vmbus_drv.c 50.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (c) 2009, Microsoft Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 *
 * Authors:
 *   Haiyang Zhang <haiyangz@microsoft.com>
 *   Hank Janssen  <hjanssen@microsoft.com>
20
 *   K. Y. Srinivasan <kys@microsoft.com>
21
 *
22
 */
23 24
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

25 26 27 28 29
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/sysctl.h>
30
#include <linux/slab.h>
31
#include <linux/acpi.h>
32
#include <linux/completion.h>
33
#include <linux/hyperv.h>
34
#include <linux/kernel_stat.h>
35
#include <linux/clockchips.h>
36
#include <linux/cpu.h>
37 38
#include <linux/sched/task_stack.h>

39
#include <asm/mshyperv.h>
40 41
#include <linux/notifier.h>
#include <linux/ptrace.h>
42
#include <linux/screen_info.h>
43
#include <linux/kdebug.h>
44
#include <linux/efi.h>
45
#include <linux/random.h>
46
#include "hyperv_vmbus.h"
47

48 49 50 51 52
struct vmbus_dynid {
	struct list_head node;
	struct hv_vmbus_device_id id;
};

53
static struct acpi_device  *hv_acpi_dev;
54

55
static struct completion probe_event;
56

57
static int hyperv_cpuhp_online;
58

59 60
static void *hv_panic_page;

61 62 63 64 65 66 67
static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
			      void *args)
{
	struct pt_regs *regs;

	regs = current_pt_regs();

68
	hyperv_report_panic(regs, val);
69 70 71
	return NOTIFY_DONE;
}

72 73 74 75 76 77
static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
			    void *args)
{
	struct die_args *die = (struct die_args *)args;
	struct pt_regs *regs = die->regs;

78
	hyperv_report_panic(regs, val);
79 80 81 82 83 84
	return NOTIFY_DONE;
}

static struct notifier_block hyperv_die_block = {
	.notifier_call = hyperv_die_event,
};
85 86 87 88
static struct notifier_block hyperv_panic_block = {
	.notifier_call = hyperv_panic_event,
};

89 90
static const char *fb_mmio_name = "fb_range";
static struct resource *fb_mmio;
91 92
static struct resource *hyperv_mmio;
static DEFINE_SEMAPHORE(hyperv_mmio_lock);
93

94 95 96 97 98 99 100 101
static int vmbus_exists(void)
{
	if (hv_acpi_dev == NULL)
		return -ENODEV;

	return 0;
}

102 103 104 105 106 107 108 109
#define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
{
	int i;
	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
}

110
static u8 channel_monitor_group(const struct vmbus_channel *channel)
111 112 113 114
{
	return (u8)channel->offermsg.monitorid / 32;
}

115
static u8 channel_monitor_offset(const struct vmbus_channel *channel)
116 117 118 119
{
	return (u8)channel->offermsg.monitorid % 32;
}

120 121
static u32 channel_pending(const struct vmbus_channel *channel,
			   const struct hv_monitor_page *monitor_page)
122 123
{
	u8 monitor_group = channel_monitor_group(channel);
124

125 126 127
	return monitor_page->trigger_group[monitor_group].pending;
}

128 129
static u32 channel_latency(const struct vmbus_channel *channel,
			   const struct hv_monitor_page *monitor_page)
130 131 132
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
133

134 135 136
	return monitor_page->latency[monitor_group][monitor_offset];
}

137 138 139 140 141 142 143 144
static u32 channel_conn_id(struct vmbus_channel *channel,
			   struct hv_monitor_page *monitor_page)
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
}

145 146 147 148 149 150 151 152 153 154 155
static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
		       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
}
static DEVICE_ATTR_RO(id);

156 157 158 159 160 161 162 163 164 165 166
static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
			  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->state);
}
static DEVICE_ATTR_RO(state);

167 168 169 170 171 172 173 174 175 176 177
static ssize_t monitor_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
}
static DEVICE_ATTR_RO(monitor_id);

178 179 180 181 182 183 184 185 186 187 188 189
static ssize_t class_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_type.b);
}
static DEVICE_ATTR_RO(class_id);

190 191 192 193 194 195 196 197 198 199 200 201
static ssize_t device_id_show(struct device *dev,
			      struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_instance.b);
}
static DEVICE_ATTR_RO(device_id);

202 203 204 205 206 207 208 209 210 211 212
static ssize_t modalias_show(struct device *dev,
			     struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	char alias_name[VMBUS_ALIAS_LEN + 1];

	print_alias_name(hv_dev, alias_name);
	return sprintf(buf, "vmbus:%s\n", alias_name);
}
static DEVICE_ATTR_RO(modalias);

213 214 215 216 217 218 219 220 221 222 223 224 225 226
#ifdef CONFIG_NUMA
static ssize_t numa_node_show(struct device *dev,
			      struct device_attribute *attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;

	return sprintf(buf, "%d\n", hv_dev->channel->numa_node);
}
static DEVICE_ATTR_RO(numa_node);
#endif

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
static ssize_t server_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(server_monitor_pending);

static ssize_t client_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_pending);
254

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
static ssize_t server_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_latency);

static ssize_t client_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_latency);

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
static ssize_t server_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_conn_id);

static ssize_t client_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_conn_id);

311 312 313 314 315
static ssize_t out_intr_mask_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
316
	int ret;
317 318 319

	if (!hv_dev->channel)
		return -ENODEV;
320 321 322 323 324 325

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;

326 327 328 329 330 331 332 333 334
	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(out_intr_mask);

static ssize_t out_read_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
335
	int ret;
336 337 338

	if (!hv_dev->channel)
		return -ENODEV;
339 340 341 342 343

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
344 345 346 347 348 349 350 351 352 353
	return sprintf(buf, "%d\n", outbound.current_read_index);
}
static DEVICE_ATTR_RO(out_read_index);

static ssize_t out_write_index_show(struct device *dev,
				    struct device_attribute *dev_attr,
				    char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
354
	int ret;
355 356 357

	if (!hv_dev->channel)
		return -ENODEV;
358 359 360 361 362

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
363 364 365 366 367 368 369 370 371 372
	return sprintf(buf, "%d\n", outbound.current_write_index);
}
static DEVICE_ATTR_RO(out_write_index);

static ssize_t out_read_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
373
	int ret;
374 375 376

	if (!hv_dev->channel)
		return -ENODEV;
377 378 379 380 381

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
382 383 384 385 386 387 388 389 390 391
	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(out_read_bytes_avail);

static ssize_t out_write_bytes_avail_show(struct device *dev,
					  struct device_attribute *dev_attr,
					  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
392
	int ret;
393 394 395

	if (!hv_dev->channel)
		return -ENODEV;
396 397 398 399 400

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
401 402 403 404 405 406 407 408 409
	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(out_write_bytes_avail);

static ssize_t in_intr_mask_show(struct device *dev,
				 struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
410
	int ret;
411 412 413

	if (!hv_dev->channel)
		return -ENODEV;
414 415 416 417 418

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

419 420 421 422 423 424 425 426 427
	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(in_intr_mask);

static ssize_t in_read_index_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
428
	int ret;
429 430 431

	if (!hv_dev->channel)
		return -ENODEV;
432 433 434 435 436

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

437 438 439 440 441 442 443 444 445
	return sprintf(buf, "%d\n", inbound.current_read_index);
}
static DEVICE_ATTR_RO(in_read_index);

static ssize_t in_write_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
446
	int ret;
447 448 449

	if (!hv_dev->channel)
		return -ENODEV;
450 451 452 453 454

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

455 456 457 458 459 460 461 462 463 464
	return sprintf(buf, "%d\n", inbound.current_write_index);
}
static DEVICE_ATTR_RO(in_write_index);

static ssize_t in_read_bytes_avail_show(struct device *dev,
					struct device_attribute *dev_attr,
					char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
465
	int ret;
466 467 468

	if (!hv_dev->channel)
		return -ENODEV;
469 470 471 472 473

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

474 475 476 477 478 479 480 481 482 483
	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(in_read_bytes_avail);

static ssize_t in_write_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
484
	int ret;
485 486 487

	if (!hv_dev->channel)
		return -ENODEV;
488 489 490 491 492

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

493 494 495 496
	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(in_write_bytes_avail);

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
static ssize_t channel_vp_mapping_show(struct device *dev,
				       struct device_attribute *dev_attr,
				       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
	unsigned long flags;
	int buf_size = PAGE_SIZE, n_written, tot_written;
	struct list_head *cur;

	if (!channel)
		return -ENODEV;

	tot_written = snprintf(buf, buf_size, "%u:%u\n",
		channel->offermsg.child_relid, channel->target_cpu);

	spin_lock_irqsave(&channel->lock, flags);

	list_for_each(cur, &channel->sc_list) {
		if (tot_written >= buf_size - 1)
			break;

		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
		n_written = scnprintf(buf + tot_written,
				     buf_size - tot_written,
				     "%u:%u\n",
				     cur_sc->offermsg.child_relid,
				     cur_sc->target_cpu);
		tot_written += n_written;
	}

	spin_unlock_irqrestore(&channel->lock, flags);

	return tot_written;
}
static DEVICE_ATTR_RO(channel_vp_mapping);

534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
static ssize_t vendor_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
}
static DEVICE_ATTR_RO(vendor);

static ssize_t device_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->device_id);
}
static DEVICE_ATTR_RO(device);

552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
static ssize_t driver_override_store(struct device *dev,
				     struct device_attribute *attr,
				     const char *buf, size_t count)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	char *driver_override, *old, *cp;

	/* We need to keep extra room for a newline */
	if (count >= (PAGE_SIZE - 1))
		return -EINVAL;

	driver_override = kstrndup(buf, count, GFP_KERNEL);
	if (!driver_override)
		return -ENOMEM;

	cp = strchr(driver_override, '\n');
	if (cp)
		*cp = '\0';

	device_lock(dev);
	old = hv_dev->driver_override;
	if (strlen(driver_override)) {
		hv_dev->driver_override = driver_override;
	} else {
		kfree(driver_override);
		hv_dev->driver_override = NULL;
	}
	device_unlock(dev);

	kfree(old);

	return count;
}

static ssize_t driver_override_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	ssize_t len;

	device_lock(dev);
	len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
	device_unlock(dev);

	return len;
}
static DEVICE_ATTR_RW(driver_override);

600
/* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
601
static struct attribute *vmbus_dev_attrs[] = {
602
	&dev_attr_id.attr,
603
	&dev_attr_state.attr,
604
	&dev_attr_monitor_id.attr,
605
	&dev_attr_class_id.attr,
606
	&dev_attr_device_id.attr,
607
	&dev_attr_modalias.attr,
608 609 610
#ifdef CONFIG_NUMA
	&dev_attr_numa_node.attr,
#endif
611 612
	&dev_attr_server_monitor_pending.attr,
	&dev_attr_client_monitor_pending.attr,
613 614
	&dev_attr_server_monitor_latency.attr,
	&dev_attr_client_monitor_latency.attr,
615 616
	&dev_attr_server_monitor_conn_id.attr,
	&dev_attr_client_monitor_conn_id.attr,
617 618 619 620 621 622 623 624 625 626
	&dev_attr_out_intr_mask.attr,
	&dev_attr_out_read_index.attr,
	&dev_attr_out_write_index.attr,
	&dev_attr_out_read_bytes_avail.attr,
	&dev_attr_out_write_bytes_avail.attr,
	&dev_attr_in_intr_mask.attr,
	&dev_attr_in_read_index.attr,
	&dev_attr_in_write_index.attr,
	&dev_attr_in_read_bytes_avail.attr,
	&dev_attr_in_write_bytes_avail.attr,
627
	&dev_attr_channel_vp_mapping.attr,
628 629
	&dev_attr_vendor.attr,
	&dev_attr_device.attr,
630
	&dev_attr_driver_override.attr,
631 632
	NULL,
};
633
ATTRIBUTE_GROUPS(vmbus_dev);
634

635 636 637 638 639 640
/*
 * vmbus_uevent - add uevent for our device
 *
 * This routine is invoked when a device is added or removed on the vmbus to
 * generate a uevent to udev in the userspace. The udev will then look at its
 * rule and the uevent generated here to load the appropriate driver
641 642 643 644
 *
 * The alias string will be of the form vmbus:guid where guid is the string
 * representation of the device guid (each byte of the guid will be
 * represented with two hex characters.
645 646 647 648
 */
static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
{
	struct hv_device *dev = device_to_hv_device(device);
649 650
	int ret;
	char alias_name[VMBUS_ALIAS_LEN + 1];
651

652
	print_alias_name(dev, alias_name);
653 654
	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
	return ret;
655 656
}

657
static const struct hv_vmbus_device_id *
658
hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
659 660 661 662
{
	if (id == NULL)
		return NULL; /* empty device table */

663 664
	for (; !guid_is_null(&id->guid); id++)
		if (guid_equal(&id->guid, guid))
665 666 667 668 669 670
			return id;

	return NULL;
}

static const struct hv_vmbus_device_id *
671
hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
672
{
673 674 675 676 677
	const struct hv_vmbus_device_id *id = NULL;
	struct vmbus_dynid *dynid;

	spin_lock(&drv->dynids.lock);
	list_for_each_entry(dynid, &drv->dynids.list, node) {
678
		if (guid_equal(&dynid->id.guid, guid)) {
679 680 681 682 683 684
			id = &dynid->id;
			break;
		}
	}
	spin_unlock(&drv->dynids.lock);

685 686
	return id;
}
687

688
static const struct hv_vmbus_device_id vmbus_device_null;
689

690 691 692 693 694 695 696
/*
 * Return a matching hv_vmbus_device_id pointer.
 * If there is no match, return NULL.
 */
static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
							struct hv_device *dev)
{
697
	const guid_t *guid = &dev->dev_type;
698
	const struct hv_vmbus_device_id *id;
699

700 701 702 703 704 705 706 707 708 709 710 711 712 713
	/* When driver_override is set, only bind to the matching driver */
	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
		return NULL;

	/* Look at the dynamic ids first, before the static ones */
	id = hv_vmbus_dynid_match(drv, guid);
	if (!id)
		id = hv_vmbus_dev_match(drv->id_table, guid);

	/* driver_override will always match, send a dummy id */
	if (!id && dev->driver_override)
		id = &vmbus_device_null;

	return id;
714 715
}

716
/* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
717
static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
{
	struct vmbus_dynid *dynid;

	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
	if (!dynid)
		return -ENOMEM;

	dynid->id.guid = *guid;

	spin_lock(&drv->dynids.lock);
	list_add_tail(&dynid->node, &drv->dynids.list);
	spin_unlock(&drv->dynids.lock);

	return driver_attach(&drv->driver);
}

static void vmbus_free_dynids(struct hv_driver *drv)
{
	struct vmbus_dynid *dynid, *n;

	spin_lock(&drv->dynids.lock);
	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
		list_del(&dynid->node);
		kfree(dynid);
	}
	spin_unlock(&drv->dynids.lock);
}

/*
 * store_new_id - sysfs frontend to vmbus_add_dynid()
 *
 * Allow GUIDs to be added to an existing driver via sysfs.
 */
static ssize_t new_id_store(struct device_driver *driver, const char *buf,
			    size_t count)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
755
	guid_t guid;
756 757
	ssize_t retval;

758
	retval = guid_parse(buf, &guid);
759 760
	if (retval)
		return retval;
761

762
	if (hv_vmbus_dynid_match(drv, &guid))
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
		return -EEXIST;

	retval = vmbus_add_dynid(drv, &guid);
	if (retval)
		return retval;
	return count;
}
static DRIVER_ATTR_WO(new_id);

/*
 * store_remove_id - remove a PCI device ID from this driver
 *
 * Removes a dynamic pci device ID to this driver.
 */
static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
			       size_t count)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
	struct vmbus_dynid *dynid, *n;
782
	guid_t guid;
783
	ssize_t retval;
784

785
	retval = guid_parse(buf, &guid);
786 787
	if (retval)
		return retval;
788

789
	retval = -ENODEV;
790 791 792 793
	spin_lock(&drv->dynids.lock);
	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
		struct hv_vmbus_device_id *id = &dynid->id;

794
		if (guid_equal(&id->guid, &guid)) {
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
			list_del(&dynid->node);
			kfree(dynid);
			retval = count;
			break;
		}
	}
	spin_unlock(&drv->dynids.lock);

	return retval;
}
static DRIVER_ATTR_WO(remove_id);

static struct attribute *vmbus_drv_attrs[] = {
	&driver_attr_new_id.attr,
	&driver_attr_remove_id.attr,
	NULL,
};
ATTRIBUTE_GROUPS(vmbus_drv);
813

814 815 816 817 818 819 820

/*
 * vmbus_match - Attempt to match the specified device to the specified driver
 */
static int vmbus_match(struct device *device, struct device_driver *driver)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
821
	struct hv_device *hv_dev = device_to_hv_device(device);
822

823 824 825 826
	/* The hv_sock driver handles all hv_sock offers. */
	if (is_hvsock_channel(hv_dev->channel))
		return drv->hvsock;

827
	if (hv_vmbus_get_id(drv, hv_dev))
828
		return 1;
829

830
	return 0;
831 832
}

833 834 835 836 837 838 839 840
/*
 * vmbus_probe - Add the new vmbus's child device
 */
static int vmbus_probe(struct device *child_device)
{
	int ret = 0;
	struct hv_driver *drv =
			drv_to_hv_drv(child_device->driver);
841
	struct hv_device *dev = device_to_hv_device(child_device);
842
	const struct hv_vmbus_device_id *dev_id;
843

844
	dev_id = hv_vmbus_get_id(drv, dev);
845
	if (drv->probe) {
846
		ret = drv->probe(dev, dev_id);
847
		if (ret != 0)
848 849
			pr_err("probe failed for device %s (%d)\n",
			       dev_name(child_device), ret);
850 851

	} else {
852 853
		pr_err("probe not set for driver %s\n",
		       dev_name(child_device));
854
		ret = -ENODEV;
855 856 857 858
	}
	return ret;
}

859 860 861 862 863
/*
 * vmbus_remove - Remove a vmbus device
 */
static int vmbus_remove(struct device *child_device)
{
864
	struct hv_driver *drv;
865
	struct hv_device *dev = device_to_hv_device(child_device);
866

867 868 869 870 871
	if (child_device->driver) {
		drv = drv_to_hv_drv(child_device->driver);
		if (drv->remove)
			drv->remove(dev);
	}
872 873 874 875

	return 0;
}

876 877 878 879 880 881 882

/*
 * vmbus_shutdown - Shutdown a vmbus device
 */
static void vmbus_shutdown(struct device *child_device)
{
	struct hv_driver *drv;
883
	struct hv_device *dev = device_to_hv_device(child_device);
884 885 886 887 888 889 890 891


	/* The device may not be attached yet */
	if (!child_device->driver)
		return;

	drv = drv_to_hv_drv(child_device->driver);

892 893
	if (drv->shutdown)
		drv->shutdown(dev);
894 895
}

896 897 898 899 900 901

/*
 * vmbus_device_release - Final callback release of the vmbus child device
 */
static void vmbus_device_release(struct device *device)
{
902
	struct hv_device *hv_dev = device_to_hv_device(device);
903
	struct vmbus_channel *channel = hv_dev->channel;
904

905
	mutex_lock(&vmbus_connection.channel_mutex);
906
	hv_process_channel_removal(channel);
907
	mutex_unlock(&vmbus_connection.channel_mutex);
908
	kfree(hv_dev);
909 910
}

911
/* The one and only one */
912 913 914 915 916 917 918
static struct bus_type  hv_bus = {
	.name =		"vmbus",
	.match =		vmbus_match,
	.shutdown =		vmbus_shutdown,
	.remove =		vmbus_remove,
	.probe =		vmbus_probe,
	.uevent =		vmbus_uevent,
919 920
	.dev_groups =		vmbus_dev_groups,
	.drv_groups =		vmbus_drv_groups,
921 922
};

923 924 925 926 927 928 929 930 931
struct onmessage_work_context {
	struct work_struct work;
	struct hv_message msg;
};

static void vmbus_onmessage_work(struct work_struct *work)
{
	struct onmessage_work_context *ctx;

932 933 934 935
	/* Do not process messages if we're in DISCONNECTED state */
	if (vmbus_connection.conn_state == DISCONNECTED)
		return;

936 937 938 939 940 941
	ctx = container_of(work, struct onmessage_work_context,
			   work);
	vmbus_onmessage(&ctx->msg);
	kfree(ctx);
}

942 943
static void hv_process_timer_expiration(struct hv_message *msg,
					struct hv_per_cpu_context *hv_cpu)
944
{
945
	struct clock_event_device *dev = hv_cpu->clk_evt;
946 947 948 949

	if (dev->event_handler)
		dev->event_handler(dev);

950
	vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
951 952
}

953
void vmbus_on_msg_dpc(unsigned long data)
G
Greg Kroah-Hartman 已提交
954
{
955 956
	struct hv_per_cpu_context *hv_cpu = (void *)data;
	void *page_addr = hv_cpu->synic_message_page;
G
Greg Kroah-Hartman 已提交
957 958
	struct hv_message *msg = (struct hv_message *)page_addr +
				  VMBUS_MESSAGE_SINT;
959
	struct vmbus_channel_message_header *hdr;
960
	const struct vmbus_channel_message_table_entry *entry;
961
	struct onmessage_work_context *ctx;
962
	u32 message_type = msg->header.message_type;
G
Greg Kroah-Hartman 已提交
963

964
	if (message_type == HVMSG_NONE)
965 966
		/* no msg */
		return;
967

968
	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
969

970 971
	trace_vmbus_on_msg_dpc(hdr);

972 973 974 975
	if (hdr->msgtype >= CHANNELMSG_COUNT) {
		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
		goto msg_handled;
	}
976

977 978 979 980 981
	entry = &channel_message_table[hdr->msgtype];
	if (entry->handler_type	== VMHT_BLOCKING) {
		ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
		if (ctx == NULL)
			return;
982

983 984
		INIT_WORK(&ctx->work, vmbus_onmessage_work);
		memcpy(&ctx->msg, msg, sizeof(*msg));
985

986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
		/*
		 * The host can generate a rescind message while we
		 * may still be handling the original offer. We deal with
		 * this condition by ensuring the processing is done on the
		 * same CPU.
		 */
		switch (hdr->msgtype) {
		case CHANNELMSG_RESCIND_CHANNELOFFER:
			/*
			 * If we are handling the rescind message;
			 * schedule the work on the global work queue.
			 */
			schedule_work_on(vmbus_connection.connect_cpu,
					 &ctx->work);
			break;

		case CHANNELMSG_OFFERCHANNEL:
			atomic_inc(&vmbus_connection.offer_in_progress);
			queue_work_on(vmbus_connection.connect_cpu,
				      vmbus_connection.work_queue,
				      &ctx->work);
			break;

		default:
			queue_work(vmbus_connection.work_queue, &ctx->work);
		}
1012 1013
	} else
		entry->message_handler(hdr);
G
Greg Kroah-Hartman 已提交
1014

1015
msg_handled:
1016
	vmbus_signal_eom(msg, message_type);
G
Greg Kroah-Hartman 已提交
1017 1018
}

1019

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
/*
 * Direct callback for channels using other deferred processing
 */
static void vmbus_channel_isr(struct vmbus_channel *channel)
{
	void (*callback_fn)(void *);

	callback_fn = READ_ONCE(channel->onchannel_callback);
	if (likely(callback_fn != NULL))
		(*callback_fn)(channel->channel_callback_context);
}

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
/*
 * Schedule all channels with events pending
 */
static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
{
	unsigned long *recv_int_page;
	u32 maxbits, relid;

	if (vmbus_proto_version < VERSION_WIN8) {
		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
		recv_int_page = vmbus_connection.recv_int_page;
	} else {
		/*
		 * When the host is win8 and beyond, the event page
		 * can be directly checked to get the id of the channel
		 * that has the interrupt pending.
		 */
		void *page_addr = hv_cpu->synic_event_page;
		union hv_synic_event_flags *event
			= (union hv_synic_event_flags *)page_addr +
						 VMBUS_MESSAGE_SINT;

		maxbits = HV_EVENT_FLAGS_COUNT;
		recv_int_page = event->flags;
	}

	if (unlikely(!recv_int_page))
		return;

	for_each_set_bit(relid, recv_int_page, maxbits) {
		struct vmbus_channel *channel;

		if (!sync_test_and_clear_bit(relid, recv_int_page))
			continue;

		/* Special case - vmbus channel protocol msg */
		if (relid == 0)
			continue;

1071 1072
		rcu_read_lock();

1073
		/* Find channel based on relid */
1074
		list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
1075 1076 1077
			if (channel->offermsg.child_relid != relid)
				continue;

1078 1079 1080
			if (channel->rescind)
				continue;

V
Vitaly Kuznetsov 已提交
1081 1082
			trace_vmbus_chan_sched(channel);

1083 1084
			++channel->interrupts;

1085 1086 1087
			switch (channel->callback_mode) {
			case HV_CALL_ISR:
				vmbus_channel_isr(channel);
1088
				break;
1089 1090 1091 1092 1093 1094

			case HV_CALL_BATCHED:
				hv_begin_read(&channel->inbound);
				/* fallthrough */
			case HV_CALL_DIRECT:
				tasklet_schedule(&channel->callback_event);
1095 1096
			}
		}
1097 1098

		rcu_read_unlock();
1099 1100 1101
	}
}

1102
static void vmbus_isr(void)
G
Greg Kroah-Hartman 已提交
1103
{
1104 1105 1106
	struct hv_per_cpu_context *hv_cpu
		= this_cpu_ptr(hv_context.cpu_context);
	void *page_addr = hv_cpu->synic_event_page;
G
Greg Kroah-Hartman 已提交
1107 1108
	struct hv_message *msg;
	union hv_synic_event_flags *event;
1109
	bool handled = false;
G
Greg Kroah-Hartman 已提交
1110

1111
	if (unlikely(page_addr == NULL))
1112
		return;
1113 1114 1115

	event = (union hv_synic_event_flags *)page_addr +
					 VMBUS_MESSAGE_SINT;
1116 1117 1118 1119 1120
	/*
	 * Check for events before checking for messages. This is the order
	 * in which events and messages are checked in Windows guests on
	 * Hyper-V, and the Windows team suggested we do the same.
	 */
G
Greg Kroah-Hartman 已提交
1121

1122 1123
	if ((vmbus_proto_version == VERSION_WS2008) ||
		(vmbus_proto_version == VERSION_WIN7)) {
G
Greg Kroah-Hartman 已提交
1124

1125
		/* Since we are a child, we only need to check bit 0 */
1126
		if (sync_test_and_clear_bit(0, event->flags))
1127 1128 1129 1130 1131 1132 1133 1134
			handled = true;
	} else {
		/*
		 * Our host is win8 or above. The signaling mechanism
		 * has changed and we can directly look at the event page.
		 * If bit n is set then we have an interrup on the channel
		 * whose id is n.
		 */
1135 1136
		handled = true;
	}
1137

1138
	if (handled)
1139
		vmbus_chan_sched(hv_cpu);
1140

1141
	page_addr = hv_cpu->synic_message_page;
1142 1143 1144
	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;

	/* Check if there are actual msgs to be processed */
1145 1146
	if (msg->header.message_type != HVMSG_NONE) {
		if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
1147
			hv_process_timer_expiration(msg, hv_cpu);
1148
		else
1149
			tasklet_schedule(&hv_cpu->msg_dpc);
1150
	}
1151 1152

	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1153 1154
}

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
/*
 * Boolean to control whether to report panic messages over Hyper-V.
 *
 * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
 */
static int sysctl_record_panic_msg = 1;

/*
 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
 * buffer and call into Hyper-V to transfer the data.
 */
static void hv_kmsg_dump(struct kmsg_dumper *dumper,
			 enum kmsg_dump_reason reason)
{
	size_t bytes_written;
	phys_addr_t panic_pa;

	/* We are only interested in panics. */
	if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
		return;

	panic_pa = virt_to_phys(hv_panic_page);

	/*
	 * Write dump contents to the page. No need to synchronize; panic should
	 * be single-threaded.
	 */
1182 1183 1184 1185
	kmsg_dump_get_buffer(dumper, true, hv_panic_page, PAGE_SIZE,
			     &bytes_written);
	if (bytes_written)
		hyperv_report_panic_msg(panic_pa, bytes_written);
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
}

static struct kmsg_dumper hv_kmsg_dumper = {
	.dump = hv_kmsg_dump,
};

static struct ctl_table_header *hv_ctl_table_hdr;
static int zero;
static int one = 1;

/*
 * sysctl option to allow the user to control whether kmsg data should be
 * reported to Hyper-V on panic.
 */
static struct ctl_table hv_ctl_table[] = {
	{
		.procname       = "hyperv_record_panic_msg",
		.data           = &sysctl_record_panic_msg,
		.maxlen         = sizeof(int),
		.mode           = 0644,
		.proc_handler   = proc_dointvec_minmax,
		.extra1		= &zero,
		.extra2		= &one
	},
	{}
};

static struct ctl_table hv_root_table[] = {
	{
		.procname	= "kernel",
		.mode		= 0555,
		.child		= hv_ctl_table
	},
	{}
};
1221

1222
/*
1223 1224 1225
 * vmbus_bus_init -Main vmbus driver initialization routine.
 *
 * Here, we
1226 1227 1228
 *	- initialize the vmbus driver context
 *	- invoke the vmbus hv main init routine
 *	- retrieve the channel offers
1229
 */
1230
static int vmbus_bus_init(void)
1231
{
1232
	int ret;
1233

1234 1235
	/* Hypervisor initialization...setup hypercall page..etc */
	ret = hv_init();
1236
	if (ret != 0) {
1237
		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1238
		return ret;
1239 1240
	}

1241
	ret = bus_register(&hv_bus);
1242
	if (ret)
1243
		return ret;
1244

1245
	hv_setup_vmbus_irq(vmbus_isr);
1246

1247 1248 1249
	ret = hv_synic_alloc();
	if (ret)
		goto err_alloc;
1250
	/*
1251
	 * Initialize the per-cpu interrupt state and
1252 1253
	 * connect to the host.
	 */
1254
	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1255 1256 1257 1258 1259
				hv_synic_init, hv_synic_cleanup);
	if (ret < 0)
		goto err_alloc;
	hyperv_cpuhp_online = ret;

1260
	ret = vmbus_connect();
1261
	if (ret)
1262
		goto err_connect;
1263

1264 1265 1266
	/*
	 * Only register if the crash MSRs are available
	 */
1267
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
		u64 hyperv_crash_ctl;
		/*
		 * Sysctl registration is not fatal, since by default
		 * reporting is enabled.
		 */
		hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
		if (!hv_ctl_table_hdr)
			pr_err("Hyper-V: sysctl table register error");

		/*
		 * Register for panic kmsg callback only if the right
		 * capability is supported by the hypervisor.
		 */
1281
		hv_get_crash_ctl(hyperv_crash_ctl);
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
		if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) {
			hv_panic_page = (void *)get_zeroed_page(GFP_KERNEL);
			if (hv_panic_page) {
				ret = kmsg_dump_register(&hv_kmsg_dumper);
				if (ret)
					pr_err("Hyper-V: kmsg dump register "
						"error 0x%x\n", ret);
			} else
				pr_err("Hyper-V: panic message page memory "
					"allocation failed");
		}

1294
		register_die_notifier(&hyperv_die_block);
1295 1296 1297 1298
		atomic_notifier_chain_register(&panic_notifier_list,
					       &hyperv_panic_block);
	}

1299
	vmbus_request_offers();
1300

1301
	return 0;
1302

1303
err_connect:
1304
	cpuhp_remove_state(hyperv_cpuhp_online);
1305 1306
err_alloc:
	hv_synic_free();
1307
	hv_remove_vmbus_irq();
1308 1309

	bus_unregister(&hv_bus);
1310
	free_page((unsigned long)hv_panic_page);
1311 1312
	unregister_sysctl_table(hv_ctl_table_hdr);
	hv_ctl_table_hdr = NULL;
1313
	return ret;
1314 1315
}

1316
/**
1317 1318
 * __vmbus_child_driver_register() - Register a vmbus's driver
 * @hv_driver: Pointer to driver structure you want to register
1319 1320
 * @owner: owner module of the drv
 * @mod_name: module name string
1321 1322
 *
 * Registers the given driver with Linux through the 'driver_register()' call
1323
 * and sets up the hyper-v vmbus handling for this driver.
1324 1325
 * It will return the state of the 'driver_register()' call.
 *
1326
 */
1327
int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1328
{
1329
	int ret;
1330

1331
	pr_info("registering driver %s\n", hv_driver->name);
1332

1333 1334 1335 1336
	ret = vmbus_exists();
	if (ret < 0)
		return ret;

1337 1338 1339 1340
	hv_driver->driver.name = hv_driver->name;
	hv_driver->driver.owner = owner;
	hv_driver->driver.mod_name = mod_name;
	hv_driver->driver.bus = &hv_bus;
1341

1342 1343 1344
	spin_lock_init(&hv_driver->dynids.lock);
	INIT_LIST_HEAD(&hv_driver->dynids.list);

1345
	ret = driver_register(&hv_driver->driver);
1346

1347
	return ret;
1348
}
1349
EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1350

1351
/**
1352
 * vmbus_driver_unregister() - Unregister a vmbus's driver
1353 1354
 * @hv_driver: Pointer to driver structure you want to
 *             un-register
1355
 *
1356 1357
 * Un-register the given driver that was previous registered with a call to
 * vmbus_driver_register()
1358
 */
1359
void vmbus_driver_unregister(struct hv_driver *hv_driver)
1360
{
1361
	pr_info("unregistering driver %s\n", hv_driver->name);
1362

1363
	if (!vmbus_exists()) {
1364
		driver_unregister(&hv_driver->driver);
1365 1366
		vmbus_free_dynids(hv_driver);
	}
1367
}
1368
EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1369

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408

/*
 * Called when last reference to channel is gone.
 */
static void vmbus_chan_release(struct kobject *kobj)
{
	struct vmbus_channel *channel
		= container_of(kobj, struct vmbus_channel, kobj);

	kfree_rcu(channel, rcu);
}

struct vmbus_chan_attribute {
	struct attribute attr;
	ssize_t (*show)(const struct vmbus_channel *chan, char *buf);
	ssize_t (*store)(struct vmbus_channel *chan,
			 const char *buf, size_t count);
};
#define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
	struct vmbus_chan_attribute chan_attr_##_name \
		= __ATTR(_name, _mode, _show, _store)
#define VMBUS_CHAN_ATTR_RW(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
#define VMBUS_CHAN_ATTR_RO(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
#define VMBUS_CHAN_ATTR_WO(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)

static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
				    struct attribute *attr, char *buf)
{
	const struct vmbus_chan_attribute *attribute
		= container_of(attr, struct vmbus_chan_attribute, attr);
	const struct vmbus_channel *chan
		= container_of(kobj, struct vmbus_channel, kobj);

	if (!attribute->show)
		return -EIO;

1409 1410 1411
	if (chan->state != CHANNEL_OPENED_STATE)
		return -EINVAL;

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
	return attribute->show(chan, buf);
}

static const struct sysfs_ops vmbus_chan_sysfs_ops = {
	.show = vmbus_chan_attr_show,
};

static ssize_t out_mask_show(const struct vmbus_channel *channel, char *buf)
{
	const struct hv_ring_buffer_info *rbi = &channel->outbound;

	return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
}
1425
static VMBUS_CHAN_ATTR_RO(out_mask);
1426 1427 1428 1429 1430 1431 1432

static ssize_t in_mask_show(const struct vmbus_channel *channel, char *buf)
{
	const struct hv_ring_buffer_info *rbi = &channel->inbound;

	return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
}
1433
static VMBUS_CHAN_ATTR_RO(in_mask);
1434 1435 1436 1437 1438 1439 1440

static ssize_t read_avail_show(const struct vmbus_channel *channel, char *buf)
{
	const struct hv_ring_buffer_info *rbi = &channel->inbound;

	return sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
}
1441
static VMBUS_CHAN_ATTR_RO(read_avail);
1442 1443 1444 1445 1446 1447 1448

static ssize_t write_avail_show(const struct vmbus_channel *channel, char *buf)
{
	const struct hv_ring_buffer_info *rbi = &channel->outbound;

	return sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
}
1449
static VMBUS_CHAN_ATTR_RO(write_avail);
1450 1451 1452 1453 1454

static ssize_t show_target_cpu(const struct vmbus_channel *channel, char *buf)
{
	return sprintf(buf, "%u\n", channel->target_cpu);
}
1455
static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1456 1457 1458 1459 1460 1461 1462 1463

static ssize_t channel_pending_show(const struct vmbus_channel *channel,
				    char *buf)
{
	return sprintf(buf, "%d\n",
		       channel_pending(channel,
				       vmbus_connection.monitor_pages[1]));
}
1464
static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1465 1466 1467 1468 1469 1470 1471 1472

static ssize_t channel_latency_show(const struct vmbus_channel *channel,
				    char *buf)
{
	return sprintf(buf, "%d\n",
		       channel_latency(channel,
				       vmbus_connection.monitor_pages[1]));
}
1473
static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1474

1475 1476 1477 1478
static ssize_t channel_interrupts_show(const struct vmbus_channel *channel, char *buf)
{
	return sprintf(buf, "%llu\n", channel->interrupts);
}
1479
static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1480 1481 1482 1483 1484

static ssize_t channel_events_show(const struct vmbus_channel *channel, char *buf)
{
	return sprintf(buf, "%llu\n", channel->sig_events);
}
1485
static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1486

1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
static ssize_t subchannel_monitor_id_show(const struct vmbus_channel *channel,
					  char *buf)
{
	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
}
static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);

static ssize_t subchannel_id_show(const struct vmbus_channel *channel,
				  char *buf)
{
	return sprintf(buf, "%u\n",
		       channel->offermsg.offer.sub_channel_index);
}
static VMBUS_CHAN_ATTR_RO(subchannel_id);

1502 1503 1504 1505 1506 1507 1508 1509
static struct attribute *vmbus_chan_attrs[] = {
	&chan_attr_out_mask.attr,
	&chan_attr_in_mask.attr,
	&chan_attr_read_avail.attr,
	&chan_attr_write_avail.attr,
	&chan_attr_cpu.attr,
	&chan_attr_pending.attr,
	&chan_attr_latency.attr,
1510 1511
	&chan_attr_interrupts.attr,
	&chan_attr_events.attr,
1512 1513
	&chan_attr_monitor_id.attr,
	&chan_attr_subchannel_id.attr,
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
	NULL
};

static struct kobj_type vmbus_chan_ktype = {
	.sysfs_ops = &vmbus_chan_sysfs_ops,
	.release = vmbus_chan_release,
	.default_attrs = vmbus_chan_attrs,
};

/*
 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
 */
int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
{
	struct kobject *kobj = &channel->kobj;
	u32 relid = channel->offermsg.child_relid;
	int ret;

	kobj->kset = dev->channels_kset;
	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
				   "%u", relid);
	if (ret)
		return ret;

	kobject_uevent(kobj, KOBJ_ADD);

	return 0;
}

1543
/*
1544
 * vmbus_device_create - Creates and registers a new child device
1545
 * on the vmbus.
1546
 */
1547 1548
struct hv_device *vmbus_device_create(const guid_t *type,
				      const guid_t *instance,
S
stephen hemminger 已提交
1549
				      struct vmbus_channel *channel)
1550
{
1551
	struct hv_device *child_device_obj;
1552

1553 1554
	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
	if (!child_device_obj) {
1555
		pr_err("Unable to allocate device object for child device\n");
1556 1557 1558
		return NULL;
	}

1559
	child_device_obj->channel = channel;
1560 1561
	guid_copy(&child_device_obj->dev_type, type);
	guid_copy(&child_device_obj->dev_instance, instance);
1562
	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1563 1564 1565 1566

	return child_device_obj;
}

1567
/*
1568
 * vmbus_device_register - Register the child device
1569
 */
1570
int vmbus_device_register(struct hv_device *child_device_obj)
1571
{
1572 1573
	struct kobject *kobj = &child_device_obj->device.kobj;
	int ret;
1574

1575
	dev_set_name(&child_device_obj->device, "%pUl",
1576
		     child_device_obj->channel->offermsg.offer.if_instance.b);
1577

1578
	child_device_obj->device.bus = &hv_bus;
1579
	child_device_obj->device.parent = &hv_acpi_dev->dev;
1580
	child_device_obj->device.release = vmbus_device_release;
1581

1582 1583 1584 1585
	/*
	 * Register with the LDM. This will kick off the driver/device
	 * binding...which will eventually call vmbus_match() and vmbus_probe()
	 */
1586
	ret = device_register(&child_device_obj->device);
1587
	if (ret) {
1588
		pr_err("Unable to register child device\n");
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
		return ret;
	}

	child_device_obj->channels_kset = kset_create_and_add("channels",
							      NULL, kobj);
	if (!child_device_obj->channels_kset) {
		ret = -ENOMEM;
		goto err_dev_unregister;
	}

	ret = vmbus_add_channel_kobj(child_device_obj,
				     child_device_obj->channel);
	if (ret) {
		pr_err("Unable to register primary channeln");
		goto err_kset_unregister;
	}

	return 0;

err_kset_unregister:
	kset_unregister(child_device_obj->channels_kset);
1610

1611 1612
err_dev_unregister:
	device_unregister(&child_device_obj->device);
1613 1614 1615
	return ret;
}

1616
/*
1617
 * vmbus_device_unregister - Remove the specified child device
1618
 * from the vmbus.
1619
 */
1620
void vmbus_device_unregister(struct hv_device *device_obj)
1621
{
1622 1623 1624
	pr_debug("child device %s unregistered\n",
		dev_name(&device_obj->device));

1625 1626
	kset_unregister(device_obj->channels_kset);

1627 1628 1629 1630
	/*
	 * Kick off the process of unregistering the device.
	 * This will call vmbus_remove() and eventually vmbus_device_release()
	 */
1631
	device_unregister(&device_obj->device);
1632 1633 1634
}


1635
/*
1636
 * VMBUS is an acpi enumerated device. Get the information we
1637
 * need from DSDT.
1638
 */
1639
#define VTPM_BASE_ADDRESS 0xfed40000
1640
static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1641
{
1642 1643 1644 1645 1646 1647
	resource_size_t start = 0;
	resource_size_t end = 0;
	struct resource *new_res;
	struct resource **old_res = &hyperv_mmio;
	struct resource **prev_res = NULL;

1648
	switch (res->type) {
1649 1650 1651 1652 1653 1654 1655 1656 1657

	/*
	 * "Address" descriptors are for bus windows. Ignore
	 * "memory" descriptors, which are for registers on
	 * devices.
	 */
	case ACPI_RESOURCE_TYPE_ADDRESS32:
		start = res->data.address32.address.minimum;
		end = res->data.address32.address.maximum;
G
Gerd Hoffmann 已提交
1658
		break;
1659

1660
	case ACPI_RESOURCE_TYPE_ADDRESS64:
1661 1662
		start = res->data.address64.address.minimum;
		end = res->data.address64.address.maximum;
G
Gerd Hoffmann 已提交
1663
		break;
1664 1665 1666 1667 1668

	default:
		/* Unused resource type */
		return AE_OK;

1669
	}
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
	/*
	 * Ignore ranges that are below 1MB, as they're not
	 * necessary or useful here.
	 */
	if (end < 0x100000)
		return AE_OK;

	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
	if (!new_res)
		return AE_NO_MEMORY;

	/* If this range overlaps the virtual TPM, truncate it. */
	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
		end = VTPM_BASE_ADDRESS;

	new_res->name = "hyperv mmio";
	new_res->flags = IORESOURCE_MEM;
	new_res->start = start;
	new_res->end = end;

1690 1691 1692
	/*
	 * If two ranges are adjacent, merge them.
	 */
1693 1694 1695 1696 1697 1698
	do {
		if (!*old_res) {
			*old_res = new_res;
			break;
		}

1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
		if (((*old_res)->end + 1) == new_res->start) {
			(*old_res)->end = new_res->end;
			kfree(new_res);
			break;
		}

		if ((*old_res)->start == new_res->end + 1) {
			(*old_res)->start = new_res->start;
			kfree(new_res);
			break;
		}

1711
		if ((*old_res)->start > new_res->end) {
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
			new_res->sibling = *old_res;
			if (prev_res)
				(*prev_res)->sibling = new_res;
			*old_res = new_res;
			break;
		}

		prev_res = old_res;
		old_res = &(*old_res)->sibling;

	} while (1);
1723 1724 1725 1726

	return AE_OK;
}

1727 1728 1729 1730 1731 1732
static int vmbus_acpi_remove(struct acpi_device *device)
{
	struct resource *cur_res;
	struct resource *next_res;

	if (hyperv_mmio) {
1733 1734 1735 1736 1737 1738
		if (fb_mmio) {
			__release_region(hyperv_mmio, fb_mmio->start,
					 resource_size(fb_mmio));
			fb_mmio = NULL;
		}

1739 1740 1741 1742 1743 1744 1745 1746 1747
		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
			next_res = cur_res->sibling;
			kfree(cur_res);
		}
	}

	return 0;
}

1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
static void vmbus_reserve_fb(void)
{
	int size;
	/*
	 * Make a claim for the frame buffer in the resource tree under the
	 * first node, which will be the one below 4GB.  The length seems to
	 * be underreported, particularly in a Generation 1 VM.  So start out
	 * reserving a larger area and make it smaller until it succeeds.
	 */

	if (screen_info.lfb_base) {
		if (efi_enabled(EFI_BOOT))
			size = max_t(__u32, screen_info.lfb_size, 0x800000);
		else
			size = max_t(__u32, screen_info.lfb_size, 0x4000000);

		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
			fb_mmio = __request_region(hyperv_mmio,
						   screen_info.lfb_base, size,
						   fb_mmio_name, 0);
		}
	}
}

1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
/**
 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
 * @new:		If successful, supplied a pointer to the
 *			allocated MMIO space.
 * @device_obj:		Identifies the caller
 * @min:		Minimum guest physical address of the
 *			allocation
 * @max:		Maximum guest physical address
 * @size:		Size of the range to be allocated
 * @align:		Alignment of the range to be allocated
 * @fb_overlap_ok:	Whether this allocation can be allowed
 *			to overlap the video frame buffer.
 *
 * This function walks the resources granted to VMBus by the
 * _CRS object in the ACPI namespace underneath the parent
 * "bridge" whether that's a root PCI bus in the Generation 1
 * case or a Module Device in the Generation 2 case.  It then
 * attempts to allocate from the global MMIO pool in a way that
 * matches the constraints supplied in these parameters and by
 * that _CRS.
 *
 * Return: 0 on success, -errno on failure
 */
int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
			resource_size_t min, resource_size_t max,
			resource_size_t size, resource_size_t align,
			bool fb_overlap_ok)
{
1800
	struct resource *iter, *shadow;
1801
	resource_size_t range_min, range_max, start;
1802
	const char *dev_n = dev_name(&device_obj->device);
1803
	int retval;
1804 1805 1806

	retval = -ENXIO;
	down(&hyperv_mmio_lock);
1807

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
	/*
	 * If overlaps with frame buffers are allowed, then first attempt to
	 * make the allocation from within the reserved region.  Because it
	 * is already reserved, no shadow allocation is necessary.
	 */
	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
	    !(max < fb_mmio->start)) {

		range_min = fb_mmio->start;
		range_max = fb_mmio->end;
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				retval = 0;
				goto exit;
			}
		}
	}

1828 1829 1830 1831 1832 1833
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= max) || (iter->end <= min))
			continue;

		range_min = iter->start;
		range_max = iter->end;
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			shadow = __request_region(iter, start, size, NULL,
						  IORESOURCE_BUSY);
			if (!shadow)
				continue;

			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				shadow->name = (char *)*new;
				retval = 0;
				goto exit;
1846 1847
			}

1848
			__release_region(iter, start, size);
1849 1850 1851
		}
	}

1852 1853 1854
exit:
	up(&hyperv_mmio_lock);
	return retval;
1855 1856 1857
}
EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);

1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
/**
 * vmbus_free_mmio() - Free a memory-mapped I/O range.
 * @start:		Base address of region to release.
 * @size:		Size of the range to be allocated
 *
 * This function releases anything requested by
 * vmbus_mmio_allocate().
 */
void vmbus_free_mmio(resource_size_t start, resource_size_t size)
{
1868 1869 1870 1871 1872 1873 1874 1875 1876
	struct resource *iter;

	down(&hyperv_mmio_lock);
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= start + size) || (iter->end <= start))
			continue;

		__release_region(iter, start, size);
	}
1877
	release_mem_region(start, size);
1878
	up(&hyperv_mmio_lock);
1879 1880 1881 1882

}
EXPORT_SYMBOL_GPL(vmbus_free_mmio);

1883 1884 1885
static int vmbus_acpi_add(struct acpi_device *device)
{
	acpi_status result;
1886
	int ret_val = -ENODEV;
1887
	struct acpi_device *ancestor;
1888

1889 1890
	hv_acpi_dev = device;

1891
	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1892
					vmbus_walk_resources, NULL);
1893

1894 1895 1896
	if (ACPI_FAILURE(result))
		goto acpi_walk_err;
	/*
1897 1898
	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
	 * firmware) is the VMOD that has the mmio ranges. Get that.
1899
	 */
1900 1901 1902
	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
					     vmbus_walk_resources, NULL);
1903 1904

		if (ACPI_FAILURE(result))
1905
			continue;
1906 1907
		if (hyperv_mmio) {
			vmbus_reserve_fb();
1908
			break;
1909
		}
1910
	}
1911 1912 1913
	ret_val = 0;

acpi_walk_err:
1914
	complete(&probe_event);
1915 1916
	if (ret_val)
		vmbus_acpi_remove(device);
1917
	return ret_val;
1918 1919 1920 1921
}

static const struct acpi_device_id vmbus_acpi_device_ids[] = {
	{"VMBUS", 0},
1922
	{"VMBus", 0},
1923 1924 1925 1926 1927 1928 1929 1930 1931
	{"", 0},
};
MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);

static struct acpi_driver vmbus_acpi_driver = {
	.name = "vmbus",
	.ids = vmbus_acpi_device_ids,
	.ops = {
		.add = vmbus_acpi_add,
1932
		.remove = vmbus_acpi_remove,
1933 1934 1935
	},
};

1936 1937 1938
static void hv_kexec_handler(void)
{
	hv_synic_clockevents_cleanup();
1939
	vmbus_initiate_unload(false);
1940 1941 1942
	vmbus_connection.conn_state = DISCONNECTED;
	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
	mb();
1943
	cpuhp_remove_state(hyperv_cpuhp_online);
1944
	hyperv_cleanup();
1945 1946
};

1947 1948
static void hv_crash_handler(struct pt_regs *regs)
{
1949
	vmbus_initiate_unload(true);
1950 1951 1952 1953 1954
	/*
	 * In crash handler we can't schedule synic cleanup for all CPUs,
	 * doing the cleanup for current CPU only. This should be sufficient
	 * for kdump.
	 */
1955
	vmbus_connection.conn_state = DISCONNECTED;
1956
	hv_synic_cleanup(smp_processor_id());
1957
	hyperv_cleanup();
1958 1959
};

1960
static int __init hv_acpi_init(void)
1961
{
1962
	int ret, t;
1963

1964
	if (!hv_is_hyperv_initialized())
1965 1966
		return -ENODEV;

1967 1968 1969
	init_completion(&probe_event);

	/*
1970
	 * Get ACPI resources first.
1971
	 */
1972 1973
	ret = acpi_bus_register_driver(&vmbus_acpi_driver);

1974 1975 1976
	if (ret)
		return ret;

1977 1978 1979 1980 1981
	t = wait_for_completion_timeout(&probe_event, 5*HZ);
	if (t == 0) {
		ret = -ETIMEDOUT;
		goto cleanup;
	}
1982

1983
	ret = vmbus_bus_init();
1984
	if (ret)
1985 1986
		goto cleanup;

1987
	hv_setup_kexec_handler(hv_kexec_handler);
1988
	hv_setup_crash_handler(hv_crash_handler);
1989

1990 1991 1992 1993
	return 0;

cleanup:
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1994
	hv_acpi_dev = NULL;
1995
	return ret;
1996 1997
}

1998 1999
static void __exit vmbus_exit(void)
{
2000 2001
	int cpu;

2002
	hv_remove_kexec_handler();
2003
	hv_remove_crash_handler();
2004
	vmbus_connection.conn_state = DISCONNECTED;
2005
	hv_synic_clockevents_cleanup();
2006
	vmbus_disconnect();
2007
	hv_remove_vmbus_irq();
2008 2009 2010 2011 2012 2013
	for_each_online_cpu(cpu) {
		struct hv_per_cpu_context *hv_cpu
			= per_cpu_ptr(hv_context.cpu_context, cpu);

		tasklet_kill(&hv_cpu->msg_dpc);
	}
2014
	vmbus_free_channels();
2015

2016
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
2017
		kmsg_dump_unregister(&hv_kmsg_dumper);
2018
		unregister_die_notifier(&hyperv_die_block);
2019 2020 2021
		atomic_notifier_chain_unregister(&panic_notifier_list,
						 &hyperv_panic_block);
	}
2022 2023

	free_page((unsigned long)hv_panic_page);
2024 2025
	unregister_sysctl_table(hv_ctl_table_hdr);
	hv_ctl_table_hdr = NULL;
2026
	bus_unregister(&hv_bus);
2027

2028
	cpuhp_remove_state(hyperv_cpuhp_online);
2029
	hv_synic_free();
2030 2031 2032
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
}

2033

2034
MODULE_LICENSE("GPL");
2035

2036
subsys_initcall(hv_acpi_init);
2037
module_exit(vmbus_exit);