vmbus_drv.c 44.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (c) 2009, Microsoft Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 *
 * Authors:
 *   Haiyang Zhang <haiyangz@microsoft.com>
 *   Hank Janssen  <hjanssen@microsoft.com>
20
 *   K. Y. Srinivasan <kys@microsoft.com>
21
 *
22
 */
23 24
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

25 26 27 28 29
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/sysctl.h>
30
#include <linux/slab.h>
31
#include <linux/acpi.h>
32
#include <linux/completion.h>
33
#include <linux/hyperv.h>
34
#include <linux/kernel_stat.h>
35
#include <linux/clockchips.h>
36
#include <linux/cpu.h>
37 38
#include <linux/sched/task_stack.h>

39
#include <asm/hyperv.h>
40
#include <asm/mshyperv.h>
41 42
#include <linux/notifier.h>
#include <linux/ptrace.h>
43
#include <linux/screen_info.h>
44
#include <linux/kdebug.h>
45
#include <linux/efi.h>
46
#include <linux/random.h>
47
#include "hyperv_vmbus.h"
48

49 50 51 52 53
struct vmbus_dynid {
	struct list_head node;
	struct hv_vmbus_device_id id;
};

54
static struct acpi_device  *hv_acpi_dev;
55

56
static struct completion probe_event;
57

58
static int hyperv_cpuhp_online;
59

60 61 62 63 64 65 66
static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
			      void *args)
{
	struct pt_regs *regs;

	regs = current_pt_regs();

67
	hyperv_report_panic(regs, val);
68 69 70
	return NOTIFY_DONE;
}

71 72 73 74 75 76
static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
			    void *args)
{
	struct die_args *die = (struct die_args *)args;
	struct pt_regs *regs = die->regs;

77
	hyperv_report_panic(regs, val);
78 79 80 81 82 83
	return NOTIFY_DONE;
}

static struct notifier_block hyperv_die_block = {
	.notifier_call = hyperv_die_event,
};
84 85 86 87
static struct notifier_block hyperv_panic_block = {
	.notifier_call = hyperv_panic_event,
};

88 89
static const char *fb_mmio_name = "fb_range";
static struct resource *fb_mmio;
90 91
static struct resource *hyperv_mmio;
static DEFINE_SEMAPHORE(hyperv_mmio_lock);
92

93 94 95 96 97 98 99 100
static int vmbus_exists(void)
{
	if (hv_acpi_dev == NULL)
		return -ENODEV;

	return 0;
}

101 102 103 104 105 106 107 108
#define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
{
	int i;
	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
}

109
static u8 channel_monitor_group(const struct vmbus_channel *channel)
110 111 112 113
{
	return (u8)channel->offermsg.monitorid / 32;
}

114
static u8 channel_monitor_offset(const struct vmbus_channel *channel)
115 116 117 118
{
	return (u8)channel->offermsg.monitorid % 32;
}

119 120
static u32 channel_pending(const struct vmbus_channel *channel,
			   const struct hv_monitor_page *monitor_page)
121 122
{
	u8 monitor_group = channel_monitor_group(channel);
123

124 125 126
	return monitor_page->trigger_group[monitor_group].pending;
}

127 128
static u32 channel_latency(const struct vmbus_channel *channel,
			   const struct hv_monitor_page *monitor_page)
129 130 131
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
132

133 134 135
	return monitor_page->latency[monitor_group][monitor_offset];
}

136 137 138 139 140 141 142 143
static u32 channel_conn_id(struct vmbus_channel *channel,
			   struct hv_monitor_page *monitor_page)
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
}

144 145 146 147 148 149 150 151 152 153 154
static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
		       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
}
static DEVICE_ATTR_RO(id);

155 156 157 158 159 160 161 162 163 164 165
static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
			  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->state);
}
static DEVICE_ATTR_RO(state);

166 167 168 169 170 171 172 173 174 175 176
static ssize_t monitor_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
}
static DEVICE_ATTR_RO(monitor_id);

177 178 179 180 181 182 183 184 185 186 187 188
static ssize_t class_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_type.b);
}
static DEVICE_ATTR_RO(class_id);

189 190 191 192 193 194 195 196 197 198 199 200
static ssize_t device_id_show(struct device *dev,
			      struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_instance.b);
}
static DEVICE_ATTR_RO(device_id);

201 202 203 204 205 206 207 208 209 210 211
static ssize_t modalias_show(struct device *dev,
			     struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	char alias_name[VMBUS_ALIAS_LEN + 1];

	print_alias_name(hv_dev, alias_name);
	return sprintf(buf, "vmbus:%s\n", alias_name);
}
static DEVICE_ATTR_RO(modalias);

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
static ssize_t server_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(server_monitor_pending);

static ssize_t client_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_pending);
239

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
static ssize_t server_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_latency);

static ssize_t client_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_latency);

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
static ssize_t server_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_conn_id);

static ssize_t client_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_conn_id);

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
static ssize_t out_intr_mask_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(out_intr_mask);

static ssize_t out_read_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.current_read_index);
}
static DEVICE_ATTR_RO(out_read_index);

static ssize_t out_write_index_show(struct device *dev,
				    struct device_attribute *dev_attr,
				    char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.current_write_index);
}
static DEVICE_ATTR_RO(out_write_index);

static ssize_t out_read_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(out_read_bytes_avail);

static ssize_t out_write_bytes_avail_show(struct device *dev,
					  struct device_attribute *dev_attr,
					  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(out_write_bytes_avail);

static ssize_t in_intr_mask_show(struct device *dev,
				 struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(in_intr_mask);

static ssize_t in_read_index_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.current_read_index);
}
static DEVICE_ATTR_RO(in_read_index);

static ssize_t in_write_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.current_write_index);
}
static DEVICE_ATTR_RO(in_write_index);

static ssize_t in_read_bytes_avail_show(struct device *dev,
					struct device_attribute *dev_attr,
					char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(in_read_bytes_avail);

static ssize_t in_write_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(in_write_bytes_avail);

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
static ssize_t channel_vp_mapping_show(struct device *dev,
				       struct device_attribute *dev_attr,
				       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
	unsigned long flags;
	int buf_size = PAGE_SIZE, n_written, tot_written;
	struct list_head *cur;

	if (!channel)
		return -ENODEV;

	tot_written = snprintf(buf, buf_size, "%u:%u\n",
		channel->offermsg.child_relid, channel->target_cpu);

	spin_lock_irqsave(&channel->lock, flags);

	list_for_each(cur, &channel->sc_list) {
		if (tot_written >= buf_size - 1)
			break;

		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
		n_written = scnprintf(buf + tot_written,
				     buf_size - tot_written,
				     "%u:%u\n",
				     cur_sc->offermsg.child_relid,
				     cur_sc->target_cpu);
		tot_written += n_written;
	}

	spin_unlock_irqrestore(&channel->lock, flags);

	return tot_written;
}
static DEVICE_ATTR_RO(channel_vp_mapping);

468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
static ssize_t vendor_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
}
static DEVICE_ATTR_RO(vendor);

static ssize_t device_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->device_id);
}
static DEVICE_ATTR_RO(device);

486
/* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
487
static struct attribute *vmbus_dev_attrs[] = {
488
	&dev_attr_id.attr,
489
	&dev_attr_state.attr,
490
	&dev_attr_monitor_id.attr,
491
	&dev_attr_class_id.attr,
492
	&dev_attr_device_id.attr,
493
	&dev_attr_modalias.attr,
494 495
	&dev_attr_server_monitor_pending.attr,
	&dev_attr_client_monitor_pending.attr,
496 497
	&dev_attr_server_monitor_latency.attr,
	&dev_attr_client_monitor_latency.attr,
498 499
	&dev_attr_server_monitor_conn_id.attr,
	&dev_attr_client_monitor_conn_id.attr,
500 501 502 503 504 505 506 507 508 509
	&dev_attr_out_intr_mask.attr,
	&dev_attr_out_read_index.attr,
	&dev_attr_out_write_index.attr,
	&dev_attr_out_read_bytes_avail.attr,
	&dev_attr_out_write_bytes_avail.attr,
	&dev_attr_in_intr_mask.attr,
	&dev_attr_in_read_index.attr,
	&dev_attr_in_write_index.attr,
	&dev_attr_in_read_bytes_avail.attr,
	&dev_attr_in_write_bytes_avail.attr,
510
	&dev_attr_channel_vp_mapping.attr,
511 512
	&dev_attr_vendor.attr,
	&dev_attr_device.attr,
513 514
	NULL,
};
515
ATTRIBUTE_GROUPS(vmbus_dev);
516

517 518 519 520 521 522
/*
 * vmbus_uevent - add uevent for our device
 *
 * This routine is invoked when a device is added or removed on the vmbus to
 * generate a uevent to udev in the userspace. The udev will then look at its
 * rule and the uevent generated here to load the appropriate driver
523 524 525 526
 *
 * The alias string will be of the form vmbus:guid where guid is the string
 * representation of the device guid (each byte of the guid will be
 * represented with two hex characters.
527 528 529 530
 */
static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
{
	struct hv_device *dev = device_to_hv_device(device);
531 532
	int ret;
	char alias_name[VMBUS_ALIAS_LEN + 1];
533

534
	print_alias_name(dev, alias_name);
535 536
	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
	return ret;
537 538
}

S
stephen hemminger 已提交
539
static const uuid_le null_guid;
540

541
static inline bool is_null_guid(const uuid_le *guid)
542
{
543
	if (uuid_le_cmp(*guid, null_guid))
544 545 546 547
		return false;
	return true;
}

548 549 550 551
/*
 * Return a matching hv_vmbus_device_id pointer.
 * If there is no match, return NULL.
 */
552
static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
553
					const uuid_le *guid)
554
{
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
	const struct hv_vmbus_device_id *id = NULL;
	struct vmbus_dynid *dynid;

	/* Look at the dynamic ids first, before the static ones */
	spin_lock(&drv->dynids.lock);
	list_for_each_entry(dynid, &drv->dynids.list, node) {
		if (!uuid_le_cmp(dynid->id.guid, *guid)) {
			id = &dynid->id;
			break;
		}
	}
	spin_unlock(&drv->dynids.lock);

	if (id)
		return id;

	id = drv->id_table;
	if (id == NULL)
		return NULL; /* empty device table */

575
	for (; !is_null_guid(&id->guid); id++)
576
		if (!uuid_le_cmp(id->guid, *guid))
577 578 579 580 581
			return id;

	return NULL;
}

582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
/* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid)
{
	struct vmbus_dynid *dynid;

	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
	if (!dynid)
		return -ENOMEM;

	dynid->id.guid = *guid;

	spin_lock(&drv->dynids.lock);
	list_add_tail(&dynid->node, &drv->dynids.list);
	spin_unlock(&drv->dynids.lock);

	return driver_attach(&drv->driver);
}

static void vmbus_free_dynids(struct hv_driver *drv)
{
	struct vmbus_dynid *dynid, *n;

	spin_lock(&drv->dynids.lock);
	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
		list_del(&dynid->node);
		kfree(dynid);
	}
	spin_unlock(&drv->dynids.lock);
}

/*
 * store_new_id - sysfs frontend to vmbus_add_dynid()
 *
 * Allow GUIDs to be added to an existing driver via sysfs.
 */
static ssize_t new_id_store(struct device_driver *driver, const char *buf,
			    size_t count)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
621
	uuid_le guid;
622 623
	ssize_t retval;

624 625 626
	retval = uuid_le_to_bin(buf, &guid);
	if (retval)
		return retval;
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647

	if (hv_vmbus_get_id(drv, &guid))
		return -EEXIST;

	retval = vmbus_add_dynid(drv, &guid);
	if (retval)
		return retval;
	return count;
}
static DRIVER_ATTR_WO(new_id);

/*
 * store_remove_id - remove a PCI device ID from this driver
 *
 * Removes a dynamic pci device ID to this driver.
 */
static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
			       size_t count)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
	struct vmbus_dynid *dynid, *n;
648 649
	uuid_le guid;
	ssize_t retval;
650

651 652 653
	retval = uuid_le_to_bin(buf, &guid);
	if (retval)
		return retval;
654

655
	retval = -ENODEV;
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
	spin_lock(&drv->dynids.lock);
	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
		struct hv_vmbus_device_id *id = &dynid->id;

		if (!uuid_le_cmp(id->guid, guid)) {
			list_del(&dynid->node);
			kfree(dynid);
			retval = count;
			break;
		}
	}
	spin_unlock(&drv->dynids.lock);

	return retval;
}
static DRIVER_ATTR_WO(remove_id);

static struct attribute *vmbus_drv_attrs[] = {
	&driver_attr_new_id.attr,
	&driver_attr_remove_id.attr,
	NULL,
};
ATTRIBUTE_GROUPS(vmbus_drv);
679

680 681 682 683 684 685 686

/*
 * vmbus_match - Attempt to match the specified device to the specified driver
 */
static int vmbus_match(struct device *device, struct device_driver *driver)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
687
	struct hv_device *hv_dev = device_to_hv_device(device);
688

689 690 691 692
	/* The hv_sock driver handles all hv_sock offers. */
	if (is_hvsock_channel(hv_dev->channel))
		return drv->hvsock;

693
	if (hv_vmbus_get_id(drv, &hv_dev->dev_type))
694
		return 1;
695

696
	return 0;
697 698
}

699 700 701 702 703 704 705 706
/*
 * vmbus_probe - Add the new vmbus's child device
 */
static int vmbus_probe(struct device *child_device)
{
	int ret = 0;
	struct hv_driver *drv =
			drv_to_hv_drv(child_device->driver);
707
	struct hv_device *dev = device_to_hv_device(child_device);
708
	const struct hv_vmbus_device_id *dev_id;
709

710
	dev_id = hv_vmbus_get_id(drv, &dev->dev_type);
711
	if (drv->probe) {
712
		ret = drv->probe(dev, dev_id);
713
		if (ret != 0)
714 715
			pr_err("probe failed for device %s (%d)\n",
			       dev_name(child_device), ret);
716 717

	} else {
718 719
		pr_err("probe not set for driver %s\n",
		       dev_name(child_device));
720
		ret = -ENODEV;
721 722 723 724
	}
	return ret;
}

725 726 727 728 729
/*
 * vmbus_remove - Remove a vmbus device
 */
static int vmbus_remove(struct device *child_device)
{
730
	struct hv_driver *drv;
731
	struct hv_device *dev = device_to_hv_device(child_device);
732

733 734 735 736 737
	if (child_device->driver) {
		drv = drv_to_hv_drv(child_device->driver);
		if (drv->remove)
			drv->remove(dev);
	}
738 739 740 741

	return 0;
}

742 743 744 745 746 747 748

/*
 * vmbus_shutdown - Shutdown a vmbus device
 */
static void vmbus_shutdown(struct device *child_device)
{
	struct hv_driver *drv;
749
	struct hv_device *dev = device_to_hv_device(child_device);
750 751 752 753 754 755 756 757


	/* The device may not be attached yet */
	if (!child_device->driver)
		return;

	drv = drv_to_hv_drv(child_device->driver);

758 759
	if (drv->shutdown)
		drv->shutdown(dev);
760 761
}

762 763 764 765 766 767

/*
 * vmbus_device_release - Final callback release of the vmbus child device
 */
static void vmbus_device_release(struct device *device)
{
768
	struct hv_device *hv_dev = device_to_hv_device(device);
769
	struct vmbus_channel *channel = hv_dev->channel;
770

771
	mutex_lock(&vmbus_connection.channel_mutex);
772
	hv_process_channel_removal(channel->offermsg.child_relid);
773
	mutex_unlock(&vmbus_connection.channel_mutex);
774
	kfree(hv_dev);
775 776 777

}

778
/* The one and only one */
779 780 781 782 783 784 785
static struct bus_type  hv_bus = {
	.name =		"vmbus",
	.match =		vmbus_match,
	.shutdown =		vmbus_shutdown,
	.remove =		vmbus_remove,
	.probe =		vmbus_probe,
	.uevent =		vmbus_uevent,
786 787
	.dev_groups =		vmbus_dev_groups,
	.drv_groups =		vmbus_drv_groups,
788 789
};

790 791 792 793 794 795 796 797 798
struct onmessage_work_context {
	struct work_struct work;
	struct hv_message msg;
};

static void vmbus_onmessage_work(struct work_struct *work)
{
	struct onmessage_work_context *ctx;

799 800 801 802
	/* Do not process messages if we're in DISCONNECTED state */
	if (vmbus_connection.conn_state == DISCONNECTED)
		return;

803 804 805 806 807 808
	ctx = container_of(work, struct onmessage_work_context,
			   work);
	vmbus_onmessage(&ctx->msg);
	kfree(ctx);
}

809 810
static void hv_process_timer_expiration(struct hv_message *msg,
					struct hv_per_cpu_context *hv_cpu)
811
{
812
	struct clock_event_device *dev = hv_cpu->clk_evt;
813 814 815 816

	if (dev->event_handler)
		dev->event_handler(dev);

817
	vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
818 819
}

820
void vmbus_on_msg_dpc(unsigned long data)
G
Greg Kroah-Hartman 已提交
821
{
822 823
	struct hv_per_cpu_context *hv_cpu = (void *)data;
	void *page_addr = hv_cpu->synic_message_page;
G
Greg Kroah-Hartman 已提交
824 825
	struct hv_message *msg = (struct hv_message *)page_addr +
				  VMBUS_MESSAGE_SINT;
826
	struct vmbus_channel_message_header *hdr;
827
	const struct vmbus_channel_message_table_entry *entry;
828
	struct onmessage_work_context *ctx;
829
	u32 message_type = msg->header.message_type;
G
Greg Kroah-Hartman 已提交
830

831
	if (message_type == HVMSG_NONE)
832 833
		/* no msg */
		return;
834

835
	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
836

837 838
	trace_vmbus_on_msg_dpc(hdr);

839 840 841 842
	if (hdr->msgtype >= CHANNELMSG_COUNT) {
		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
		goto msg_handled;
	}
843

844 845 846 847 848
	entry = &channel_message_table[hdr->msgtype];
	if (entry->handler_type	== VMHT_BLOCKING) {
		ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
		if (ctx == NULL)
			return;
849

850 851
		INIT_WORK(&ctx->work, vmbus_onmessage_work);
		memcpy(&ctx->msg, msg, sizeof(*msg));
852

853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
		/*
		 * The host can generate a rescind message while we
		 * may still be handling the original offer. We deal with
		 * this condition by ensuring the processing is done on the
		 * same CPU.
		 */
		switch (hdr->msgtype) {
		case CHANNELMSG_RESCIND_CHANNELOFFER:
			/*
			 * If we are handling the rescind message;
			 * schedule the work on the global work queue.
			 */
			schedule_work_on(vmbus_connection.connect_cpu,
					 &ctx->work);
			break;

		case CHANNELMSG_OFFERCHANNEL:
			atomic_inc(&vmbus_connection.offer_in_progress);
			queue_work_on(vmbus_connection.connect_cpu,
				      vmbus_connection.work_queue,
				      &ctx->work);
			break;

		default:
			queue_work(vmbus_connection.work_queue, &ctx->work);
		}
879 880
	} else
		entry->message_handler(hdr);
G
Greg Kroah-Hartman 已提交
881

882
msg_handled:
883
	vmbus_signal_eom(msg, message_type);
G
Greg Kroah-Hartman 已提交
884 885
}

886

887 888 889 890 891 892 893 894 895 896 897 898
/*
 * Direct callback for channels using other deferred processing
 */
static void vmbus_channel_isr(struct vmbus_channel *channel)
{
	void (*callback_fn)(void *);

	callback_fn = READ_ONCE(channel->onchannel_callback);
	if (likely(callback_fn != NULL))
		(*callback_fn)(channel->channel_callback_context);
}

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
/*
 * Schedule all channels with events pending
 */
static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
{
	unsigned long *recv_int_page;
	u32 maxbits, relid;

	if (vmbus_proto_version < VERSION_WIN8) {
		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
		recv_int_page = vmbus_connection.recv_int_page;
	} else {
		/*
		 * When the host is win8 and beyond, the event page
		 * can be directly checked to get the id of the channel
		 * that has the interrupt pending.
		 */
		void *page_addr = hv_cpu->synic_event_page;
		union hv_synic_event_flags *event
			= (union hv_synic_event_flags *)page_addr +
						 VMBUS_MESSAGE_SINT;

		maxbits = HV_EVENT_FLAGS_COUNT;
		recv_int_page = event->flags;
	}

	if (unlikely(!recv_int_page))
		return;

	for_each_set_bit(relid, recv_int_page, maxbits) {
		struct vmbus_channel *channel;

		if (!sync_test_and_clear_bit(relid, recv_int_page))
			continue;

		/* Special case - vmbus channel protocol msg */
		if (relid == 0)
			continue;

938 939
		rcu_read_lock();

940
		/* Find channel based on relid */
941
		list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
942 943 944
			if (channel->offermsg.child_relid != relid)
				continue;

945 946 947
			if (channel->rescind)
				continue;

V
Vitaly Kuznetsov 已提交
948 949
			trace_vmbus_chan_sched(channel);

950 951
			++channel->interrupts;

952 953 954
			switch (channel->callback_mode) {
			case HV_CALL_ISR:
				vmbus_channel_isr(channel);
955
				break;
956 957 958 959 960 961

			case HV_CALL_BATCHED:
				hv_begin_read(&channel->inbound);
				/* fallthrough */
			case HV_CALL_DIRECT:
				tasklet_schedule(&channel->callback_event);
962 963
			}
		}
964 965

		rcu_read_unlock();
966 967 968
	}
}

969
static void vmbus_isr(void)
G
Greg Kroah-Hartman 已提交
970
{
971 972 973
	struct hv_per_cpu_context *hv_cpu
		= this_cpu_ptr(hv_context.cpu_context);
	void *page_addr = hv_cpu->synic_event_page;
G
Greg Kroah-Hartman 已提交
974 975
	struct hv_message *msg;
	union hv_synic_event_flags *event;
976
	bool handled = false;
G
Greg Kroah-Hartman 已提交
977

978
	if (unlikely(page_addr == NULL))
979
		return;
980 981 982

	event = (union hv_synic_event_flags *)page_addr +
					 VMBUS_MESSAGE_SINT;
983 984 985 986 987
	/*
	 * Check for events before checking for messages. This is the order
	 * in which events and messages are checked in Windows guests on
	 * Hyper-V, and the Windows team suggested we do the same.
	 */
G
Greg Kroah-Hartman 已提交
988

989 990
	if ((vmbus_proto_version == VERSION_WS2008) ||
		(vmbus_proto_version == VERSION_WIN7)) {
G
Greg Kroah-Hartman 已提交
991

992
		/* Since we are a child, we only need to check bit 0 */
993
		if (sync_test_and_clear_bit(0, event->flags))
994 995 996 997 998 999 1000 1001
			handled = true;
	} else {
		/*
		 * Our host is win8 or above. The signaling mechanism
		 * has changed and we can directly look at the event page.
		 * If bit n is set then we have an interrup on the channel
		 * whose id is n.
		 */
1002 1003
		handled = true;
	}
1004

1005
	if (handled)
1006
		vmbus_chan_sched(hv_cpu);
1007

1008
	page_addr = hv_cpu->synic_message_page;
1009 1010 1011
	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;

	/* Check if there are actual msgs to be processed */
1012 1013
	if (msg->header.message_type != HVMSG_NONE) {
		if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
1014
			hv_process_timer_expiration(msg, hv_cpu);
1015
		else
1016
			tasklet_schedule(&hv_cpu->msg_dpc);
1017
	}
1018 1019

	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1020 1021
}

1022

1023
/*
1024 1025 1026
 * vmbus_bus_init -Main vmbus driver initialization routine.
 *
 * Here, we
1027 1028 1029
 *	- initialize the vmbus driver context
 *	- invoke the vmbus hv main init routine
 *	- retrieve the channel offers
1030
 */
1031
static int vmbus_bus_init(void)
1032
{
1033
	int ret;
1034

1035 1036
	/* Hypervisor initialization...setup hypercall page..etc */
	ret = hv_init();
1037
	if (ret != 0) {
1038
		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1039
		return ret;
1040 1041
	}

1042
	ret = bus_register(&hv_bus);
1043
	if (ret)
1044
		return ret;
1045

1046
	hv_setup_vmbus_irq(vmbus_isr);
1047

1048 1049 1050
	ret = hv_synic_alloc();
	if (ret)
		goto err_alloc;
1051
	/*
1052
	 * Initialize the per-cpu interrupt state and
1053 1054
	 * connect to the host.
	 */
1055
	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1056 1057 1058 1059 1060
				hv_synic_init, hv_synic_cleanup);
	if (ret < 0)
		goto err_alloc;
	hyperv_cpuhp_online = ret;

1061
	ret = vmbus_connect();
1062
	if (ret)
1063
		goto err_connect;
1064

1065 1066 1067
	/*
	 * Only register if the crash MSRs are available
	 */
1068
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1069
		register_die_notifier(&hyperv_die_block);
1070 1071 1072 1073
		atomic_notifier_chain_register(&panic_notifier_list,
					       &hyperv_panic_block);
	}

1074
	vmbus_request_offers();
1075

1076
	return 0;
1077

1078
err_connect:
1079
	cpuhp_remove_state(hyperv_cpuhp_online);
1080 1081
err_alloc:
	hv_synic_free();
1082
	hv_remove_vmbus_irq();
1083 1084 1085 1086

	bus_unregister(&hv_bus);

	return ret;
1087 1088
}

1089
/**
1090 1091
 * __vmbus_child_driver_register() - Register a vmbus's driver
 * @hv_driver: Pointer to driver structure you want to register
1092 1093
 * @owner: owner module of the drv
 * @mod_name: module name string
1094 1095
 *
 * Registers the given driver with Linux through the 'driver_register()' call
1096
 * and sets up the hyper-v vmbus handling for this driver.
1097 1098
 * It will return the state of the 'driver_register()' call.
 *
1099
 */
1100
int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1101
{
1102
	int ret;
1103

1104
	pr_info("registering driver %s\n", hv_driver->name);
1105

1106 1107 1108 1109
	ret = vmbus_exists();
	if (ret < 0)
		return ret;

1110 1111 1112 1113
	hv_driver->driver.name = hv_driver->name;
	hv_driver->driver.owner = owner;
	hv_driver->driver.mod_name = mod_name;
	hv_driver->driver.bus = &hv_bus;
1114

1115 1116 1117
	spin_lock_init(&hv_driver->dynids.lock);
	INIT_LIST_HEAD(&hv_driver->dynids.list);

1118
	ret = driver_register(&hv_driver->driver);
1119

1120
	return ret;
1121
}
1122
EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1123

1124
/**
1125
 * vmbus_driver_unregister() - Unregister a vmbus's driver
1126 1127
 * @hv_driver: Pointer to driver structure you want to
 *             un-register
1128
 *
1129 1130
 * Un-register the given driver that was previous registered with a call to
 * vmbus_driver_register()
1131
 */
1132
void vmbus_driver_unregister(struct hv_driver *hv_driver)
1133
{
1134
	pr_info("unregistering driver %s\n", hv_driver->name);
1135

1136
	if (!vmbus_exists()) {
1137
		driver_unregister(&hv_driver->driver);
1138 1139
		vmbus_free_dynids(hv_driver);
	}
1140
}
1141
EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1142

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194

/*
 * Called when last reference to channel is gone.
 */
static void vmbus_chan_release(struct kobject *kobj)
{
	struct vmbus_channel *channel
		= container_of(kobj, struct vmbus_channel, kobj);

	kfree_rcu(channel, rcu);
}

struct vmbus_chan_attribute {
	struct attribute attr;
	ssize_t (*show)(const struct vmbus_channel *chan, char *buf);
	ssize_t (*store)(struct vmbus_channel *chan,
			 const char *buf, size_t count);
};
#define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
	struct vmbus_chan_attribute chan_attr_##_name \
		= __ATTR(_name, _mode, _show, _store)
#define VMBUS_CHAN_ATTR_RW(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
#define VMBUS_CHAN_ATTR_RO(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
#define VMBUS_CHAN_ATTR_WO(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)

static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
				    struct attribute *attr, char *buf)
{
	const struct vmbus_chan_attribute *attribute
		= container_of(attr, struct vmbus_chan_attribute, attr);
	const struct vmbus_channel *chan
		= container_of(kobj, struct vmbus_channel, kobj);

	if (!attribute->show)
		return -EIO;

	return attribute->show(chan, buf);
}

static const struct sysfs_ops vmbus_chan_sysfs_ops = {
	.show = vmbus_chan_attr_show,
};

static ssize_t out_mask_show(const struct vmbus_channel *channel, char *buf)
{
	const struct hv_ring_buffer_info *rbi = &channel->outbound;

	return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
}
1195
static VMBUS_CHAN_ATTR_RO(out_mask);
1196 1197 1198 1199 1200 1201 1202

static ssize_t in_mask_show(const struct vmbus_channel *channel, char *buf)
{
	const struct hv_ring_buffer_info *rbi = &channel->inbound;

	return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
}
1203
static VMBUS_CHAN_ATTR_RO(in_mask);
1204 1205 1206 1207 1208 1209 1210

static ssize_t read_avail_show(const struct vmbus_channel *channel, char *buf)
{
	const struct hv_ring_buffer_info *rbi = &channel->inbound;

	return sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
}
1211
static VMBUS_CHAN_ATTR_RO(read_avail);
1212 1213 1214 1215 1216 1217 1218

static ssize_t write_avail_show(const struct vmbus_channel *channel, char *buf)
{
	const struct hv_ring_buffer_info *rbi = &channel->outbound;

	return sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
}
1219
static VMBUS_CHAN_ATTR_RO(write_avail);
1220 1221 1222 1223 1224

static ssize_t show_target_cpu(const struct vmbus_channel *channel, char *buf)
{
	return sprintf(buf, "%u\n", channel->target_cpu);
}
1225
static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1226 1227 1228 1229 1230 1231 1232 1233

static ssize_t channel_pending_show(const struct vmbus_channel *channel,
				    char *buf)
{
	return sprintf(buf, "%d\n",
		       channel_pending(channel,
				       vmbus_connection.monitor_pages[1]));
}
1234
static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1235 1236 1237 1238 1239 1240 1241 1242

static ssize_t channel_latency_show(const struct vmbus_channel *channel,
				    char *buf)
{
	return sprintf(buf, "%d\n",
		       channel_latency(channel,
				       vmbus_connection.monitor_pages[1]));
}
1243
static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1244

1245 1246 1247 1248
static ssize_t channel_interrupts_show(const struct vmbus_channel *channel, char *buf)
{
	return sprintf(buf, "%llu\n", channel->interrupts);
}
1249
static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1250 1251 1252 1253 1254

static ssize_t channel_events_show(const struct vmbus_channel *channel, char *buf)
{
	return sprintf(buf, "%llu\n", channel->sig_events);
}
1255
static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1256

1257 1258 1259 1260 1261 1262 1263 1264
static struct attribute *vmbus_chan_attrs[] = {
	&chan_attr_out_mask.attr,
	&chan_attr_in_mask.attr,
	&chan_attr_read_avail.attr,
	&chan_attr_write_avail.attr,
	&chan_attr_cpu.attr,
	&chan_attr_pending.attr,
	&chan_attr_latency.attr,
1265 1266
	&chan_attr_interrupts.attr,
	&chan_attr_events.attr,
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
	NULL
};

static struct kobj_type vmbus_chan_ktype = {
	.sysfs_ops = &vmbus_chan_sysfs_ops,
	.release = vmbus_chan_release,
	.default_attrs = vmbus_chan_attrs,
};

/*
 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
 */
int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
{
	struct kobject *kobj = &channel->kobj;
	u32 relid = channel->offermsg.child_relid;
	int ret;

	kobj->kset = dev->channels_kset;
	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
				   "%u", relid);
	if (ret)
		return ret;

	kobject_uevent(kobj, KOBJ_ADD);

	return 0;
}

1296
/*
1297
 * vmbus_device_create - Creates and registers a new child device
1298
 * on the vmbus.
1299
 */
S
stephen hemminger 已提交
1300 1301 1302
struct hv_device *vmbus_device_create(const uuid_le *type,
				      const uuid_le *instance,
				      struct vmbus_channel *channel)
1303
{
1304
	struct hv_device *child_device_obj;
1305

1306 1307
	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
	if (!child_device_obj) {
1308
		pr_err("Unable to allocate device object for child device\n");
1309 1310 1311
		return NULL;
	}

1312
	child_device_obj->channel = channel;
1313
	memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
1314
	memcpy(&child_device_obj->dev_instance, instance,
1315
	       sizeof(uuid_le));
1316
	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1317 1318 1319 1320 1321


	return child_device_obj;
}

1322
/*
1323
 * vmbus_device_register - Register the child device
1324
 */
1325
int vmbus_device_register(struct hv_device *child_device_obj)
1326
{
1327 1328
	struct kobject *kobj = &child_device_obj->device.kobj;
	int ret;
1329

1330
	dev_set_name(&child_device_obj->device, "%pUl",
1331
		     child_device_obj->channel->offermsg.offer.if_instance.b);
1332

1333
	child_device_obj->device.bus = &hv_bus;
1334
	child_device_obj->device.parent = &hv_acpi_dev->dev;
1335
	child_device_obj->device.release = vmbus_device_release;
1336

1337 1338 1339 1340
	/*
	 * Register with the LDM. This will kick off the driver/device
	 * binding...which will eventually call vmbus_match() and vmbus_probe()
	 */
1341
	ret = device_register(&child_device_obj->device);
1342
	if (ret) {
1343
		pr_err("Unable to register child device\n");
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
		return ret;
	}

	child_device_obj->channels_kset = kset_create_and_add("channels",
							      NULL, kobj);
	if (!child_device_obj->channels_kset) {
		ret = -ENOMEM;
		goto err_dev_unregister;
	}

	ret = vmbus_add_channel_kobj(child_device_obj,
				     child_device_obj->channel);
	if (ret) {
		pr_err("Unable to register primary channeln");
		goto err_kset_unregister;
	}

	return 0;

err_kset_unregister:
	kset_unregister(child_device_obj->channels_kset);
1365

1366 1367
err_dev_unregister:
	device_unregister(&child_device_obj->device);
1368 1369 1370
	return ret;
}

1371
/*
1372
 * vmbus_device_unregister - Remove the specified child device
1373
 * from the vmbus.
1374
 */
1375
void vmbus_device_unregister(struct hv_device *device_obj)
1376
{
1377 1378 1379
	pr_debug("child device %s unregistered\n",
		dev_name(&device_obj->device));

1380 1381
	kset_unregister(device_obj->channels_kset);

1382 1383 1384 1385
	/*
	 * Kick off the process of unregistering the device.
	 * This will call vmbus_remove() and eventually vmbus_device_release()
	 */
1386
	device_unregister(&device_obj->device);
1387 1388 1389
}


1390
/*
1391
 * VMBUS is an acpi enumerated device. Get the information we
1392
 * need from DSDT.
1393
 */
1394
#define VTPM_BASE_ADDRESS 0xfed40000
1395
static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1396
{
1397 1398 1399 1400 1401 1402
	resource_size_t start = 0;
	resource_size_t end = 0;
	struct resource *new_res;
	struct resource **old_res = &hyperv_mmio;
	struct resource **prev_res = NULL;

1403
	switch (res->type) {
1404 1405 1406 1407 1408 1409 1410 1411 1412

	/*
	 * "Address" descriptors are for bus windows. Ignore
	 * "memory" descriptors, which are for registers on
	 * devices.
	 */
	case ACPI_RESOURCE_TYPE_ADDRESS32:
		start = res->data.address32.address.minimum;
		end = res->data.address32.address.maximum;
G
Gerd Hoffmann 已提交
1413
		break;
1414

1415
	case ACPI_RESOURCE_TYPE_ADDRESS64:
1416 1417
		start = res->data.address64.address.minimum;
		end = res->data.address64.address.maximum;
G
Gerd Hoffmann 已提交
1418
		break;
1419 1420 1421 1422 1423

	default:
		/* Unused resource type */
		return AE_OK;

1424
	}
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
	/*
	 * Ignore ranges that are below 1MB, as they're not
	 * necessary or useful here.
	 */
	if (end < 0x100000)
		return AE_OK;

	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
	if (!new_res)
		return AE_NO_MEMORY;

	/* If this range overlaps the virtual TPM, truncate it. */
	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
		end = VTPM_BASE_ADDRESS;

	new_res->name = "hyperv mmio";
	new_res->flags = IORESOURCE_MEM;
	new_res->start = start;
	new_res->end = end;

1445 1446 1447
	/*
	 * If two ranges are adjacent, merge them.
	 */
1448 1449 1450 1451 1452 1453
	do {
		if (!*old_res) {
			*old_res = new_res;
			break;
		}

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
		if (((*old_res)->end + 1) == new_res->start) {
			(*old_res)->end = new_res->end;
			kfree(new_res);
			break;
		}

		if ((*old_res)->start == new_res->end + 1) {
			(*old_res)->start = new_res->start;
			kfree(new_res);
			break;
		}

1466
		if ((*old_res)->start > new_res->end) {
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
			new_res->sibling = *old_res;
			if (prev_res)
				(*prev_res)->sibling = new_res;
			*old_res = new_res;
			break;
		}

		prev_res = old_res;
		old_res = &(*old_res)->sibling;

	} while (1);
1478 1479 1480 1481

	return AE_OK;
}

1482 1483 1484 1485 1486 1487
static int vmbus_acpi_remove(struct acpi_device *device)
{
	struct resource *cur_res;
	struct resource *next_res;

	if (hyperv_mmio) {
1488 1489 1490 1491 1492 1493
		if (fb_mmio) {
			__release_region(hyperv_mmio, fb_mmio->start,
					 resource_size(fb_mmio));
			fb_mmio = NULL;
		}

1494 1495 1496 1497 1498 1499 1500 1501 1502
		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
			next_res = cur_res->sibling;
			kfree(cur_res);
		}
	}

	return 0;
}

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
static void vmbus_reserve_fb(void)
{
	int size;
	/*
	 * Make a claim for the frame buffer in the resource tree under the
	 * first node, which will be the one below 4GB.  The length seems to
	 * be underreported, particularly in a Generation 1 VM.  So start out
	 * reserving a larger area and make it smaller until it succeeds.
	 */

	if (screen_info.lfb_base) {
		if (efi_enabled(EFI_BOOT))
			size = max_t(__u32, screen_info.lfb_size, 0x800000);
		else
			size = max_t(__u32, screen_info.lfb_size, 0x4000000);

		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
			fb_mmio = __request_region(hyperv_mmio,
						   screen_info.lfb_base, size,
						   fb_mmio_name, 0);
		}
	}
}

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
/**
 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
 * @new:		If successful, supplied a pointer to the
 *			allocated MMIO space.
 * @device_obj:		Identifies the caller
 * @min:		Minimum guest physical address of the
 *			allocation
 * @max:		Maximum guest physical address
 * @size:		Size of the range to be allocated
 * @align:		Alignment of the range to be allocated
 * @fb_overlap_ok:	Whether this allocation can be allowed
 *			to overlap the video frame buffer.
 *
 * This function walks the resources granted to VMBus by the
 * _CRS object in the ACPI namespace underneath the parent
 * "bridge" whether that's a root PCI bus in the Generation 1
 * case or a Module Device in the Generation 2 case.  It then
 * attempts to allocate from the global MMIO pool in a way that
 * matches the constraints supplied in these parameters and by
 * that _CRS.
 *
 * Return: 0 on success, -errno on failure
 */
int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
			resource_size_t min, resource_size_t max,
			resource_size_t size, resource_size_t align,
			bool fb_overlap_ok)
{
1555
	struct resource *iter, *shadow;
1556
	resource_size_t range_min, range_max, start;
1557
	const char *dev_n = dev_name(&device_obj->device);
1558
	int retval;
1559 1560 1561

	retval = -ENXIO;
	down(&hyperv_mmio_lock);
1562

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
	/*
	 * If overlaps with frame buffers are allowed, then first attempt to
	 * make the allocation from within the reserved region.  Because it
	 * is already reserved, no shadow allocation is necessary.
	 */
	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
	    !(max < fb_mmio->start)) {

		range_min = fb_mmio->start;
		range_max = fb_mmio->end;
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				retval = 0;
				goto exit;
			}
		}
	}

1583 1584 1585 1586 1587 1588
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= max) || (iter->end <= min))
			continue;

		range_min = iter->start;
		range_max = iter->end;
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			shadow = __request_region(iter, start, size, NULL,
						  IORESOURCE_BUSY);
			if (!shadow)
				continue;

			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				shadow->name = (char *)*new;
				retval = 0;
				goto exit;
1601 1602
			}

1603
			__release_region(iter, start, size);
1604 1605 1606
		}
	}

1607 1608 1609
exit:
	up(&hyperv_mmio_lock);
	return retval;
1610 1611 1612
}
EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);

1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
/**
 * vmbus_free_mmio() - Free a memory-mapped I/O range.
 * @start:		Base address of region to release.
 * @size:		Size of the range to be allocated
 *
 * This function releases anything requested by
 * vmbus_mmio_allocate().
 */
void vmbus_free_mmio(resource_size_t start, resource_size_t size)
{
1623 1624 1625 1626 1627 1628 1629 1630 1631
	struct resource *iter;

	down(&hyperv_mmio_lock);
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= start + size) || (iter->end <= start))
			continue;

		__release_region(iter, start, size);
	}
1632
	release_mem_region(start, size);
1633
	up(&hyperv_mmio_lock);
1634 1635 1636 1637

}
EXPORT_SYMBOL_GPL(vmbus_free_mmio);

1638 1639 1640
static int vmbus_acpi_add(struct acpi_device *device)
{
	acpi_status result;
1641
	int ret_val = -ENODEV;
1642
	struct acpi_device *ancestor;
1643

1644 1645
	hv_acpi_dev = device;

1646
	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1647
					vmbus_walk_resources, NULL);
1648

1649 1650 1651
	if (ACPI_FAILURE(result))
		goto acpi_walk_err;
	/*
1652 1653
	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
	 * firmware) is the VMOD that has the mmio ranges. Get that.
1654
	 */
1655 1656 1657
	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
					     vmbus_walk_resources, NULL);
1658 1659

		if (ACPI_FAILURE(result))
1660
			continue;
1661 1662
		if (hyperv_mmio) {
			vmbus_reserve_fb();
1663
			break;
1664
		}
1665
	}
1666 1667 1668
	ret_val = 0;

acpi_walk_err:
1669
	complete(&probe_event);
1670 1671
	if (ret_val)
		vmbus_acpi_remove(device);
1672
	return ret_val;
1673 1674 1675 1676
}

static const struct acpi_device_id vmbus_acpi_device_ids[] = {
	{"VMBUS", 0},
1677
	{"VMBus", 0},
1678 1679 1680 1681 1682 1683 1684 1685 1686
	{"", 0},
};
MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);

static struct acpi_driver vmbus_acpi_driver = {
	.name = "vmbus",
	.ids = vmbus_acpi_device_ids,
	.ops = {
		.add = vmbus_acpi_add,
1687
		.remove = vmbus_acpi_remove,
1688 1689 1690
	},
};

1691 1692 1693
static void hv_kexec_handler(void)
{
	hv_synic_clockevents_cleanup();
1694
	vmbus_initiate_unload(false);
1695 1696 1697
	vmbus_connection.conn_state = DISCONNECTED;
	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
	mb();
1698
	cpuhp_remove_state(hyperv_cpuhp_online);
1699
	hyperv_cleanup();
1700 1701
};

1702 1703
static void hv_crash_handler(struct pt_regs *regs)
{
1704
	vmbus_initiate_unload(true);
1705 1706 1707 1708 1709
	/*
	 * In crash handler we can't schedule synic cleanup for all CPUs,
	 * doing the cleanup for current CPU only. This should be sufficient
	 * for kdump.
	 */
1710
	vmbus_connection.conn_state = DISCONNECTED;
1711
	hv_synic_cleanup(smp_processor_id());
1712
	hyperv_cleanup();
1713 1714
};

1715
static int __init hv_acpi_init(void)
1716
{
1717
	int ret, t;
1718

1719
	if (!hv_is_hyperv_initialized())
1720 1721
		return -ENODEV;

1722 1723 1724
	init_completion(&probe_event);

	/*
1725
	 * Get ACPI resources first.
1726
	 */
1727 1728
	ret = acpi_bus_register_driver(&vmbus_acpi_driver);

1729 1730 1731
	if (ret)
		return ret;

1732 1733 1734 1735 1736
	t = wait_for_completion_timeout(&probe_event, 5*HZ);
	if (t == 0) {
		ret = -ETIMEDOUT;
		goto cleanup;
	}
1737

1738
	ret = vmbus_bus_init();
1739
	if (ret)
1740 1741
		goto cleanup;

1742
	hv_setup_kexec_handler(hv_kexec_handler);
1743
	hv_setup_crash_handler(hv_crash_handler);
1744

1745 1746 1747 1748
	return 0;

cleanup:
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1749
	hv_acpi_dev = NULL;
1750
	return ret;
1751 1752
}

1753 1754
static void __exit vmbus_exit(void)
{
1755 1756
	int cpu;

1757
	hv_remove_kexec_handler();
1758
	hv_remove_crash_handler();
1759
	vmbus_connection.conn_state = DISCONNECTED;
1760
	hv_synic_clockevents_cleanup();
1761
	vmbus_disconnect();
1762
	hv_remove_vmbus_irq();
1763 1764 1765 1766 1767 1768
	for_each_online_cpu(cpu) {
		struct hv_per_cpu_context *hv_cpu
			= per_cpu_ptr(hv_context.cpu_context, cpu);

		tasklet_kill(&hv_cpu->msg_dpc);
	}
1769
	vmbus_free_channels();
1770

1771
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1772
		unregister_die_notifier(&hyperv_die_block);
1773 1774 1775
		atomic_notifier_chain_unregister(&panic_notifier_list,
						 &hyperv_panic_block);
	}
1776
	bus_unregister(&hv_bus);
1777

1778
	cpuhp_remove_state(hyperv_cpuhp_online);
1779
	hv_synic_free();
1780 1781 1782
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
}

1783

1784
MODULE_LICENSE("GPL");
1785

1786
subsys_initcall(hv_acpi_init);
1787
module_exit(vmbus_exit);