vmbus_drv.c 50.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (c) 2009, Microsoft Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 *
 * Authors:
 *   Haiyang Zhang <haiyangz@microsoft.com>
 *   Hank Janssen  <hjanssen@microsoft.com>
20
 *   K. Y. Srinivasan <kys@microsoft.com>
21
 *
22
 */
23 24
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

25 26 27 28 29
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/sysctl.h>
30
#include <linux/slab.h>
31
#include <linux/acpi.h>
32
#include <linux/completion.h>
33
#include <linux/hyperv.h>
34
#include <linux/kernel_stat.h>
35
#include <linux/clockchips.h>
36
#include <linux/cpu.h>
37 38
#include <linux/sched/task_stack.h>

39
#include <asm/mshyperv.h>
40 41
#include <linux/notifier.h>
#include <linux/ptrace.h>
42
#include <linux/screen_info.h>
43
#include <linux/kdebug.h>
44
#include <linux/efi.h>
45
#include <linux/random.h>
46
#include "hyperv_vmbus.h"
47

48 49 50 51 52
struct vmbus_dynid {
	struct list_head node;
	struct hv_vmbus_device_id id;
};

53
static struct acpi_device  *hv_acpi_dev;
54

55
static struct completion probe_event;
56

57
static int hyperv_cpuhp_online;
58

59 60
static void *hv_panic_page;

61 62 63 64 65 66 67
static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
			      void *args)
{
	struct pt_regs *regs;

	regs = current_pt_regs();

68
	hyperv_report_panic(regs, val);
69 70 71
	return NOTIFY_DONE;
}

72 73 74 75 76 77
static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
			    void *args)
{
	struct die_args *die = (struct die_args *)args;
	struct pt_regs *regs = die->regs;

78
	hyperv_report_panic(regs, val);
79 80 81 82 83 84
	return NOTIFY_DONE;
}

static struct notifier_block hyperv_die_block = {
	.notifier_call = hyperv_die_event,
};
85 86 87 88
static struct notifier_block hyperv_panic_block = {
	.notifier_call = hyperv_panic_event,
};

89 90
static const char *fb_mmio_name = "fb_range";
static struct resource *fb_mmio;
91 92
static struct resource *hyperv_mmio;
static DEFINE_SEMAPHORE(hyperv_mmio_lock);
93

94 95 96 97 98 99 100 101
static int vmbus_exists(void)
{
	if (hv_acpi_dev == NULL)
		return -ENODEV;

	return 0;
}

102 103 104 105 106 107 108 109
#define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
{
	int i;
	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
}

110
static u8 channel_monitor_group(const struct vmbus_channel *channel)
111 112 113 114
{
	return (u8)channel->offermsg.monitorid / 32;
}

115
static u8 channel_monitor_offset(const struct vmbus_channel *channel)
116 117 118 119
{
	return (u8)channel->offermsg.monitorid % 32;
}

120 121
static u32 channel_pending(const struct vmbus_channel *channel,
			   const struct hv_monitor_page *monitor_page)
122 123
{
	u8 monitor_group = channel_monitor_group(channel);
124

125 126 127
	return monitor_page->trigger_group[monitor_group].pending;
}

128 129
static u32 channel_latency(const struct vmbus_channel *channel,
			   const struct hv_monitor_page *monitor_page)
130 131 132
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
133

134 135 136
	return monitor_page->latency[monitor_group][monitor_offset];
}

137 138 139 140 141 142 143 144
static u32 channel_conn_id(struct vmbus_channel *channel,
			   struct hv_monitor_page *monitor_page)
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
}

145 146 147 148 149 150 151 152 153 154 155
static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
		       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
}
static DEVICE_ATTR_RO(id);

156 157 158 159 160 161 162 163 164 165 166
static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
			  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->state);
}
static DEVICE_ATTR_RO(state);

167 168 169 170 171 172 173 174 175 176 177
static ssize_t monitor_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
}
static DEVICE_ATTR_RO(monitor_id);

178 179 180 181 182 183 184 185 186 187 188 189
static ssize_t class_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_type.b);
}
static DEVICE_ATTR_RO(class_id);

190 191 192 193 194 195 196 197 198 199 200 201
static ssize_t device_id_show(struct device *dev,
			      struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_instance.b);
}
static DEVICE_ATTR_RO(device_id);

202 203 204 205 206 207 208 209 210 211 212
static ssize_t modalias_show(struct device *dev,
			     struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	char alias_name[VMBUS_ALIAS_LEN + 1];

	print_alias_name(hv_dev, alias_name);
	return sprintf(buf, "vmbus:%s\n", alias_name);
}
static DEVICE_ATTR_RO(modalias);

213 214 215 216 217 218 219 220 221 222 223 224 225 226
#ifdef CONFIG_NUMA
static ssize_t numa_node_show(struct device *dev,
			      struct device_attribute *attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;

	return sprintf(buf, "%d\n", hv_dev->channel->numa_node);
}
static DEVICE_ATTR_RO(numa_node);
#endif

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
static ssize_t server_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(server_monitor_pending);

static ssize_t client_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_pending);
254

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
static ssize_t server_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_latency);

static ssize_t client_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_latency);

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
static ssize_t server_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_conn_id);

static ssize_t client_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_conn_id);

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
static ssize_t out_intr_mask_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(out_intr_mask);

static ssize_t out_read_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.current_read_index);
}
static DEVICE_ATTR_RO(out_read_index);

static ssize_t out_write_index_show(struct device *dev,
				    struct device_attribute *dev_attr,
				    char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.current_write_index);
}
static DEVICE_ATTR_RO(out_write_index);

static ssize_t out_read_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(out_read_bytes_avail);

static ssize_t out_write_bytes_avail_show(struct device *dev,
					  struct device_attribute *dev_attr,
					  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(out_write_bytes_avail);

static ssize_t in_intr_mask_show(struct device *dev,
				 struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(in_intr_mask);

static ssize_t in_read_index_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.current_read_index);
}
static DEVICE_ATTR_RO(in_read_index);

static ssize_t in_write_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.current_write_index);
}
static DEVICE_ATTR_RO(in_write_index);

static ssize_t in_read_bytes_avail_show(struct device *dev,
					struct device_attribute *dev_attr,
					char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(in_read_bytes_avail);

static ssize_t in_write_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(in_write_bytes_avail);

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
static ssize_t channel_vp_mapping_show(struct device *dev,
				       struct device_attribute *dev_attr,
				       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
	unsigned long flags;
	int buf_size = PAGE_SIZE, n_written, tot_written;
	struct list_head *cur;

	if (!channel)
		return -ENODEV;

	tot_written = snprintf(buf, buf_size, "%u:%u\n",
		channel->offermsg.child_relid, channel->target_cpu);

	spin_lock_irqsave(&channel->lock, flags);

	list_for_each(cur, &channel->sc_list) {
		if (tot_written >= buf_size - 1)
			break;

		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
		n_written = scnprintf(buf + tot_written,
				     buf_size - tot_written,
				     "%u:%u\n",
				     cur_sc->offermsg.child_relid,
				     cur_sc->target_cpu);
		tot_written += n_written;
	}

	spin_unlock_irqrestore(&channel->lock, flags);

	return tot_written;
}
static DEVICE_ATTR_RO(channel_vp_mapping);

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
static ssize_t vendor_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
}
static DEVICE_ATTR_RO(vendor);

static ssize_t device_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->device_id);
}
static DEVICE_ATTR_RO(device);

501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
static ssize_t driver_override_store(struct device *dev,
				     struct device_attribute *attr,
				     const char *buf, size_t count)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	char *driver_override, *old, *cp;

	/* We need to keep extra room for a newline */
	if (count >= (PAGE_SIZE - 1))
		return -EINVAL;

	driver_override = kstrndup(buf, count, GFP_KERNEL);
	if (!driver_override)
		return -ENOMEM;

	cp = strchr(driver_override, '\n');
	if (cp)
		*cp = '\0';

	device_lock(dev);
	old = hv_dev->driver_override;
	if (strlen(driver_override)) {
		hv_dev->driver_override = driver_override;
	} else {
		kfree(driver_override);
		hv_dev->driver_override = NULL;
	}
	device_unlock(dev);

	kfree(old);

	return count;
}

static ssize_t driver_override_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	ssize_t len;

	device_lock(dev);
	len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
	device_unlock(dev);

	return len;
}
static DEVICE_ATTR_RW(driver_override);

549
/* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
550
static struct attribute *vmbus_dev_attrs[] = {
551
	&dev_attr_id.attr,
552
	&dev_attr_state.attr,
553
	&dev_attr_monitor_id.attr,
554
	&dev_attr_class_id.attr,
555
	&dev_attr_device_id.attr,
556
	&dev_attr_modalias.attr,
557 558 559
#ifdef CONFIG_NUMA
	&dev_attr_numa_node.attr,
#endif
560 561
	&dev_attr_server_monitor_pending.attr,
	&dev_attr_client_monitor_pending.attr,
562 563
	&dev_attr_server_monitor_latency.attr,
	&dev_attr_client_monitor_latency.attr,
564 565
	&dev_attr_server_monitor_conn_id.attr,
	&dev_attr_client_monitor_conn_id.attr,
566 567 568 569 570 571 572 573 574 575
	&dev_attr_out_intr_mask.attr,
	&dev_attr_out_read_index.attr,
	&dev_attr_out_write_index.attr,
	&dev_attr_out_read_bytes_avail.attr,
	&dev_attr_out_write_bytes_avail.attr,
	&dev_attr_in_intr_mask.attr,
	&dev_attr_in_read_index.attr,
	&dev_attr_in_write_index.attr,
	&dev_attr_in_read_bytes_avail.attr,
	&dev_attr_in_write_bytes_avail.attr,
576
	&dev_attr_channel_vp_mapping.attr,
577 578
	&dev_attr_vendor.attr,
	&dev_attr_device.attr,
579
	&dev_attr_driver_override.attr,
580 581
	NULL,
};
582
ATTRIBUTE_GROUPS(vmbus_dev);
583

584 585 586 587 588 589
/*
 * vmbus_uevent - add uevent for our device
 *
 * This routine is invoked when a device is added or removed on the vmbus to
 * generate a uevent to udev in the userspace. The udev will then look at its
 * rule and the uevent generated here to load the appropriate driver
590 591 592 593
 *
 * The alias string will be of the form vmbus:guid where guid is the string
 * representation of the device guid (each byte of the guid will be
 * represented with two hex characters.
594 595 596 597
 */
static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
{
	struct hv_device *dev = device_to_hv_device(device);
598 599
	int ret;
	char alias_name[VMBUS_ALIAS_LEN + 1];
600

601
	print_alias_name(dev, alias_name);
602 603
	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
	return ret;
604 605
}

S
stephen hemminger 已提交
606
static const uuid_le null_guid;
607

608
static inline bool is_null_guid(const uuid_le *guid)
609
{
610
	if (uuid_le_cmp(*guid, null_guid))
611 612 613 614
		return false;
	return true;
}

615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
static const struct hv_vmbus_device_id *
hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const uuid_le *guid)

{
	if (id == NULL)
		return NULL; /* empty device table */

	for (; !is_null_guid(&id->guid); id++)
		if (!uuid_le_cmp(id->guid, *guid))
			return id;

	return NULL;
}

static const struct hv_vmbus_device_id *
hv_vmbus_dynid_match(struct hv_driver *drv, const uuid_le *guid)
631
{
632 633 634 635 636 637 638 639 640 641 642 643
	const struct hv_vmbus_device_id *id = NULL;
	struct vmbus_dynid *dynid;

	spin_lock(&drv->dynids.lock);
	list_for_each_entry(dynid, &drv->dynids.list, node) {
		if (!uuid_le_cmp(dynid->id.guid, *guid)) {
			id = &dynid->id;
			break;
		}
	}
	spin_unlock(&drv->dynids.lock);

644 645
	return id;
}
646

647 648 649
static const struct hv_vmbus_device_id vmbus_device_null = {
	.guid = NULL_UUID_LE,
};
650

651 652 653 654 655 656 657 658 659
/*
 * Return a matching hv_vmbus_device_id pointer.
 * If there is no match, return NULL.
 */
static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
							struct hv_device *dev)
{
	const uuid_le *guid = &dev->dev_type;
	const struct hv_vmbus_device_id *id;
660

661 662 663 664 665 666 667 668 669 670 671 672 673 674
	/* When driver_override is set, only bind to the matching driver */
	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
		return NULL;

	/* Look at the dynamic ids first, before the static ones */
	id = hv_vmbus_dynid_match(drv, guid);
	if (!id)
		id = hv_vmbus_dev_match(drv->id_table, guid);

	/* driver_override will always match, send a dummy id */
	if (!id && dev->driver_override)
		id = &vmbus_device_null;

	return id;
675 676
}

677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
/* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid)
{
	struct vmbus_dynid *dynid;

	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
	if (!dynid)
		return -ENOMEM;

	dynid->id.guid = *guid;

	spin_lock(&drv->dynids.lock);
	list_add_tail(&dynid->node, &drv->dynids.list);
	spin_unlock(&drv->dynids.lock);

	return driver_attach(&drv->driver);
}

static void vmbus_free_dynids(struct hv_driver *drv)
{
	struct vmbus_dynid *dynid, *n;

	spin_lock(&drv->dynids.lock);
	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
		list_del(&dynid->node);
		kfree(dynid);
	}
	spin_unlock(&drv->dynids.lock);
}

/*
 * store_new_id - sysfs frontend to vmbus_add_dynid()
 *
 * Allow GUIDs to be added to an existing driver via sysfs.
 */
static ssize_t new_id_store(struct device_driver *driver, const char *buf,
			    size_t count)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
716
	uuid_le guid;
717 718
	ssize_t retval;

719 720 721
	retval = uuid_le_to_bin(buf, &guid);
	if (retval)
		return retval;
722

723
	if (hv_vmbus_dynid_match(drv, &guid))
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
		return -EEXIST;

	retval = vmbus_add_dynid(drv, &guid);
	if (retval)
		return retval;
	return count;
}
static DRIVER_ATTR_WO(new_id);

/*
 * store_remove_id - remove a PCI device ID from this driver
 *
 * Removes a dynamic pci device ID to this driver.
 */
static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
			       size_t count)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
	struct vmbus_dynid *dynid, *n;
743 744
	uuid_le guid;
	ssize_t retval;
745

746 747 748
	retval = uuid_le_to_bin(buf, &guid);
	if (retval)
		return retval;
749

750
	retval = -ENODEV;
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
	spin_lock(&drv->dynids.lock);
	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
		struct hv_vmbus_device_id *id = &dynid->id;

		if (!uuid_le_cmp(id->guid, guid)) {
			list_del(&dynid->node);
			kfree(dynid);
			retval = count;
			break;
		}
	}
	spin_unlock(&drv->dynids.lock);

	return retval;
}
static DRIVER_ATTR_WO(remove_id);

static struct attribute *vmbus_drv_attrs[] = {
	&driver_attr_new_id.attr,
	&driver_attr_remove_id.attr,
	NULL,
};
ATTRIBUTE_GROUPS(vmbus_drv);
774

775 776 777 778 779 780 781

/*
 * vmbus_match - Attempt to match the specified device to the specified driver
 */
static int vmbus_match(struct device *device, struct device_driver *driver)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
782
	struct hv_device *hv_dev = device_to_hv_device(device);
783

784 785 786 787
	/* The hv_sock driver handles all hv_sock offers. */
	if (is_hvsock_channel(hv_dev->channel))
		return drv->hvsock;

788
	if (hv_vmbus_get_id(drv, hv_dev))
789
		return 1;
790

791
	return 0;
792 793
}

794 795 796 797 798 799 800 801
/*
 * vmbus_probe - Add the new vmbus's child device
 */
static int vmbus_probe(struct device *child_device)
{
	int ret = 0;
	struct hv_driver *drv =
			drv_to_hv_drv(child_device->driver);
802
	struct hv_device *dev = device_to_hv_device(child_device);
803
	const struct hv_vmbus_device_id *dev_id;
804

805
	dev_id = hv_vmbus_get_id(drv, dev);
806
	if (drv->probe) {
807
		ret = drv->probe(dev, dev_id);
808
		if (ret != 0)
809 810
			pr_err("probe failed for device %s (%d)\n",
			       dev_name(child_device), ret);
811 812

	} else {
813 814
		pr_err("probe not set for driver %s\n",
		       dev_name(child_device));
815
		ret = -ENODEV;
816 817 818 819
	}
	return ret;
}

820 821 822 823 824
/*
 * vmbus_remove - Remove a vmbus device
 */
static int vmbus_remove(struct device *child_device)
{
825
	struct hv_driver *drv;
826
	struct hv_device *dev = device_to_hv_device(child_device);
827

828 829 830 831 832
	if (child_device->driver) {
		drv = drv_to_hv_drv(child_device->driver);
		if (drv->remove)
			drv->remove(dev);
	}
833 834 835 836

	return 0;
}

837 838 839 840 841 842 843

/*
 * vmbus_shutdown - Shutdown a vmbus device
 */
static void vmbus_shutdown(struct device *child_device)
{
	struct hv_driver *drv;
844
	struct hv_device *dev = device_to_hv_device(child_device);
845 846 847 848 849 850 851 852


	/* The device may not be attached yet */
	if (!child_device->driver)
		return;

	drv = drv_to_hv_drv(child_device->driver);

853 854
	if (drv->shutdown)
		drv->shutdown(dev);
855 856
}

857 858 859 860 861 862

/*
 * vmbus_device_release - Final callback release of the vmbus child device
 */
static void vmbus_device_release(struct device *device)
{
863
	struct hv_device *hv_dev = device_to_hv_device(device);
864
	struct vmbus_channel *channel = hv_dev->channel;
865

866
	mutex_lock(&vmbus_connection.channel_mutex);
867
	hv_process_channel_removal(channel->offermsg.child_relid);
868
	mutex_unlock(&vmbus_connection.channel_mutex);
869
	kfree(hv_dev);
870 871 872

}

873
/* The one and only one */
874 875 876 877 878 879 880
static struct bus_type  hv_bus = {
	.name =		"vmbus",
	.match =		vmbus_match,
	.shutdown =		vmbus_shutdown,
	.remove =		vmbus_remove,
	.probe =		vmbus_probe,
	.uevent =		vmbus_uevent,
881 882
	.dev_groups =		vmbus_dev_groups,
	.drv_groups =		vmbus_drv_groups,
883 884
};

885 886 887 888 889 890 891 892 893
struct onmessage_work_context {
	struct work_struct work;
	struct hv_message msg;
};

static void vmbus_onmessage_work(struct work_struct *work)
{
	struct onmessage_work_context *ctx;

894 895 896 897
	/* Do not process messages if we're in DISCONNECTED state */
	if (vmbus_connection.conn_state == DISCONNECTED)
		return;

898 899 900 901 902 903
	ctx = container_of(work, struct onmessage_work_context,
			   work);
	vmbus_onmessage(&ctx->msg);
	kfree(ctx);
}

904 905
static void hv_process_timer_expiration(struct hv_message *msg,
					struct hv_per_cpu_context *hv_cpu)
906
{
907
	struct clock_event_device *dev = hv_cpu->clk_evt;
908 909 910 911

	if (dev->event_handler)
		dev->event_handler(dev);

912
	vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
913 914
}

915
void vmbus_on_msg_dpc(unsigned long data)
G
Greg Kroah-Hartman 已提交
916
{
917 918
	struct hv_per_cpu_context *hv_cpu = (void *)data;
	void *page_addr = hv_cpu->synic_message_page;
G
Greg Kroah-Hartman 已提交
919 920
	struct hv_message *msg = (struct hv_message *)page_addr +
				  VMBUS_MESSAGE_SINT;
921
	struct vmbus_channel_message_header *hdr;
922
	const struct vmbus_channel_message_table_entry *entry;
923
	struct onmessage_work_context *ctx;
924
	u32 message_type = msg->header.message_type;
G
Greg Kroah-Hartman 已提交
925

926
	if (message_type == HVMSG_NONE)
927 928
		/* no msg */
		return;
929

930
	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
931

932 933
	trace_vmbus_on_msg_dpc(hdr);

934 935 936 937
	if (hdr->msgtype >= CHANNELMSG_COUNT) {
		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
		goto msg_handled;
	}
938

939 940 941 942 943
	entry = &channel_message_table[hdr->msgtype];
	if (entry->handler_type	== VMHT_BLOCKING) {
		ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
		if (ctx == NULL)
			return;
944

945 946
		INIT_WORK(&ctx->work, vmbus_onmessage_work);
		memcpy(&ctx->msg, msg, sizeof(*msg));
947

948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
		/*
		 * The host can generate a rescind message while we
		 * may still be handling the original offer. We deal with
		 * this condition by ensuring the processing is done on the
		 * same CPU.
		 */
		switch (hdr->msgtype) {
		case CHANNELMSG_RESCIND_CHANNELOFFER:
			/*
			 * If we are handling the rescind message;
			 * schedule the work on the global work queue.
			 */
			schedule_work_on(vmbus_connection.connect_cpu,
					 &ctx->work);
			break;

		case CHANNELMSG_OFFERCHANNEL:
			atomic_inc(&vmbus_connection.offer_in_progress);
			queue_work_on(vmbus_connection.connect_cpu,
				      vmbus_connection.work_queue,
				      &ctx->work);
			break;

		default:
			queue_work(vmbus_connection.work_queue, &ctx->work);
		}
974 975
	} else
		entry->message_handler(hdr);
G
Greg Kroah-Hartman 已提交
976

977
msg_handled:
978
	vmbus_signal_eom(msg, message_type);
G
Greg Kroah-Hartman 已提交
979 980
}

981

982 983 984 985 986 987 988 989 990 991 992 993
/*
 * Direct callback for channels using other deferred processing
 */
static void vmbus_channel_isr(struct vmbus_channel *channel)
{
	void (*callback_fn)(void *);

	callback_fn = READ_ONCE(channel->onchannel_callback);
	if (likely(callback_fn != NULL))
		(*callback_fn)(channel->channel_callback_context);
}

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
/*
 * Schedule all channels with events pending
 */
static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
{
	unsigned long *recv_int_page;
	u32 maxbits, relid;

	if (vmbus_proto_version < VERSION_WIN8) {
		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
		recv_int_page = vmbus_connection.recv_int_page;
	} else {
		/*
		 * When the host is win8 and beyond, the event page
		 * can be directly checked to get the id of the channel
		 * that has the interrupt pending.
		 */
		void *page_addr = hv_cpu->synic_event_page;
		union hv_synic_event_flags *event
			= (union hv_synic_event_flags *)page_addr +
						 VMBUS_MESSAGE_SINT;

		maxbits = HV_EVENT_FLAGS_COUNT;
		recv_int_page = event->flags;
	}

	if (unlikely(!recv_int_page))
		return;

	for_each_set_bit(relid, recv_int_page, maxbits) {
		struct vmbus_channel *channel;

		if (!sync_test_and_clear_bit(relid, recv_int_page))
			continue;

		/* Special case - vmbus channel protocol msg */
		if (relid == 0)
			continue;

1033 1034
		rcu_read_lock();

1035
		/* Find channel based on relid */
1036
		list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
1037 1038 1039
			if (channel->offermsg.child_relid != relid)
				continue;

1040 1041 1042
			if (channel->rescind)
				continue;

V
Vitaly Kuznetsov 已提交
1043 1044
			trace_vmbus_chan_sched(channel);

1045 1046
			++channel->interrupts;

1047 1048 1049
			switch (channel->callback_mode) {
			case HV_CALL_ISR:
				vmbus_channel_isr(channel);
1050
				break;
1051 1052 1053 1054 1055 1056

			case HV_CALL_BATCHED:
				hv_begin_read(&channel->inbound);
				/* fallthrough */
			case HV_CALL_DIRECT:
				tasklet_schedule(&channel->callback_event);
1057 1058
			}
		}
1059 1060

		rcu_read_unlock();
1061 1062 1063
	}
}

1064
static void vmbus_isr(void)
G
Greg Kroah-Hartman 已提交
1065
{
1066 1067 1068
	struct hv_per_cpu_context *hv_cpu
		= this_cpu_ptr(hv_context.cpu_context);
	void *page_addr = hv_cpu->synic_event_page;
G
Greg Kroah-Hartman 已提交
1069 1070
	struct hv_message *msg;
	union hv_synic_event_flags *event;
1071
	bool handled = false;
G
Greg Kroah-Hartman 已提交
1072

1073
	if (unlikely(page_addr == NULL))
1074
		return;
1075 1076 1077

	event = (union hv_synic_event_flags *)page_addr +
					 VMBUS_MESSAGE_SINT;
1078 1079 1080 1081 1082
	/*
	 * Check for events before checking for messages. This is the order
	 * in which events and messages are checked in Windows guests on
	 * Hyper-V, and the Windows team suggested we do the same.
	 */
G
Greg Kroah-Hartman 已提交
1083

1084 1085
	if ((vmbus_proto_version == VERSION_WS2008) ||
		(vmbus_proto_version == VERSION_WIN7)) {
G
Greg Kroah-Hartman 已提交
1086

1087
		/* Since we are a child, we only need to check bit 0 */
1088
		if (sync_test_and_clear_bit(0, event->flags))
1089 1090 1091 1092 1093 1094 1095 1096
			handled = true;
	} else {
		/*
		 * Our host is win8 or above. The signaling mechanism
		 * has changed and we can directly look at the event page.
		 * If bit n is set then we have an interrup on the channel
		 * whose id is n.
		 */
1097 1098
		handled = true;
	}
1099

1100
	if (handled)
1101
		vmbus_chan_sched(hv_cpu);
1102

1103
	page_addr = hv_cpu->synic_message_page;
1104 1105 1106
	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;

	/* Check if there are actual msgs to be processed */
1107 1108
	if (msg->header.message_type != HVMSG_NONE) {
		if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
1109
			hv_process_timer_expiration(msg, hv_cpu);
1110
		else
1111
			tasklet_schedule(&hv_cpu->msg_dpc);
1112
	}
1113 1114

	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1115 1116
}

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
/*
 * Boolean to control whether to report panic messages over Hyper-V.
 *
 * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
 */
static int sysctl_record_panic_msg = 1;

/*
 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
 * buffer and call into Hyper-V to transfer the data.
 */
static void hv_kmsg_dump(struct kmsg_dumper *dumper,
			 enum kmsg_dump_reason reason)
{
	size_t bytes_written;
	phys_addr_t panic_pa;

	/* We are only interested in panics. */
	if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
		return;

	panic_pa = virt_to_phys(hv_panic_page);

	/*
	 * Write dump contents to the page. No need to synchronize; panic should
	 * be single-threaded.
	 */
1144 1145 1146 1147
	kmsg_dump_get_buffer(dumper, true, hv_panic_page, PAGE_SIZE,
			     &bytes_written);
	if (bytes_written)
		hyperv_report_panic_msg(panic_pa, bytes_written);
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
}

static struct kmsg_dumper hv_kmsg_dumper = {
	.dump = hv_kmsg_dump,
};

static struct ctl_table_header *hv_ctl_table_hdr;
static int zero;
static int one = 1;

/*
 * sysctl option to allow the user to control whether kmsg data should be
 * reported to Hyper-V on panic.
 */
static struct ctl_table hv_ctl_table[] = {
	{
		.procname       = "hyperv_record_panic_msg",
		.data           = &sysctl_record_panic_msg,
		.maxlen         = sizeof(int),
		.mode           = 0644,
		.proc_handler   = proc_dointvec_minmax,
		.extra1		= &zero,
		.extra2		= &one
	},
	{}
};

static struct ctl_table hv_root_table[] = {
	{
		.procname	= "kernel",
		.mode		= 0555,
		.child		= hv_ctl_table
	},
	{}
};
1183

1184
/*
1185 1186 1187
 * vmbus_bus_init -Main vmbus driver initialization routine.
 *
 * Here, we
1188 1189 1190
 *	- initialize the vmbus driver context
 *	- invoke the vmbus hv main init routine
 *	- retrieve the channel offers
1191
 */
1192
static int vmbus_bus_init(void)
1193
{
1194
	int ret;
1195

1196 1197
	/* Hypervisor initialization...setup hypercall page..etc */
	ret = hv_init();
1198
	if (ret != 0) {
1199
		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1200
		return ret;
1201 1202
	}

1203
	ret = bus_register(&hv_bus);
1204
	if (ret)
1205
		return ret;
1206

1207
	hv_setup_vmbus_irq(vmbus_isr);
1208

1209 1210 1211
	ret = hv_synic_alloc();
	if (ret)
		goto err_alloc;
1212
	/*
1213
	 * Initialize the per-cpu interrupt state and
1214 1215
	 * connect to the host.
	 */
1216
	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1217 1218 1219 1220 1221
				hv_synic_init, hv_synic_cleanup);
	if (ret < 0)
		goto err_alloc;
	hyperv_cpuhp_online = ret;

1222
	ret = vmbus_connect();
1223
	if (ret)
1224
		goto err_connect;
1225

1226 1227 1228
	/*
	 * Only register if the crash MSRs are available
	 */
1229
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
		u64 hyperv_crash_ctl;
		/*
		 * Sysctl registration is not fatal, since by default
		 * reporting is enabled.
		 */
		hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
		if (!hv_ctl_table_hdr)
			pr_err("Hyper-V: sysctl table register error");

		/*
		 * Register for panic kmsg callback only if the right
		 * capability is supported by the hypervisor.
		 */
1243
		hv_get_crash_ctl(hyperv_crash_ctl);
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
		if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) {
			hv_panic_page = (void *)get_zeroed_page(GFP_KERNEL);
			if (hv_panic_page) {
				ret = kmsg_dump_register(&hv_kmsg_dumper);
				if (ret)
					pr_err("Hyper-V: kmsg dump register "
						"error 0x%x\n", ret);
			} else
				pr_err("Hyper-V: panic message page memory "
					"allocation failed");
		}

1256
		register_die_notifier(&hyperv_die_block);
1257 1258 1259 1260
		atomic_notifier_chain_register(&panic_notifier_list,
					       &hyperv_panic_block);
	}

1261
	vmbus_request_offers();
1262

1263
	return 0;
1264

1265
err_connect:
1266
	cpuhp_remove_state(hyperv_cpuhp_online);
1267 1268
err_alloc:
	hv_synic_free();
1269
	hv_remove_vmbus_irq();
1270 1271

	bus_unregister(&hv_bus);
1272
	free_page((unsigned long)hv_panic_page);
1273 1274
	unregister_sysctl_table(hv_ctl_table_hdr);
	hv_ctl_table_hdr = NULL;
1275
	return ret;
1276 1277
}

1278
/**
1279 1280
 * __vmbus_child_driver_register() - Register a vmbus's driver
 * @hv_driver: Pointer to driver structure you want to register
1281 1282
 * @owner: owner module of the drv
 * @mod_name: module name string
1283 1284
 *
 * Registers the given driver with Linux through the 'driver_register()' call
1285
 * and sets up the hyper-v vmbus handling for this driver.
1286 1287
 * It will return the state of the 'driver_register()' call.
 *
1288
 */
1289
int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1290
{
1291
	int ret;
1292

1293
	pr_info("registering driver %s\n", hv_driver->name);
1294

1295 1296 1297 1298
	ret = vmbus_exists();
	if (ret < 0)
		return ret;

1299 1300 1301 1302
	hv_driver->driver.name = hv_driver->name;
	hv_driver->driver.owner = owner;
	hv_driver->driver.mod_name = mod_name;
	hv_driver->driver.bus = &hv_bus;
1303

1304 1305 1306
	spin_lock_init(&hv_driver->dynids.lock);
	INIT_LIST_HEAD(&hv_driver->dynids.list);

1307
	ret = driver_register(&hv_driver->driver);
1308

1309
	return ret;
1310
}
1311
EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1312

1313
/**
1314
 * vmbus_driver_unregister() - Unregister a vmbus's driver
1315 1316
 * @hv_driver: Pointer to driver structure you want to
 *             un-register
1317
 *
1318 1319
 * Un-register the given driver that was previous registered with a call to
 * vmbus_driver_register()
1320
 */
1321
void vmbus_driver_unregister(struct hv_driver *hv_driver)
1322
{
1323
	pr_info("unregistering driver %s\n", hv_driver->name);
1324

1325
	if (!vmbus_exists()) {
1326
		driver_unregister(&hv_driver->driver);
1327 1328
		vmbus_free_dynids(hv_driver);
	}
1329
}
1330
EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1331

1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370

/*
 * Called when last reference to channel is gone.
 */
static void vmbus_chan_release(struct kobject *kobj)
{
	struct vmbus_channel *channel
		= container_of(kobj, struct vmbus_channel, kobj);

	kfree_rcu(channel, rcu);
}

struct vmbus_chan_attribute {
	struct attribute attr;
	ssize_t (*show)(const struct vmbus_channel *chan, char *buf);
	ssize_t (*store)(struct vmbus_channel *chan,
			 const char *buf, size_t count);
};
#define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
	struct vmbus_chan_attribute chan_attr_##_name \
		= __ATTR(_name, _mode, _show, _store)
#define VMBUS_CHAN_ATTR_RW(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
#define VMBUS_CHAN_ATTR_RO(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
#define VMBUS_CHAN_ATTR_WO(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)

static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
				    struct attribute *attr, char *buf)
{
	const struct vmbus_chan_attribute *attribute
		= container_of(attr, struct vmbus_chan_attribute, attr);
	const struct vmbus_channel *chan
		= container_of(kobj, struct vmbus_channel, kobj);

	if (!attribute->show)
		return -EIO;

1371 1372 1373
	if (chan->state != CHANNEL_OPENED_STATE)
		return -EINVAL;

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
	return attribute->show(chan, buf);
}

static const struct sysfs_ops vmbus_chan_sysfs_ops = {
	.show = vmbus_chan_attr_show,
};

static ssize_t out_mask_show(const struct vmbus_channel *channel, char *buf)
{
	const struct hv_ring_buffer_info *rbi = &channel->outbound;

	return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
}
1387
static VMBUS_CHAN_ATTR_RO(out_mask);
1388 1389 1390 1391 1392 1393 1394

static ssize_t in_mask_show(const struct vmbus_channel *channel, char *buf)
{
	const struct hv_ring_buffer_info *rbi = &channel->inbound;

	return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
}
1395
static VMBUS_CHAN_ATTR_RO(in_mask);
1396 1397 1398 1399 1400 1401 1402

static ssize_t read_avail_show(const struct vmbus_channel *channel, char *buf)
{
	const struct hv_ring_buffer_info *rbi = &channel->inbound;

	return sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
}
1403
static VMBUS_CHAN_ATTR_RO(read_avail);
1404 1405 1406 1407 1408 1409 1410

static ssize_t write_avail_show(const struct vmbus_channel *channel, char *buf)
{
	const struct hv_ring_buffer_info *rbi = &channel->outbound;

	return sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
}
1411
static VMBUS_CHAN_ATTR_RO(write_avail);
1412 1413 1414 1415 1416

static ssize_t show_target_cpu(const struct vmbus_channel *channel, char *buf)
{
	return sprintf(buf, "%u\n", channel->target_cpu);
}
1417
static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1418 1419 1420 1421 1422 1423 1424 1425

static ssize_t channel_pending_show(const struct vmbus_channel *channel,
				    char *buf)
{
	return sprintf(buf, "%d\n",
		       channel_pending(channel,
				       vmbus_connection.monitor_pages[1]));
}
1426
static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1427 1428 1429 1430 1431 1432 1433 1434

static ssize_t channel_latency_show(const struct vmbus_channel *channel,
				    char *buf)
{
	return sprintf(buf, "%d\n",
		       channel_latency(channel,
				       vmbus_connection.monitor_pages[1]));
}
1435
static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1436

1437 1438 1439 1440
static ssize_t channel_interrupts_show(const struct vmbus_channel *channel, char *buf)
{
	return sprintf(buf, "%llu\n", channel->interrupts);
}
1441
static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1442 1443 1444 1445 1446

static ssize_t channel_events_show(const struct vmbus_channel *channel, char *buf)
{
	return sprintf(buf, "%llu\n", channel->sig_events);
}
1447
static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1448

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
static ssize_t subchannel_monitor_id_show(const struct vmbus_channel *channel,
					  char *buf)
{
	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
}
static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);

static ssize_t subchannel_id_show(const struct vmbus_channel *channel,
				  char *buf)
{
	return sprintf(buf, "%u\n",
		       channel->offermsg.offer.sub_channel_index);
}
static VMBUS_CHAN_ATTR_RO(subchannel_id);

1464 1465 1466 1467 1468 1469 1470 1471
static struct attribute *vmbus_chan_attrs[] = {
	&chan_attr_out_mask.attr,
	&chan_attr_in_mask.attr,
	&chan_attr_read_avail.attr,
	&chan_attr_write_avail.attr,
	&chan_attr_cpu.attr,
	&chan_attr_pending.attr,
	&chan_attr_latency.attr,
1472 1473
	&chan_attr_interrupts.attr,
	&chan_attr_events.attr,
1474 1475
	&chan_attr_monitor_id.attr,
	&chan_attr_subchannel_id.attr,
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
	NULL
};

static struct kobj_type vmbus_chan_ktype = {
	.sysfs_ops = &vmbus_chan_sysfs_ops,
	.release = vmbus_chan_release,
	.default_attrs = vmbus_chan_attrs,
};

/*
 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
 */
int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
{
	struct kobject *kobj = &channel->kobj;
	u32 relid = channel->offermsg.child_relid;
	int ret;

	kobj->kset = dev->channels_kset;
	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
				   "%u", relid);
	if (ret)
		return ret;

	kobject_uevent(kobj, KOBJ_ADD);

	return 0;
}

1505
/*
1506
 * vmbus_device_create - Creates and registers a new child device
1507
 * on the vmbus.
1508
 */
S
stephen hemminger 已提交
1509 1510 1511
struct hv_device *vmbus_device_create(const uuid_le *type,
				      const uuid_le *instance,
				      struct vmbus_channel *channel)
1512
{
1513
	struct hv_device *child_device_obj;
1514

1515 1516
	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
	if (!child_device_obj) {
1517
		pr_err("Unable to allocate device object for child device\n");
1518 1519 1520
		return NULL;
	}

1521
	child_device_obj->channel = channel;
1522
	memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
1523
	memcpy(&child_device_obj->dev_instance, instance,
1524
	       sizeof(uuid_le));
1525
	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1526 1527 1528 1529 1530


	return child_device_obj;
}

1531
/*
1532
 * vmbus_device_register - Register the child device
1533
 */
1534
int vmbus_device_register(struct hv_device *child_device_obj)
1535
{
1536 1537
	struct kobject *kobj = &child_device_obj->device.kobj;
	int ret;
1538

1539
	dev_set_name(&child_device_obj->device, "%pUl",
1540
		     child_device_obj->channel->offermsg.offer.if_instance.b);
1541

1542
	child_device_obj->device.bus = &hv_bus;
1543
	child_device_obj->device.parent = &hv_acpi_dev->dev;
1544
	child_device_obj->device.release = vmbus_device_release;
1545

1546 1547 1548 1549
	/*
	 * Register with the LDM. This will kick off the driver/device
	 * binding...which will eventually call vmbus_match() and vmbus_probe()
	 */
1550
	ret = device_register(&child_device_obj->device);
1551
	if (ret) {
1552
		pr_err("Unable to register child device\n");
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
		return ret;
	}

	child_device_obj->channels_kset = kset_create_and_add("channels",
							      NULL, kobj);
	if (!child_device_obj->channels_kset) {
		ret = -ENOMEM;
		goto err_dev_unregister;
	}

	ret = vmbus_add_channel_kobj(child_device_obj,
				     child_device_obj->channel);
	if (ret) {
		pr_err("Unable to register primary channeln");
		goto err_kset_unregister;
	}

	return 0;

err_kset_unregister:
	kset_unregister(child_device_obj->channels_kset);
1574

1575 1576
err_dev_unregister:
	device_unregister(&child_device_obj->device);
1577 1578 1579
	return ret;
}

1580
/*
1581
 * vmbus_device_unregister - Remove the specified child device
1582
 * from the vmbus.
1583
 */
1584
void vmbus_device_unregister(struct hv_device *device_obj)
1585
{
1586 1587 1588
	pr_debug("child device %s unregistered\n",
		dev_name(&device_obj->device));

1589 1590
	kset_unregister(device_obj->channels_kset);

1591 1592 1593 1594
	/*
	 * Kick off the process of unregistering the device.
	 * This will call vmbus_remove() and eventually vmbus_device_release()
	 */
1595
	device_unregister(&device_obj->device);
1596 1597 1598
}


1599
/*
1600
 * VMBUS is an acpi enumerated device. Get the information we
1601
 * need from DSDT.
1602
 */
1603
#define VTPM_BASE_ADDRESS 0xfed40000
1604
static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1605
{
1606 1607 1608 1609 1610 1611
	resource_size_t start = 0;
	resource_size_t end = 0;
	struct resource *new_res;
	struct resource **old_res = &hyperv_mmio;
	struct resource **prev_res = NULL;

1612
	switch (res->type) {
1613 1614 1615 1616 1617 1618 1619 1620 1621

	/*
	 * "Address" descriptors are for bus windows. Ignore
	 * "memory" descriptors, which are for registers on
	 * devices.
	 */
	case ACPI_RESOURCE_TYPE_ADDRESS32:
		start = res->data.address32.address.minimum;
		end = res->data.address32.address.maximum;
G
Gerd Hoffmann 已提交
1622
		break;
1623

1624
	case ACPI_RESOURCE_TYPE_ADDRESS64:
1625 1626
		start = res->data.address64.address.minimum;
		end = res->data.address64.address.maximum;
G
Gerd Hoffmann 已提交
1627
		break;
1628 1629 1630 1631 1632

	default:
		/* Unused resource type */
		return AE_OK;

1633
	}
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
	/*
	 * Ignore ranges that are below 1MB, as they're not
	 * necessary or useful here.
	 */
	if (end < 0x100000)
		return AE_OK;

	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
	if (!new_res)
		return AE_NO_MEMORY;

	/* If this range overlaps the virtual TPM, truncate it. */
	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
		end = VTPM_BASE_ADDRESS;

	new_res->name = "hyperv mmio";
	new_res->flags = IORESOURCE_MEM;
	new_res->start = start;
	new_res->end = end;

1654 1655 1656
	/*
	 * If two ranges are adjacent, merge them.
	 */
1657 1658 1659 1660 1661 1662
	do {
		if (!*old_res) {
			*old_res = new_res;
			break;
		}

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
		if (((*old_res)->end + 1) == new_res->start) {
			(*old_res)->end = new_res->end;
			kfree(new_res);
			break;
		}

		if ((*old_res)->start == new_res->end + 1) {
			(*old_res)->start = new_res->start;
			kfree(new_res);
			break;
		}

1675
		if ((*old_res)->start > new_res->end) {
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
			new_res->sibling = *old_res;
			if (prev_res)
				(*prev_res)->sibling = new_res;
			*old_res = new_res;
			break;
		}

		prev_res = old_res;
		old_res = &(*old_res)->sibling;

	} while (1);
1687 1688 1689 1690

	return AE_OK;
}

1691 1692 1693 1694 1695 1696
static int vmbus_acpi_remove(struct acpi_device *device)
{
	struct resource *cur_res;
	struct resource *next_res;

	if (hyperv_mmio) {
1697 1698 1699 1700 1701 1702
		if (fb_mmio) {
			__release_region(hyperv_mmio, fb_mmio->start,
					 resource_size(fb_mmio));
			fb_mmio = NULL;
		}

1703 1704 1705 1706 1707 1708 1709 1710 1711
		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
			next_res = cur_res->sibling;
			kfree(cur_res);
		}
	}

	return 0;
}

1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
static void vmbus_reserve_fb(void)
{
	int size;
	/*
	 * Make a claim for the frame buffer in the resource tree under the
	 * first node, which will be the one below 4GB.  The length seems to
	 * be underreported, particularly in a Generation 1 VM.  So start out
	 * reserving a larger area and make it smaller until it succeeds.
	 */

	if (screen_info.lfb_base) {
		if (efi_enabled(EFI_BOOT))
			size = max_t(__u32, screen_info.lfb_size, 0x800000);
		else
			size = max_t(__u32, screen_info.lfb_size, 0x4000000);

		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
			fb_mmio = __request_region(hyperv_mmio,
						   screen_info.lfb_base, size,
						   fb_mmio_name, 0);
		}
	}
}

1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
/**
 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
 * @new:		If successful, supplied a pointer to the
 *			allocated MMIO space.
 * @device_obj:		Identifies the caller
 * @min:		Minimum guest physical address of the
 *			allocation
 * @max:		Maximum guest physical address
 * @size:		Size of the range to be allocated
 * @align:		Alignment of the range to be allocated
 * @fb_overlap_ok:	Whether this allocation can be allowed
 *			to overlap the video frame buffer.
 *
 * This function walks the resources granted to VMBus by the
 * _CRS object in the ACPI namespace underneath the parent
 * "bridge" whether that's a root PCI bus in the Generation 1
 * case or a Module Device in the Generation 2 case.  It then
 * attempts to allocate from the global MMIO pool in a way that
 * matches the constraints supplied in these parameters and by
 * that _CRS.
 *
 * Return: 0 on success, -errno on failure
 */
int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
			resource_size_t min, resource_size_t max,
			resource_size_t size, resource_size_t align,
			bool fb_overlap_ok)
{
1764
	struct resource *iter, *shadow;
1765
	resource_size_t range_min, range_max, start;
1766
	const char *dev_n = dev_name(&device_obj->device);
1767
	int retval;
1768 1769 1770

	retval = -ENXIO;
	down(&hyperv_mmio_lock);
1771

1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
	/*
	 * If overlaps with frame buffers are allowed, then first attempt to
	 * make the allocation from within the reserved region.  Because it
	 * is already reserved, no shadow allocation is necessary.
	 */
	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
	    !(max < fb_mmio->start)) {

		range_min = fb_mmio->start;
		range_max = fb_mmio->end;
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				retval = 0;
				goto exit;
			}
		}
	}

1792 1793 1794 1795 1796 1797
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= max) || (iter->end <= min))
			continue;

		range_min = iter->start;
		range_max = iter->end;
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			shadow = __request_region(iter, start, size, NULL,
						  IORESOURCE_BUSY);
			if (!shadow)
				continue;

			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				shadow->name = (char *)*new;
				retval = 0;
				goto exit;
1810 1811
			}

1812
			__release_region(iter, start, size);
1813 1814 1815
		}
	}

1816 1817 1818
exit:
	up(&hyperv_mmio_lock);
	return retval;
1819 1820 1821
}
EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);

1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
/**
 * vmbus_free_mmio() - Free a memory-mapped I/O range.
 * @start:		Base address of region to release.
 * @size:		Size of the range to be allocated
 *
 * This function releases anything requested by
 * vmbus_mmio_allocate().
 */
void vmbus_free_mmio(resource_size_t start, resource_size_t size)
{
1832 1833 1834 1835 1836 1837 1838 1839 1840
	struct resource *iter;

	down(&hyperv_mmio_lock);
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= start + size) || (iter->end <= start))
			continue;

		__release_region(iter, start, size);
	}
1841
	release_mem_region(start, size);
1842
	up(&hyperv_mmio_lock);
1843 1844 1845 1846

}
EXPORT_SYMBOL_GPL(vmbus_free_mmio);

1847 1848 1849
static int vmbus_acpi_add(struct acpi_device *device)
{
	acpi_status result;
1850
	int ret_val = -ENODEV;
1851
	struct acpi_device *ancestor;
1852

1853 1854
	hv_acpi_dev = device;

1855
	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1856
					vmbus_walk_resources, NULL);
1857

1858 1859 1860
	if (ACPI_FAILURE(result))
		goto acpi_walk_err;
	/*
1861 1862
	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
	 * firmware) is the VMOD that has the mmio ranges. Get that.
1863
	 */
1864 1865 1866
	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
					     vmbus_walk_resources, NULL);
1867 1868

		if (ACPI_FAILURE(result))
1869
			continue;
1870 1871
		if (hyperv_mmio) {
			vmbus_reserve_fb();
1872
			break;
1873
		}
1874
	}
1875 1876 1877
	ret_val = 0;

acpi_walk_err:
1878
	complete(&probe_event);
1879 1880
	if (ret_val)
		vmbus_acpi_remove(device);
1881
	return ret_val;
1882 1883 1884 1885
}

static const struct acpi_device_id vmbus_acpi_device_ids[] = {
	{"VMBUS", 0},
1886
	{"VMBus", 0},
1887 1888 1889 1890 1891 1892 1893 1894 1895
	{"", 0},
};
MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);

static struct acpi_driver vmbus_acpi_driver = {
	.name = "vmbus",
	.ids = vmbus_acpi_device_ids,
	.ops = {
		.add = vmbus_acpi_add,
1896
		.remove = vmbus_acpi_remove,
1897 1898 1899
	},
};

1900 1901 1902
static void hv_kexec_handler(void)
{
	hv_synic_clockevents_cleanup();
1903
	vmbus_initiate_unload(false);
1904 1905 1906
	vmbus_connection.conn_state = DISCONNECTED;
	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
	mb();
1907
	cpuhp_remove_state(hyperv_cpuhp_online);
1908
	hyperv_cleanup();
1909 1910
};

1911 1912
static void hv_crash_handler(struct pt_regs *regs)
{
1913
	vmbus_initiate_unload(true);
1914 1915 1916 1917 1918
	/*
	 * In crash handler we can't schedule synic cleanup for all CPUs,
	 * doing the cleanup for current CPU only. This should be sufficient
	 * for kdump.
	 */
1919
	vmbus_connection.conn_state = DISCONNECTED;
1920
	hv_synic_cleanup(smp_processor_id());
1921
	hyperv_cleanup();
1922 1923
};

1924
static int __init hv_acpi_init(void)
1925
{
1926
	int ret, t;
1927

1928
	if (!hv_is_hyperv_initialized())
1929 1930
		return -ENODEV;

1931 1932 1933
	init_completion(&probe_event);

	/*
1934
	 * Get ACPI resources first.
1935
	 */
1936 1937
	ret = acpi_bus_register_driver(&vmbus_acpi_driver);

1938 1939 1940
	if (ret)
		return ret;

1941 1942 1943 1944 1945
	t = wait_for_completion_timeout(&probe_event, 5*HZ);
	if (t == 0) {
		ret = -ETIMEDOUT;
		goto cleanup;
	}
1946

1947
	ret = vmbus_bus_init();
1948
	if (ret)
1949 1950
		goto cleanup;

1951
	hv_setup_kexec_handler(hv_kexec_handler);
1952
	hv_setup_crash_handler(hv_crash_handler);
1953

1954 1955 1956 1957
	return 0;

cleanup:
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1958
	hv_acpi_dev = NULL;
1959
	return ret;
1960 1961
}

1962 1963
static void __exit vmbus_exit(void)
{
1964 1965
	int cpu;

1966
	hv_remove_kexec_handler();
1967
	hv_remove_crash_handler();
1968
	vmbus_connection.conn_state = DISCONNECTED;
1969
	hv_synic_clockevents_cleanup();
1970
	vmbus_disconnect();
1971
	hv_remove_vmbus_irq();
1972 1973 1974 1975 1976 1977
	for_each_online_cpu(cpu) {
		struct hv_per_cpu_context *hv_cpu
			= per_cpu_ptr(hv_context.cpu_context, cpu);

		tasklet_kill(&hv_cpu->msg_dpc);
	}
1978
	vmbus_free_channels();
1979

1980
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1981
		kmsg_dump_unregister(&hv_kmsg_dumper);
1982
		unregister_die_notifier(&hyperv_die_block);
1983 1984 1985
		atomic_notifier_chain_unregister(&panic_notifier_list,
						 &hyperv_panic_block);
	}
1986 1987

	free_page((unsigned long)hv_panic_page);
1988 1989
	unregister_sysctl_table(hv_ctl_table_hdr);
	hv_ctl_table_hdr = NULL;
1990
	bus_unregister(&hv_bus);
1991

1992
	cpuhp_remove_state(hyperv_cpuhp_online);
1993
	hv_synic_free();
1994 1995 1996
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
}

1997

1998
MODULE_LICENSE("GPL");
1999

2000
subsys_initcall(hv_acpi_init);
2001
module_exit(vmbus_exit);