vmbus_drv.c 48.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (c) 2009, Microsoft Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 *
 * Authors:
 *   Haiyang Zhang <haiyangz@microsoft.com>
 *   Hank Janssen  <hjanssen@microsoft.com>
20
 *   K. Y. Srinivasan <kys@microsoft.com>
21
 *
22
 */
23 24
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

25 26 27 28 29
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/sysctl.h>
30
#include <linux/slab.h>
31
#include <linux/acpi.h>
32
#include <linux/completion.h>
33
#include <linux/hyperv.h>
34
#include <linux/kernel_stat.h>
35
#include <linux/clockchips.h>
36
#include <linux/cpu.h>
37 38
#include <linux/sched/task_stack.h>

39
#include <asm/mshyperv.h>
40 41
#include <linux/notifier.h>
#include <linux/ptrace.h>
42
#include <linux/screen_info.h>
43
#include <linux/kdebug.h>
44
#include <linux/efi.h>
45
#include <linux/random.h>
46
#include "hyperv_vmbus.h"
47

48 49 50 51 52
struct vmbus_dynid {
	struct list_head node;
	struct hv_vmbus_device_id id;
};

53
static struct acpi_device  *hv_acpi_dev;
54

55
static struct completion probe_event;
56

57
static int hyperv_cpuhp_online;
58

59 60
static void *hv_panic_page;

61 62 63 64 65 66 67
static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
			      void *args)
{
	struct pt_regs *regs;

	regs = current_pt_regs();

68
	hyperv_report_panic(regs, val);
69 70 71
	return NOTIFY_DONE;
}

72 73 74 75 76 77
static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
			    void *args)
{
	struct die_args *die = (struct die_args *)args;
	struct pt_regs *regs = die->regs;

78
	hyperv_report_panic(regs, val);
79 80 81 82 83 84
	return NOTIFY_DONE;
}

static struct notifier_block hyperv_die_block = {
	.notifier_call = hyperv_die_event,
};
85 86 87 88
static struct notifier_block hyperv_panic_block = {
	.notifier_call = hyperv_panic_event,
};

89 90
static const char *fb_mmio_name = "fb_range";
static struct resource *fb_mmio;
91 92
static struct resource *hyperv_mmio;
static DEFINE_SEMAPHORE(hyperv_mmio_lock);
93

94 95 96 97 98 99 100 101
static int vmbus_exists(void)
{
	if (hv_acpi_dev == NULL)
		return -ENODEV;

	return 0;
}

102 103 104 105 106 107 108 109
#define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
{
	int i;
	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
}

110
static u8 channel_monitor_group(const struct vmbus_channel *channel)
111 112 113 114
{
	return (u8)channel->offermsg.monitorid / 32;
}

115
static u8 channel_monitor_offset(const struct vmbus_channel *channel)
116 117 118 119
{
	return (u8)channel->offermsg.monitorid % 32;
}

120 121
static u32 channel_pending(const struct vmbus_channel *channel,
			   const struct hv_monitor_page *monitor_page)
122 123
{
	u8 monitor_group = channel_monitor_group(channel);
124

125 126 127
	return monitor_page->trigger_group[monitor_group].pending;
}

128 129
static u32 channel_latency(const struct vmbus_channel *channel,
			   const struct hv_monitor_page *monitor_page)
130 131 132
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
133

134 135 136
	return monitor_page->latency[monitor_group][monitor_offset];
}

137 138 139 140 141 142 143 144
static u32 channel_conn_id(struct vmbus_channel *channel,
			   struct hv_monitor_page *monitor_page)
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
}

145 146 147 148 149 150 151 152 153 154 155
static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
		       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
}
static DEVICE_ATTR_RO(id);

156 157 158 159 160 161 162 163 164 165 166
static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
			  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->state);
}
static DEVICE_ATTR_RO(state);

167 168 169 170 171 172 173 174 175 176 177
static ssize_t monitor_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
}
static DEVICE_ATTR_RO(monitor_id);

178 179 180 181 182 183 184 185 186 187 188 189
static ssize_t class_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_type.b);
}
static DEVICE_ATTR_RO(class_id);

190 191 192 193 194 195 196 197 198 199 200 201
static ssize_t device_id_show(struct device *dev,
			      struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_instance.b);
}
static DEVICE_ATTR_RO(device_id);

202 203 204 205 206 207 208 209 210 211 212
static ssize_t modalias_show(struct device *dev,
			     struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	char alias_name[VMBUS_ALIAS_LEN + 1];

	print_alias_name(hv_dev, alias_name);
	return sprintf(buf, "vmbus:%s\n", alias_name);
}
static DEVICE_ATTR_RO(modalias);

213 214 215 216 217 218 219 220 221 222 223 224 225 226
#ifdef CONFIG_NUMA
static ssize_t numa_node_show(struct device *dev,
			      struct device_attribute *attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;

	return sprintf(buf, "%d\n", hv_dev->channel->numa_node);
}
static DEVICE_ATTR_RO(numa_node);
#endif

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
static ssize_t server_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(server_monitor_pending);

static ssize_t client_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_pending);
254

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
static ssize_t server_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_latency);

static ssize_t client_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_latency);

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
static ssize_t server_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_conn_id);

static ssize_t client_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_conn_id);

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
static ssize_t out_intr_mask_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(out_intr_mask);

static ssize_t out_read_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.current_read_index);
}
static DEVICE_ATTR_RO(out_read_index);

static ssize_t out_write_index_show(struct device *dev,
				    struct device_attribute *dev_attr,
				    char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.current_write_index);
}
static DEVICE_ATTR_RO(out_write_index);

static ssize_t out_read_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(out_read_bytes_avail);

static ssize_t out_write_bytes_avail_show(struct device *dev,
					  struct device_attribute *dev_attr,
					  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(out_write_bytes_avail);

static ssize_t in_intr_mask_show(struct device *dev,
				 struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(in_intr_mask);

static ssize_t in_read_index_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.current_read_index);
}
static DEVICE_ATTR_RO(in_read_index);

static ssize_t in_write_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.current_write_index);
}
static DEVICE_ATTR_RO(in_write_index);

static ssize_t in_read_bytes_avail_show(struct device *dev,
					struct device_attribute *dev_attr,
					char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(in_read_bytes_avail);

static ssize_t in_write_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(in_write_bytes_avail);

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
static ssize_t channel_vp_mapping_show(struct device *dev,
				       struct device_attribute *dev_attr,
				       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
	unsigned long flags;
	int buf_size = PAGE_SIZE, n_written, tot_written;
	struct list_head *cur;

	if (!channel)
		return -ENODEV;

	tot_written = snprintf(buf, buf_size, "%u:%u\n",
		channel->offermsg.child_relid, channel->target_cpu);

	spin_lock_irqsave(&channel->lock, flags);

	list_for_each(cur, &channel->sc_list) {
		if (tot_written >= buf_size - 1)
			break;

		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
		n_written = scnprintf(buf + tot_written,
				     buf_size - tot_written,
				     "%u:%u\n",
				     cur_sc->offermsg.child_relid,
				     cur_sc->target_cpu);
		tot_written += n_written;
	}

	spin_unlock_irqrestore(&channel->lock, flags);

	return tot_written;
}
static DEVICE_ATTR_RO(channel_vp_mapping);

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
static ssize_t vendor_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
}
static DEVICE_ATTR_RO(vendor);

static ssize_t device_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->device_id);
}
static DEVICE_ATTR_RO(device);

501
/* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
502
static struct attribute *vmbus_dev_attrs[] = {
503
	&dev_attr_id.attr,
504
	&dev_attr_state.attr,
505
	&dev_attr_monitor_id.attr,
506
	&dev_attr_class_id.attr,
507
	&dev_attr_device_id.attr,
508
	&dev_attr_modalias.attr,
509 510 511
#ifdef CONFIG_NUMA
	&dev_attr_numa_node.attr,
#endif
512 513
	&dev_attr_server_monitor_pending.attr,
	&dev_attr_client_monitor_pending.attr,
514 515
	&dev_attr_server_monitor_latency.attr,
	&dev_attr_client_monitor_latency.attr,
516 517
	&dev_attr_server_monitor_conn_id.attr,
	&dev_attr_client_monitor_conn_id.attr,
518 519 520 521 522 523 524 525 526 527
	&dev_attr_out_intr_mask.attr,
	&dev_attr_out_read_index.attr,
	&dev_attr_out_write_index.attr,
	&dev_attr_out_read_bytes_avail.attr,
	&dev_attr_out_write_bytes_avail.attr,
	&dev_attr_in_intr_mask.attr,
	&dev_attr_in_read_index.attr,
	&dev_attr_in_write_index.attr,
	&dev_attr_in_read_bytes_avail.attr,
	&dev_attr_in_write_bytes_avail.attr,
528
	&dev_attr_channel_vp_mapping.attr,
529 530
	&dev_attr_vendor.attr,
	&dev_attr_device.attr,
531 532
	NULL,
};
533
ATTRIBUTE_GROUPS(vmbus_dev);
534

535 536 537 538 539 540
/*
 * vmbus_uevent - add uevent for our device
 *
 * This routine is invoked when a device is added or removed on the vmbus to
 * generate a uevent to udev in the userspace. The udev will then look at its
 * rule and the uevent generated here to load the appropriate driver
541 542 543 544
 *
 * The alias string will be of the form vmbus:guid where guid is the string
 * representation of the device guid (each byte of the guid will be
 * represented with two hex characters.
545 546 547 548
 */
static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
{
	struct hv_device *dev = device_to_hv_device(device);
549 550
	int ret;
	char alias_name[VMBUS_ALIAS_LEN + 1];
551

552
	print_alias_name(dev, alias_name);
553 554
	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
	return ret;
555 556
}

S
stephen hemminger 已提交
557
static const uuid_le null_guid;
558

559
static inline bool is_null_guid(const uuid_le *guid)
560
{
561
	if (uuid_le_cmp(*guid, null_guid))
562 563 564 565
		return false;
	return true;
}

566 567 568 569
/*
 * Return a matching hv_vmbus_device_id pointer.
 * If there is no match, return NULL.
 */
570
static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
571
					const uuid_le *guid)
572
{
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
	const struct hv_vmbus_device_id *id = NULL;
	struct vmbus_dynid *dynid;

	/* Look at the dynamic ids first, before the static ones */
	spin_lock(&drv->dynids.lock);
	list_for_each_entry(dynid, &drv->dynids.list, node) {
		if (!uuid_le_cmp(dynid->id.guid, *guid)) {
			id = &dynid->id;
			break;
		}
	}
	spin_unlock(&drv->dynids.lock);

	if (id)
		return id;

	id = drv->id_table;
	if (id == NULL)
		return NULL; /* empty device table */

593
	for (; !is_null_guid(&id->guid); id++)
594
		if (!uuid_le_cmp(id->guid, *guid))
595 596 597 598 599
			return id;

	return NULL;
}

600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
/* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid)
{
	struct vmbus_dynid *dynid;

	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
	if (!dynid)
		return -ENOMEM;

	dynid->id.guid = *guid;

	spin_lock(&drv->dynids.lock);
	list_add_tail(&dynid->node, &drv->dynids.list);
	spin_unlock(&drv->dynids.lock);

	return driver_attach(&drv->driver);
}

static void vmbus_free_dynids(struct hv_driver *drv)
{
	struct vmbus_dynid *dynid, *n;

	spin_lock(&drv->dynids.lock);
	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
		list_del(&dynid->node);
		kfree(dynid);
	}
	spin_unlock(&drv->dynids.lock);
}

/*
 * store_new_id - sysfs frontend to vmbus_add_dynid()
 *
 * Allow GUIDs to be added to an existing driver via sysfs.
 */
static ssize_t new_id_store(struct device_driver *driver, const char *buf,
			    size_t count)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
639
	uuid_le guid;
640 641
	ssize_t retval;

642 643 644
	retval = uuid_le_to_bin(buf, &guid);
	if (retval)
		return retval;
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665

	if (hv_vmbus_get_id(drv, &guid))
		return -EEXIST;

	retval = vmbus_add_dynid(drv, &guid);
	if (retval)
		return retval;
	return count;
}
static DRIVER_ATTR_WO(new_id);

/*
 * store_remove_id - remove a PCI device ID from this driver
 *
 * Removes a dynamic pci device ID to this driver.
 */
static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
			       size_t count)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
	struct vmbus_dynid *dynid, *n;
666 667
	uuid_le guid;
	ssize_t retval;
668

669 670 671
	retval = uuid_le_to_bin(buf, &guid);
	if (retval)
		return retval;
672

673
	retval = -ENODEV;
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
	spin_lock(&drv->dynids.lock);
	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
		struct hv_vmbus_device_id *id = &dynid->id;

		if (!uuid_le_cmp(id->guid, guid)) {
			list_del(&dynid->node);
			kfree(dynid);
			retval = count;
			break;
		}
	}
	spin_unlock(&drv->dynids.lock);

	return retval;
}
static DRIVER_ATTR_WO(remove_id);

static struct attribute *vmbus_drv_attrs[] = {
	&driver_attr_new_id.attr,
	&driver_attr_remove_id.attr,
	NULL,
};
ATTRIBUTE_GROUPS(vmbus_drv);
697

698 699 700 701 702 703 704

/*
 * vmbus_match - Attempt to match the specified device to the specified driver
 */
static int vmbus_match(struct device *device, struct device_driver *driver)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
705
	struct hv_device *hv_dev = device_to_hv_device(device);
706

707 708 709 710
	/* The hv_sock driver handles all hv_sock offers. */
	if (is_hvsock_channel(hv_dev->channel))
		return drv->hvsock;

711
	if (hv_vmbus_get_id(drv, &hv_dev->dev_type))
712
		return 1;
713

714
	return 0;
715 716
}

717 718 719 720 721 722 723 724
/*
 * vmbus_probe - Add the new vmbus's child device
 */
static int vmbus_probe(struct device *child_device)
{
	int ret = 0;
	struct hv_driver *drv =
			drv_to_hv_drv(child_device->driver);
725
	struct hv_device *dev = device_to_hv_device(child_device);
726
	const struct hv_vmbus_device_id *dev_id;
727

728
	dev_id = hv_vmbus_get_id(drv, &dev->dev_type);
729
	if (drv->probe) {
730
		ret = drv->probe(dev, dev_id);
731
		if (ret != 0)
732 733
			pr_err("probe failed for device %s (%d)\n",
			       dev_name(child_device), ret);
734 735

	} else {
736 737
		pr_err("probe not set for driver %s\n",
		       dev_name(child_device));
738
		ret = -ENODEV;
739 740 741 742
	}
	return ret;
}

743 744 745 746 747
/*
 * vmbus_remove - Remove a vmbus device
 */
static int vmbus_remove(struct device *child_device)
{
748
	struct hv_driver *drv;
749
	struct hv_device *dev = device_to_hv_device(child_device);
750

751 752 753 754 755
	if (child_device->driver) {
		drv = drv_to_hv_drv(child_device->driver);
		if (drv->remove)
			drv->remove(dev);
	}
756 757 758 759

	return 0;
}

760 761 762 763 764 765 766

/*
 * vmbus_shutdown - Shutdown a vmbus device
 */
static void vmbus_shutdown(struct device *child_device)
{
	struct hv_driver *drv;
767
	struct hv_device *dev = device_to_hv_device(child_device);
768 769 770 771 772 773 774 775


	/* The device may not be attached yet */
	if (!child_device->driver)
		return;

	drv = drv_to_hv_drv(child_device->driver);

776 777
	if (drv->shutdown)
		drv->shutdown(dev);
778 779
}

780 781 782 783 784 785

/*
 * vmbus_device_release - Final callback release of the vmbus child device
 */
static void vmbus_device_release(struct device *device)
{
786
	struct hv_device *hv_dev = device_to_hv_device(device);
787
	struct vmbus_channel *channel = hv_dev->channel;
788

789
	mutex_lock(&vmbus_connection.channel_mutex);
790
	hv_process_channel_removal(channel->offermsg.child_relid);
791
	mutex_unlock(&vmbus_connection.channel_mutex);
792
	kfree(hv_dev);
793 794 795

}

796
/* The one and only one */
797 798 799 800 801 802 803
static struct bus_type  hv_bus = {
	.name =		"vmbus",
	.match =		vmbus_match,
	.shutdown =		vmbus_shutdown,
	.remove =		vmbus_remove,
	.probe =		vmbus_probe,
	.uevent =		vmbus_uevent,
804 805
	.dev_groups =		vmbus_dev_groups,
	.drv_groups =		vmbus_drv_groups,
806 807
};

808 809 810 811 812 813 814 815 816
struct onmessage_work_context {
	struct work_struct work;
	struct hv_message msg;
};

static void vmbus_onmessage_work(struct work_struct *work)
{
	struct onmessage_work_context *ctx;

817 818 819 820
	/* Do not process messages if we're in DISCONNECTED state */
	if (vmbus_connection.conn_state == DISCONNECTED)
		return;

821 822 823 824 825 826
	ctx = container_of(work, struct onmessage_work_context,
			   work);
	vmbus_onmessage(&ctx->msg);
	kfree(ctx);
}

827 828
static void hv_process_timer_expiration(struct hv_message *msg,
					struct hv_per_cpu_context *hv_cpu)
829
{
830
	struct clock_event_device *dev = hv_cpu->clk_evt;
831 832 833 834

	if (dev->event_handler)
		dev->event_handler(dev);

835
	vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
836 837
}

838
void vmbus_on_msg_dpc(unsigned long data)
G
Greg Kroah-Hartman 已提交
839
{
840 841
	struct hv_per_cpu_context *hv_cpu = (void *)data;
	void *page_addr = hv_cpu->synic_message_page;
G
Greg Kroah-Hartman 已提交
842 843
	struct hv_message *msg = (struct hv_message *)page_addr +
				  VMBUS_MESSAGE_SINT;
844
	struct vmbus_channel_message_header *hdr;
845
	const struct vmbus_channel_message_table_entry *entry;
846
	struct onmessage_work_context *ctx;
847
	u32 message_type = msg->header.message_type;
G
Greg Kroah-Hartman 已提交
848

849
	if (message_type == HVMSG_NONE)
850 851
		/* no msg */
		return;
852

853
	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
854

855 856
	trace_vmbus_on_msg_dpc(hdr);

857 858 859 860
	if (hdr->msgtype >= CHANNELMSG_COUNT) {
		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
		goto msg_handled;
	}
861

862 863 864 865 866
	entry = &channel_message_table[hdr->msgtype];
	if (entry->handler_type	== VMHT_BLOCKING) {
		ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
		if (ctx == NULL)
			return;
867

868 869
		INIT_WORK(&ctx->work, vmbus_onmessage_work);
		memcpy(&ctx->msg, msg, sizeof(*msg));
870

871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
		/*
		 * The host can generate a rescind message while we
		 * may still be handling the original offer. We deal with
		 * this condition by ensuring the processing is done on the
		 * same CPU.
		 */
		switch (hdr->msgtype) {
		case CHANNELMSG_RESCIND_CHANNELOFFER:
			/*
			 * If we are handling the rescind message;
			 * schedule the work on the global work queue.
			 */
			schedule_work_on(vmbus_connection.connect_cpu,
					 &ctx->work);
			break;

		case CHANNELMSG_OFFERCHANNEL:
			atomic_inc(&vmbus_connection.offer_in_progress);
			queue_work_on(vmbus_connection.connect_cpu,
				      vmbus_connection.work_queue,
				      &ctx->work);
			break;

		default:
			queue_work(vmbus_connection.work_queue, &ctx->work);
		}
897 898
	} else
		entry->message_handler(hdr);
G
Greg Kroah-Hartman 已提交
899

900
msg_handled:
901
	vmbus_signal_eom(msg, message_type);
G
Greg Kroah-Hartman 已提交
902 903
}

904

905 906 907 908 909 910 911 912 913 914 915 916
/*
 * Direct callback for channels using other deferred processing
 */
static void vmbus_channel_isr(struct vmbus_channel *channel)
{
	void (*callback_fn)(void *);

	callback_fn = READ_ONCE(channel->onchannel_callback);
	if (likely(callback_fn != NULL))
		(*callback_fn)(channel->channel_callback_context);
}

917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
/*
 * Schedule all channels with events pending
 */
static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
{
	unsigned long *recv_int_page;
	u32 maxbits, relid;

	if (vmbus_proto_version < VERSION_WIN8) {
		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
		recv_int_page = vmbus_connection.recv_int_page;
	} else {
		/*
		 * When the host is win8 and beyond, the event page
		 * can be directly checked to get the id of the channel
		 * that has the interrupt pending.
		 */
		void *page_addr = hv_cpu->synic_event_page;
		union hv_synic_event_flags *event
			= (union hv_synic_event_flags *)page_addr +
						 VMBUS_MESSAGE_SINT;

		maxbits = HV_EVENT_FLAGS_COUNT;
		recv_int_page = event->flags;
	}

	if (unlikely(!recv_int_page))
		return;

	for_each_set_bit(relid, recv_int_page, maxbits) {
		struct vmbus_channel *channel;

		if (!sync_test_and_clear_bit(relid, recv_int_page))
			continue;

		/* Special case - vmbus channel protocol msg */
		if (relid == 0)
			continue;

956 957
		rcu_read_lock();

958
		/* Find channel based on relid */
959
		list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
960 961 962
			if (channel->offermsg.child_relid != relid)
				continue;

963 964 965
			if (channel->rescind)
				continue;

V
Vitaly Kuznetsov 已提交
966 967
			trace_vmbus_chan_sched(channel);

968 969
			++channel->interrupts;

970 971 972
			switch (channel->callback_mode) {
			case HV_CALL_ISR:
				vmbus_channel_isr(channel);
973
				break;
974 975 976 977 978 979

			case HV_CALL_BATCHED:
				hv_begin_read(&channel->inbound);
				/* fallthrough */
			case HV_CALL_DIRECT:
				tasklet_schedule(&channel->callback_event);
980 981
			}
		}
982 983

		rcu_read_unlock();
984 985 986
	}
}

987
static void vmbus_isr(void)
G
Greg Kroah-Hartman 已提交
988
{
989 990 991
	struct hv_per_cpu_context *hv_cpu
		= this_cpu_ptr(hv_context.cpu_context);
	void *page_addr = hv_cpu->synic_event_page;
G
Greg Kroah-Hartman 已提交
992 993
	struct hv_message *msg;
	union hv_synic_event_flags *event;
994
	bool handled = false;
G
Greg Kroah-Hartman 已提交
995

996
	if (unlikely(page_addr == NULL))
997
		return;
998 999 1000

	event = (union hv_synic_event_flags *)page_addr +
					 VMBUS_MESSAGE_SINT;
1001 1002 1003 1004 1005
	/*
	 * Check for events before checking for messages. This is the order
	 * in which events and messages are checked in Windows guests on
	 * Hyper-V, and the Windows team suggested we do the same.
	 */
G
Greg Kroah-Hartman 已提交
1006

1007 1008
	if ((vmbus_proto_version == VERSION_WS2008) ||
		(vmbus_proto_version == VERSION_WIN7)) {
G
Greg Kroah-Hartman 已提交
1009

1010
		/* Since we are a child, we only need to check bit 0 */
1011
		if (sync_test_and_clear_bit(0, event->flags))
1012 1013 1014 1015 1016 1017 1018 1019
			handled = true;
	} else {
		/*
		 * Our host is win8 or above. The signaling mechanism
		 * has changed and we can directly look at the event page.
		 * If bit n is set then we have an interrup on the channel
		 * whose id is n.
		 */
1020 1021
		handled = true;
	}
1022

1023
	if (handled)
1024
		vmbus_chan_sched(hv_cpu);
1025

1026
	page_addr = hv_cpu->synic_message_page;
1027 1028 1029
	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;

	/* Check if there are actual msgs to be processed */
1030 1031
	if (msg->header.message_type != HVMSG_NONE) {
		if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
1032
			hv_process_timer_expiration(msg, hv_cpu);
1033
		else
1034
			tasklet_schedule(&hv_cpu->msg_dpc);
1035
	}
1036 1037

	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1038 1039
}

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
/*
 * Boolean to control whether to report panic messages over Hyper-V.
 *
 * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
 */
static int sysctl_record_panic_msg = 1;

/*
 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
 * buffer and call into Hyper-V to transfer the data.
 */
static void hv_kmsg_dump(struct kmsg_dumper *dumper,
			 enum kmsg_dump_reason reason)
{
	size_t bytes_written;
	phys_addr_t panic_pa;

	/* We are only interested in panics. */
	if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
		return;

	panic_pa = virt_to_phys(hv_panic_page);

	/*
	 * Write dump contents to the page. No need to synchronize; panic should
	 * be single-threaded.
	 */
1067 1068 1069 1070
	kmsg_dump_get_buffer(dumper, true, hv_panic_page, PAGE_SIZE,
			     &bytes_written);
	if (bytes_written)
		hyperv_report_panic_msg(panic_pa, bytes_written);
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
}

static struct kmsg_dumper hv_kmsg_dumper = {
	.dump = hv_kmsg_dump,
};

static struct ctl_table_header *hv_ctl_table_hdr;
static int zero;
static int one = 1;

/*
 * sysctl option to allow the user to control whether kmsg data should be
 * reported to Hyper-V on panic.
 */
static struct ctl_table hv_ctl_table[] = {
	{
		.procname       = "hyperv_record_panic_msg",
		.data           = &sysctl_record_panic_msg,
		.maxlen         = sizeof(int),
		.mode           = 0644,
		.proc_handler   = proc_dointvec_minmax,
		.extra1		= &zero,
		.extra2		= &one
	},
	{}
};

static struct ctl_table hv_root_table[] = {
	{
		.procname	= "kernel",
		.mode		= 0555,
		.child		= hv_ctl_table
	},
	{}
};
1106

1107
/*
1108 1109 1110
 * vmbus_bus_init -Main vmbus driver initialization routine.
 *
 * Here, we
1111 1112 1113
 *	- initialize the vmbus driver context
 *	- invoke the vmbus hv main init routine
 *	- retrieve the channel offers
1114
 */
1115
static int vmbus_bus_init(void)
1116
{
1117
	int ret;
1118

1119 1120
	/* Hypervisor initialization...setup hypercall page..etc */
	ret = hv_init();
1121
	if (ret != 0) {
1122
		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1123
		return ret;
1124 1125
	}

1126
	ret = bus_register(&hv_bus);
1127
	if (ret)
1128
		return ret;
1129

1130
	hv_setup_vmbus_irq(vmbus_isr);
1131

1132 1133 1134
	ret = hv_synic_alloc();
	if (ret)
		goto err_alloc;
1135
	/*
1136
	 * Initialize the per-cpu interrupt state and
1137 1138
	 * connect to the host.
	 */
1139
	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1140 1141 1142 1143 1144
				hv_synic_init, hv_synic_cleanup);
	if (ret < 0)
		goto err_alloc;
	hyperv_cpuhp_online = ret;

1145
	ret = vmbus_connect();
1146
	if (ret)
1147
		goto err_connect;
1148

1149 1150 1151
	/*
	 * Only register if the crash MSRs are available
	 */
1152
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
		u64 hyperv_crash_ctl;
		/*
		 * Sysctl registration is not fatal, since by default
		 * reporting is enabled.
		 */
		hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
		if (!hv_ctl_table_hdr)
			pr_err("Hyper-V: sysctl table register error");

		/*
		 * Register for panic kmsg callback only if the right
		 * capability is supported by the hypervisor.
		 */
1166
		hv_get_crash_ctl(hyperv_crash_ctl);
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
		if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) {
			hv_panic_page = (void *)get_zeroed_page(GFP_KERNEL);
			if (hv_panic_page) {
				ret = kmsg_dump_register(&hv_kmsg_dumper);
				if (ret)
					pr_err("Hyper-V: kmsg dump register "
						"error 0x%x\n", ret);
			} else
				pr_err("Hyper-V: panic message page memory "
					"allocation failed");
		}

1179
		register_die_notifier(&hyperv_die_block);
1180 1181 1182 1183
		atomic_notifier_chain_register(&panic_notifier_list,
					       &hyperv_panic_block);
	}

1184
	vmbus_request_offers();
1185

1186
	return 0;
1187

1188
err_connect:
1189
	cpuhp_remove_state(hyperv_cpuhp_online);
1190 1191
err_alloc:
	hv_synic_free();
1192
	hv_remove_vmbus_irq();
1193 1194

	bus_unregister(&hv_bus);
1195
	free_page((unsigned long)hv_panic_page);
1196 1197
	unregister_sysctl_table(hv_ctl_table_hdr);
	hv_ctl_table_hdr = NULL;
1198
	return ret;
1199 1200
}

1201
/**
1202 1203
 * __vmbus_child_driver_register() - Register a vmbus's driver
 * @hv_driver: Pointer to driver structure you want to register
1204 1205
 * @owner: owner module of the drv
 * @mod_name: module name string
1206 1207
 *
 * Registers the given driver with Linux through the 'driver_register()' call
1208
 * and sets up the hyper-v vmbus handling for this driver.
1209 1210
 * It will return the state of the 'driver_register()' call.
 *
1211
 */
1212
int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1213
{
1214
	int ret;
1215

1216
	pr_info("registering driver %s\n", hv_driver->name);
1217

1218 1219 1220 1221
	ret = vmbus_exists();
	if (ret < 0)
		return ret;

1222 1223 1224 1225
	hv_driver->driver.name = hv_driver->name;
	hv_driver->driver.owner = owner;
	hv_driver->driver.mod_name = mod_name;
	hv_driver->driver.bus = &hv_bus;
1226

1227 1228 1229
	spin_lock_init(&hv_driver->dynids.lock);
	INIT_LIST_HEAD(&hv_driver->dynids.list);

1230
	ret = driver_register(&hv_driver->driver);
1231

1232
	return ret;
1233
}
1234
EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1235

1236
/**
1237
 * vmbus_driver_unregister() - Unregister a vmbus's driver
1238 1239
 * @hv_driver: Pointer to driver structure you want to
 *             un-register
1240
 *
1241 1242
 * Un-register the given driver that was previous registered with a call to
 * vmbus_driver_register()
1243
 */
1244
void vmbus_driver_unregister(struct hv_driver *hv_driver)
1245
{
1246
	pr_info("unregistering driver %s\n", hv_driver->name);
1247

1248
	if (!vmbus_exists()) {
1249
		driver_unregister(&hv_driver->driver);
1250 1251
		vmbus_free_dynids(hv_driver);
	}
1252
}
1253
EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1254

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306

/*
 * Called when last reference to channel is gone.
 */
static void vmbus_chan_release(struct kobject *kobj)
{
	struct vmbus_channel *channel
		= container_of(kobj, struct vmbus_channel, kobj);

	kfree_rcu(channel, rcu);
}

struct vmbus_chan_attribute {
	struct attribute attr;
	ssize_t (*show)(const struct vmbus_channel *chan, char *buf);
	ssize_t (*store)(struct vmbus_channel *chan,
			 const char *buf, size_t count);
};
#define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
	struct vmbus_chan_attribute chan_attr_##_name \
		= __ATTR(_name, _mode, _show, _store)
#define VMBUS_CHAN_ATTR_RW(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
#define VMBUS_CHAN_ATTR_RO(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
#define VMBUS_CHAN_ATTR_WO(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)

static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
				    struct attribute *attr, char *buf)
{
	const struct vmbus_chan_attribute *attribute
		= container_of(attr, struct vmbus_chan_attribute, attr);
	const struct vmbus_channel *chan
		= container_of(kobj, struct vmbus_channel, kobj);

	if (!attribute->show)
		return -EIO;

	return attribute->show(chan, buf);
}

static const struct sysfs_ops vmbus_chan_sysfs_ops = {
	.show = vmbus_chan_attr_show,
};

static ssize_t out_mask_show(const struct vmbus_channel *channel, char *buf)
{
	const struct hv_ring_buffer_info *rbi = &channel->outbound;

	return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
}
1307
static VMBUS_CHAN_ATTR_RO(out_mask);
1308 1309 1310 1311 1312 1313 1314

static ssize_t in_mask_show(const struct vmbus_channel *channel, char *buf)
{
	const struct hv_ring_buffer_info *rbi = &channel->inbound;

	return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
}
1315
static VMBUS_CHAN_ATTR_RO(in_mask);
1316 1317 1318 1319 1320 1321 1322

static ssize_t read_avail_show(const struct vmbus_channel *channel, char *buf)
{
	const struct hv_ring_buffer_info *rbi = &channel->inbound;

	return sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
}
1323
static VMBUS_CHAN_ATTR_RO(read_avail);
1324 1325 1326 1327 1328 1329 1330

static ssize_t write_avail_show(const struct vmbus_channel *channel, char *buf)
{
	const struct hv_ring_buffer_info *rbi = &channel->outbound;

	return sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
}
1331
static VMBUS_CHAN_ATTR_RO(write_avail);
1332 1333 1334 1335 1336

static ssize_t show_target_cpu(const struct vmbus_channel *channel, char *buf)
{
	return sprintf(buf, "%u\n", channel->target_cpu);
}
1337
static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1338 1339 1340 1341 1342 1343 1344 1345

static ssize_t channel_pending_show(const struct vmbus_channel *channel,
				    char *buf)
{
	return sprintf(buf, "%d\n",
		       channel_pending(channel,
				       vmbus_connection.monitor_pages[1]));
}
1346
static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1347 1348 1349 1350 1351 1352 1353 1354

static ssize_t channel_latency_show(const struct vmbus_channel *channel,
				    char *buf)
{
	return sprintf(buf, "%d\n",
		       channel_latency(channel,
				       vmbus_connection.monitor_pages[1]));
}
1355
static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1356

1357 1358 1359 1360
static ssize_t channel_interrupts_show(const struct vmbus_channel *channel, char *buf)
{
	return sprintf(buf, "%llu\n", channel->interrupts);
}
1361
static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1362 1363 1364 1365 1366

static ssize_t channel_events_show(const struct vmbus_channel *channel, char *buf)
{
	return sprintf(buf, "%llu\n", channel->sig_events);
}
1367
static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1368

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
static ssize_t subchannel_monitor_id_show(const struct vmbus_channel *channel,
					  char *buf)
{
	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
}
static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);

static ssize_t subchannel_id_show(const struct vmbus_channel *channel,
				  char *buf)
{
	return sprintf(buf, "%u\n",
		       channel->offermsg.offer.sub_channel_index);
}
static VMBUS_CHAN_ATTR_RO(subchannel_id);

1384 1385 1386 1387 1388 1389 1390 1391
static struct attribute *vmbus_chan_attrs[] = {
	&chan_attr_out_mask.attr,
	&chan_attr_in_mask.attr,
	&chan_attr_read_avail.attr,
	&chan_attr_write_avail.attr,
	&chan_attr_cpu.attr,
	&chan_attr_pending.attr,
	&chan_attr_latency.attr,
1392 1393
	&chan_attr_interrupts.attr,
	&chan_attr_events.attr,
1394 1395
	&chan_attr_monitor_id.attr,
	&chan_attr_subchannel_id.attr,
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
	NULL
};

static struct kobj_type vmbus_chan_ktype = {
	.sysfs_ops = &vmbus_chan_sysfs_ops,
	.release = vmbus_chan_release,
	.default_attrs = vmbus_chan_attrs,
};

/*
 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
 */
int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
{
	struct kobject *kobj = &channel->kobj;
	u32 relid = channel->offermsg.child_relid;
	int ret;

	kobj->kset = dev->channels_kset;
	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
				   "%u", relid);
	if (ret)
		return ret;

	kobject_uevent(kobj, KOBJ_ADD);

	return 0;
}

1425
/*
1426
 * vmbus_device_create - Creates and registers a new child device
1427
 * on the vmbus.
1428
 */
S
stephen hemminger 已提交
1429 1430 1431
struct hv_device *vmbus_device_create(const uuid_le *type,
				      const uuid_le *instance,
				      struct vmbus_channel *channel)
1432
{
1433
	struct hv_device *child_device_obj;
1434

1435 1436
	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
	if (!child_device_obj) {
1437
		pr_err("Unable to allocate device object for child device\n");
1438 1439 1440
		return NULL;
	}

1441
	child_device_obj->channel = channel;
1442
	memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
1443
	memcpy(&child_device_obj->dev_instance, instance,
1444
	       sizeof(uuid_le));
1445
	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1446 1447 1448 1449 1450


	return child_device_obj;
}

1451
/*
1452
 * vmbus_device_register - Register the child device
1453
 */
1454
int vmbus_device_register(struct hv_device *child_device_obj)
1455
{
1456 1457
	struct kobject *kobj = &child_device_obj->device.kobj;
	int ret;
1458

1459
	dev_set_name(&child_device_obj->device, "%pUl",
1460
		     child_device_obj->channel->offermsg.offer.if_instance.b);
1461

1462
	child_device_obj->device.bus = &hv_bus;
1463
	child_device_obj->device.parent = &hv_acpi_dev->dev;
1464
	child_device_obj->device.release = vmbus_device_release;
1465

1466 1467 1468 1469
	/*
	 * Register with the LDM. This will kick off the driver/device
	 * binding...which will eventually call vmbus_match() and vmbus_probe()
	 */
1470
	ret = device_register(&child_device_obj->device);
1471
	if (ret) {
1472
		pr_err("Unable to register child device\n");
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
		return ret;
	}

	child_device_obj->channels_kset = kset_create_and_add("channels",
							      NULL, kobj);
	if (!child_device_obj->channels_kset) {
		ret = -ENOMEM;
		goto err_dev_unregister;
	}

	ret = vmbus_add_channel_kobj(child_device_obj,
				     child_device_obj->channel);
	if (ret) {
		pr_err("Unable to register primary channeln");
		goto err_kset_unregister;
	}

	return 0;

err_kset_unregister:
	kset_unregister(child_device_obj->channels_kset);
1494

1495 1496
err_dev_unregister:
	device_unregister(&child_device_obj->device);
1497 1498 1499
	return ret;
}

1500
/*
1501
 * vmbus_device_unregister - Remove the specified child device
1502
 * from the vmbus.
1503
 */
1504
void vmbus_device_unregister(struct hv_device *device_obj)
1505
{
1506 1507 1508
	pr_debug("child device %s unregistered\n",
		dev_name(&device_obj->device));

1509 1510
	kset_unregister(device_obj->channels_kset);

1511 1512 1513 1514
	/*
	 * Kick off the process of unregistering the device.
	 * This will call vmbus_remove() and eventually vmbus_device_release()
	 */
1515
	device_unregister(&device_obj->device);
1516 1517 1518
}


1519
/*
1520
 * VMBUS is an acpi enumerated device. Get the information we
1521
 * need from DSDT.
1522
 */
1523
#define VTPM_BASE_ADDRESS 0xfed40000
1524
static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1525
{
1526 1527 1528 1529 1530 1531
	resource_size_t start = 0;
	resource_size_t end = 0;
	struct resource *new_res;
	struct resource **old_res = &hyperv_mmio;
	struct resource **prev_res = NULL;

1532
	switch (res->type) {
1533 1534 1535 1536 1537 1538 1539 1540 1541

	/*
	 * "Address" descriptors are for bus windows. Ignore
	 * "memory" descriptors, which are for registers on
	 * devices.
	 */
	case ACPI_RESOURCE_TYPE_ADDRESS32:
		start = res->data.address32.address.minimum;
		end = res->data.address32.address.maximum;
G
Gerd Hoffmann 已提交
1542
		break;
1543

1544
	case ACPI_RESOURCE_TYPE_ADDRESS64:
1545 1546
		start = res->data.address64.address.minimum;
		end = res->data.address64.address.maximum;
G
Gerd Hoffmann 已提交
1547
		break;
1548 1549 1550 1551 1552

	default:
		/* Unused resource type */
		return AE_OK;

1553
	}
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
	/*
	 * Ignore ranges that are below 1MB, as they're not
	 * necessary or useful here.
	 */
	if (end < 0x100000)
		return AE_OK;

	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
	if (!new_res)
		return AE_NO_MEMORY;

	/* If this range overlaps the virtual TPM, truncate it. */
	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
		end = VTPM_BASE_ADDRESS;

	new_res->name = "hyperv mmio";
	new_res->flags = IORESOURCE_MEM;
	new_res->start = start;
	new_res->end = end;

1574 1575 1576
	/*
	 * If two ranges are adjacent, merge them.
	 */
1577 1578 1579 1580 1581 1582
	do {
		if (!*old_res) {
			*old_res = new_res;
			break;
		}

1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
		if (((*old_res)->end + 1) == new_res->start) {
			(*old_res)->end = new_res->end;
			kfree(new_res);
			break;
		}

		if ((*old_res)->start == new_res->end + 1) {
			(*old_res)->start = new_res->start;
			kfree(new_res);
			break;
		}

1595
		if ((*old_res)->start > new_res->end) {
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
			new_res->sibling = *old_res;
			if (prev_res)
				(*prev_res)->sibling = new_res;
			*old_res = new_res;
			break;
		}

		prev_res = old_res;
		old_res = &(*old_res)->sibling;

	} while (1);
1607 1608 1609 1610

	return AE_OK;
}

1611 1612 1613 1614 1615 1616
static int vmbus_acpi_remove(struct acpi_device *device)
{
	struct resource *cur_res;
	struct resource *next_res;

	if (hyperv_mmio) {
1617 1618 1619 1620 1621 1622
		if (fb_mmio) {
			__release_region(hyperv_mmio, fb_mmio->start,
					 resource_size(fb_mmio));
			fb_mmio = NULL;
		}

1623 1624 1625 1626 1627 1628 1629 1630 1631
		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
			next_res = cur_res->sibling;
			kfree(cur_res);
		}
	}

	return 0;
}

1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
static void vmbus_reserve_fb(void)
{
	int size;
	/*
	 * Make a claim for the frame buffer in the resource tree under the
	 * first node, which will be the one below 4GB.  The length seems to
	 * be underreported, particularly in a Generation 1 VM.  So start out
	 * reserving a larger area and make it smaller until it succeeds.
	 */

	if (screen_info.lfb_base) {
		if (efi_enabled(EFI_BOOT))
			size = max_t(__u32, screen_info.lfb_size, 0x800000);
		else
			size = max_t(__u32, screen_info.lfb_size, 0x4000000);

		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
			fb_mmio = __request_region(hyperv_mmio,
						   screen_info.lfb_base, size,
						   fb_mmio_name, 0);
		}
	}
}

1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
/**
 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
 * @new:		If successful, supplied a pointer to the
 *			allocated MMIO space.
 * @device_obj:		Identifies the caller
 * @min:		Minimum guest physical address of the
 *			allocation
 * @max:		Maximum guest physical address
 * @size:		Size of the range to be allocated
 * @align:		Alignment of the range to be allocated
 * @fb_overlap_ok:	Whether this allocation can be allowed
 *			to overlap the video frame buffer.
 *
 * This function walks the resources granted to VMBus by the
 * _CRS object in the ACPI namespace underneath the parent
 * "bridge" whether that's a root PCI bus in the Generation 1
 * case or a Module Device in the Generation 2 case.  It then
 * attempts to allocate from the global MMIO pool in a way that
 * matches the constraints supplied in these parameters and by
 * that _CRS.
 *
 * Return: 0 on success, -errno on failure
 */
int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
			resource_size_t min, resource_size_t max,
			resource_size_t size, resource_size_t align,
			bool fb_overlap_ok)
{
1684
	struct resource *iter, *shadow;
1685
	resource_size_t range_min, range_max, start;
1686
	const char *dev_n = dev_name(&device_obj->device);
1687
	int retval;
1688 1689 1690

	retval = -ENXIO;
	down(&hyperv_mmio_lock);
1691

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
	/*
	 * If overlaps with frame buffers are allowed, then first attempt to
	 * make the allocation from within the reserved region.  Because it
	 * is already reserved, no shadow allocation is necessary.
	 */
	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
	    !(max < fb_mmio->start)) {

		range_min = fb_mmio->start;
		range_max = fb_mmio->end;
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				retval = 0;
				goto exit;
			}
		}
	}

1712 1713 1714 1715 1716 1717
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= max) || (iter->end <= min))
			continue;

		range_min = iter->start;
		range_max = iter->end;
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			shadow = __request_region(iter, start, size, NULL,
						  IORESOURCE_BUSY);
			if (!shadow)
				continue;

			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				shadow->name = (char *)*new;
				retval = 0;
				goto exit;
1730 1731
			}

1732
			__release_region(iter, start, size);
1733 1734 1735
		}
	}

1736 1737 1738
exit:
	up(&hyperv_mmio_lock);
	return retval;
1739 1740 1741
}
EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);

1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
/**
 * vmbus_free_mmio() - Free a memory-mapped I/O range.
 * @start:		Base address of region to release.
 * @size:		Size of the range to be allocated
 *
 * This function releases anything requested by
 * vmbus_mmio_allocate().
 */
void vmbus_free_mmio(resource_size_t start, resource_size_t size)
{
1752 1753 1754 1755 1756 1757 1758 1759 1760
	struct resource *iter;

	down(&hyperv_mmio_lock);
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= start + size) || (iter->end <= start))
			continue;

		__release_region(iter, start, size);
	}
1761
	release_mem_region(start, size);
1762
	up(&hyperv_mmio_lock);
1763 1764 1765 1766

}
EXPORT_SYMBOL_GPL(vmbus_free_mmio);

1767 1768 1769
static int vmbus_acpi_add(struct acpi_device *device)
{
	acpi_status result;
1770
	int ret_val = -ENODEV;
1771
	struct acpi_device *ancestor;
1772

1773 1774
	hv_acpi_dev = device;

1775
	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1776
					vmbus_walk_resources, NULL);
1777

1778 1779 1780
	if (ACPI_FAILURE(result))
		goto acpi_walk_err;
	/*
1781 1782
	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
	 * firmware) is the VMOD that has the mmio ranges. Get that.
1783
	 */
1784 1785 1786
	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
					     vmbus_walk_resources, NULL);
1787 1788

		if (ACPI_FAILURE(result))
1789
			continue;
1790 1791
		if (hyperv_mmio) {
			vmbus_reserve_fb();
1792
			break;
1793
		}
1794
	}
1795 1796 1797
	ret_val = 0;

acpi_walk_err:
1798
	complete(&probe_event);
1799 1800
	if (ret_val)
		vmbus_acpi_remove(device);
1801
	return ret_val;
1802 1803 1804 1805
}

static const struct acpi_device_id vmbus_acpi_device_ids[] = {
	{"VMBUS", 0},
1806
	{"VMBus", 0},
1807 1808 1809 1810 1811 1812 1813 1814 1815
	{"", 0},
};
MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);

static struct acpi_driver vmbus_acpi_driver = {
	.name = "vmbus",
	.ids = vmbus_acpi_device_ids,
	.ops = {
		.add = vmbus_acpi_add,
1816
		.remove = vmbus_acpi_remove,
1817 1818 1819
	},
};

1820 1821 1822
static void hv_kexec_handler(void)
{
	hv_synic_clockevents_cleanup();
1823
	vmbus_initiate_unload(false);
1824 1825 1826
	vmbus_connection.conn_state = DISCONNECTED;
	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
	mb();
1827
	cpuhp_remove_state(hyperv_cpuhp_online);
1828
	hyperv_cleanup();
1829 1830
};

1831 1832
static void hv_crash_handler(struct pt_regs *regs)
{
1833
	vmbus_initiate_unload(true);
1834 1835 1836 1837 1838
	/*
	 * In crash handler we can't schedule synic cleanup for all CPUs,
	 * doing the cleanup for current CPU only. This should be sufficient
	 * for kdump.
	 */
1839
	vmbus_connection.conn_state = DISCONNECTED;
1840
	hv_synic_cleanup(smp_processor_id());
1841
	hyperv_cleanup();
1842 1843
};

1844
static int __init hv_acpi_init(void)
1845
{
1846
	int ret, t;
1847

1848
	if (!hv_is_hyperv_initialized())
1849 1850
		return -ENODEV;

1851 1852 1853
	init_completion(&probe_event);

	/*
1854
	 * Get ACPI resources first.
1855
	 */
1856 1857
	ret = acpi_bus_register_driver(&vmbus_acpi_driver);

1858 1859 1860
	if (ret)
		return ret;

1861 1862 1863 1864 1865
	t = wait_for_completion_timeout(&probe_event, 5*HZ);
	if (t == 0) {
		ret = -ETIMEDOUT;
		goto cleanup;
	}
1866

1867
	ret = vmbus_bus_init();
1868
	if (ret)
1869 1870
		goto cleanup;

1871
	hv_setup_kexec_handler(hv_kexec_handler);
1872
	hv_setup_crash_handler(hv_crash_handler);
1873

1874 1875 1876 1877
	return 0;

cleanup:
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1878
	hv_acpi_dev = NULL;
1879
	return ret;
1880 1881
}

1882 1883
static void __exit vmbus_exit(void)
{
1884 1885
	int cpu;

1886
	hv_remove_kexec_handler();
1887
	hv_remove_crash_handler();
1888
	vmbus_connection.conn_state = DISCONNECTED;
1889
	hv_synic_clockevents_cleanup();
1890
	vmbus_disconnect();
1891
	hv_remove_vmbus_irq();
1892 1893 1894 1895 1896 1897
	for_each_online_cpu(cpu) {
		struct hv_per_cpu_context *hv_cpu
			= per_cpu_ptr(hv_context.cpu_context, cpu);

		tasklet_kill(&hv_cpu->msg_dpc);
	}
1898
	vmbus_free_channels();
1899

1900
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1901
		kmsg_dump_unregister(&hv_kmsg_dumper);
1902
		unregister_die_notifier(&hyperv_die_block);
1903 1904 1905
		atomic_notifier_chain_unregister(&panic_notifier_list,
						 &hyperv_panic_block);
	}
1906 1907

	free_page((unsigned long)hv_panic_page);
1908 1909
	unregister_sysctl_table(hv_ctl_table_hdr);
	hv_ctl_table_hdr = NULL;
1910
	bus_unregister(&hv_bus);
1911

1912
	cpuhp_remove_state(hyperv_cpuhp_online);
1913
	hv_synic_free();
1914 1915 1916
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
}

1917

1918
MODULE_LICENSE("GPL");
1919

1920
subsys_initcall(hv_acpi_init);
1921
module_exit(vmbus_exit);