_MESSAGE_SINT;
1054
	struct vmbus_channel_message_header *hdr;
1055
	const struct vmbus_channel_message_table_entry *entry;
1056
	struct onmessage_work_context *ctx;
1057
	u32 message_type = msg->header.message_type;
G
Greg Kroah-Hartman 已提交
1058

1059 1060 1061 1062 1063 1064 1065
	/*
	 * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as
	 * it is being used in 'struct vmbus_channel_message_header' definition
	 * which is supposed to match hypervisor ABI.
	 */
	BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32));

1066
	if (message_type == HVMSG_NONE)
1067 1068
		/* no msg */
		return;
1069

1070
	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
1071

1072 1073
	trace_vmbus_on_msg_dpc(hdr);

1074 1075 1076 1077
	if (hdr->msgtype >= CHANNELMSG_COUNT) {
		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
		goto msg_handled;
	}
1078

1079 1080 1081 1082 1083 1084
	if (msg->header.payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) {
		WARN_ONCE(1, "payload size is too large (%d)\n",
			  msg->header.payload_size);
		goto msg_handled;
	}

1085
	entry = &channel_message_table[hdr->msgtype];
1086 1087 1088 1089

	if (!entry->message_handler)
		goto msg_handled;

1090 1091 1092 1093 1094 1095
	if (msg->header.payload_size < entry->min_payload_len) {
		WARN_ONCE(1, "message too short: msgtype=%d len=%d\n",
			  hdr->msgtype, msg->header.payload_size);
		goto msg_handled;
	}

1096
	if (entry->handler_type	== VMHT_BLOCKING) {
1097 1098
		ctx = kmalloc(sizeof(*ctx) + msg->header.payload_size,
			      GFP_ATOMIC);
1099 1100
		if (ctx == NULL)
			return;
1101

1102
		INIT_WORK(&ctx->work, vmbus_onmessage_work);
1103 1104
		memcpy(&ctx->msg, msg, sizeof(msg->header) +
		       msg->header.payload_size);
1105

1106 1107 1108
		/*
		 * The host can generate a rescind message while we
		 * may still be handling the original offer. We deal with
1109 1110 1111
		 * this condition by relying on the synchronization provided
		 * by offer_in_progress and by channel_mutex.  See also the
		 * inline comments in vmbus_onoffer_rescind().
1112 1113 1114 1115 1116 1117
		 */
		switch (hdr->msgtype) {
		case CHANNELMSG_RESCIND_CHANNELOFFER:
			/*
			 * If we are handling the rescind message;
			 * schedule the work on the global work queue.
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
			 *
			 * The OFFER message and the RESCIND message should
			 * not be handled by the same serialized work queue,
			 * because the OFFER handler may call vmbus_open(),
			 * which tries to open the channel by sending an
			 * OPEN_CHANNEL message to the host and waits for
			 * the host's response; however, if the host has
			 * rescinded the channel before it receives the
			 * OPEN_CHANNEL message, the host just silently
			 * ignores the OPEN_CHANNEL message; as a result,
			 * the guest's OFFER handler hangs for ever, if we
			 * handle the RESCIND message in the same serialized
			 * work queue: the RESCIND handler can not start to
			 * run before the OFFER handler finishes.
1132
			 */
1133
			schedule_work(&ctx->work);
1134 1135 1136
			break;

		case CHANNELMSG_OFFERCHANNEL:
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
			/*
			 * The host sends the offer message of a given channel
			 * before sending the rescind message of the same
			 * channel.  These messages are sent to the guest's
			 * connect CPU; the guest then starts processing them
			 * in the tasklet handler on this CPU:
			 *
			 * VMBUS_CONNECT_CPU
			 *
			 * [vmbus_on_msg_dpc()]
			 * atomic_inc()  // CHANNELMSG_OFFERCHANNEL
			 * queue_work()
			 * ...
			 * [vmbus_on_msg_dpc()]
			 * schedule_work()  // CHANNELMSG_RESCIND_CHANNELOFFER
			 *
			 * We rely on the memory-ordering properties of the
			 * queue_work() and schedule_work() primitives, which
			 * guarantee that the atomic increment will be visible
			 * to the CPUs which will execute the offer & rescind
			 * works by the time these works will start execution.
			 */
1159
			atomic_inc(&vmbus_connection.offer_in_progress);
1160
			fallthrough;
1161 1162 1163 1164

		default:
			queue_work(vmbus_connection.work_queue, &ctx->work);
		}
1165 1166
	} else
		entry->message_handler(hdr);
G
Greg Kroah-Hartman 已提交
1167

1168
msg_handled:
1169
	vmbus_signal_eom(msg, message_type);
G
Greg Kroah-Hartman 已提交
1170 1171
}

1172
#ifdef CONFIG_PM_SLEEP
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
/*
 * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
 * hibernation, because hv_sock connections can not persist across hibernation.
 */
static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
{
	struct onmessage_work_context *ctx;
	struct vmbus_channel_rescind_offer *rescind;

	WARN_ON(!is_hvsock_channel(channel));

	/*
1185
	 * Allocation size is small and the allocation should really not fail,
1186 1187
	 * otherwise the state of the hv_sock connections ends up in limbo.
	 */
1188 1189
	ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind),
		      GFP_KERNEL | __GFP_NOFAIL);
1190 1191 1192 1193 1194 1195 1196 1197 1198

	/*
	 * So far, these are not really used by Linux. Just set them to the
	 * reasonable values conforming to the definitions of the fields.
	 */
	ctx->msg.header.message_type = 1;
	ctx->msg.header.payload_size = sizeof(*rescind);

	/* These values are actually used by Linux. */
1199
	rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload;
1200 1201 1202 1203 1204
	rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
	rescind->child_relid = channel->offermsg.child_relid;

	INIT_WORK(&ctx->work, vmbus_onmessage_work);

1205
	queue_work(vmbus_connection.work_queue, &ctx->work);
1206
}
1207
#endif /* CONFIG_PM_SLEEP */
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238

/*
 * Schedule all channels with events pending
 */
static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
{
	unsigned long *recv_int_page;
	u32 maxbits, relid;

	if (vmbus_proto_version < VERSION_WIN8) {
		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
		recv_int_page = vmbus_connection.recv_int_page;
	} else {
		/*
		 * When the host is win8 and beyond, the event page
		 * can be directly checked to get the id of the channel
		 * that has the interrupt pending.
		 */
		void *page_addr = hv_cpu->synic_event_page;
		union hv_synic_event_flags *event
			= (union hv_synic_event_flags *)page_addr +
						 VMBUS_MESSAGE_SINT;

		maxbits = HV_EVENT_FLAGS_COUNT;
		recv_int_page = event->flags;
	}

	if (unlikely(!recv_int_page))
		return;

	for_each_set_bit(relid, recv_int_page, maxbits) {
1239
		void (*callback_fn)(void *context);
1240 1241 1242 1243 1244 1245 1246 1247 1248
		struct vmbus_channel *channel;

		if (!sync_test_and_clear_bit(relid, recv_int_page))
			continue;

		/* Special case - vmbus channel protocol msg */
		if (relid == 0)
			continue;

1249 1250 1251 1252 1253 1254
		/*
		 * Pairs with the kfree_rcu() in vmbus_chan_release().
		 * Guarantees that the channel data structure doesn't
		 * get freed while the channel pointer below is being
		 * dereferenced.
		 */
1255 1256
		rcu_read_lock();

1257
		/* Find channel based on relid */
1258 1259 1260
		channel = relid2channel(relid);
		if (channel == NULL)
			goto sched_unlock_rcu;
1261

1262 1263
		if (channel->rescind)
			goto sched_unlock_rcu;
1264

1265 1266 1267 1268 1269 1270 1271 1272
		/*
		 * Make sure that the ring buffer data structure doesn't get
		 * freed while we dereference the ring buffer pointer.  Test
		 * for the channel's onchannel_callback being NULL within a
		 * sched_lock critical section.  See also the inline comments
		 * in vmbus_reset_channel_cb().
		 */
		spin_lock(&channel->sched_lock);
V
Vitaly Kuznetsov 已提交
1273

1274 1275 1276
		callback_fn = channel->onchannel_callback;
		if (unlikely(callback_fn == NULL))
			goto sched_unlock;
1277

1278
		trace_vmbus_chan_sched(channel);
1279

1280
		++channel->interrupts;
1281

1282 1283
		switch (channel->callback_mode) {
		case HV_CALL_ISR:
1284
			(*callback_fn)(channel->channel_callback_context);
1285
			break;
1286

1287 1288 1289 1290 1291
		case HV_CALL_BATCHED:
			hv_begin_read(&channel->inbound);
			fallthrough;
		case HV_CALL_DIRECT:
			tasklet_schedule(&channel->callback_event);
1292
		}
1293

1294 1295
sched_unlock:
		spin_unlock(&channel->sched_lock);
1296
sched_unlock_rcu:
1297
		rcu_read_unlock();
1298 1299 1300
	}
}

1301
static void vmbus_isr(void)
G
Greg Kroah-Hartman 已提交
1302
{
1303 1304 1305
	struct hv_per_cpu_context *hv_cpu
		= this_cpu_ptr(hv_context.cpu_context);
	void *page_addr = hv_cpu->synic_event_page;
G
Greg Kroah-Hartman 已提交
1306 1307
	struct hv_message *msg;
	union hv_synic_event_flags *event;
1308
	bool handled = false;
G
Greg Kroah-Hartman 已提交
1309

1310
	if (unlikely(page_addr == NULL))
1311
		return;
1312 1313 1314

	event = (union hv_synic_event_flags *)page_addr +
					 VMBUS_MESSAGE_SINT;
1315 1316 1317 1318 1319
	/*
	 * Check for events before checking for messages. This is the order
	 * in which events and messages are checked in Windows guests on
	 * Hyper-V, and the Windows team suggested we do the same.
	 */
G
Greg Kroah-Hartman 已提交
1320

1321 1322
	if ((vmbus_proto_version == VERSION_WS2008) ||
		(vmbus_proto_version == VERSION_WIN7)) {
G
Greg Kroah-Hartman 已提交
1323

1324
		/* Since we are a child, we only need to check bit 0 */
1325
		if (sync_test_and_clear_bit(0, event->flags))
1326 1327 1328 1329 1330 1331 1332 1333
			handled = true;
	} else {
		/*
		 * Our host is win8 or above. The signaling mechanism
		 * has changed and we can directly look at the event page.
		 * If bit n is set then we have an interrup on the channel
		 * whose id is n.
		 */
1334 1335
		handled = true;
	}
1336

1337
	if (handled)
1338
		vmbus_chan_sched(hv_cpu);
1339

1340
	page_addr = hv_cpu->synic_message_page;
1341 1342 1343
	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;

	/* Check if there are actual msgs to be processed */
1344
	if (msg->header.message_type != HVMSG_NONE) {
1345 1346 1347 1348
		if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
			hv_stimer0_isr();
			vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
		} else
1349
			tasklet_schedule(&hv_cpu->msg_dpc);
1350
	}
1351 1352

	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1353 1354
}

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
/*
 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
 * buffer and call into Hyper-V to transfer the data.
 */
static void hv_kmsg_dump(struct kmsg_dumper *dumper,
			 enum kmsg_dump_reason reason)
{
	size_t bytes_written;
	phys_addr_t panic_pa;

	/* We are only interested in panics. */
	if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
		return;

	panic_pa = virt_to_phys(hv_panic_page);

	/*
	 * Write dump contents to the page. No need to synchronize; panic should
	 * be single-threaded.
	 */
1375
	kmsg_dump_get_buffer(dumper, false, hv_panic_page, HV_HYP_PAGE_SIZE,
1376 1377 1378
			     &bytes_written);
	if (bytes_written)
		hyperv_report_panic_msg(panic_pa, bytes_written);
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
}

static struct kmsg_dumper hv_kmsg_dumper = {
	.dump = hv_kmsg_dump,
};

static struct ctl_table_header *hv_ctl_table_hdr;

/*
 * sysctl option to allow the user to control whether kmsg data should be
 * reported to Hyper-V on panic.
 */
static struct ctl_table hv_ctl_table[] = {
	{
		.procname       = "hyperv_record_panic_msg",
		.data           = &sysctl_record_panic_msg,
		.maxlen         = sizeof(int),
		.mode           = 0644,
		.proc_handler   = proc_dointvec_minmax,
1398 1399
		.extra1		= SYSCTL_ZERO,
		.extra2		= SYSCTL_ONE
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
	},
	{}
};

static struct ctl_table hv_root_table[] = {
	{
		.procname	= "kernel",
		.mode		= 0555,
		.child		= hv_ctl_table
	},
	{}
};
1412

1413
/*
1414 1415 1416
 * vmbus_bus_init -Main vmbus driver initialization routine.
 *
 * Here, we
1417 1418 1419
 *	- initialize the vmbus driver context
 *	- invoke the vmbus hv main init routine
 *	- retrieve the channel offers
1420
 */
1421
static int vmbus_bus_init(void)
1422
{
1423
	int ret;
1424

1425
	ret = hv_init();
1426
	if (ret != 0) {
1427
		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1428
		return ret;
1429 1430
	}

1431
	ret = bus_register(&hv_bus);
1432
	if (ret)
1433
		return ret;
1434

1435
	hv_setup_vmbus_irq(vmbus_isr);
1436

1437 1438 1439
	ret = hv_synic_alloc();
	if (ret)
		goto err_alloc;
1440

1441
	/*
1442 1443
	 * Initialize the per-cpu interrupt state and stimer state.
	 * Then connect to the host.
1444
	 */
1445
	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1446 1447
				hv_synic_init, hv_synic_cleanup);
	if (ret < 0)
1448
		goto err_cpuhp;
1449 1450
	hyperv_cpuhp_online = ret;

1451
	ret = vmbus_connect();
1452
	if (ret)
1453
		goto err_connect;
1454

1455 1456 1457
	/*
	 * Only register if the crash MSRs are available
	 */
1458
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
		u64 hyperv_crash_ctl;
		/*
		 * Sysctl registration is not fatal, since by default
		 * reporting is enabled.
		 */
		hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
		if (!hv_ctl_table_hdr)
			pr_err("Hyper-V: sysctl table register error");

		/*
		 * Register for panic kmsg callback only if the right
		 * capability is supported by the hypervisor.
		 */
1472
		hv_get_crash_ctl(hyperv_crash_ctl);
1473
		if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) {
1474
			hv_panic_page = (void *)hv_alloc_hyperv_zeroed_page();
1475 1476
			if (hv_panic_page) {
				ret = kmsg_dump_register(&hv_kmsg_dumper);
1477
				if (ret) {
1478 1479
					pr_err("Hyper-V: kmsg dump register "
						"error 0x%x\n", ret);
1480 1481 1482 1483
					hv_free_hyperv_page(
					    (unsigned long)hv_panic_page);
					hv_panic_page = NULL;
				}
1484 1485 1486 1487 1488
			} else
				pr_err("Hyper-V: panic message page memory "
					"allocation failed");
		}

1489
		register_die_notifier(&hyperv_die_block);
1490 1491
	}

1492 1493 1494 1495 1496 1497 1498 1499
	/*
	 * Always register the panic notifier because we need to unload
	 * the VMbus channel connection to prevent any VMbus
	 * activity after the VM panics.
	 */
	atomic_notifier_chain_register(&panic_notifier_list,
			       &hyperv_panic_block);

1500
	vmbus_request_offers();
1501

1502
	return 0;
1503

1504
err_connect:
1505
	cpuhp_remove_state(hyperv_cpuhp_online);
1506
err_cpuhp:
1507
	hv_synic_free();
1508
err_alloc:
1509
	hv_remove_vmbus_irq();
1510 1511

	bus_unregister(&hv_bus);
1512 1513
	unregister_sysctl_table(hv_ctl_table_hdr);
	hv_ctl_table_hdr = NULL;
1514
	return ret;
1515 1516
}

1517
/**
1518 1519
 * __vmbus_child_driver_register() - Register a vmbus's driver
 * @hv_driver: Pointer to driver structure you want to register
1520 1521
 * @owner: owner module of the drv
 * @mod_name: module name string
1522 1523
 *
 * Registers the given driver with Linux through the 'driver_register()' call
1524
 * and sets up the hyper-v vmbus handling for this driver.
1525 1526
 * It will return the state of the 'driver_register()' call.
 *
1527
 */
1528
int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1529
{
1530
	int ret;
1531

1532
	pr_info("registering driver %s\n", hv_driver->name);
1533

1534 1535 1536 1537
	ret = vmbus_exists();
	if (ret < 0)
		return ret;

1538 1539 1540 1541
	hv_driver->driver.name = hv_driver->name;
	hv_driver->driver.owner = owner;
	hv_driver->driver.mod_name = mod_name;
	hv_driver->driver.bus = &hv_bus;
1542

1543 1544 1545
	spin_lock_init(&hv_driver->dynids.lock);
	INIT_LIST_HEAD(&hv_driver->dynids.list);

1546
	ret = driver_register(&hv_driver->driver);
1547

1548
	return ret;
1549
}
1550
EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1551

1552
/**
1553
 * vmbus_driver_unregister() - Unregister a vmbus's driver
1554 1555
 * @hv_driver: Pointer to driver structure you want to
 *             un-register
1556
 *
1557 1558
 * Un-register the given driver that was previous registered with a call to
 * vmbus_driver_register()
1559
 */
1560
void vmbus_driver_unregister(struct hv_driver *hv_driver)
1561
{
1562
	pr_info("unregistering driver %s\n", hv_driver->name);
1563

1564
	if (!vmbus_exists()) {
1565
		driver_unregister(&hv_driver->driver);
1566 1567
		vmbus_free_dynids(hv_driver);
	}
1568
}
1569
EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1570

1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584

/*
 * Called when last reference to channel is gone.
 */
static void vmbus_chan_release(struct kobject *kobj)
{
	struct vmbus_channel *channel
		= container_of(kobj, struct vmbus_channel, kobj);

	kfree_rcu(channel, rcu);
}

struct vmbus_chan_attribute {
	struct attribute attr;
1585
	ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
	ssize_t (*store)(struct vmbus_channel *chan,
			 const char *buf, size_t count);
};
#define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
	struct vmbus_chan_attribute chan_attr_##_name \
		= __ATTR(_name, _mode, _show, _store)
#define VMBUS_CHAN_ATTR_RW(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
#define VMBUS_CHAN_ATTR_RO(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
#define VMBUS_CHAN_ATTR_WO(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)

static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
				    struct attribute *attr, char *buf)
{
	const struct vmbus_chan_attribute *attribute
		= container_of(attr, struct vmbus_chan_attribute, attr);
1604
	struct vmbus_channel *chan
1605 1606 1607 1608 1609 1610 1611 1612
		= container_of(kobj, struct vmbus_channel, kobj);

	if (!attribute->show)
		return -EIO;

	return attribute->show(chan, buf);
}

1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
static ssize_t vmbus_chan_attr_store(struct kobject *kobj,
				     struct attribute *attr, const char *buf,
				     size_t count)
{
	const struct vmbus_chan_attribute *attribute
		= container_of(attr, struct vmbus_chan_attribute, attr);
	struct vmbus_channel *chan
		= container_of(kobj, struct vmbus_channel, kobj);

	if (!attribute->store)
		return -EIO;

	return attribute->store(chan, buf, count);
}

1628 1629
static const struct sysfs_ops vmbus_chan_sysfs_ops = {
	.show = vmbus_chan_attr_show,
1630
	.store = vmbus_chan_attr_store,
1631 1632
};

1633
static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1634
{
1635 1636
	struct hv_ring_buffer_info *rbi = &channel->outbound;
	ssize_t ret;
1637

1638 1639 1640
	mutex_lock(&rbi->ring_buffer_mutex);
	if (!rbi->ring_buffer) {
		mutex_unlock(&rbi->ring_buffer_mutex);
1641
		return -EINVAL;
1642
	}
1643

1644 1645 1646
	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
	mutex_unlock(&rbi->ring_buffer_mutex);
	return ret;
1647
}
1648
static VMBUS_CHAN_ATTR_RO(out_mask);
1649

1650
static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1651
{
1652 1653
	struct hv_ring_buffer_info *rbi = &channel->inbound;
	ssize_t ret;
1654

1655 1656 1657
	mutex_lock(&rbi->ring_buffer_mutex);
	if (!rbi->ring_buffer) {
		mutex_unlock(&rbi->ring_buffer_mutex);
1658
		return -EINVAL;
1659
	}
1660

1661 1662 1663
	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
	mutex_unlock(&rbi->ring_buffer_mutex);
	return ret;
1664
}
1665
static VMBUS_CHAN_ATTR_RO(in_mask);
1666

1667
static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1668
{
1669 1670
	struct hv_ring_buffer_info *rbi = &channel->inbound;
	ssize_t ret;
1671

1672 1673 1674
	mutex_lock(&rbi->ring_buffer_mutex);
	if (!rbi->ring_buffer) {
		mutex_unlock(&rbi->ring_buffer_mutex);
1675
		return -EINVAL;
1676
	}
1677

1678 1679 1680
	ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
	mutex_unlock(&rbi->ring_buffer_mutex);
	return ret;
1681
}
1682
static VMBUS_CHAN_ATTR_RO(read_avail);
1683

1684
static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1685
{
1686 1687
	struct hv_ring_buffer_info *rbi = &channel->outbound;
	ssize_t ret;
1688

1689 1690 1691
	mutex_lock(&rbi->ring_buffer_mutex);
	if (!rbi->ring_buffer) {
		mutex_unlock(&rbi->ring_buffer_mutex);
1692
		return -EINVAL;
1693
	}
1694

1695 1696 1697
	ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
	mutex_unlock(&rbi->ring_buffer_mutex);
	return ret;
1698
}
1699
static VMBUS_CHAN_ATTR_RO(write_avail);
1700

1701
static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf)
1702 1703 1704
{
	return sprintf(buf, "%u\n", channel->target_cpu);
}
1705 1706 1707
static ssize_t target_cpu_store(struct vmbus_channel *channel,
				const char *buf, size_t count)
{
1708
	u32 target_cpu, origin_cpu;
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
	ssize_t ret = count;

	if (vmbus_proto_version < VERSION_WIN10_V4_1)
		return -EIO;

	if (sscanf(buf, "%uu", &target_cpu) != 1)
		return -EIO;

	/* Validate target_cpu for the cpumask_test_cpu() operation below. */
	if (target_cpu >= nr_cpumask_bits)
		return -EINVAL;

	/* No CPUs should come up or down during this. */
	cpus_read_lock();

	if (!cpumask_test_cpu(target_cpu, cpu_online_mask)) {
		cpus_read_unlock();
		return -EINVAL;
	}

	/*
	 * Synchronizes target_cpu_store() and channel closure:
	 *
	 * { Initially: state = CHANNEL_OPENED }
	 *
	 * CPU1				CPU2
	 *
	 * [target_cpu_store()]		[vmbus_disconnect_ring()]
	 *
	 * LOCK channel_mutex		LOCK channel_mutex
	 * LOAD r1 = state		LOAD r2 = state
	 * IF (r1 == CHANNEL_OPENED)	IF (r2 == CHANNEL_OPENED)
	 *   SEND MODIFYCHANNEL		  STORE state = CHANNEL_OPEN
	 *   [...]			  SEND CLOSECHANNEL
	 * UNLOCK channel_mutex		UNLOCK channel_mutex
	 *
	 * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes
	 * 		CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND
	 *
	 * Note.  The host processes the channel messages "sequentially", in
	 * the order in which they are received on a per-partition basis.
	 */
	mutex_lock(&vmbus_connection.channel_mutex);

	/*
	 * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels;
	 * avoid sending the message and fail here for such channels.
	 */
	if (channel->state != CHANNEL_OPENED_STATE) {
		ret = -EIO;
		goto cpu_store_unlock;
	}

1762 1763
	origin_cpu = channel->target_cpu;
	if (target_cpu == origin_cpu)
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
		goto cpu_store_unlock;

	if (vmbus_send_modifychannel(channel->offermsg.child_relid,
				     hv_cpu_number_to_vp_number(target_cpu))) {
		ret = -EIO;
		goto cpu_store_unlock;
	}

	/*
	 * Warning.  At this point, there is *no* guarantee that the host will
	 * have successfully processed the vmbus_send_modifychannel() request.
	 * See the header comment of vmbus_send_modifychannel() for more info.
	 *
	 * Lags in the processing of the above vmbus_send_modifychannel() can
	 * result in missed interrupts if the "old" target CPU is taken offline
	 * before Hyper-V starts sending interrupts to the "new" target CPU.
	 * But apart from this offlining scenario, the code tolerates such
	 * lags.  It will function correctly even if a channel interrupt comes
	 * in on a CPU that is different from the channel target_cpu value.
	 */

	channel->target_cpu = target_cpu;
	channel->target_vp = hv_cpu_number_to_vp_number(target_cpu);
	channel->numa_node = cpu_to_node(target_cpu);

1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
	/* See init_vp_index(). */
	if (hv_is_perf_channel(channel))
		hv_update_alloced_cpus(origin_cpu, target_cpu);

	/* Currently set only for storvsc channels. */
	if (channel->change_target_cpu_callback) {
		(*channel->change_target_cpu_callback)(channel,
				origin_cpu, target_cpu);
	}

1799 1800 1801 1802 1803 1804
cpu_store_unlock:
	mutex_unlock(&vmbus_connection.channel_mutex);
	cpus_read_unlock();
	return ret;
}
static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store);
1805

1806
static ssize_t channel_pending_show(struct vmbus_channel *channel,
1807 1808 1809 1810 1811 1812
				    char *buf)
{
	return sprintf(buf, "%d\n",
		       channel_pending(channel,
				       vmbus_connection.monitor_pages[1]));
}
1813
static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1814

1815
static ssize_t channel_latency_show(struct vmbus_channel *channel,
1816 1817 1818 1819 1820 1821
				    char *buf)
{
	return sprintf(buf, "%d\n",
		       channel_latency(channel,
				       vmbus_connection.monitor_pages[1]));
}
1822
static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1823

1824
static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1825 1826 1827
{
	return sprintf(buf, "%llu\n", channel->interrupts);
}
1828
static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1829

1830
static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1831 1832 1833
{
	return sprintf(buf, "%llu\n", channel->sig_events);
}
1834
static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1835

1836
static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1837 1838 1839 1840 1841 1842 1843
					 char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->intr_in_full);
}
static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);

1844
static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1845 1846 1847 1848 1849 1850 1851
					   char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->intr_out_empty);
}
static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);

1852
static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1853 1854 1855 1856 1857 1858 1859
					   char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->out_full_first);
}
static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);

1860
static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1861 1862 1863 1864 1865 1866 1867
					   char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->out_full_total);
}
static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);

1868
static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1869 1870 1871 1872 1873 1874
					  char *buf)
{
	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
}
static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);

1875
static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1876 1877 1878 1879 1880 1881 1882
				  char *buf)
{
	return sprintf(buf, "%u\n",
		       channel->offermsg.offer.sub_channel_index);
}
static VMBUS_CHAN_ATTR_RO(subchannel_id);

1883 1884 1885 1886 1887 1888 1889 1890
static struct attribute *vmbus_chan_attrs[] = {
	&chan_attr_out_mask.attr,
	&chan_attr_in_mask.attr,
	&chan_attr_read_avail.attr,
	&chan_attr_write_avail.attr,
	&chan_attr_cpu.attr,
	&chan_attr_pending.attr,
	&chan_attr_latency.attr,
1891 1892
	&chan_attr_interrupts.attr,
	&chan_attr_events.attr,
1893 1894 1895 1896
	&chan_attr_intr_in_full.attr,
	&chan_attr_intr_out_empty.attr,
	&chan_attr_out_full_first.attr,
	&chan_attr_out_full_total.attr,
1897 1898
	&chan_attr_monitor_id.attr,
	&chan_attr_subchannel_id.attr,
1899 1900 1901
	NULL
};

1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
/*
 * Channel-level attribute_group callback function. Returns the permission for
 * each attribute, and returns 0 if an attribute is not visible.
 */
static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
					  struct attribute *attr, int idx)
{
	const struct vmbus_channel *channel =
		container_of(kobj, struct vmbus_channel, kobj);

	/* Hide the monitor attributes if the monitor mechanism is not used. */
	if (!channel->offermsg.monitor_allocated &&
	    (attr == &chan_attr_pending.attr ||
	     attr == &chan_attr_latency.attr ||
	     attr == &chan_attr_monitor_id.attr))
		return 0;

	return attr->mode;
}

static struct attribute_group vmbus_chan_group = {
	.attrs = vmbus_chan_attrs,
	.is_visible = vmbus_chan_attr_is_visible
};

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
static struct kobj_type vmbus_chan_ktype = {
	.sysfs_ops = &vmbus_chan_sysfs_ops,
	.release = vmbus_chan_release,
};

/*
 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
 */
int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
{
1937
	const struct device *device = &dev->device;
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
	struct kobject *kobj = &channel->kobj;
	u32 relid = channel->offermsg.child_relid;
	int ret;

	kobj->kset = dev->channels_kset;
	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
				   "%u", relid);
	if (ret)
		return ret;

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
	ret = sysfs_create_group(kobj, &vmbus_chan_group);

	if (ret) {
		/*
		 * The calling functions' error handling paths will cleanup the
		 * empty channel directory.
		 */
		dev_err(device, "Unable to set up channel sysfs files\n");
		return ret;
	}

1959 1960 1961 1962 1963
	kobject_uevent(kobj, KOBJ_ADD);

	return 0;
}

1964 1965 1966 1967 1968 1969 1970 1971
/*
 * vmbus_remove_channel_attr_group - remove the channel's attribute group
 */
void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
{
	sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
}

1972
/*
1973
 * vmbus_device_create - Creates and registers a new child device
1974
 * on the vmbus.
1975
 */
1976 1977
struct hv_device *vmbus_device_create(const guid_t *type,
				      const guid_t *instance,
S
stephen hemminger 已提交
1978
				      struct vmbus_channel *channel)
1979
{
1980
	struct hv_device *child_device_obj;
1981

1982 1983
	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
	if (!child_device_obj) {
1984
		pr_err("Unable to allocate device object for child device\n");
1985 1986 1987
		return NULL;
	}

1988
	child_device_obj->channel = channel;
1989 1990
	guid_copy(&child_device_obj->dev_type, type);
	guid_copy(&child_device_obj->dev_instance, instance);
1991
	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1992 1993 1994 1995

	return child_device_obj;
}

1996
/*
1997
 * vmbus_device_register - Register the child device
1998
 */
1999
int vmbus_device_register(struct hv_device *child_device_obj)
2000
{
2001 2002
	struct kobject *kobj = &child_device_obj->device.kobj;
	int ret;
2003

2004
	dev_set_name(&child_device_obj->device, "%pUl",
2005
		     &child_device_obj->channel->offermsg.offer.if_instance);
2006

2007
	child_device_obj->device.bus = &hv_bus;
2008
	child_device_obj->device.parent = &hv_acpi_dev->dev;
2009
	child_device_obj->device.release = vmbus_device_release;
2010

2011 2012 2013 2014
	/*
	 * Register with the LDM. This will kick off the driver/device
	 * binding...which will eventually call vmbus_match() and vmbus_probe()
	 */
2015
	ret = device_register(&child_device_obj->device);
2016
	if (ret) {
2017
		pr_err("Unable to register child device\n");
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
		return ret;
	}

	child_device_obj->channels_kset = kset_create_and_add("channels",
							      NULL, kobj);
	if (!child_device_obj->channels_kset) {
		ret = -ENOMEM;
		goto err_dev_unregister;
	}

	ret = vmbus_add_channel_kobj(child_device_obj,
				     child_device_obj->channel);
	if (ret) {
		pr_err("Unable to register primary channeln");
		goto err_kset_unregister;
	}
2034
	hv_debug_add_dev_dir(child_device_obj);
2035 2036 2037 2038 2039

	return 0;

err_kset_unregister:
	kset_unregister(child_device_obj->channels_kset);
2040

2041 2042
err_dev_unregister:
	device_unregister(&child_device_obj->device);
2043 2044 2045
	return ret;
}

2046
/*
2047
 * vmbus_device_unregister - Remove the specified child device
2048
 * from the vmbus.
2049
 */
2050
void vmbus_device_unregister(struct hv_device *device_obj)
2051
{
2052 2053 2054
	pr_debug("child device %s unregistered\n",
		dev_name(&device_obj->device));

2055 2056
	kset_unregister(device_obj->channels_kset);

2057 2058 2059 2060
	/*
	 * Kick off the process of unregistering the device.
	 * This will call vmbus_remove() and eventually vmbus_device_release()
	 */
2061
	device_unregister(&device_obj->device);
2062 2063 2064
}


2065
/*
2066
 * VMBUS is an acpi enumerated device. Get the information we
2067
 * need from DSDT.
2068
 */
2069
#define VTPM_BASE_ADDRESS 0xfed40000
2070
static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
2071
{
2072 2073 2074 2075 2076 2077
	resource_size_t start = 0;
	resource_size_t end = 0;
	struct resource *new_res;
	struct resource **old_res = &hyperv_mmio;
	struct resource **prev_res = NULL;

2078
	switch (res->type) {
2079 2080 2081 2082 2083 2084 2085 2086 2087

	/*
	 * "Address" descriptors are for bus windows. Ignore
	 * "memory" descriptors, which are for registers on
	 * devices.
	 */
	case ACPI_RESOURCE_TYPE_ADDRESS32:
		start = res->data.address32.address.minimum;
		end = res->data.address32.address.maximum;
G
Gerd Hoffmann 已提交
2088
		break;
2089

2090
	case ACPI_RESOURCE_TYPE_ADDRESS64:
2091 2092
		start = res->data.address64.address.minimum;
		end = res->data.address64.address.maximum;
G
Gerd Hoffmann 已提交
2093
		break;
2094 2095 2096 2097 2098

	default:
		/* Unused resource type */
		return AE_OK;

2099
	}
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
	/*
	 * Ignore ranges that are below 1MB, as they're not
	 * necessary or useful here.
	 */
	if (end < 0x100000)
		return AE_OK;

	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
	if (!new_res)
		return AE_NO_MEMORY;

	/* If this range overlaps the virtual TPM, truncate it. */
	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
		end = VTPM_BASE_ADDRESS;

	new_res->name = "hyperv mmio";
	new_res->flags = IORESOURCE_MEM;
	new_res->start = start;
	new_res->end = end;

2120 2121 2122
	/*
	 * If two ranges are adjacent, merge them.
	 */
2123 2124 2125 2126 2127 2128
	do {
		if (!*old_res) {
			*old_res = new_res;
			break;
		}

2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
		if (((*old_res)->end + 1) == new_res->start) {
			(*old_res)->end = new_res->end;
			kfree(new_res);
			break;
		}

		if ((*old_res)->start == new_res->end + 1) {
			(*old_res)->start = new_res->start;
			kfree(new_res);
			break;
		}

2141
		if ((*old_res)->start > new_res->end) {
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
			new_res->sibling = *old_res;
			if (prev_res)
				(*prev_res)->sibling = new_res;
			*old_res = new_res;
			break;
		}

		prev_res = old_res;
		old_res = &(*old_res)->sibling;

	} while (1);
2153 2154 2155 2156

	return AE_OK;
}

2157 2158 2159 2160 2161 2162
static int vmbus_acpi_remove(struct acpi_device *device)
{
	struct resource *cur_res;
	struct resource *next_res;

	if (hyperv_mmio) {
2163 2164 2165 2166 2167 2168
		if (fb_mmio) {
			__release_region(hyperv_mmio, fb_mmio->start,
					 resource_size(fb_mmio));
			fb_mmio = NULL;
		}

2169 2170 2171 2172 2173 2174 2175 2176 2177
		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
			next_res = cur_res->sibling;
			kfree(cur_res);
		}
	}

	return 0;
}

2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
static void vmbus_reserve_fb(void)
{
	int size;
	/*
	 * Make a claim for the frame buffer in the resource tree under the
	 * first node, which will be the one below 4GB.  The length seems to
	 * be underreported, particularly in a Generation 1 VM.  So start out
	 * reserving a larger area and make it smaller until it succeeds.
	 */

	if (screen_info.lfb_base) {
		if (efi_enabled(EFI_BOOT))
			size = max_t(__u32, screen_info.lfb_size, 0x800000);
		else
			size = max_t(__u32, screen_info.lfb_size, 0x4000000);

		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
			fb_mmio = __request_region(hyperv_mmio,
						   screen_info.lfb_base, size,
						   fb_mmio_name, 0);
		}
	}
}

2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
/**
 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
 * @new:		If successful, supplied a pointer to the
 *			allocated MMIO space.
 * @device_obj:		Identifies the caller
 * @min:		Minimum guest physical address of the
 *			allocation
 * @max:		Maximum guest physical address
 * @size:		Size of the range to be allocated
 * @align:		Alignment of the range to be allocated
 * @fb_overlap_ok:	Whether this allocation can be allowed
 *			to overlap the video frame buffer.
 *
 * This function walks the resources granted to VMBus by the
 * _CRS object in the ACPI namespace underneath the parent
 * "bridge" whether that's a root PCI bus in the Generation 1
 * case or a Module Device in the Generation 2 case.  It then
 * attempts to allocate from the global MMIO pool in a way that
 * matches the constraints supplied in these parameters and by
 * that _CRS.
 *
 * Return: 0 on success, -errno on failure
 */
int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
			resource_size_t min, resource_size_t max,
			resource_size_t size, resource_size_t align,
			bool fb_overlap_ok)
{
2230
	struct resource *iter, *shadow;
2231
	resource_size_t range_min, range_max, start;
2232
	const char *dev_n = dev_name(&device_obj->device);
2233
	int retval;
2234 2235

	retval = -ENXIO;
2236
	mutex_lock(&hyperv_mmio_lock);
2237

2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
	/*
	 * If overlaps with frame buffers are allowed, then first attempt to
	 * make the allocation from within the reserved region.  Because it
	 * is already reserved, no shadow allocation is necessary.
	 */
	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
	    !(max < fb_mmio->start)) {

		range_min = fb_mmio->start;
		range_max = fb_mmio->end;
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				retval = 0;
				goto exit;
			}
		}
	}

2258 2259 2260 2261 2262 2263
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= max) || (iter->end <= min))
			continue;

		range_min = iter->start;
		range_max = iter->end;
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			shadow = __request_region(iter, start, size, NULL,
						  IORESOURCE_BUSY);
			if (!shadow)
				continue;

			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				shadow->name = (char *)*new;
				retval = 0;
				goto exit;
2276 2277
			}

2278
			__release_region(iter, start, size);
2279 2280 2281
		}
	}

2282
exit:
2283
	mutex_unlock(&hyperv_mmio_lock);
2284
	return retval;
2285 2286 2287
}
EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);

2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
/**
 * vmbus_free_mmio() - Free a memory-mapped I/O range.
 * @start:		Base address of region to release.
 * @size:		Size of the range to be allocated
 *
 * This function releases anything requested by
 * vmbus_mmio_allocate().
 */
void vmbus_free_mmio(resource_size_t start, resource_size_t size)
{
2298 2299
	struct resource *iter;

2300
	mutex_lock(&hyperv_mmio_lock);
2301 2302 2303 2304 2305 2306
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= start + size) || (iter->end <= start))
			continue;

		__release_region(iter, start, size);
	}
2307
	release_mem_region(start, size);
2308
	mutex_unlock(&hyperv_mmio_lock);
2309 2310 2311 2312

}
EXPORT_SYMBOL_GPL(vmbus_free_mmio);

2313 2314 2315
static int vmbus_acpi_add(struct acpi_device *device)
{
	acpi_status result;
2316
	int ret_val = -ENODEV;
2317
	struct acpi_device *ancestor;
2318

2319 2320
	hv_acpi_dev = device;

2321
	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2322
					vmbus_walk_resources, NULL);
2323

2324 2325 2326
	if (ACPI_FAILURE(result))
		goto acpi_walk_err;
	/*
2327 2328
	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
	 * firmware) is the VMOD that has the mmio ranges. Get that.
2329
	 */
2330 2331 2332
	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
					     vmbus_walk_resources, NULL);
2333 2334

		if (ACPI_FAILURE(result))
2335
			continue;
2336 2337
		if (hyperv_mmio) {
			vmbus_reserve_fb();
2338
			break;
2339
		}
2340
	}
2341 2342 2343
	ret_val = 0;

acpi_walk_err:
2344
	complete(&probe_event);
2345 2346
	if (ret_val)
		vmbus_acpi_remove(device);
2347
	return ret_val;
2348 2349
}

2350
#ifdef CONFIG_PM_SLEEP
2351 2352
static int vmbus_bus_suspend(struct device *dev)
{
2353 2354
	struct vmbus_channel *channel, *sc;
	unsigned long flags;
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372

	while (atomic_read(&vmbus_connection.offer_in_progress) != 0) {
		/*
		 * We wait here until the completion of any channel
		 * offers that are currently in progress.
		 */
		msleep(1);
	}

	mutex_lock(&vmbus_connection.channel_mutex);
	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
		if (!is_hvsock_channel(channel))
			continue;

		vmbus_force_channel_rescinded(channel);
	}
	mutex_unlock(&vmbus_connection.channel_mutex);

2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
	/*
	 * Wait until all the sub-channels and hv_sock channels have been
	 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
	 * they would conflict with the new sub-channels that will be created
	 * in the resume path. hv_sock channels should also be destroyed, but
	 * a hv_sock channel of an established hv_sock connection can not be
	 * really destroyed since it may still be referenced by the userspace
	 * application, so we just force the hv_sock channel to be rescinded
	 * by vmbus_force_channel_rescinded(), and the userspace application
	 * will thoroughly destroy the channel after hibernation.
	 *
	 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
	 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
	 */
	if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0)
		wait_for_completion(&vmbus_connection.ready_for_suspend_event);

2390 2391 2392 2393
	if (atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0) {
		pr_err("Can not suspend due to a previous failed resuming\n");
		return -EBUSY;
	}
2394

2395 2396 2397
	mutex_lock(&vmbus_connection.channel_mutex);

	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2398
		/*
2399 2400 2401 2402
		 * Remove the channel from the array of channels and invalidate
		 * the channel's relid.  Upon resume, vmbus_onoffer() will fix
		 * up the relid (and other fields, if necessary) and add the
		 * channel back to the array.
2403
		 */
2404
		vmbus_channel_unmap_relid(channel);
2405 2406
		channel->offermsg.child_relid = INVALID_RELID;

2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
		if (is_hvsock_channel(channel)) {
			if (!channel->rescind) {
				pr_err("hv_sock channel not rescinded!\n");
				WARN_ON_ONCE(1);
			}
			continue;
		}

		spin_lock_irqsave(&channel->lock, flags);
		list_for_each_entry(sc, &channel->sc_list, sc_list) {
			pr_err("Sub-channel not deleted!\n");
			WARN_ON_ONCE(1);
		}
		spin_unlock_irqrestore(&channel->lock, flags);
2421 2422

		atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume);
2423 2424 2425 2426
	}

	mutex_unlock(&vmbus_connection.channel_mutex);

2427 2428
	vmbus_initiate_unload(false);

2429 2430 2431
	/* Reset the event for the next resume. */
	reinit_completion(&vmbus_connection.ready_for_resume_event);

2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
	return 0;
}

static int vmbus_bus_resume(struct device *dev)
{
	struct vmbus_channel_msginfo *msginfo;
	size_t msgsize;
	int ret;

	/*
	 * We only use the 'vmbus_proto_version', which was in use before
	 * hibernation, to re-negotiate with the host.
	 */
2445
	if (!vmbus_proto_version) {
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
		pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
		return -EINVAL;
	}

	msgsize = sizeof(*msginfo) +
		  sizeof(struct vmbus_channel_initiate_contact);

	msginfo = kzalloc(msgsize, GFP_KERNEL);

	if (msginfo == NULL)
		return -ENOMEM;

	ret = vmbus_negotiate_version(msginfo, vmbus_proto_version);

	kfree(msginfo);

	if (ret != 0)
		return ret;

2465 2466
	WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0);

2467 2468
	vmbus_request_offers();

2469 2470 2471
	if (wait_for_completion_timeout(
		&vmbus_connection.ready_for_resume_event, 10 * HZ) == 0)
		pr_err("Some vmbus device is missing after suspending?\n");
2472

2473 2474 2475
	/* Reset the event for the next suspend. */
	reinit_completion(&vmbus_connection.ready_for_suspend_event);

2476 2477
	return 0;
}
2478 2479 2480
#else
#define vmbus_bus_suspend NULL
#define vmbus_bus_resume NULL
2481
#endif /* CONFIG_PM_SLEEP */
2482

2483 2484
static const struct acpi_device_id vmbus_acpi_device_ids[] = {
	{"VMBUS", 0},
2485
	{"VMBus", 0},
2486 2487 2488 2489
	{"", 0},
};
MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);

2490
/*
2491 2492 2493
 * Note: we must use the "no_irq" ops, otherwise hibernation can not work with
 * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in
 * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see
2494 2495
 * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
 * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
2496 2497 2498 2499
 * resume callback must also run via the "noirq" ops.
 *
 * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment
 * earlier in this file before vmbus_pm.
2500
 */
2501

2502
static const struct dev_pm_ops vmbus_bus_pm = {
2503 2504 2505 2506 2507 2508
	.suspend_noirq	= NULL,
	.resume_noirq	= NULL,
	.freeze_noirq	= vmbus_bus_suspend,
	.thaw_noirq	= vmbus_bus_resume,
	.poweroff_noirq	= vmbus_bus_suspend,
	.restore_noirq	= vmbus_bus_resume
2509 2510
};

2511 2512 2513 2514 2515
static struct acpi_driver vmbus_acpi_driver = {
	.name = "vmbus",
	.ids = vmbus_acpi_device_ids,
	.ops = {
		.add = vmbus_acpi_add,
2516
		.remove = vmbus_acpi_remove,
2517
	},
2518
	.drv.pm = &vmbus_bus_pm,
2519 2520
};

2521 2522
static void hv_kexec_handler(void)
{
2523
	hv_stimer_global_cleanup();
2524
	vmbus_initiate_unload(false);
2525 2526
	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
	mb();
2527
	cpuhp_remove_state(hyperv_cpuhp_online);
2528
	hyperv_cleanup();
2529 2530
};

2531 2532
static void hv_crash_handler(struct pt_regs *regs)
{
2533 2534
	int cpu;

2535
	vmbus_initiate_unload(true);
2536 2537 2538 2539 2540
	/*
	 * In crash handler we can't schedule synic cleanup for all CPUs,
	 * doing the cleanup for current CPU only. This should be sufficient
	 * for kdump.
	 */
2541 2542
	cpu = smp_processor_id();
	hv_stimer_cleanup(cpu);
2543
	hv_synic_disable_regs(cpu);
2544
	hyperv_cleanup();
2545 2546
};

2547 2548 2549
static int hv_synic_suspend(void)
{
	/*
2550 2551 2552 2553
	 * When we reach here, all the non-boot CPUs have been offlined.
	 * If we're in a legacy configuration where stimer Direct Mode is
	 * not enabled, the stimers on the non-boot CPUs have been unbound
	 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() ->
2554 2555
	 * hv_stimer_cleanup() -> clockevents_unbind_device().
	 *
2556 2557 2558 2559 2560
	 * hv_synic_suspend() only runs on CPU0 with interrupts disabled.
	 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because:
	 * 1) it's unnecessary as interrupts remain disabled between
	 * syscore_suspend() and syscore_resume(): see create_image() and
	 * resume_target_kernel()
2561 2562
	 * 2) the stimer on CPU0 is automatically disabled later by
	 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
2563 2564 2565 2566
	 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown()
	 * 3) a warning would be triggered if we call
	 * clockevents_unbind_device(), which may sleep, in an
	 * interrupts-disabled context.
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
	 */

	hv_synic_disable_regs(0);

	return 0;
}

static void hv_synic_resume(void)
{
	hv_synic_enable_regs(0);

	/*
	 * Note: we don't need to call hv_stimer_init(0), because the timer
	 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
	 * automatically re-enabled in timekeeping_resume().
	 */
}

/* The callbacks run only on CPU0, with irqs_disabled. */
static struct syscore_ops hv_synic_syscore_ops = {
	.suspend = hv_synic_suspend,
	.resume = hv_synic_resume,
};

2591
static int __init hv_acpi_init(void)
2592
{
2593
	int ret, t;
2594

2595
	if (!hv_is_hyperv_initialized())
2596 2597
		return -ENODEV;

2598 2599 2600
	init_completion(&probe_event);

	/*
2601
	 * Get ACPI resources first.
2602
	 */
2603 2604
	ret = acpi_bus_register_driver(&vmbus_acpi_driver);

2605 2606 2607
	if (ret)
		return ret;

2608 2609 2610 2611 2612
	t = wait_for_completion_timeout(&probe_event, 5*HZ);
	if (t == 0) {
		ret = -ETIMEDOUT;
		goto cleanup;
	}
2613
	hv_debug_init();
2614

2615
	ret = vmbus_bus_init();
2616
	if (ret)
2617 2618
		goto cleanup;

2619
	hv_setup_kexec_handler(hv_kexec_handler);
2620
	hv_setup_crash_handler(hv_crash_handler);
2621

2622 2623
	register_syscore_ops(&hv_synic_syscore_ops);

2624 2625 2626 2627
	return 0;

cleanup:
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2628
	hv_acpi_dev = NULL;
2629
	return ret;
2630 2631
}

2632 2633
static void __exit vmbus_exit(void)
{
2634 2635
	int cpu;

2636 2637
	unregister_syscore_ops(&hv_synic_syscore_ops);

2638
	hv_remove_kexec_handler();
2639
	hv_remove_crash_handler();
2640
	vmbus_connection.conn_state = DISCONNECTED;
2641
	hv_stimer_global_cleanup();
2642
	vmbus_disconnect();
2643
	hv_remove_vmbus_irq();
2644 2645 2646 2647 2648 2649
	for_each_online_cpu(cpu) {
		struct hv_per_cpu_context *hv_cpu
			= per_cpu_ptr(hv_context.cpu_context, cpu);

		tasklet_kill(&hv_cpu->msg_dpc);
	}
2650 2651
	hv_debug_rm_all_dir();

2652
	vmbus_free_channels();
2653
	kfree(vmbus_connection.channels);
2654

2655
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
2656
		kmsg_dump_unregister(&hv_kmsg_dumper);
2657
		unregister_die_notifier(&hyperv_die_block);
2658 2659 2660
		atomic_notifier_chain_unregister(&panic_notifier_list,
						 &hyperv_panic_block);
	}
2661 2662

	free_page((unsigned long)hv_panic_page);
2663 2664
	unregister_sysctl_table(hv_ctl_table_hdr);
	hv_ctl_table_hdr = NULL;
2665
	bus_unregister(&hv_bus);
2666

2667
	cpuhp_remove_state(hyperv_cpuhp_online);
2668
	hv_synic_free();
2669 2670 2671
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
}

2672

2673
MODULE_LICENSE("GPL");
2674
MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2675

2676
subsys_initcall(hv_acpi_init);
2677
module_exit(vmbus_exit);