vmbus_drv.c 60.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7
/*
 * Copyright (c) 2009, Microsoft Corporation.
 *
 * Authors:
 *   Haiyang Zhang <haiyangz@microsoft.com>
 *   Hank Janssen  <hjanssen@microsoft.com>
8
 *   K. Y. Srinivasan <kys@microsoft.com>
9
 */
10 11
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

12 13 14 15 16
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/sysctl.h>
17
#include <linux/slab.h>
18
#include <linux/acpi.h>
19
#include <linux/completion.h>
20
#include <linux/hyperv.h>
21
#include <linux/kernel_stat.h>
22
#include <linux/clockchips.h>
23
#include <linux/cpu.h>
24 25
#include <linux/sched/task_stack.h>

26
#include <asm/mshyperv.h>
27
#include <linux/delay.h>
28 29
#include <linux/notifier.h>
#include <linux/ptrace.h>
30
#include <linux/screen_info.h>
31
#include <linux/kdebug.h>
32
#include <linux/efi.h>
33
#include <linux/random.h>
34
#include <linux/syscore_ops.h>
35
#include <clocksource/hyperv_timer.h>
36
#include "hyperv_vmbus.h"
37

38 39 40 41 42
struct vmbus_dynid {
	struct list_head node;
	struct hv_vmbus_device_id id;
};

43
static struct acpi_device  *hv_acpi_dev;
44

45
static struct completion probe_event;
46

47
static int hyperv_cpuhp_online;
48

49 50
static void *hv_panic_page;

51 52 53 54 55 56 57
static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
			      void *args)
{
	struct pt_regs *regs;

	regs = current_pt_regs();

58
	hyperv_report_panic(regs, val);
59 60 61
	return NOTIFY_DONE;
}

62 63 64 65 66 67
static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
			    void *args)
{
	struct die_args *die = (struct die_args *)args;
	struct pt_regs *regs = die->regs;

68
	hyperv_report_panic(regs, val);
69 70 71 72 73 74
	return NOTIFY_DONE;
}

static struct notifier_block hyperv_die_block = {
	.notifier_call = hyperv_die_event,
};
75 76 77 78
static struct notifier_block hyperv_panic_block = {
	.notifier_call = hyperv_panic_event,
};

79 80
static const char *fb_mmio_name = "fb_range";
static struct resource *fb_mmio;
81 82
static struct resource *hyperv_mmio;
static DEFINE_SEMAPHORE(hyperv_mmio_lock);
83

84 85 86 87 88 89 90 91
static int vmbus_exists(void)
{
	if (hv_acpi_dev == NULL)
		return -ENODEV;

	return 0;
}

92 93 94 95 96 97 98 99
#define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
{
	int i;
	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
}

100
static u8 channel_monitor_group(const struct vmbus_channel *channel)
101 102 103 104
{
	return (u8)channel->offermsg.monitorid / 32;
}

105
static u8 channel_monitor_offset(const struct vmbus_channel *channel)
106 107 108 109
{
	return (u8)channel->offermsg.monitorid % 32;
}

110 111
static u32 channel_pending(const struct vmbus_channel *channel,
			   const struct hv_monitor_page *monitor_page)
112 113
{
	u8 monitor_group = channel_monitor_group(channel);
114

115 116 117
	return monitor_page->trigger_group[monitor_group].pending;
}

118 119
static u32 channel_latency(const struct vmbus_channel *channel,
			   const struct hv_monitor_page *monitor_page)
120 121 122
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
123

124 125 126
	return monitor_page->latency[monitor_group][monitor_offset];
}

127 128 129 130 131 132 133 134
static u32 channel_conn_id(struct vmbus_channel *channel,
			   struct hv_monitor_page *monitor_page)
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
}

135 136 137 138 139 140 141 142 143 144 145
static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
		       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
}
static DEVICE_ATTR_RO(id);

146 147 148 149 150 151 152 153 154 155 156
static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
			  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->state);
}
static DEVICE_ATTR_RO(state);

157 158 159 160 161 162 163 164 165 166 167
static ssize_t monitor_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
}
static DEVICE_ATTR_RO(monitor_id);

168 169 170 171 172 173 174 175 176 177 178 179
static ssize_t class_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_type.b);
}
static DEVICE_ATTR_RO(class_id);

180 181 182 183 184 185 186 187 188 189 190 191
static ssize_t device_id_show(struct device *dev,
			      struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_instance.b);
}
static DEVICE_ATTR_RO(device_id);

192 193 194 195 196 197 198 199 200 201 202
static ssize_t modalias_show(struct device *dev,
			     struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	char alias_name[VMBUS_ALIAS_LEN + 1];

	print_alias_name(hv_dev, alias_name);
	return sprintf(buf, "vmbus:%s\n", alias_name);
}
static DEVICE_ATTR_RO(modalias);

203 204 205 206 207 208 209 210 211 212 213 214 215 216
#ifdef CONFIG_NUMA
static ssize_t numa_node_show(struct device *dev,
			      struct device_attribute *attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;

	return sprintf(buf, "%d\n", hv_dev->channel->numa_node);
}
static DEVICE_ATTR_RO(numa_node);
#endif

217 218 219 220 221 222 223 224 225 226
static ssize_t server_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
227
				       vmbus_connection.monitor_pages[0]));
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
}
static DEVICE_ATTR_RO(server_monitor_pending);

static ssize_t client_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_pending);
244

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
static ssize_t server_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_latency);

static ssize_t client_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_latency);

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
static ssize_t server_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_conn_id);

static ssize_t client_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_conn_id);

301 302 303 304 305
static ssize_t out_intr_mask_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
306
	int ret;
307 308 309

	if (!hv_dev->channel)
		return -ENODEV;
310 311 312 313 314 315

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;

316 317 318 319 320 321 322 323 324
	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(out_intr_mask);

static ssize_t out_read_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
325
	int ret;
326 327 328

	if (!hv_dev->channel)
		return -ENODEV;
329 330 331 332 333

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
334 335 336 337 338 339 340 341 342 343
	return sprintf(buf, "%d\n", outbound.current_read_index);
}
static DEVICE_ATTR_RO(out_read_index);

static ssize_t out_write_index_show(struct device *dev,
				    struct device_attribute *dev_attr,
				    char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
344
	int ret;
345 346 347

	if (!hv_dev->channel)
		return -ENODEV;
348 349 350 351 352

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
353 354 355 356 357 358 359 360 361 362
	return sprintf(buf, "%d\n", outbound.current_write_index);
}
static DEVICE_ATTR_RO(out_write_index);

static ssize_t out_read_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
363
	int ret;
364 365 366

	if (!hv_dev->channel)
		return -ENODEV;
367 368 369 370 371

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
372 373 374 375 376 377 378 379 380 381
	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(out_read_bytes_avail);

static ssize_t out_write_bytes_avail_show(struct device *dev,
					  struct device_attribute *dev_attr,
					  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
382
	int ret;
383 384 385

	if (!hv_dev->channel)
		return -ENODEV;
386 387 388 389 390

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
391 392 393 394 395 396 397 398 399
	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(out_write_bytes_avail);

static ssize_t in_intr_mask_show(struct device *dev,
				 struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
400
	int ret;
401 402 403

	if (!hv_dev->channel)
		return -ENODEV;
404 405 406 407 408

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

409 410 411 412 413 414 415 416 417
	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(in_intr_mask);

static ssize_t in_read_index_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
418
	int ret;
419 420 421

	if (!hv_dev->channel)
		return -ENODEV;
422 423 424 425 426

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

427 428 429 430 431 432 433 434 435
	return sprintf(buf, "%d\n", inbound.current_read_index);
}
static DEVICE_ATTR_RO(in_read_index);

static ssize_t in_write_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
436
	int ret;
437 438 439

	if (!hv_dev->channel)
		return -ENODEV;
440 441 442 443 444

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

445 446 447 448 449 450 451 452 453 454
	return sprintf(buf, "%d\n", inbound.current_write_index);
}
static DEVICE_ATTR_RO(in_write_index);

static ssize_t in_read_bytes_avail_show(struct device *dev,
					struct device_attribute *dev_attr,
					char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
455
	int ret;
456 457 458

	if (!hv_dev->channel)
		return -ENODEV;
459 460 461 462 463

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

464 465 466 467 468 469 470 471 472 473
	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(in_read_bytes_avail);

static ssize_t in_write_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
474
	int ret;
475 476 477

	if (!hv_dev->channel)
		return -ENODEV;
478 479 480 481 482

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

483 484 485 486
	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(in_write_bytes_avail);

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
static ssize_t channel_vp_mapping_show(struct device *dev,
				       struct device_attribute *dev_attr,
				       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
	unsigned long flags;
	int buf_size = PAGE_SIZE, n_written, tot_written;
	struct list_head *cur;

	if (!channel)
		return -ENODEV;

	tot_written = snprintf(buf, buf_size, "%u:%u\n",
		channel->offermsg.child_relid, channel->target_cpu);

	spin_lock_irqsave(&channel->lock, flags);

	list_for_each(cur, &channel->sc_list) {
		if (tot_written >= buf_size - 1)
			break;

		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
		n_written = scnprintf(buf + tot_written,
				     buf_size - tot_written,
				     "%u:%u\n",
				     cur_sc->offermsg.child_relid,
				     cur_sc->target_cpu);
		tot_written += n_written;
	}

	spin_unlock_irqrestore(&channel->lock, flags);

	return tot_written;
}
static DEVICE_ATTR_RO(channel_vp_mapping);

524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
static ssize_t vendor_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
}
static DEVICE_ATTR_RO(vendor);

static ssize_t device_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->device_id);
}
static DEVICE_ATTR_RO(device);

542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
static ssize_t driver_override_store(struct device *dev,
				     struct device_attribute *attr,
				     const char *buf, size_t count)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	char *driver_override, *old, *cp;

	/* We need to keep extra room for a newline */
	if (count >= (PAGE_SIZE - 1))
		return -EINVAL;

	driver_override = kstrndup(buf, count, GFP_KERNEL);
	if (!driver_override)
		return -ENOMEM;

	cp = strchr(driver_override, '\n');
	if (cp)
		*cp = '\0';

	device_lock(dev);
	old = hv_dev->driver_override;
	if (strlen(driver_override)) {
		hv_dev->driver_override = driver_override;
	} else {
		kfree(driver_override);
		hv_dev->driver_override = NULL;
	}
	device_unlock(dev);

	kfree(old);

	return count;
}

static ssize_t driver_override_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	ssize_t len;

	device_lock(dev);
	len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
	device_unlock(dev);

	return len;
}
static DEVICE_ATTR_RW(driver_override);

590
/* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
591
static struct attribute *vmbus_dev_attrs[] = {
592
	&dev_attr_id.attr,
593
	&dev_attr_state.attr,
594
	&dev_attr_monitor_id.attr,
595
	&dev_attr_class_id.attr,
596
	&dev_attr_device_id.attr,
597
	&dev_attr_modalias.attr,
598 599 600
#ifdef CONFIG_NUMA
	&dev_attr_numa_node.attr,
#endif
601 602
	&dev_attr_server_monitor_pending.attr,
	&dev_attr_client_monitor_pending.attr,
603 604
	&dev_attr_server_monitor_latency.attr,
	&dev_attr_client_monitor_latency.attr,
605 606
	&dev_attr_server_monitor_conn_id.attr,
	&dev_attr_client_monitor_conn_id.attr,
607 608 609 610 611 612 613 614 615 616
	&dev_attr_out_intr_mask.attr,
	&dev_attr_out_read_index.attr,
	&dev_attr_out_write_index.attr,
	&dev_attr_out_read_bytes_avail.attr,
	&dev_attr_out_write_bytes_avail.attr,
	&dev_attr_in_intr_mask.attr,
	&dev_attr_in_read_index.attr,
	&dev_attr_in_write_index.attr,
	&dev_attr_in_read_bytes_avail.attr,
	&dev_attr_in_write_bytes_avail.attr,
617
	&dev_attr_channel_vp_mapping.attr,
618 619
	&dev_attr_vendor.attr,
	&dev_attr_device.attr,
620
	&dev_attr_driver_override.attr,
621 622
	NULL,
};
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652

/*
 * Device-level attribute_group callback function. Returns the permission for
 * each attribute, and returns 0 if an attribute is not visible.
 */
static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
{
	struct device *dev = kobj_to_dev(kobj);
	const struct hv_device *hv_dev = device_to_hv_device(dev);

	/* Hide the monitor attributes if the monitor mechanism is not used. */
	if (!hv_dev->channel->offermsg.monitor_allocated &&
	    (attr == &dev_attr_monitor_id.attr ||
	     attr == &dev_attr_server_monitor_pending.attr ||
	     attr == &dev_attr_client_monitor_pending.attr ||
	     attr == &dev_attr_server_monitor_latency.attr ||
	     attr == &dev_attr_client_monitor_latency.attr ||
	     attr == &dev_attr_server_monitor_conn_id.attr ||
	     attr == &dev_attr_client_monitor_conn_id.attr))
		return 0;

	return attr->mode;
}

static const struct attribute_group vmbus_dev_group = {
	.attrs = vmbus_dev_attrs,
	.is_visible = vmbus_dev_attr_is_visible
};
__ATTRIBUTE_GROUPS(vmbus_dev);
653

654 655 656 657 658 659
/*
 * vmbus_uevent - add uevent for our device
 *
 * This routine is invoked when a device is added or removed on the vmbus to
 * generate a uevent to udev in the userspace. The udev will then look at its
 * rule and the uevent generated here to load the appropriate driver
660 661 662 663
 *
 * The alias string will be of the form vmbus:guid where guid is the string
 * representation of the device guid (each byte of the guid will be
 * represented with two hex characters.
664 665 666 667
 */
static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
{
	struct hv_device *dev = device_to_hv_device(device);
668 669
	int ret;
	char alias_name[VMBUS_ALIAS_LEN + 1];
670

671
	print_alias_name(dev, alias_name);
672 673
	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
	return ret;
674 675
}

676
static const struct hv_vmbus_device_id *
677
hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
678 679 680 681
{
	if (id == NULL)
		return NULL; /* empty device table */

682 683
	for (; !guid_is_null(&id->guid); id++)
		if (guid_equal(&id->guid, guid))
684 685 686 687 688 689
			return id;

	return NULL;
}

static const struct hv_vmbus_device_id *
690
hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
691
{
692 693 694 695 696
	const struct hv_vmbus_device_id *id = NULL;
	struct vmbus_dynid *dynid;

	spin_lock(&drv->dynids.lock);
	list_for_each_entry(dynid, &drv->dynids.list, node) {
697
		if (guid_equal(&dynid->id.guid, guid)) {
698 699 700 701 702 703
			id = &dynid->id;
			break;
		}
	}
	spin_unlock(&drv->dynids.lock);

704 705
	return id;
}
706

707
static const struct hv_vmbus_device_id vmbus_device_null;
708

709 710 711 712 713 714 715
/*
 * Return a matching hv_vmbus_device_id pointer.
 * If there is no match, return NULL.
 */
static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
							struct hv_device *dev)
{
716
	const guid_t *guid = &dev->dev_type;
717
	const struct hv_vmbus_device_id *id;
718

719 720 721 722 723 724 725 726 727 728 729 730 731 732
	/* When driver_override is set, only bind to the matching driver */
	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
		return NULL;

	/* Look at the dynamic ids first, before the static ones */
	id = hv_vmbus_dynid_match(drv, guid);
	if (!id)
		id = hv_vmbus_dev_match(drv->id_table, guid);

	/* driver_override will always match, send a dummy id */
	if (!id && dev->driver_override)
		id = &vmbus_device_null;

	return id;
733 734
}

735
/* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
736
static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
{
	struct vmbus_dynid *dynid;

	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
	if (!dynid)
		return -ENOMEM;

	dynid->id.guid = *guid;

	spin_lock(&drv->dynids.lock);
	list_add_tail(&dynid->node, &drv->dynids.list);
	spin_unlock(&drv->dynids.lock);

	return driver_attach(&drv->driver);
}

static void vmbus_free_dynids(struct hv_driver *drv)
{
	struct vmbus_dynid *dynid, *n;

	spin_lock(&drv->dynids.lock);
	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
		list_del(&dynid->node);
		kfree(dynid);
	}
	spin_unlock(&drv->dynids.lock);
}

/*
 * store_new_id - sysfs frontend to vmbus_add_dynid()
 *
 * Allow GUIDs to be added to an existing driver via sysfs.
 */
static ssize_t new_id_store(struct device_driver *driver, const char *buf,
			    size_t count)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
774
	guid_t guid;
775 776
	ssize_t retval;

777
	retval = guid_parse(buf, &guid);
778 779
	if (retval)
		return retval;
780

781
	if (hv_vmbus_dynid_match(drv, &guid))
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
		return -EEXIST;

	retval = vmbus_add_dynid(drv, &guid);
	if (retval)
		return retval;
	return count;
}
static DRIVER_ATTR_WO(new_id);

/*
 * store_remove_id - remove a PCI device ID from this driver
 *
 * Removes a dynamic pci device ID to this driver.
 */
static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
			       size_t count)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
	struct vmbus_dynid *dynid, *n;
801
	guid_t guid;
802
	ssize_t retval;
803

804
	retval = guid_parse(buf, &guid);
805 806
	if (retval)
		return retval;
807

808
	retval = -ENODEV;
809 810 811 812
	spin_lock(&drv->dynids.lock);
	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
		struct hv_vmbus_device_id *id = &dynid->id;

813
		if (guid_equal(&id->guid, &guid)) {
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
			list_del(&dynid->node);
			kfree(dynid);
			retval = count;
			break;
		}
	}
	spin_unlock(&drv->dynids.lock);

	return retval;
}
static DRIVER_ATTR_WO(remove_id);

static struct attribute *vmbus_drv_attrs[] = {
	&driver_attr_new_id.attr,
	&driver_attr_remove_id.attr,
	NULL,
};
ATTRIBUTE_GROUPS(vmbus_drv);
832

833 834 835 836 837 838 839

/*
 * vmbus_match - Attempt to match the specified device to the specified driver
 */
static int vmbus_match(struct device *device, struct device_driver *driver)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
840
	struct hv_device *hv_dev = device_to_hv_device(device);
841

842 843 844 845
	/* The hv_sock driver handles all hv_sock offers. */
	if (is_hvsock_channel(hv_dev->channel))
		return drv->hvsock;

846
	if (hv_vmbus_get_id(drv, hv_dev))
847
		return 1;
848

849
	return 0;
850 851
}

852 853 854 855 856 857 858 859
/*
 * vmbus_probe - Add the new vmbus's child device
 */
static int vmbus_probe(struct device *child_device)
{
	int ret = 0;
	struct hv_driver *drv =
			drv_to_hv_drv(child_device->driver);
860
	struct hv_device *dev = device_to_hv_device(child_device);
861
	const struct hv_vmbus_device_id *dev_id;
862

863
	dev_id = hv_vmbus_get_id(drv, dev);
864
	if (drv->probe) {
865
		ret = drv->probe(dev, dev_id);
866
		if (ret != 0)
867 868
			pr_err("probe failed for device %s (%d)\n",
			       dev_name(child_device), ret);
869 870

	} else {
871 872
		pr_err("probe not set for driver %s\n",
		       dev_name(child_device));
873
		ret = -ENODEV;
874 875 876 877
	}
	return ret;
}

878 879 880 881 882
/*
 * vmbus_remove - Remove a vmbus device
 */
static int vmbus_remove(struct device *child_device)
{
883
	struct hv_driver *drv;
884
	struct hv_device *dev = device_to_hv_device(child_device);
885

886 887 888 889 890
	if (child_device->driver) {
		drv = drv_to_hv_drv(child_device->driver);
		if (drv->remove)
			drv->remove(dev);
	}
891 892 893 894

	return 0;
}

895 896 897 898 899 900 901

/*
 * vmbus_shutdown - Shutdown a vmbus device
 */
static void vmbus_shutdown(struct device *child_device)
{
	struct hv_driver *drv;
902
	struct hv_device *dev = device_to_hv_device(child_device);
903 904 905 906 907 908 909 910


	/* The device may not be attached yet */
	if (!child_device->driver)
		return;

	drv = drv_to_hv_drv(child_device->driver);

911 912
	if (drv->shutdown)
		drv->shutdown(dev);
913 914
}

915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
/*
 * vmbus_suspend - Suspend a vmbus device
 */
static int vmbus_suspend(struct device *child_device)
{
	struct hv_driver *drv;
	struct hv_device *dev = device_to_hv_device(child_device);

	/* The device may not be attached yet */
	if (!child_device->driver)
		return 0;

	drv = drv_to_hv_drv(child_device->driver);
	if (!drv->suspend)
		return -EOPNOTSUPP;

	return drv->suspend(dev);
}

/*
 * vmbus_resume - Resume a vmbus device
 */
static int vmbus_resume(struct device *child_device)
{
	struct hv_driver *drv;
	struct hv_device *dev = device_to_hv_device(child_device);

	/* The device may not be attached yet */
	if (!child_device->driver)
		return 0;

	drv = drv_to_hv_drv(child_device->driver);
	if (!drv->resume)
		return -EOPNOTSUPP;

	return drv->resume(dev);
}
952 953 954 955 956 957

/*
 * vmbus_device_release - Final callback release of the vmbus child device
 */
static void vmbus_device_release(struct device *device)
{
958
	struct hv_device *hv_dev = device_to_hv_device(device);
959
	struct vmbus_channel *channel = hv_dev->channel;
960

961
	mutex_lock(&vmbus_connection.channel_mutex);
962
	hv_process_channel_removal(channel);
963
	mutex_unlock(&vmbus_connection.channel_mutex);
964
	kfree(hv_dev);
965 966
}

967 968 969 970 971 972 973 974
/*
 * Note: we must use SET_NOIRQ_SYSTEM_SLEEP_PM_OPS rather than
 * SET_SYSTEM_SLEEP_PM_OPS: see the comment before vmbus_bus_pm.
 */
static const struct dev_pm_ops vmbus_pm = {
	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(vmbus_suspend, vmbus_resume)
};

975
/* The one and only one */
976 977 978 979 980 981 982
static struct bus_type  hv_bus = {
	.name =		"vmbus",
	.match =		vmbus_match,
	.shutdown =		vmbus_shutdown,
	.remove =		vmbus_remove,
	.probe =		vmbus_probe,
	.uevent =		vmbus_uevent,
983 984
	.dev_groups =		vmbus_dev_groups,
	.drv_groups =		vmbus_drv_groups,
985
	.pm =			&vmbus_pm,
986 987
};

988 989 990 991 992 993 994 995 996
struct onmessage_work_context {
	struct work_struct work;
	struct hv_message msg;
};

static void vmbus_onmessage_work(struct work_struct *work)
{
	struct onmessage_work_context *ctx;

997 998 999 1000
	/* Do not process messages if we're in DISCONNECTED state */
	if (vmbus_connection.conn_state == DISCONNECTED)
		return;

1001 1002 1003 1004 1005 1006
	ctx = container_of(work, struct onmessage_work_context,
			   work);
	vmbus_onmessage(&ctx->msg);
	kfree(ctx);
}

1007
void vmbus_on_msg_dpc(unsigned long data)
G
Greg Kroah-Hartman 已提交
1008
{
1009 1010
	struct hv_per_cpu_context *hv_cpu = (void *)data;
	void *page_addr = hv_cpu->synic_message_page;
G
Greg Kroah-Hartman 已提交
1011 1012
	struct hv_message *msg = (struct hv_message *)page_addr +
				  VMBUS_MESSAGE_SINT;
1013
	struct vmbus_channel_message_header *hdr;
1014
	const struct vmbus_channel_message_table_entry *entry;
1015
	struct onmessage_work_context *ctx;
1016
	u32 message_type = msg->header.message_type;
G
Greg Kroah-Hartman 已提交
1017

1018
	if (message_type == HVMSG_NONE)
1019 1020
		/* no msg */
		return;
1021

1022
	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
1023

1024 1025
	trace_vmbus_on_msg_dpc(hdr);

1026 1027 1028 1029
	if (hdr->msgtype >= CHANNELMSG_COUNT) {
		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
		goto msg_handled;
	}
1030

1031 1032 1033 1034 1035
	entry = &channel_message_table[hdr->msgtype];
	if (entry->handler_type	== VMHT_BLOCKING) {
		ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
		if (ctx == NULL)
			return;
1036

1037 1038
		INIT_WORK(&ctx->work, vmbus_onmessage_work);
		memcpy(&ctx->msg, msg, sizeof(*msg));
1039

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
		/*
		 * The host can generate a rescind message while we
		 * may still be handling the original offer. We deal with
		 * this condition by ensuring the processing is done on the
		 * same CPU.
		 */
		switch (hdr->msgtype) {
		case CHANNELMSG_RESCIND_CHANNELOFFER:
			/*
			 * If we are handling the rescind message;
			 * schedule the work on the global work queue.
			 */
			schedule_work_on(vmbus_connection.connect_cpu,
					 &ctx->work);
			break;

		case CHANNELMSG_OFFERCHANNEL:
			atomic_inc(&vmbus_connection.offer_in_progress);
			queue_work_on(vmbus_connection.connect_cpu,
				      vmbus_connection.work_queue,
				      &ctx->work);
			break;

		default:
			queue_work(vmbus_connection.work_queue, &ctx->work);
		}
1066 1067
	} else
		entry->message_handler(hdr);
G
Greg Kroah-Hartman 已提交
1068

1069
msg_handled:
1070
	vmbus_signal_eom(msg, message_type);
G
Greg Kroah-Hartman 已提交
1071 1072
}

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
/*
 * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
 * hibernation, because hv_sock connections can not persist across hibernation.
 */
static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
{
	struct onmessage_work_context *ctx;
	struct vmbus_channel_rescind_offer *rescind;

	WARN_ON(!is_hvsock_channel(channel));

	/*
	 * sizeof(*ctx) is small and the allocation should really not fail,
	 * otherwise the state of the hv_sock connections ends up in limbo.
	 */
	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL | __GFP_NOFAIL);

	/*
	 * So far, these are not really used by Linux. Just set them to the
	 * reasonable values conforming to the definitions of the fields.
	 */
	ctx->msg.header.message_type = 1;
	ctx->msg.header.payload_size = sizeof(*rescind);

	/* These values are actually used by Linux. */
	rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.u.payload;
	rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
	rescind->child_relid = channel->offermsg.child_relid;

	INIT_WORK(&ctx->work, vmbus_onmessage_work);

	queue_work_on(vmbus_connection.connect_cpu,
		      vmbus_connection.work_queue,
		      &ctx->work);
}
1108

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
/*
 * Direct callback for channels using other deferred processing
 */
static void vmbus_channel_isr(struct vmbus_channel *channel)
{
	void (*callback_fn)(void *);

	callback_fn = READ_ONCE(channel->onchannel_callback);
	if (likely(callback_fn != NULL))
		(*callback_fn)(channel->channel_callback_context);
}

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
/*
 * Schedule all channels with events pending
 */
static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
{
	unsigned long *recv_int_page;
	u32 maxbits, relid;

	if (vmbus_proto_version < VERSION_WIN8) {
		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
		recv_int_page = vmbus_connection.recv_int_page;
	} else {
		/*
		 * When the host is win8 and beyond, the event page
		 * can be directly checked to get the id of the channel
		 * that has the interrupt pending.
		 */
		void *page_addr = hv_cpu->synic_event_page;
		union hv_synic_event_flags *event
			= (union hv_synic_event_flags *)page_addr +
						 VMBUS_MESSAGE_SINT;

		maxbits = HV_EVENT_FLAGS_COUNT;
		recv_int_page = event->flags;
	}

	if (unlikely(!recv_int_page))
		return;

	for_each_set_bit(relid, recv_int_page, maxbits) {
		struct vmbus_channel *channel;

		if (!sync_test_and_clear_bit(relid, recv_int_page))
			continue;

		/* Special case - vmbus channel protocol msg */
		if (relid == 0)
			continue;

1160 1161
		rcu_read_lock();

1162
		/* Find channel based on relid */
1163
		list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
1164 1165 1166
			if (channel->offermsg.child_relid != relid)
				continue;

1167 1168 1169
			if (channel->rescind)
				continue;

V
Vitaly Kuznetsov 已提交
1170 1171
			trace_vmbus_chan_sched(channel);

1172 1173
			++channel->interrupts;

1174 1175 1176
			switch (channel->callback_mode) {
			case HV_CALL_ISR:
				vmbus_channel_isr(channel);
1177
				break;
1178 1179 1180 1181 1182 1183

			case HV_CALL_BATCHED:
				hv_begin_read(&channel->inbound);
				/* fallthrough */
			case HV_CALL_DIRECT:
				tasklet_schedule(&channel->callback_event);
1184 1185
			}
		}
1186 1187

		rcu_read_unlock();
1188 1189 1190
	}
}

1191
static void vmbus_isr(void)
G
Greg Kroah-Hartman 已提交
1192
{
1193 1194 1195
	struct hv_per_cpu_context *hv_cpu
		= this_cpu_ptr(hv_context.cpu_context);
	void *page_addr = hv_cpu->synic_event_page;
G
Greg Kroah-Hartman 已提交
1196 1197
	struct hv_message *msg;
	union hv_synic_event_flags *event;
1198
	bool handled = false;
G
Greg Kroah-Hartman 已提交
1199

1200
	if (unlikely(page_addr == NULL))
1201
		return;
1202 1203 1204

	event = (union hv_synic_event_flags *)page_addr +
					 VMBUS_MESSAGE_SINT;
1205 1206 1207 1208 1209
	/*
	 * Check for events before checking for messages. This is the order
	 * in which events and messages are checked in Windows guests on
	 * Hyper-V, and the Windows team suggested we do the same.
	 */
G
Greg Kroah-Hartman 已提交
1210

1211 1212
	if ((vmbus_proto_version == VERSION_WS2008) ||
		(vmbus_proto_version == VERSION_WIN7)) {
G
Greg Kroah-Hartman 已提交
1213

1214
		/* Since we are a child, we only need to check bit 0 */
1215
		if (sync_test_and_clear_bit(0, event->flags))
1216 1217 1218 1219 1220 1221 1222 1223
			handled = true;
	} else {
		/*
		 * Our host is win8 or above. The signaling mechanism
		 * has changed and we can directly look at the event page.
		 * If bit n is set then we have an interrup on the channel
		 * whose id is n.
		 */
1224 1225
		handled = true;
	}
1226

1227
	if (handled)
1228
		vmbus_chan_sched(hv_cpu);
1229

1230
	page_addr = hv_cpu->synic_message_page;
1231 1232 1233
	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;

	/* Check if there are actual msgs to be processed */
1234
	if (msg->header.message_type != HVMSG_NONE) {
1235 1236 1237 1238
		if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
			hv_stimer0_isr();
			vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
		} else
1239
			tasklet_schedule(&hv_cpu->msg_dpc);
1240
	}
1241 1242

	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1243 1244
}

1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
/*
 * Boolean to control whether to report panic messages over Hyper-V.
 *
 * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
 */
static int sysctl_record_panic_msg = 1;

/*
 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
 * buffer and call into Hyper-V to transfer the data.
 */
static void hv_kmsg_dump(struct kmsg_dumper *dumper,
			 enum kmsg_dump_reason reason)
{
	size_t bytes_written;
	phys_addr_t panic_pa;

	/* We are only interested in panics. */
	if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
		return;

	panic_pa = virt_to_phys(hv_panic_page);

	/*
	 * Write dump contents to the page. No need to synchronize; panic should
	 * be single-threaded.
	 */
1272 1273 1274 1275
	kmsg_dump_get_buffer(dumper, true, hv_panic_page, PAGE_SIZE,
			     &bytes_written);
	if (bytes_written)
		hyperv_report_panic_msg(panic_pa, bytes_written);
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
}

static struct kmsg_dumper hv_kmsg_dumper = {
	.dump = hv_kmsg_dump,
};

static struct ctl_table_header *hv_ctl_table_hdr;

/*
 * sysctl option to allow the user to control whether kmsg data should be
 * reported to Hyper-V on panic.
 */
static struct ctl_table hv_ctl_table[] = {
	{
		.procname       = "hyperv_record_panic_msg",
		.data           = &sysctl_record_panic_msg,
		.maxlen         = sizeof(int),
		.mode           = 0644,
		.proc_handler   = proc_dointvec_minmax,
1295 1296
		.extra1		= SYSCTL_ZERO,
		.extra2		= SYSCTL_ONE
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
	},
	{}
};

static struct ctl_table hv_root_table[] = {
	{
		.procname	= "kernel",
		.mode		= 0555,
		.child		= hv_ctl_table
	},
	{}
};
1309

1310
/*
1311 1312 1313
 * vmbus_bus_init -Main vmbus driver initialization routine.
 *
 * Here, we
1314 1315 1316
 *	- initialize the vmbus driver context
 *	- invoke the vmbus hv main init routine
 *	- retrieve the channel offers
1317
 */
1318
static int vmbus_bus_init(void)
1319
{
1320
	int ret;
1321

1322 1323
	/* Hypervisor initialization...setup hypercall page..etc */
	ret = hv_init();
1324
	if (ret != 0) {
1325
		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1326
		return ret;
1327 1328
	}

1329
	ret = bus_register(&hv_bus);
1330
	if (ret)
1331
		return ret;
1332

1333
	hv_setup_vmbus_irq(vmbus_isr);
1334

1335 1336 1337
	ret = hv_synic_alloc();
	if (ret)
		goto err_alloc;
1338 1339 1340 1341 1342

	ret = hv_stimer_alloc(VMBUS_MESSAGE_SINT);
	if (ret < 0)
		goto err_alloc;

1343
	/*
1344 1345
	 * Initialize the per-cpu interrupt state and stimer state.
	 * Then connect to the host.
1346
	 */
1347
	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1348 1349
				hv_synic_init, hv_synic_cleanup);
	if (ret < 0)
1350
		goto err_cpuhp;
1351 1352
	hyperv_cpuhp_online = ret;

1353
	ret = vmbus_connect();
1354
	if (ret)
1355
		goto err_connect;
1356

1357 1358 1359
	/*
	 * Only register if the crash MSRs are available
	 */
1360
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
		u64 hyperv_crash_ctl;
		/*
		 * Sysctl registration is not fatal, since by default
		 * reporting is enabled.
		 */
		hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
		if (!hv_ctl_table_hdr)
			pr_err("Hyper-V: sysctl table register error");

		/*
		 * Register for panic kmsg callback only if the right
		 * capability is supported by the hypervisor.
		 */
1374
		hv_get_crash_ctl(hyperv_crash_ctl);
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
		if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) {
			hv_panic_page = (void *)get_zeroed_page(GFP_KERNEL);
			if (hv_panic_page) {
				ret = kmsg_dump_register(&hv_kmsg_dumper);
				if (ret)
					pr_err("Hyper-V: kmsg dump register "
						"error 0x%x\n", ret);
			} else
				pr_err("Hyper-V: panic message page memory "
					"allocation failed");
		}

1387
		register_die_notifier(&hyperv_die_block);
1388 1389 1390 1391
		atomic_notifier_chain_register(&panic_notifier_list,
					       &hyperv_panic_block);
	}

1392
	vmbus_request_offers();
1393

1394
	return 0;
1395

1396
err_connect:
1397
	cpuhp_remove_state(hyperv_cpuhp_online);
1398 1399
err_cpuhp:
	hv_stimer_free();
1400 1401
err_alloc:
	hv_synic_free();
1402
	hv_remove_vmbus_irq();
1403 1404

	bus_unregister(&hv_bus);
1405
	free_page((unsigned long)hv_panic_page);
1406 1407
	unregister_sysctl_table(hv_ctl_table_hdr);
	hv_ctl_table_hdr = NULL;
1408
	return ret;
1409 1410
}

1411
/**
1412 1413
 * __vmbus_child_driver_register() - Register a vmbus's driver
 * @hv_driver: Pointer to driver structure you want to register
1414 1415
 * @owner: owner module of the drv
 * @mod_name: module name string
1416 1417
 *
 * Registers the given driver with Linux through the 'driver_register()' call
1418
 * and sets up the hyper-v vmbus handling for this driver.
1419 1420
 * It will return the state of the 'driver_register()' call.
 *
1421
 */
1422
int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1423
{
1424
	int ret;
1425

1426
	pr_info("registering driver %s\n", hv_driver->name);
1427

1428 1429 1430 1431
	ret = vmbus_exists();
	if (ret < 0)
		return ret;

1432 1433 1434 1435
	hv_driver->driver.name = hv_driver->name;
	hv_driver->driver.owner = owner;
	hv_driver->driver.mod_name = mod_name;
	hv_driver->driver.bus = &hv_bus;
1436

1437 1438 1439
	spin_lock_init(&hv_driver->dynids.lock);
	INIT_LIST_HEAD(&hv_driver->dynids.list);

1440
	ret = driver_register(&hv_driver->driver);
1441

1442
	return ret;
1443
}
1444
EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1445

1446
/**
1447
 * vmbus_driver_unregister() - Unregister a vmbus's driver
1448 1449
 * @hv_driver: Pointer to driver structure you want to
 *             un-register
1450
 *
1451 1452
 * Un-register the given driver that was previous registered with a call to
 * vmbus_driver_register()
1453
 */
1454
void vmbus_driver_unregister(struct hv_driver *hv_driver)
1455
{
1456
	pr_info("unregistering driver %s\n", hv_driver->name);
1457

1458
	if (!vmbus_exists()) {
1459
		driver_unregister(&hv_driver->driver);
1460 1461
		vmbus_free_dynids(hv_driver);
	}
1462
}
1463
EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1464

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478

/*
 * Called when last reference to channel is gone.
 */
static void vmbus_chan_release(struct kobject *kobj)
{
	struct vmbus_channel *channel
		= container_of(kobj, struct vmbus_channel, kobj);

	kfree_rcu(channel, rcu);
}

struct vmbus_chan_attribute {
	struct attribute attr;
1479
	ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
	ssize_t (*store)(struct vmbus_channel *chan,
			 const char *buf, size_t count);
};
#define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
	struct vmbus_chan_attribute chan_attr_##_name \
		= __ATTR(_name, _mode, _show, _store)
#define VMBUS_CHAN_ATTR_RW(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
#define VMBUS_CHAN_ATTR_RO(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
#define VMBUS_CHAN_ATTR_WO(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)

static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
				    struct attribute *attr, char *buf)
{
	const struct vmbus_chan_attribute *attribute
		= container_of(attr, struct vmbus_chan_attribute, attr);
1498
	struct vmbus_channel *chan
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
		= container_of(kobj, struct vmbus_channel, kobj);

	if (!attribute->show)
		return -EIO;

	return attribute->show(chan, buf);
}

static const struct sysfs_ops vmbus_chan_sysfs_ops = {
	.show = vmbus_chan_attr_show,
};

1511
static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1512
{
1513 1514
	struct hv_ring_buffer_info *rbi = &channel->outbound;
	ssize_t ret;
1515

1516 1517 1518
	mutex_lock(&rbi->ring_buffer_mutex);
	if (!rbi->ring_buffer) {
		mutex_unlock(&rbi->ring_buffer_mutex);
1519
		return -EINVAL;
1520
	}
1521

1522 1523 1524
	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
	mutex_unlock(&rbi->ring_buffer_mutex);
	return ret;
1525
}
1526
static VMBUS_CHAN_ATTR_RO(out_mask);
1527

1528
static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1529
{
1530 1531
	struct hv_ring_buffer_info *rbi = &channel->inbound;
	ssize_t ret;
1532

1533 1534 1535
	mutex_lock(&rbi->ring_buffer_mutex);
	if (!rbi->ring_buffer) {
		mutex_unlock(&rbi->ring_buffer_mutex);
1536
		return -EINVAL;
1537
	}
1538

1539 1540 1541
	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
	mutex_unlock(&rbi->ring_buffer_mutex);
	return ret;
1542
}
1543
static VMBUS_CHAN_ATTR_RO(in_mask);
1544

1545
static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1546
{
1547 1548
	struct hv_ring_buffer_info *rbi = &channel->inbound;
	ssize_t ret;
1549

1550 1551 1552
	mutex_lock(&rbi->ring_buffer_mutex);
	if (!rbi->ring_buffer) {
		mutex_unlock(&rbi->ring_buffer_mutex);
1553
		return -EINVAL;
1554
	}
1555

1556 1557 1558
	ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
	mutex_unlock(&rbi->ring_buffer_mutex);
	return ret;
1559
}
1560
static VMBUS_CHAN_ATTR_RO(read_avail);
1561

1562
static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1563
{
1564 1565
	struct hv_ring_buffer_info *rbi = &channel->outbound;
	ssize_t ret;
1566

1567 1568 1569
	mutex_lock(&rbi->ring_buffer_mutex);
	if (!rbi->ring_buffer) {
		mutex_unlock(&rbi->ring_buffer_mutex);
1570
		return -EINVAL;
1571
	}
1572

1573 1574 1575
	ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
	mutex_unlock(&rbi->ring_buffer_mutex);
	return ret;
1576
}
1577
static VMBUS_CHAN_ATTR_RO(write_avail);
1578

1579
static ssize_t show_target_cpu(struct vmbus_channel *channel, char *buf)
1580 1581 1582
{
	return sprintf(buf, "%u\n", channel->target_cpu);
}
1583
static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1584

1585
static ssize_t channel_pending_show(struct vmbus_channel *channel,
1586 1587 1588 1589 1590 1591
				    char *buf)
{
	return sprintf(buf, "%d\n",
		       channel_pending(channel,
				       vmbus_connection.monitor_pages[1]));
}
1592
static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1593

1594
static ssize_t channel_latency_show(struct vmbus_channel *channel,
1595 1596 1597 1598 1599 1600
				    char *buf)
{
	return sprintf(buf, "%d\n",
		       channel_latency(channel,
				       vmbus_connection.monitor_pages[1]));
}
1601
static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1602

1603
static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1604 1605 1606
{
	return sprintf(buf, "%llu\n", channel->interrupts);
}
1607
static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1608

1609
static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1610 1611 1612
{
	return sprintf(buf, "%llu\n", channel->sig_events);
}
1613
static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1614

1615
static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1616 1617 1618 1619 1620 1621 1622
					 char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->intr_in_full);
}
static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);

1623
static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1624 1625 1626 1627 1628 1629 1630
					   char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->intr_out_empty);
}
static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);

1631
static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1632 1633 1634 1635 1636 1637 1638
					   char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->out_full_first);
}
static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);

1639
static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1640 1641 1642 1643 1644 1645 1646
					   char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->out_full_total);
}
static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);

1647
static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1648 1649 1650 1651 1652 1653
					  char *buf)
{
	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
}
static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);

1654
static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1655 1656 1657 1658 1659 1660 1661
				  char *buf)
{
	return sprintf(buf, "%u\n",
		       channel->offermsg.offer.sub_channel_index);
}
static VMBUS_CHAN_ATTR_RO(subchannel_id);

1662 1663 1664 1665 1666 1667 1668 1669
static struct attribute *vmbus_chan_attrs[] = {
	&chan_attr_out_mask.attr,
	&chan_attr_in_mask.attr,
	&chan_attr_read_avail.attr,
	&chan_attr_write_avail.attr,
	&chan_attr_cpu.attr,
	&chan_attr_pending.attr,
	&chan_attr_latency.attr,
1670 1671
	&chan_attr_interrupts.attr,
	&chan_attr_events.attr,
1672 1673 1674 1675
	&chan_attr_intr_in_full.attr,
	&chan_attr_intr_out_empty.attr,
	&chan_attr_out_full_first.attr,
	&chan_attr_out_full_total.attr,
1676 1677
	&chan_attr_monitor_id.attr,
	&chan_attr_subchannel_id.attr,
1678 1679 1680
	NULL
};

1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
/*
 * Channel-level attribute_group callback function. Returns the permission for
 * each attribute, and returns 0 if an attribute is not visible.
 */
static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
					  struct attribute *attr, int idx)
{
	const struct vmbus_channel *channel =
		container_of(kobj, struct vmbus_channel, kobj);

	/* Hide the monitor attributes if the monitor mechanism is not used. */
	if (!channel->offermsg.monitor_allocated &&
	    (attr == &chan_attr_pending.attr ||
	     attr == &chan_attr_latency.attr ||
	     attr == &chan_attr_monitor_id.attr))
		return 0;

	return attr->mode;
}

static struct attribute_group vmbus_chan_group = {
	.attrs = vmbus_chan_attrs,
	.is_visible = vmbus_chan_attr_is_visible
};

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
static struct kobj_type vmbus_chan_ktype = {
	.sysfs_ops = &vmbus_chan_sysfs_ops,
	.release = vmbus_chan_release,
};

/*
 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
 */
int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
{
1716
	const struct device *device = &dev->device;
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
	struct kobject *kobj = &channel->kobj;
	u32 relid = channel->offermsg.child_relid;
	int ret;

	kobj->kset = dev->channels_kset;
	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
				   "%u", relid);
	if (ret)
		return ret;

1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
	ret = sysfs_create_group(kobj, &vmbus_chan_group);

	if (ret) {
		/*
		 * The calling functions' error handling paths will cleanup the
		 * empty channel directory.
		 */
		dev_err(device, "Unable to set up channel sysfs files\n");
		return ret;
	}

1738 1739 1740 1741 1742
	kobject_uevent(kobj, KOBJ_ADD);

	return 0;
}

1743 1744 1745 1746 1747 1748 1749 1750
/*
 * vmbus_remove_channel_attr_group - remove the channel's attribute group
 */
void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
{
	sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
}

1751
/*
1752
 * vmbus_device_create - Creates and registers a new child device
1753
 * on the vmbus.
1754
 */
1755 1756
struct hv_device *vmbus_device_create(const guid_t *type,
				      const guid_t *instance,
S
stephen hemminger 已提交
1757
				      struct vmbus_channel *channel)
1758
{
1759
	struct hv_device *child_device_obj;
1760

1761 1762
	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
	if (!child_device_obj) {
1763
		pr_err("Unable to allocate device object for child device\n");
1764 1765 1766
		return NULL;
	}

1767
	child_device_obj->channel = channel;
1768 1769
	guid_copy(&child_device_obj->dev_type, type);
	guid_copy(&child_device_obj->dev_instance, instance);
1770
	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1771 1772 1773 1774

	return child_device_obj;
}

1775
/*
1776
 * vmbus_device_register - Register the child device
1777
 */
1778
int vmbus_device_register(struct hv_device *child_device_obj)
1779
{
1780 1781
	struct kobject *kobj = &child_device_obj->device.kobj;
	int ret;
1782

1783
	dev_set_name(&child_device_obj->device, "%pUl",
1784
		     child_device_obj->channel->offermsg.offer.if_instance.b);
1785

1786
	child_device_obj->device.bus = &hv_bus;
1787
	child_device_obj->device.parent = &hv_acpi_dev->dev;
1788
	child_device_obj->device.release = vmbus_device_release;
1789

1790 1791 1792 1793
	/*
	 * Register with the LDM. This will kick off the driver/device
	 * binding...which will eventually call vmbus_match() and vmbus_probe()
	 */
1794
	ret = device_register(&child_device_obj->device);
1795
	if (ret) {
1796
		pr_err("Unable to register child device\n");
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
		return ret;
	}

	child_device_obj->channels_kset = kset_create_and_add("channels",
							      NULL, kobj);
	if (!child_device_obj->channels_kset) {
		ret = -ENOMEM;
		goto err_dev_unregister;
	}

	ret = vmbus_add_channel_kobj(child_device_obj,
				     child_device_obj->channel);
	if (ret) {
		pr_err("Unable to register primary channeln");
		goto err_kset_unregister;
	}

	return 0;

err_kset_unregister:
	kset_unregister(child_device_obj->channels_kset);
1818

1819 1820
err_dev_unregister:
	device_unregister(&child_device_obj->device);
1821 1822 1823
	return ret;
}

1824
/*
1825
 * vmbus_device_unregister - Remove the specified child device
1826
 * from the vmbus.
1827
 */
1828
void vmbus_device_unregister(struct hv_device *device_obj)
1829
{
1830 1831 1832
	pr_debug("child device %s unregistered\n",
		dev_name(&device_obj->device));

1833 1834
	kset_unregister(device_obj->channels_kset);

1835 1836 1837 1838
	/*
	 * Kick off the process of unregistering the device.
	 * This will call vmbus_remove() and eventually vmbus_device_release()
	 */
1839
	device_unregister(&device_obj->device);
1840 1841 1842
}


1843
/*
1844
 * VMBUS is an acpi enumerated device. Get the information we
1845
 * need from DSDT.
1846
 */
1847
#define VTPM_BASE_ADDRESS 0xfed40000
1848
static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1849
{
1850 1851 1852 1853 1854 1855
	resource_size_t start = 0;
	resource_size_t end = 0;
	struct resource *new_res;
	struct resource **old_res = &hyperv_mmio;
	struct resource **prev_res = NULL;

1856
	switch (res->type) {
1857 1858 1859 1860 1861 1862 1863 1864 1865

	/*
	 * "Address" descriptors are for bus windows. Ignore
	 * "memory" descriptors, which are for registers on
	 * devices.
	 */
	case ACPI_RESOURCE_TYPE_ADDRESS32:
		start = res->data.address32.address.minimum;
		end = res->data.address32.address.maximum;
G
Gerd Hoffmann 已提交
1866
		break;
1867

1868
	case ACPI_RESOURCE_TYPE_ADDRESS64:
1869 1870
		start = res->data.address64.address.minimum;
		end = res->data.address64.address.maximum;
G
Gerd Hoffmann 已提交
1871
		break;
1872 1873 1874 1875 1876

	default:
		/* Unused resource type */
		return AE_OK;

1877
	}
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
	/*
	 * Ignore ranges that are below 1MB, as they're not
	 * necessary or useful here.
	 */
	if (end < 0x100000)
		return AE_OK;

	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
	if (!new_res)
		return AE_NO_MEMORY;

	/* If this range overlaps the virtual TPM, truncate it. */
	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
		end = VTPM_BASE_ADDRESS;

	new_res->name = "hyperv mmio";
	new_res->flags = IORESOURCE_MEM;
	new_res->start = start;
	new_res->end = end;

1898 1899 1900
	/*
	 * If two ranges are adjacent, merge them.
	 */
1901 1902 1903 1904 1905 1906
	do {
		if (!*old_res) {
			*old_res = new_res;
			break;
		}

1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
		if (((*old_res)->end + 1) == new_res->start) {
			(*old_res)->end = new_res->end;
			kfree(new_res);
			break;
		}

		if ((*old_res)->start == new_res->end + 1) {
			(*old_res)->start = new_res->start;
			kfree(new_res);
			break;
		}

1919
		if ((*old_res)->start > new_res->end) {
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
			new_res->sibling = *old_res;
			if (prev_res)
				(*prev_res)->sibling = new_res;
			*old_res = new_res;
			break;
		}

		prev_res = old_res;
		old_res = &(*old_res)->sibling;

	} while (1);
1931 1932 1933 1934

	return AE_OK;
}

1935 1936 1937 1938 1939 1940
static int vmbus_acpi_remove(struct acpi_device *device)
{
	struct resource *cur_res;
	struct resource *next_res;

	if (hyperv_mmio) {
1941 1942 1943 1944 1945 1946
		if (fb_mmio) {
			__release_region(hyperv_mmio, fb_mmio->start,
					 resource_size(fb_mmio));
			fb_mmio = NULL;
		}

1947 1948 1949 1950 1951 1952 1953 1954 1955
		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
			next_res = cur_res->sibling;
			kfree(cur_res);
		}
	}

	return 0;
}

1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
static void vmbus_reserve_fb(void)
{
	int size;
	/*
	 * Make a claim for the frame buffer in the resource tree under the
	 * first node, which will be the one below 4GB.  The length seems to
	 * be underreported, particularly in a Generation 1 VM.  So start out
	 * reserving a larger area and make it smaller until it succeeds.
	 */

	if (screen_info.lfb_base) {
		if (efi_enabled(EFI_BOOT))
			size = max_t(__u32, screen_info.lfb_size, 0x800000);
		else
			size = max_t(__u32, screen_info.lfb_size, 0x4000000);

		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
			fb_mmio = __request_region(hyperv_mmio,
						   screen_info.lfb_base, size,
						   fb_mmio_name, 0);
		}
	}
}

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
/**
 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
 * @new:		If successful, supplied a pointer to the
 *			allocated MMIO space.
 * @device_obj:		Identifies the caller
 * @min:		Minimum guest physical address of the
 *			allocation
 * @max:		Maximum guest physical address
 * @size:		Size of the range to be allocated
 * @align:		Alignment of the range to be allocated
 * @fb_overlap_ok:	Whether this allocation can be allowed
 *			to overlap the video frame buffer.
 *
 * This function walks the resources granted to VMBus by the
 * _CRS object in the ACPI namespace underneath the parent
 * "bridge" whether that's a root PCI bus in the Generation 1
 * case or a Module Device in the Generation 2 case.  It then
 * attempts to allocate from the global MMIO pool in a way that
 * matches the constraints supplied in these parameters and by
 * that _CRS.
 *
 * Return: 0 on success, -errno on failure
 */
int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
			resource_size_t min, resource_size_t max,
			resource_size_t size, resource_size_t align,
			bool fb_overlap_ok)
{
2008
	struct resource *iter, *shadow;
2009
	resource_size_t range_min, range_max, start;
2010
	const char *dev_n = dev_name(&device_obj->device);
2011
	int retval;
2012 2013 2014

	retval = -ENXIO;
	down(&hyperv_mmio_lock);
2015

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
	/*
	 * If overlaps with frame buffers are allowed, then first attempt to
	 * make the allocation from within the reserved region.  Because it
	 * is already reserved, no shadow allocation is necessary.
	 */
	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
	    !(max < fb_mmio->start)) {

		range_min = fb_mmio->start;
		range_max = fb_mmio->end;
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				retval = 0;
				goto exit;
			}
		}
	}

2036 2037 2038 2039 2040 2041
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= max) || (iter->end <= min))
			continue;

		range_min = iter->start;
		range_max = iter->end;
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			shadow = __request_region(iter, start, size, NULL,
						  IORESOURCE_BUSY);
			if (!shadow)
				continue;

			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				shadow->name = (char *)*new;
				retval = 0;
				goto exit;
2054 2055
			}

2056
			__release_region(iter, start, size);
2057 2058 2059
		}
	}

2060 2061 2062
exit:
	up(&hyperv_mmio_lock);
	return retval;
2063 2064 2065
}
EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);

2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
/**
 * vmbus_free_mmio() - Free a memory-mapped I/O range.
 * @start:		Base address of region to release.
 * @size:		Size of the range to be allocated
 *
 * This function releases anything requested by
 * vmbus_mmio_allocate().
 */
void vmbus_free_mmio(resource_size_t start, resource_size_t size)
{
2076 2077 2078 2079 2080 2081 2082 2083 2084
	struct resource *iter;

	down(&hyperv_mmio_lock);
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= start + size) || (iter->end <= start))
			continue;

		__release_region(iter, start, size);
	}
2085
	release_mem_region(start, size);
2086
	up(&hyperv_mmio_lock);
2087 2088 2089 2090

}
EXPORT_SYMBOL_GPL(vmbus_free_mmio);

2091 2092 2093
static int vmbus_acpi_add(struct acpi_device *device)
{
	acpi_status result;
2094
	int ret_val = -ENODEV;
2095
	struct acpi_device *ancestor;
2096

2097 2098
	hv_acpi_dev = device;

2099
	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2100
					vmbus_walk_resources, NULL);
2101

2102 2103 2104
	if (ACPI_FAILURE(result))
		goto acpi_walk_err;
	/*
2105 2106
	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
	 * firmware) is the VMOD that has the mmio ranges. Get that.
2107
	 */
2108 2109 2110
	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
					     vmbus_walk_resources, NULL);
2111 2112

		if (ACPI_FAILURE(result))
2113
			continue;
2114 2115
		if (hyperv_mmio) {
			vmbus_reserve_fb();
2116
			break;
2117
		}
2118
	}
2119 2120 2121
	ret_val = 0;

acpi_walk_err:
2122
	complete(&probe_event);
2123 2124
	if (ret_val)
		vmbus_acpi_remove(device);
2125
	return ret_val;
2126 2127
}

2128 2129
static int vmbus_bus_suspend(struct device *dev)
{
2130 2131
	struct vmbus_channel *channel, *sc;
	unsigned long flags;
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149

	while (atomic_read(&vmbus_connection.offer_in_progress) != 0) {
		/*
		 * We wait here until the completion of any channel
		 * offers that are currently in progress.
		 */
		msleep(1);
	}

	mutex_lock(&vmbus_connection.channel_mutex);
	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
		if (!is_hvsock_channel(channel))
			continue;

		vmbus_force_channel_rescinded(channel);
	}
	mutex_unlock(&vmbus_connection.channel_mutex);

2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
	/*
	 * Wait until all the sub-channels and hv_sock channels have been
	 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
	 * they would conflict with the new sub-channels that will be created
	 * in the resume path. hv_sock channels should also be destroyed, but
	 * a hv_sock channel of an established hv_sock connection can not be
	 * really destroyed since it may still be referenced by the userspace
	 * application, so we just force the hv_sock channel to be rescinded
	 * by vmbus_force_channel_rescinded(), and the userspace application
	 * will thoroughly destroy the channel after hibernation.
	 *
	 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
	 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
	 */
	if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0)
		wait_for_completion(&vmbus_connection.ready_for_suspend_event);

	mutex_lock(&vmbus_connection.channel_mutex);

	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
		if (is_hvsock_channel(channel)) {
			if (!channel->rescind) {
				pr_err("hv_sock channel not rescinded!\n");
				WARN_ON_ONCE(1);
			}
			continue;
		}

		spin_lock_irqsave(&channel->lock, flags);
		list_for_each_entry(sc, &channel->sc_list, sc_list) {
			pr_err("Sub-channel not deleted!\n");
			WARN_ON_ONCE(1);
		}
		spin_unlock_irqrestore(&channel->lock, flags);
	}

	mutex_unlock(&vmbus_connection.channel_mutex);

2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
	vmbus_initiate_unload(false);

	vmbus_connection.conn_state = DISCONNECTED;

	return 0;
}

static int vmbus_bus_resume(struct device *dev)
{
	struct vmbus_channel_msginfo *msginfo;
	size_t msgsize;
	int ret;

	/*
	 * We only use the 'vmbus_proto_version', which was in use before
	 * hibernation, to re-negotiate with the host.
	 */
	if (vmbus_proto_version == VERSION_INVAL ||
	    vmbus_proto_version == 0) {
		pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
		return -EINVAL;
	}

	msgsize = sizeof(*msginfo) +
		  sizeof(struct vmbus_channel_initiate_contact);

	msginfo = kzalloc(msgsize, GFP_KERNEL);

	if (msginfo == NULL)
		return -ENOMEM;

	ret = vmbus_negotiate_version(msginfo, vmbus_proto_version);

	kfree(msginfo);

	if (ret != 0)
		return ret;

	vmbus_request_offers();

2228 2229 2230
	/* Reset the event for the next suspend. */
	reinit_completion(&vmbus_connection.ready_for_suspend_event);

2231 2232 2233
	return 0;
}

2234 2235
static const struct acpi_device_id vmbus_acpi_device_ids[] = {
	{"VMBUS", 0},
2236
	{"VMBus", 0},
2237 2238 2239 2240
	{"", 0},
};
MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);

2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
/*
 * Note: we must use SET_NOIRQ_SYSTEM_SLEEP_PM_OPS rather than
 * SET_SYSTEM_SLEEP_PM_OPS, otherwise NIC SR-IOV can not work, because the
 * "pci_dev_pm_ops" uses the "noirq" callbacks: in the resume path, the
 * pci "noirq" restore callback runs before "non-noirq" callbacks (see
 * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
 * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
 * resume callback must also run via the "noirq" callbacks.
 */
static const struct dev_pm_ops vmbus_bus_pm = {
	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(vmbus_bus_suspend, vmbus_bus_resume)
};

2254 2255 2256 2257 2258
static struct acpi_driver vmbus_acpi_driver = {
	.name = "vmbus",
	.ids = vmbus_acpi_device_ids,
	.ops = {
		.add = vmbus_acpi_add,
2259
		.remove = vmbus_acpi_remove,
2260
	},
2261
	.drv.pm = &vmbus_bus_pm,
2262 2263
};

2264 2265
static void hv_kexec_handler(void)
{
2266
	hv_stimer_global_cleanup();
2267
	vmbus_initiate_unload(false);
2268 2269 2270
	vmbus_connection.conn_state = DISCONNECTED;
	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
	mb();
2271
	cpuhp_remove_state(hyperv_cpuhp_online);
2272
	hyperv_cleanup();
2273 2274
};

2275 2276
static void hv_crash_handler(struct pt_regs *regs)
{
2277 2278
	int cpu;

2279
	vmbus_initiate_unload(true);
2280 2281 2282 2283 2284
	/*
	 * In crash handler we can't schedule synic cleanup for all CPUs,
	 * doing the cleanup for current CPU only. This should be sufficient
	 * for kdump.
	 */
2285
	vmbus_connection.conn_state = DISCONNECTED;
2286 2287 2288
	cpu = smp_processor_id();
	hv_stimer_cleanup(cpu);
	hv_synic_cleanup(cpu);
2289
	hyperv_cleanup();
2290 2291
};

2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
static int hv_synic_suspend(void)
{
	/*
	 * When we reach here, all the non-boot CPUs have been offlined, and
	 * the stimers on them have been unbound in hv_synic_cleanup() ->
	 * hv_stimer_cleanup() -> clockevents_unbind_device().
	 *
	 * hv_synic_suspend() only runs on CPU0 with interrupts disabled. Here
	 * we do not unbind the stimer on CPU0 because: 1) it's unnecessary
	 * because the interrupts remain disabled between syscore_suspend()
	 * and syscore_resume(): see create_image() and resume_target_kernel();
	 * 2) the stimer on CPU0 is automatically disabled later by
	 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
	 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown(); 3) a warning
	 * would be triggered if we call clockevents_unbind_device(), which
	 * may sleep, in an interrupts-disabled context. So, we intentionally
	 * don't call hv_stimer_cleanup(0) here.
	 */

	hv_synic_disable_regs(0);

	return 0;
}

static void hv_synic_resume(void)
{
	hv_synic_enable_regs(0);

	/*
	 * Note: we don't need to call hv_stimer_init(0), because the timer
	 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
	 * automatically re-enabled in timekeeping_resume().
	 */
}

/* The callbacks run only on CPU0, with irqs_disabled. */
static struct syscore_ops hv_synic_syscore_ops = {
	.suspend = hv_synic_suspend,
	.resume = hv_synic_resume,
};

2333
static int __init hv_acpi_init(void)
2334
{
2335
	int ret, t;
2336

2337
	if (!hv_is_hyperv_initialized())
2338 2339
		return -ENODEV;

2340 2341 2342
	init_completion(&probe_event);

	/*
2343
	 * Get ACPI resources first.
2344
	 */
2345 2346
	ret = acpi_bus_register_driver(&vmbus_acpi_driver);

2347 2348 2349
	if (ret)
		return ret;

2350 2351 2352 2353 2354
	t = wait_for_completion_timeout(&probe_event, 5*HZ);
	if (t == 0) {
		ret = -ETIMEDOUT;
		goto cleanup;
	}
2355

2356
	ret = vmbus_bus_init();
2357
	if (ret)
2358 2359
		goto cleanup;

2360
	hv_setup_kexec_handler(hv_kexec_handler);
2361
	hv_setup_crash_handler(hv_crash_handler);
2362

2363 2364
	register_syscore_ops(&hv_synic_syscore_ops);

2365 2366 2367 2368
	return 0;

cleanup:
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2369
	hv_acpi_dev = NULL;
2370
	return ret;
2371 2372
}

2373 2374
static void __exit vmbus_exit(void)
{
2375 2376
	int cpu;

2377 2378
	unregister_syscore_ops(&hv_synic_syscore_ops);

2379
	hv_remove_kexec_handler();
2380
	hv_remove_crash_handler();
2381
	vmbus_connection.conn_state = DISCONNECTED;
2382
	hv_stimer_global_cleanup();
2383
	vmbus_disconnect();
2384
	hv_remove_vmbus_irq();
2385 2386 2387 2388 2389 2390
	for_each_online_cpu(cpu) {
		struct hv_per_cpu_context *hv_cpu
			= per_cpu_ptr(hv_context.cpu_context, cpu);

		tasklet_kill(&hv_cpu->msg_dpc);
	}
2391
	vmbus_free_channels();
2392

2393
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
2394
		kmsg_dump_unregister(&hv_kmsg_dumper);
2395
		unregister_die_notifier(&hyperv_die_block);
2396 2397 2398
		atomic_notifier_chain_unregister(&panic_notifier_list,
						 &hyperv_panic_block);
	}
2399 2400

	free_page((unsigned long)hv_panic_page);
2401 2402
	unregister_sysctl_table(hv_ctl_table_hdr);
	hv_ctl_table_hdr = NULL;
2403
	bus_unregister(&hv_bus);
2404

2405
	cpuhp_remove_state(hyperv_cpuhp_online);
2406
	hv_synic_free();
2407 2408 2409
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
}

2410

2411
MODULE_LICENSE("GPL");
2412
MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2413

2414
subsys_initcall(hv_acpi_init);
2415
module_exit(vmbus_exit);