vmbus_drv.c 62.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7
/*
 * Copyright (c) 2009, Microsoft Corporation.
 *
 * Authors:
 *   Haiyang Zhang <haiyangz@microsoft.com>
 *   Hank Janssen  <hjanssen@microsoft.com>
8
 *   K. Y. Srinivasan <kys@microsoft.com>
9
 */
10 11
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

12 13 14 15 16
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/sysctl.h>
17
#include <linux/slab.h>
18
#include <linux/acpi.h>
19
#include <linux/completion.h>
20
#include <linux/hyperv.h>
21
#include <linux/kernel_stat.h>
22
#include <linux/clockchips.h>
23
#include <linux/cpu.h>
24 25
#include <linux/sched/task_stack.h>

26
#include <asm/mshyperv.h>
27
#include <linux/delay.h>
28 29
#include <linux/notifier.h>
#include <linux/ptrace.h>
30
#include <linux/screen_info.h>
31
#include <linux/kdebug.h>
32
#include <linux/efi.h>
33
#include <linux/random.h>
34
#include <linux/kernel.h>
35
#include <linux/syscore_ops.h>
36
#include <clocksource/hyperv_timer.h>
37
#include "hyperv_vmbus.h"
38

39 40 41 42 43
struct vmbus_dynid {
	struct list_head node;
	struct hv_vmbus_device_id id;
};

44
static struct acpi_device  *hv_acpi_dev;
45

46
static struct completion probe_event;
47

48
static int hyperv_cpuhp_online;
49

50 51
static void *hv_panic_page;

52 53 54 55 56 57 58 59 60 61 62 63
/*
 * Boolean to control whether to report panic messages over Hyper-V.
 *
 * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
 */
static int sysctl_record_panic_msg = 1;

static int hyperv_report_reg(void)
{
	return !sysctl_record_panic_msg || !hv_panic_page;
}

64 65 66 67 68
static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
			      void *args)
{
	struct pt_regs *regs;

69
	vmbus_initiate_unload(true);
70

71 72 73 74 75 76
	/*
	 * Hyper-V should be notified only once about a panic.  If we will be
	 * doing hyperv_report_panic_msg() later with kmsg data, don't do
	 * the notification here.
	 */
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE
77
	    && hyperv_report_reg()) {
78
		regs = current_pt_regs();
79
		hyperv_report_panic(regs, val, false);
80
	}
81 82 83
	return NOTIFY_DONE;
}

84 85 86 87 88 89
static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
			    void *args)
{
	struct die_args *die = (struct die_args *)args;
	struct pt_regs *regs = die->regs;

90 91 92 93 94
	/*
	 * Hyper-V should be notified only once about a panic.  If we will be
	 * doing hyperv_report_panic_msg() later with kmsg data, don't do
	 * the notification here.
	 */
95
	if (hyperv_report_reg())
96
		hyperv_report_panic(regs, val, true);
97 98 99 100 101 102
	return NOTIFY_DONE;
}

static struct notifier_block hyperv_die_block = {
	.notifier_call = hyperv_die_event,
};
103 104 105 106
static struct notifier_block hyperv_panic_block = {
	.notifier_call = hyperv_panic_event,
};

107 108
static const char *fb_mmio_name = "fb_range";
static struct resource *fb_mmio;
109
static struct resource *hyperv_mmio;
110
static DEFINE_MUTEX(hyperv_mmio_lock);
111

112 113 114 115 116 117 118 119
static int vmbus_exists(void)
{
	if (hv_acpi_dev == NULL)
		return -ENODEV;

	return 0;
}

120 121 122 123 124 125 126 127
#define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
{
	int i;
	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
}

128
static u8 channel_monitor_group(const struct vmbus_channel *channel)
129 130 131 132
{
	return (u8)channel->offermsg.monitorid / 32;
}

133
static u8 channel_monitor_offset(const struct vmbus_channel *channel)
134 135 136 137
{
	return (u8)channel->offermsg.monitorid % 32;
}

138 139
static u32 channel_pending(const struct vmbus_channel *channel,
			   const struct hv_monitor_page *monitor_page)
140 141
{
	u8 monitor_group = channel_monitor_group(channel);
142

143 144 145
	return monitor_page->trigger_group[monitor_group].pending;
}

146 147
static u32 channel_latency(const struct vmbus_channel *channel,
			   const struct hv_monitor_page *monitor_page)
148 149 150
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
151

152 153 154
	return monitor_page->latency[monitor_group][monitor_offset];
}

155 156 157 158 159 160 161 162
static u32 channel_conn_id(struct vmbus_channel *channel,
			   struct hv_monitor_page *monitor_page)
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
}

163 164 165 166 167 168 169 170 171 172 173
static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
		       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
}
static DEVICE_ATTR_RO(id);

174 175 176 177 178 179 180 181 182 183 184
static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
			  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->state);
}
static DEVICE_ATTR_RO(state);

185 186 187 188 189 190 191 192 193 194 195
static ssize_t monitor_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
}
static DEVICE_ATTR_RO(monitor_id);

196 197 198 199 200 201 202 203 204 205 206 207
static ssize_t class_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_type.b);
}
static DEVICE_ATTR_RO(class_id);

208 209 210 211 212 213 214 215 216 217 218 219
static ssize_t device_id_show(struct device *dev,
			      struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_instance.b);
}
static DEVICE_ATTR_RO(device_id);

220 221 222 223 224 225 226 227 228 229 230
static ssize_t modalias_show(struct device *dev,
			     struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	char alias_name[VMBUS_ALIAS_LEN + 1];

	print_alias_name(hv_dev, alias_name);
	return sprintf(buf, "vmbus:%s\n", alias_name);
}
static DEVICE_ATTR_RO(modalias);

231 232 233 234 235 236 237 238 239 240 241 242 243 244
#ifdef CONFIG_NUMA
static ssize_t numa_node_show(struct device *dev,
			      struct device_attribute *attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;

	return sprintf(buf, "%d\n", hv_dev->channel->numa_node);
}
static DEVICE_ATTR_RO(numa_node);
#endif

245 246 247 248 249 250 251 252 253 254
static ssize_t server_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
255
				       vmbus_connection.monitor_pages[0]));
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
}
static DEVICE_ATTR_RO(server_monitor_pending);

static ssize_t client_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_pending);
272

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
static ssize_t server_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_latency);

static ssize_t client_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_latency);

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
static ssize_t server_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_conn_id);

static ssize_t client_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_conn_id);

329 330 331 332 333
static ssize_t out_intr_mask_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
334
	int ret;
335 336 337

	if (!hv_dev->channel)
		return -ENODEV;
338 339 340 341 342 343

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;

344 345 346 347 348 349 350 351 352
	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(out_intr_mask);

static ssize_t out_read_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
353
	int ret;
354 355 356

	if (!hv_dev->channel)
		return -ENODEV;
357 358 359 360 361

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
362 363 364 365 366 367 368 369 370 371
	return sprintf(buf, "%d\n", outbound.current_read_index);
}
static DEVICE_ATTR_RO(out_read_index);

static ssize_t out_write_index_show(struct device *dev,
				    struct device_attribute *dev_attr,
				    char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
372
	int ret;
373 374 375

	if (!hv_dev->channel)
		return -ENODEV;
376 377 378 379 380

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
381 382 383 384 385 386 387 388 389 390
	return sprintf(buf, "%d\n", outbound.current_write_index);
}
static DEVICE_ATTR_RO(out_write_index);

static ssize_t out_read_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
391
	int ret;
392 393 394

	if (!hv_dev->channel)
		return -ENODEV;
395 396 397 398 399

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
400 401 402 403 404 405 406 407 408 409
	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(out_read_bytes_avail);

static ssize_t out_write_bytes_avail_show(struct device *dev,
					  struct device_attribute *dev_attr,
					  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
410
	int ret;
411 412 413

	if (!hv_dev->channel)
		return -ENODEV;
414 415 416 417 418

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
419 420 421 422 423 424 425 426 427
	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(out_write_bytes_avail);

static ssize_t in_intr_mask_show(struct device *dev,
				 struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
428
	int ret;
429 430 431

	if (!hv_dev->channel)
		return -ENODEV;
432 433 434 435 436

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

437 438 439 440 441 442 443 444 445
	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(in_intr_mask);

static ssize_t in_read_index_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
446
	int ret;
447 448 449

	if (!hv_dev->channel)
		return -ENODEV;
450 451 452 453 454

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

455 456 457 458 459 460 461 462 463
	return sprintf(buf, "%d\n", inbound.current_read_index);
}
static DEVICE_ATTR_RO(in_read_index);

static ssize_t in_write_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
464
	int ret;
465 466 467

	if (!hv_dev->channel)
		return -ENODEV;
468 469 470 471 472

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

473 474 475 476 477 478 479 480 481 482
	return sprintf(buf, "%d\n", inbound.current_write_index);
}
static DEVICE_ATTR_RO(in_write_index);

static ssize_t in_read_bytes_avail_show(struct device *dev,
					struct device_attribute *dev_attr,
					char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
483
	int ret;
484 485 486

	if (!hv_dev->channel)
		return -ENODEV;
487 488 489 490 491

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

492 493 494 495 496 497 498 499 500 501
	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(in_read_bytes_avail);

static ssize_t in_write_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
502
	int ret;
503 504 505

	if (!hv_dev->channel)
		return -ENODEV;
506 507 508 509 510

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

511 512 513 514
	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(in_write_bytes_avail);

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
static ssize_t channel_vp_mapping_show(struct device *dev,
				       struct device_attribute *dev_attr,
				       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
	unsigned long flags;
	int buf_size = PAGE_SIZE, n_written, tot_written;
	struct list_head *cur;

	if (!channel)
		return -ENODEV;

	tot_written = snprintf(buf, buf_size, "%u:%u\n",
		channel->offermsg.child_relid, channel->target_cpu);

	spin_lock_irqsave(&channel->lock, flags);

	list_for_each(cur, &channel->sc_list) {
		if (tot_written >= buf_size - 1)
			break;

		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
		n_written = scnprintf(buf + tot_written,
				     buf_size - tot_written,
				     "%u:%u\n",
				     cur_sc->offermsg.child_relid,
				     cur_sc->target_cpu);
		tot_written += n_written;
	}

	spin_unlock_irqrestore(&channel->lock, flags);

	return tot_written;
}
static DEVICE_ATTR_RO(channel_vp_mapping);

552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
static ssize_t vendor_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
}
static DEVICE_ATTR_RO(vendor);

static ssize_t device_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->device_id);
}
static DEVICE_ATTR_RO(device);

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
static ssize_t driver_override_store(struct device *dev,
				     struct device_attribute *attr,
				     const char *buf, size_t count)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	char *driver_override, *old, *cp;

	/* We need to keep extra room for a newline */
	if (count >= (PAGE_SIZE - 1))
		return -EINVAL;

	driver_override = kstrndup(buf, count, GFP_KERNEL);
	if (!driver_override)
		return -ENOMEM;

	cp = strchr(driver_override, '\n');
	if (cp)
		*cp = '\0';

	device_lock(dev);
	old = hv_dev->driver_override;
	if (strlen(driver_override)) {
		hv_dev->driver_override = driver_override;
	} else {
		kfree(driver_override);
		hv_dev->driver_override = NULL;
	}
	device_unlock(dev);

	kfree(old);

	return count;
}

static ssize_t driver_override_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	ssize_t len;

	device_lock(dev);
	len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
	device_unlock(dev);

	return len;
}
static DEVICE_ATTR_RW(driver_override);

618
/* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
619
static struct attribute *vmbus_dev_attrs[] = {
620
	&dev_attr_id.attr,
621
	&dev_attr_state.attr,
622
	&dev_attr_monitor_id.attr,
623
	&dev_attr_class_id.attr,
624
	&dev_attr_device_id.attr,
625
	&dev_attr_modalias.attr,
626 627 628
#ifdef CONFIG_NUMA
	&dev_attr_numa_node.attr,
#endif
629 630
	&dev_attr_server_monitor_pending.attr,
	&dev_attr_client_monitor_pending.attr,
631 632
	&dev_attr_server_monitor_latency.attr,
	&dev_attr_client_monitor_latency.attr,
633 634
	&dev_attr_server_monitor_conn_id.attr,
	&dev_attr_client_monitor_conn_id.attr,
635 636 637 638 639 640 641 642 643 644
	&dev_attr_out_intr_mask.attr,
	&dev_attr_out_read_index.attr,
	&dev_attr_out_write_index.attr,
	&dev_attr_out_read_bytes_avail.attr,
	&dev_attr_out_write_bytes_avail.attr,
	&dev_attr_in_intr_mask.attr,
	&dev_attr_in_read_index.attr,
	&dev_attr_in_write_index.attr,
	&dev_attr_in_read_bytes_avail.attr,
	&dev_attr_in_write_bytes_avail.attr,
645
	&dev_attr_channel_vp_mapping.attr,
646 647
	&dev_attr_vendor.attr,
	&dev_attr_device.attr,
648
	&dev_attr_driver_override.attr,
649 650
	NULL,
};
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680

/*
 * Device-level attribute_group callback function. Returns the permission for
 * each attribute, and returns 0 if an attribute is not visible.
 */
static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
{
	struct device *dev = kobj_to_dev(kobj);
	const struct hv_device *hv_dev = device_to_hv_device(dev);

	/* Hide the monitor attributes if the monitor mechanism is not used. */
	if (!hv_dev->channel->offermsg.monitor_allocated &&
	    (attr == &dev_attr_monitor_id.attr ||
	     attr == &dev_attr_server_monitor_pending.attr ||
	     attr == &dev_attr_client_monitor_pending.attr ||
	     attr == &dev_attr_server_monitor_latency.attr ||
	     attr == &dev_attr_client_monitor_latency.attr ||
	     attr == &dev_attr_server_monitor_conn_id.attr ||
	     attr == &dev_attr_client_monitor_conn_id.attr))
		return 0;

	return attr->mode;
}

static const struct attribute_group vmbus_dev_group = {
	.attrs = vmbus_dev_attrs,
	.is_visible = vmbus_dev_attr_is_visible
};
__ATTRIBUTE_GROUPS(vmbus_dev);
681

682 683 684 685 686 687
/*
 * vmbus_uevent - add uevent for our device
 *
 * This routine is invoked when a device is added or removed on the vmbus to
 * generate a uevent to udev in the userspace. The udev will then look at its
 * rule and the uevent generated here to load the appropriate driver
688 689 690 691
 *
 * The alias string will be of the form vmbus:guid where guid is the string
 * representation of the device guid (each byte of the guid will be
 * represented with two hex characters.
692 693 694 695
 */
static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
{
	struct hv_device *dev = device_to_hv_device(device);
696 697
	int ret;
	char alias_name[VMBUS_ALIAS_LEN + 1];
698

699
	print_alias_name(dev, alias_name);
700 701
	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
	return ret;
702 703
}

704
static const struct hv_vmbus_device_id *
705
hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
706 707 708 709
{
	if (id == NULL)
		return NULL; /* empty device table */

710 711
	for (; !guid_is_null(&id->guid); id++)
		if (guid_equal(&id->guid, guid))
712 713 714 715 716 717
			return id;

	return NULL;
}

static const struct hv_vmbus_device_id *
718
hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
719
{
720 721 722 723 724
	const struct hv_vmbus_device_id *id = NULL;
	struct vmbus_dynid *dynid;

	spin_lock(&drv->dynids.lock);
	list_for_each_entry(dynid, &drv->dynids.list, node) {
725
		if (guid_equal(&dynid->id.guid, guid)) {
726 727 728 729 730 731
			id = &dynid->id;
			break;
		}
	}
	spin_unlock(&drv->dynids.lock);

732 733
	return id;
}
734

735
static const struct hv_vmbus_device_id vmbus_device_null;
736

737 738 739 740 741 742 743
/*
 * Return a matching hv_vmbus_device_id pointer.
 * If there is no match, return NULL.
 */
static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
							struct hv_device *dev)
{
744
	const guid_t *guid = &dev->dev_type;
745
	const struct hv_vmbus_device_id *id;
746

747 748 749 750 751 752 753 754 755 756 757 758 759 760
	/* When driver_override is set, only bind to the matching driver */
	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
		return NULL;

	/* Look at the dynamic ids first, before the static ones */
	id = hv_vmbus_dynid_match(drv, guid);
	if (!id)
		id = hv_vmbus_dev_match(drv->id_table, guid);

	/* driver_override will always match, send a dummy id */
	if (!id && dev->driver_override)
		id = &vmbus_device_null;

	return id;
761 762
}

763
/* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
764
static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
{
	struct vmbus_dynid *dynid;

	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
	if (!dynid)
		return -ENOMEM;

	dynid->id.guid = *guid;

	spin_lock(&drv->dynids.lock);
	list_add_tail(&dynid->node, &drv->dynids.list);
	spin_unlock(&drv->dynids.lock);

	return driver_attach(&drv->driver);
}

static void vmbus_free_dynids(struct hv_driver *drv)
{
	struct vmbus_dynid *dynid, *n;

	spin_lock(&drv->dynids.lock);
	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
		list_del(&dynid->node);
		kfree(dynid);
	}
	spin_unlock(&drv->dynids.lock);
}

/*
 * store_new_id - sysfs frontend to vmbus_add_dynid()
 *
 * Allow GUIDs to be added to an existing driver via sysfs.
 */
static ssize_t new_id_store(struct device_driver *driver, const char *buf,
			    size_t count)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
802
	guid_t guid;
803 804
	ssize_t retval;

805
	retval = guid_parse(buf, &guid);
806 807
	if (retval)
		return retval;
808

809
	if (hv_vmbus_dynid_match(drv, &guid))
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
		return -EEXIST;

	retval = vmbus_add_dynid(drv, &guid);
	if (retval)
		return retval;
	return count;
}
static DRIVER_ATTR_WO(new_id);

/*
 * store_remove_id - remove a PCI device ID from this driver
 *
 * Removes a dynamic pci device ID to this driver.
 */
static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
			       size_t count)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
	struct vmbus_dynid *dynid, *n;
829
	guid_t guid;
830
	ssize_t retval;
831

832
	retval = guid_parse(buf, &guid);
833 834
	if (retval)
		return retval;
835

836
	retval = -ENODEV;
837 838 839 840
	spin_lock(&drv->dynids.lock);
	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
		struct hv_vmbus_device_id *id = &dynid->id;

841
		if (guid_equal(&id->guid, &guid)) {
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
			list_del(&dynid->node);
			kfree(dynid);
			retval = count;
			break;
		}
	}
	spin_unlock(&drv->dynids.lock);

	return retval;
}
static DRIVER_ATTR_WO(remove_id);

static struct attribute *vmbus_drv_attrs[] = {
	&driver_attr_new_id.attr,
	&driver_attr_remove_id.attr,
	NULL,
};
ATTRIBUTE_GROUPS(vmbus_drv);
860

861 862 863 864 865 866 867

/*
 * vmbus_match - Attempt to match the specified device to the specified driver
 */
static int vmbus_match(struct device *device, struct device_driver *driver)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
868
	struct hv_device *hv_dev = device_to_hv_device(device);
869

870 871 872 873
	/* The hv_sock driver handles all hv_sock offers. */
	if (is_hvsock_channel(hv_dev->channel))
		return drv->hvsock;

874
	if (hv_vmbus_get_id(drv, hv_dev))
875
		return 1;
876

877
	return 0;
878 879
}

880 881 882 883 884 885 886 887
/*
 * vmbus_probe - Add the new vmbus's child device
 */
static int vmbus_probe(struct device *child_device)
{
	int ret = 0;
	struct hv_driver *drv =
			drv_to_hv_drv(child_device->driver);
888
	struct hv_device *dev = device_to_hv_device(child_device);
889
	const struct hv_vmbus_device_id *dev_id;
890

891
	dev_id = hv_vmbus_get_id(drv, dev);
892
	if (drv->probe) {
893
		ret = drv->probe(dev, dev_id);
894
		if (ret != 0)
895 896
			pr_err("probe failed for device %s (%d)\n",
			       dev_name(child_device), ret);
897 898

	} else {
899 900
		pr_err("probe not set for driver %s\n",
		       dev_name(child_device));
901
		ret = -ENODEV;
902 903 904 905
	}
	return ret;
}

906 907 908 909 910
/*
 * vmbus_remove - Remove a vmbus device
 */
static int vmbus_remove(struct device *child_device)
{
911
	struct hv_driver *drv;
912
	struct hv_device *dev = device_to_hv_device(child_device);
913

914 915 916 917 918
	if (child_device->driver) {
		drv = drv_to_hv_drv(child_device->driver);
		if (drv->remove)
			drv->remove(dev);
	}
919 920 921 922

	return 0;
}

923 924 925 926 927 928 929

/*
 * vmbus_shutdown - Shutdown a vmbus device
 */
static void vmbus_shutdown(struct device *child_device)
{
	struct hv_driver *drv;
930
	struct hv_device *dev = device_to_hv_device(child_device);
931 932 933 934 935 936 937 938


	/* The device may not be attached yet */
	if (!child_device->driver)
		return;

	drv = drv_to_hv_drv(child_device->driver);

939 940
	if (drv->shutdown)
		drv->shutdown(dev);
941 942
}

943
#ifdef CONFIG_PM_SLEEP
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
/*
 * vmbus_suspend - Suspend a vmbus device
 */
static int vmbus_suspend(struct device *child_device)
{
	struct hv_driver *drv;
	struct hv_device *dev = device_to_hv_device(child_device);

	/* The device may not be attached yet */
	if (!child_device->driver)
		return 0;

	drv = drv_to_hv_drv(child_device->driver);
	if (!drv->suspend)
		return -EOPNOTSUPP;

	return drv->suspend(dev);
}

/*
 * vmbus_resume - Resume a vmbus device
 */
static int vmbus_resume(struct device *child_device)
{
	struct hv_driver *drv;
	struct hv_device *dev = device_to_hv_device(child_device);

	/* The device may not be attached yet */
	if (!child_device->driver)
		return 0;

	drv = drv_to_hv_drv(child_device->driver);
	if (!drv->resume)
		return -EOPNOTSUPP;

	return drv->resume(dev);
}
981
#endif /* CONFIG_PM_SLEEP */
982 983 984 985 986 987

/*
 * vmbus_device_release - Final callback release of the vmbus child device
 */
static void vmbus_device_release(struct device *device)
{
988
	struct hv_device *hv_dev = device_to_hv_device(device);
989
	struct vmbus_channel *channel = hv_dev->channel;
990

991 992
	hv_debug_rm_dev_dir(hv_dev);

993
	mutex_lock(&vmbus_connection.channel_mutex);
994
	hv_process_channel_removal(channel);
995
	mutex_unlock(&vmbus_connection.channel_mutex);
996
	kfree(hv_dev);
997 998
}

999 1000 1001 1002 1003 1004 1005 1006
/*
 * Note: we must use SET_NOIRQ_SYSTEM_SLEEP_PM_OPS rather than
 * SET_SYSTEM_SLEEP_PM_OPS: see the comment before vmbus_bus_pm.
 */
static const struct dev_pm_ops vmbus_pm = {
	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(vmbus_suspend, vmbus_resume)
};

1007
/* The one and only one */
1008 1009 1010 1011 1012 1013 1014
static struct bus_type  hv_bus = {
	.name =		"vmbus",
	.match =		vmbus_match,
	.shutdown =		vmbus_shutdown,
	.remove =		vmbus_remove,
	.probe =		vmbus_probe,
	.uevent =		vmbus_uevent,
1015 1016
	.dev_groups =		vmbus_dev_groups,
	.drv_groups =		vmbus_drv_groups,
1017
	.pm =			&vmbus_pm,
1018 1019
};

1020 1021
struct onmessage_work_context {
	struct work_struct work;
1022 1023 1024 1025
	struct {
		struct hv_message_header header;
		u8 payload[];
	} msg;
1026 1027 1028 1029 1030 1031
};

static void vmbus_onmessage_work(struct work_struct *work)
{
	struct onmessage_work_context *ctx;

1032 1033 1034 1035
	/* Do not process messages if we're in DISCONNECTED state */
	if (vmbus_connection.conn_state == DISCONNECTED)
		return;

1036 1037
	ctx = container_of(work, struct onmessage_work_context,
			   work);
1038 1039
	vmbus_onmessage((struct vmbus_channel_message_header *)
			&ctx->msg.payload);
1040 1041 1042
	kfree(ctx);
}

1043
void vmbus_on_msg_dpc(unsigned long data)
G
Greg Kroah-Hartman 已提交
1044
{
1045 1046
	struct hv_per_cpu_context *hv_cpu = (void *)data;
	void *page_addr = hv_cpu->synic_message_page;
G
Greg Kroah-Hartman 已提交
1047 1048
	struct hv_message *msg = (struct hv_message *)page_addr +
				  VMBUS_MESSAGE_SINT;
1049
	struct vmbus_channel_message_header *hdr;
1050
	const struct vmbus_channel_message_table_entry *entry;
1051
	struct onmessage_work_context *ctx;
1052
	u32 message_type = msg->header.message_type;
G
Greg Kroah-Hartman 已提交
1053

1054
	if (message_type == HVMSG_NONE)
1055 1056
		/* no msg */
		return;
1057

1058
	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
1059

1060 1061
	trace_vmbus_on_msg_dpc(hdr);

1062 1063 1064 1065
	if (hdr->msgtype >= CHANNELMSG_COUNT) {
		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
		goto msg_handled;
	}
1066

1067 1068 1069 1070 1071 1072
	if (msg->header.payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) {
		WARN_ONCE(1, "payload size is too large (%d)\n",
			  msg->header.payload_size);
		goto msg_handled;
	}

1073
	entry = &channel_message_table[hdr->msgtype];
1074 1075 1076 1077

	if (!entry->message_handler)
		goto msg_handled;

1078
	if (entry->handler_type	== VMHT_BLOCKING) {
1079 1080
		ctx = kmalloc(sizeof(*ctx) + msg->header.payload_size,
			      GFP_ATOMIC);
1081 1082
		if (ctx == NULL)
			return;
1083

1084
		INIT_WORK(&ctx->work, vmbus_onmessage_work);
1085 1086
		memcpy(&ctx->msg, msg, sizeof(msg->header) +
		       msg->header.payload_size);
1087

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
		/*
		 * The host can generate a rescind message while we
		 * may still be handling the original offer. We deal with
		 * this condition by ensuring the processing is done on the
		 * same CPU.
		 */
		switch (hdr->msgtype) {
		case CHANNELMSG_RESCIND_CHANNELOFFER:
			/*
			 * If we are handling the rescind message;
			 * schedule the work on the global work queue.
			 */
			schedule_work_on(vmbus_connection.connect_cpu,
					 &ctx->work);
			break;

		case CHANNELMSG_OFFERCHANNEL:
			atomic_inc(&vmbus_connection.offer_in_progress);
			queue_work_on(vmbus_connection.connect_cpu,
				      vmbus_connection.work_queue,
				      &ctx->work);
			break;

		default:
			queue_work(vmbus_connection.work_queue, &ctx->work);
		}
1114 1115
	} else
		entry->message_handler(hdr);
G
Greg Kroah-Hartman 已提交
1116

1117
msg_handled:
1118
	vmbus_signal_eom(msg, message_type);
G
Greg Kroah-Hartman 已提交
1119 1120
}

1121
#ifdef CONFIG_PM_SLEEP
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
/*
 * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
 * hibernation, because hv_sock connections can not persist across hibernation.
 */
static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
{
	struct onmessage_work_context *ctx;
	struct vmbus_channel_rescind_offer *rescind;

	WARN_ON(!is_hvsock_channel(channel));

	/*
1134
	 * Allocation size is small and the allocation should really not fail,
1135 1136
	 * otherwise the state of the hv_sock connections ends up in limbo.
	 */
1137 1138
	ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind),
		      GFP_KERNEL | __GFP_NOFAIL);
1139 1140 1141 1142 1143 1144 1145 1146 1147

	/*
	 * So far, these are not really used by Linux. Just set them to the
	 * reasonable values conforming to the definitions of the fields.
	 */
	ctx->msg.header.message_type = 1;
	ctx->msg.header.payload_size = sizeof(*rescind);

	/* These values are actually used by Linux. */
1148
	rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload;
1149 1150 1151 1152 1153 1154 1155 1156 1157
	rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
	rescind->child_relid = channel->offermsg.child_relid;

	INIT_WORK(&ctx->work, vmbus_onmessage_work);

	queue_work_on(vmbus_connection.connect_cpu,
		      vmbus_connection.work_queue,
		      &ctx->work);
}
1158
#endif /* CONFIG_PM_SLEEP */
1159

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
/*
 * Direct callback for channels using other deferred processing
 */
static void vmbus_channel_isr(struct vmbus_channel *channel)
{
	void (*callback_fn)(void *);

	callback_fn = READ_ONCE(channel->onchannel_callback);
	if (likely(callback_fn != NULL))
		(*callback_fn)(channel->channel_callback_context);
}

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
/*
 * Schedule all channels with events pending
 */
static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
{
	unsigned long *recv_int_page;
	u32 maxbits, relid;

	if (vmbus_proto_version < VERSION_WIN8) {
		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
		recv_int_page = vmbus_connection.recv_int_page;
	} else {
		/*
		 * When the host is win8 and beyond, the event page
		 * can be directly checked to get the id of the channel
		 * that has the interrupt pending.
		 */
		void *page_addr = hv_cpu->synic_event_page;
		union hv_synic_event_flags *event
			= (union hv_synic_event_flags *)page_addr +
						 VMBUS_MESSAGE_SINT;

		maxbits = HV_EVENT_FLAGS_COUNT;
		recv_int_page = event->flags;
	}

	if (unlikely(!recv_int_page))
		return;

	for_each_set_bit(relid, recv_int_page, maxbits) {
		struct vmbus_channel *channel;

		if (!sync_test_and_clear_bit(relid, recv_int_page))
			continue;

		/* Special case - vmbus channel protocol msg */
		if (relid == 0)
			continue;

1211 1212
		rcu_read_lock();

1213
		/* Find channel based on relid */
1214
		list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
1215 1216 1217
			if (channel->offermsg.child_relid != relid)
				continue;

1218 1219 1220
			if (channel->rescind)
				continue;

V
Vitaly Kuznetsov 已提交
1221 1222
			trace_vmbus_chan_sched(channel);

1223 1224
			++channel->interrupts;

1225 1226 1227
			switch (channel->callback_mode) {
			case HV_CALL_ISR:
				vmbus_channel_isr(channel);
1228
				break;
1229 1230 1231 1232 1233 1234

			case HV_CALL_BATCHED:
				hv_begin_read(&channel->inbound);
				/* fallthrough */
			case HV_CALL_DIRECT:
				tasklet_schedule(&channel->callback_event);
1235 1236
			}
		}
1237 1238

		rcu_read_unlock();
1239 1240 1241
	}
}

1242
static void vmbus_isr(void)
G
Greg Kroah-Hartman 已提交
1243
{
1244 1245 1246
	struct hv_per_cpu_context *hv_cpu
		= this_cpu_ptr(hv_context.cpu_context);
	void *page_addr = hv_cpu->synic_event_page;
G
Greg Kroah-Hartman 已提交
1247 1248
	struct hv_message *msg;
	union hv_synic_event_flags *event;
1249
	bool handled = false;
G
Greg Kroah-Hartman 已提交
1250

1251
	if (unlikely(page_addr == NULL))
1252
		return;
1253 1254 1255

	event = (union hv_synic_event_flags *)page_addr +
					 VMBUS_MESSAGE_SINT;
1256 1257 1258 1259 1260
	/*
	 * Check for events before checking for messages. This is the order
	 * in which events and messages are checked in Windows guests on
	 * Hyper-V, and the Windows team suggested we do the same.
	 */
G
Greg Kroah-Hartman 已提交
1261

1262 1263
	if ((vmbus_proto_version == VERSION_WS2008) ||
		(vmbus_proto_version == VERSION_WIN7)) {
G
Greg Kroah-Hartman 已提交
1264

1265
		/* Since we are a child, we only need to check bit 0 */
1266
		if (sync_test_and_clear_bit(0, event->flags))
1267 1268 1269 1270 1271 1272 1273 1274
			handled = true;
	} else {
		/*
		 * Our host is win8 or above. The signaling mechanism
		 * has changed and we can directly look at the event page.
		 * If bit n is set then we have an interrup on the channel
		 * whose id is n.
		 */
1275 1276
		handled = true;
	}
1277

1278
	if (handled)
1279
		vmbus_chan_sched(hv_cpu);
1280

1281
	page_addr = hv_cpu->synic_message_page;
1282 1283 1284
	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;

	/* Check if there are actual msgs to be processed */
1285
	if (msg->header.message_type != HVMSG_NONE) {
1286 1287 1288 1289
		if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
			hv_stimer0_isr();
			vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
		} else
1290
			tasklet_schedule(&hv_cpu->msg_dpc);
1291
	}
1292 1293

	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1294 1295
}

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
/*
 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
 * buffer and call into Hyper-V to transfer the data.
 */
static void hv_kmsg_dump(struct kmsg_dumper *dumper,
			 enum kmsg_dump_reason reason)
{
	size_t bytes_written;
	phys_addr_t panic_pa;

	/* We are only interested in panics. */
	if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
		return;

	panic_pa = virt_to_phys(hv_panic_page);

	/*
	 * Write dump contents to the page. No need to synchronize; panic should
	 * be single-threaded.
	 */
1316
	kmsg_dump_get_buffer(dumper, true, hv_panic_page, HV_HYP_PAGE_SIZE,
1317 1318 1319
			     &bytes_written);
	if (bytes_written)
		hyperv_report_panic_msg(panic_pa, bytes_written);
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
}

static struct kmsg_dumper hv_kmsg_dumper = {
	.dump = hv_kmsg_dump,
};

static struct ctl_table_header *hv_ctl_table_hdr;

/*
 * sysctl option to allow the user to control whether kmsg data should be
 * reported to Hyper-V on panic.
 */
static struct ctl_table hv_ctl_table[] = {
	{
		.procname       = "hyperv_record_panic_msg",
		.data           = &sysctl_record_panic_msg,
		.maxlen         = sizeof(int),
		.mode           = 0644,
		.proc_handler   = proc_dointvec_minmax,
1339 1340
		.extra1		= SYSCTL_ZERO,
		.extra2		= SYSCTL_ONE
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
	},
	{}
};

static struct ctl_table hv_root_table[] = {
	{
		.procname	= "kernel",
		.mode		= 0555,
		.child		= hv_ctl_table
	},
	{}
};
1353

1354
/*
1355 1356 1357
 * vmbus_bus_init -Main vmbus driver initialization routine.
 *
 * Here, we
1358 1359 1360
 *	- initialize the vmbus driver context
 *	- invoke the vmbus hv main init routine
 *	- retrieve the channel offers
1361
 */
1362
static int vmbus_bus_init(void)
1363
{
1364
	int ret;
1365

1366 1367
	/* Hypervisor initialization...setup hypercall page..etc */
	ret = hv_init();
1368
	if (ret != 0) {
1369
		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1370
		return ret;
1371 1372
	}

1373
	ret = bus_register(&hv_bus);
1374
	if (ret)
1375
		return ret;
1376

1377
	hv_setup_vmbus_irq(vmbus_isr);
1378

1379 1380 1381
	ret = hv_synic_alloc();
	if (ret)
		goto err_alloc;
1382

1383
	/*
1384 1385
	 * Initialize the per-cpu interrupt state and stimer state.
	 * Then connect to the host.
1386
	 */
1387
	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1388 1389
				hv_synic_init, hv_synic_cleanup);
	if (ret < 0)
1390
		goto err_cpuhp;
1391 1392
	hyperv_cpuhp_online = ret;

1393
	ret = vmbus_connect();
1394
	if (ret)
1395
		goto err_connect;
1396

1397 1398 1399
	/*
	 * Only register if the crash MSRs are available
	 */
1400
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
		u64 hyperv_crash_ctl;
		/*
		 * Sysctl registration is not fatal, since by default
		 * reporting is enabled.
		 */
		hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
		if (!hv_ctl_table_hdr)
			pr_err("Hyper-V: sysctl table register error");

		/*
		 * Register for panic kmsg callback only if the right
		 * capability is supported by the hypervisor.
		 */
1414
		hv_get_crash_ctl(hyperv_crash_ctl);
1415
		if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) {
1416
			hv_panic_page = (void *)hv_alloc_hyperv_zeroed_page();
1417 1418
			if (hv_panic_page) {
				ret = kmsg_dump_register(&hv_kmsg_dumper);
1419
				if (ret) {
1420 1421
					pr_err("Hyper-V: kmsg dump register "
						"error 0x%x\n", ret);
1422 1423 1424 1425
					hv_free_hyperv_page(
					    (unsigned long)hv_panic_page);
					hv_panic_page = NULL;
				}
1426 1427 1428 1429 1430
			} else
				pr_err("Hyper-V: panic message page memory "
					"allocation failed");
		}

1431
		register_die_notifier(&hyperv_die_block);
1432 1433
	}

1434 1435 1436 1437 1438 1439 1440 1441
	/*
	 * Always register the panic notifier because we need to unload
	 * the VMbus channel connection to prevent any VMbus
	 * activity after the VM panics.
	 */
	atomic_notifier_chain_register(&panic_notifier_list,
			       &hyperv_panic_block);

1442
	vmbus_request_offers();
1443

1444
	return 0;
1445

1446
err_connect:
1447
	cpuhp_remove_state(hyperv_cpuhp_online);
1448
err_cpuhp:
1449
	hv_synic_free();
1450
err_alloc:
1451
	hv_remove_vmbus_irq();
1452 1453

	bus_unregister(&hv_bus);
1454 1455
	unregister_sysctl_table(hv_ctl_table_hdr);
	hv_ctl_table_hdr = NULL;
1456
	return ret;
1457 1458
}

1459
/**
1460 1461
 * __vmbus_child_driver_register() - Register a vmbus's driver
 * @hv_driver: Pointer to driver structure you want to register
1462 1463
 * @owner: owner module of the drv
 * @mod_name: module name string
1464 1465
 *
 * Registers the given driver with Linux through the 'driver_register()' call
1466
 * and sets up the hyper-v vmbus handling for this driver.
1467 1468
 * It will return the state of the 'driver_register()' call.
 *
1469
 */
1470
int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1471
{
1472
	int ret;
1473

1474
	pr_info("registering driver %s\n", hv_driver->name);
1475

1476 1477 1478 1479
	ret = vmbus_exists();
	if (ret < 0)
		return ret;

1480 1481 1482 1483
	hv_driver->driver.name = hv_driver->name;
	hv_driver->driver.owner = owner;
	hv_driver->driver.mod_name = mod_name;
	hv_driver->driver.bus = &hv_bus;
1484

1485 1486 1487
	spin_lock_init(&hv_driver->dynids.lock);
	INIT_LIST_HEAD(&hv_driver->dynids.list);

1488
	ret = driver_register(&hv_driver->driver);
1489

1490
	return ret;
1491
}
1492
EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1493

1494
/**
1495
 * vmbus_driver_unregister() - Unregister a vmbus's driver
1496 1497
 * @hv_driver: Pointer to driver structure you want to
 *             un-register
1498
 *
1499 1500
 * Un-register the given driver that was previous registered with a call to
 * vmbus_driver_register()
1501
 */
1502
void vmbus_driver_unregister(struct hv_driver *hv_driver)
1503
{
1504
	pr_info("unregistering driver %s\n", hv_driver->name);
1505

1506
	if (!vmbus_exists()) {
1507
		driver_unregister(&hv_driver->driver);
1508 1509
		vmbus_free_dynids(hv_driver);
	}
1510
}
1511
EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1512

1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526

/*
 * Called when last reference to channel is gone.
 */
static void vmbus_chan_release(struct kobject *kobj)
{
	struct vmbus_channel *channel
		= container_of(kobj, struct vmbus_channel, kobj);

	kfree_rcu(channel, rcu);
}

struct vmbus_chan_attribute {
	struct attribute attr;
1527
	ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
	ssize_t (*store)(struct vmbus_channel *chan,
			 const char *buf, size_t count);
};
#define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
	struct vmbus_chan_attribute chan_attr_##_name \
		= __ATTR(_name, _mode, _show, _store)
#define VMBUS_CHAN_ATTR_RW(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
#define VMBUS_CHAN_ATTR_RO(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
#define VMBUS_CHAN_ATTR_WO(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)

static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
				    struct attribute *attr, char *buf)
{
	const struct vmbus_chan_attribute *attribute
		= container_of(attr, struct vmbus_chan_attribute, attr);
1546
	struct vmbus_channel *chan
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
		= container_of(kobj, struct vmbus_channel, kobj);

	if (!attribute->show)
		return -EIO;

	return attribute->show(chan, buf);
}

static const struct sysfs_ops vmbus_chan_sysfs_ops = {
	.show = vmbus_chan_attr_show,
};

1559
static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1560
{
1561 1562
	struct hv_ring_buffer_info *rbi = &channel->outbound;
	ssize_t ret;
1563

1564 1565 1566
	mutex_lock(&rbi->ring_buffer_mutex);
	if (!rbi->ring_buffer) {
		mutex_unlock(&rbi->ring_buffer_mutex);
1567
		return -EINVAL;
1568
	}
1569

1570 1571 1572
	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
	mutex_unlock(&rbi->ring_buffer_mutex);
	return ret;
1573
}
1574
static VMBUS_CHAN_ATTR_RO(out_mask);
1575

1576
static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1577
{
1578 1579
	struct hv_ring_buffer_info *rbi = &channel->inbound;
	ssize_t ret;
1580

1581 1582 1583
	mutex_lock(&rbi->ring_buffer_mutex);
	if (!rbi->ring_buffer) {
		mutex_unlock(&rbi->ring_buffer_mutex);
1584
		return -EINVAL;
1585
	}
1586

1587 1588 1589
	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
	mutex_unlock(&rbi->ring_buffer_mutex);
	return ret;
1590
}
1591
static VMBUS_CHAN_ATTR_RO(in_mask);
1592

1593
static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1594
{
1595 1596
	struct hv_ring_buffer_info *rbi = &channel->inbound;
	ssize_t ret;
1597

1598 1599 1600
	mutex_lock(&rbi->ring_buffer_mutex);
	if (!rbi->ring_buffer) {
		mutex_unlock(&rbi->ring_buffer_mutex);
1601
		return -EINVAL;
1602
	}
1603

1604 1605 1606
	ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
	mutex_unlock(&rbi->ring_buffer_mutex);
	return ret;
1607
}
1608
static VMBUS_CHAN_ATTR_RO(read_avail);
1609

1610
static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1611
{
1612 1613
	struct hv_ring_buffer_info *rbi = &channel->outbound;
	ssize_t ret;
1614

1615 1616 1617
	mutex_lock(&rbi->ring_buffer_mutex);
	if (!rbi->ring_buffer) {
		mutex_unlock(&rbi->ring_buffer_mutex);
1618
		return -EINVAL;
1619
	}
1620

1621 1622 1623
	ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
	mutex_unlock(&rbi->ring_buffer_mutex);
	return ret;
1624
}
1625
static VMBUS_CHAN_ATTR_RO(write_avail);
1626

1627
static ssize_t show_target_cpu(struct vmbus_channel *channel, char *buf)
1628 1629 1630
{
	return sprintf(buf, "%u\n", channel->target_cpu);
}
1631
static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1632

1633
static ssize_t channel_pending_show(struct vmbus_channel *channel,
1634 1635 1636 1637 1638 1639
				    char *buf)
{
	return sprintf(buf, "%d\n",
		       channel_pending(channel,
				       vmbus_connection.monitor_pages[1]));
}
1640
static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1641

1642
static ssize_t channel_latency_show(struct vmbus_channel *channel,
1643 1644 1645 1646 1647 1648
				    char *buf)
{
	return sprintf(buf, "%d\n",
		       channel_latency(channel,
				       vmbus_connection.monitor_pages[1]));
}
1649
static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1650

1651
static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1652 1653 1654
{
	return sprintf(buf, "%llu\n", channel->interrupts);
}
1655
static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1656

1657
static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1658 1659 1660
{
	return sprintf(buf, "%llu\n", channel->sig_events);
}
1661
static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1662

1663
static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1664 1665 1666 1667 1668 1669 1670
					 char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->intr_in_full);
}
static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);

1671
static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1672 1673 1674 1675 1676 1677 1678
					   char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->intr_out_empty);
}
static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);

1679
static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1680 1681 1682 1683 1684 1685 1686
					   char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->out_full_first);
}
static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);

1687
static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1688 1689 1690 1691 1692 1693 1694
					   char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->out_full_total);
}
static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);

1695
static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1696 1697 1698 1699 1700 1701
					  char *buf)
{
	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
}
static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);

1702
static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1703 1704 1705 1706 1707 1708 1709
				  char *buf)
{
	return sprintf(buf, "%u\n",
		       channel->offermsg.offer.sub_channel_index);
}
static VMBUS_CHAN_ATTR_RO(subchannel_id);

1710 1711 1712 1713 1714 1715 1716 1717
static struct attribute *vmbus_chan_attrs[] = {
	&chan_attr_out_mask.attr,
	&chan_attr_in_mask.attr,
	&chan_attr_read_avail.attr,
	&chan_attr_write_avail.attr,
	&chan_attr_cpu.attr,
	&chan_attr_pending.attr,
	&chan_attr_latency.attr,
1718 1719
	&chan_attr_interrupts.attr,
	&chan_attr_events.attr,
1720 1721 1722 1723
	&chan_attr_intr_in_full.attr,
	&chan_attr_intr_out_empty.attr,
	&chan_attr_out_full_first.attr,
	&chan_attr_out_full_total.attr,
1724 1725
	&chan_attr_monitor_id.attr,
	&chan_attr_subchannel_id.attr,
1726 1727 1728
	NULL
};

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
/*
 * Channel-level attribute_group callback function. Returns the permission for
 * each attribute, and returns 0 if an attribute is not visible.
 */
static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
					  struct attribute *attr, int idx)
{
	const struct vmbus_channel *channel =
		container_of(kobj, struct vmbus_channel, kobj);

	/* Hide the monitor attributes if the monitor mechanism is not used. */
	if (!channel->offermsg.monitor_allocated &&
	    (attr == &chan_attr_pending.attr ||
	     attr == &chan_attr_latency.attr ||
	     attr == &chan_attr_monitor_id.attr))
		return 0;

	return attr->mode;
}

static struct attribute_group vmbus_chan_group = {
	.attrs = vmbus_chan_attrs,
	.is_visible = vmbus_chan_attr_is_visible
};

1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
static struct kobj_type vmbus_chan_ktype = {
	.sysfs_ops = &vmbus_chan_sysfs_ops,
	.release = vmbus_chan_release,
};

/*
 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
 */
int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
{
1764
	const struct device *device = &dev->device;
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
	struct kobject *kobj = &channel->kobj;
	u32 relid = channel->offermsg.child_relid;
	int ret;

	kobj->kset = dev->channels_kset;
	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
				   "%u", relid);
	if (ret)
		return ret;

1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
	ret = sysfs_create_group(kobj, &vmbus_chan_group);

	if (ret) {
		/*
		 * The calling functions' error handling paths will cleanup the
		 * empty channel directory.
		 */
		dev_err(device, "Unable to set up channel sysfs files\n");
		return ret;
	}

1786 1787 1788 1789 1790
	kobject_uevent(kobj, KOBJ_ADD);

	return 0;
}

1791 1792 1793 1794 1795 1796 1797 1798
/*
 * vmbus_remove_channel_attr_group - remove the channel's attribute group
 */
void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
{
	sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
}

1799
/*
1800
 * vmbus_device_create - Creates and registers a new child device
1801
 * on the vmbus.
1802
 */
1803 1804
struct hv_device *vmbus_device_create(const guid_t *type,
				      const guid_t *instance,
S
stephen hemminger 已提交
1805
				      struct vmbus_channel *channel)
1806
{
1807
	struct hv_device *child_device_obj;
1808

1809 1810
	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
	if (!child_device_obj) {
1811
		pr_err("Unable to allocate device object for child device\n");
1812 1813 1814
		return NULL;
	}

1815
	child_device_obj->channel = channel;
1816 1817
	guid_copy(&child_device_obj->dev_type, type);
	guid_copy(&child_device_obj->dev_instance, instance);
1818
	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1819 1820 1821 1822

	return child_device_obj;
}

1823
/*
1824
 * vmbus_device_register - Register the child device
1825
 */
1826
int vmbus_device_register(struct hv_device *child_device_obj)
1827
{
1828 1829
	struct kobject *kobj = &child_device_obj->device.kobj;
	int ret;
1830

1831
	dev_set_name(&child_device_obj->device, "%pUl",
1832
		     child_device_obj->channel->offermsg.offer.if_instance.b);
1833

1834
	child_device_obj->device.bus = &hv_bus;
1835
	child_device_obj->device.parent = &hv_acpi_dev->dev;
1836
	child_device_obj->device.release = vmbus_device_release;
1837

1838 1839 1840 1841
	/*
	 * Register with the LDM. This will kick off the driver/device
	 * binding...which will eventually call vmbus_match() and vmbus_probe()
	 */
1842
	ret = device_register(&child_device_obj->device);
1843
	if (ret) {
1844
		pr_err("Unable to register child device\n");
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
		return ret;
	}

	child_device_obj->channels_kset = kset_create_and_add("channels",
							      NULL, kobj);
	if (!child_device_obj->channels_kset) {
		ret = -ENOMEM;
		goto err_dev_unregister;
	}

	ret = vmbus_add_channel_kobj(child_device_obj,
				     child_device_obj->channel);
	if (ret) {
		pr_err("Unable to register primary channeln");
		goto err_kset_unregister;
	}
1861
	hv_debug_add_dev_dir(child_device_obj);
1862 1863 1864 1865 1866

	return 0;

err_kset_unregister:
	kset_unregister(child_device_obj->channels_kset);
1867

1868 1869
err_dev_unregister:
	device_unregister(&child_device_obj->device);
1870 1871 1872
	return ret;
}

1873
/*
1874
 * vmbus_device_unregister - Remove the specified child device
1875
 * from the vmbus.
1876
 */
1877
void vmbus_device_unregister(struct hv_device *device_obj)
1878
{
1879 1880 1881
	pr_debug("child device %s unregistered\n",
		dev_name(&device_obj->device));

1882 1883
	kset_unregister(device_obj->channels_kset);

1884 1885 1886 1887
	/*
	 * Kick off the process of unregistering the device.
	 * This will call vmbus_remove() and eventually vmbus_device_release()
	 */
1888
	device_unregister(&device_obj->device);
1889 1890 1891
}


1892
/*
1893
 * VMBUS is an acpi enumerated device. Get the information we
1894
 * need from DSDT.
1895
 */
1896
#define VTPM_BASE_ADDRESS 0xfed40000
1897
static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1898
{
1899 1900 1901 1902 1903 1904
	resource_size_t start = 0;
	resource_size_t end = 0;
	struct resource *new_res;
	struct resource **old_res = &hyperv_mmio;
	struct resource **prev_res = NULL;

1905
	switch (res->type) {
1906 1907 1908 1909 1910 1911 1912 1913 1914

	/*
	 * "Address" descriptors are for bus windows. Ignore
	 * "memory" descriptors, which are for registers on
	 * devices.
	 */
	case ACPI_RESOURCE_TYPE_ADDRESS32:
		start = res->data.address32.address.minimum;
		end = res->data.address32.address.maximum;
G
Gerd Hoffmann 已提交
1915
		break;
1916

1917
	case ACPI_RESOURCE_TYPE_ADDRESS64:
1918 1919
		start = res->data.address64.address.minimum;
		end = res->data.address64.address.maximum;
G
Gerd Hoffmann 已提交
1920
		break;
1921 1922 1923 1924 1925

	default:
		/* Unused resource type */
		return AE_OK;

1926
	}
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
	/*
	 * Ignore ranges that are below 1MB, as they're not
	 * necessary or useful here.
	 */
	if (end < 0x100000)
		return AE_OK;

	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
	if (!new_res)
		return AE_NO_MEMORY;

	/* If this range overlaps the virtual TPM, truncate it. */
	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
		end = VTPM_BASE_ADDRESS;

	new_res->name = "hyperv mmio";
	new_res->flags = IORESOURCE_MEM;
	new_res->start = start;
	new_res->end = end;

1947 1948 1949
	/*
	 * If two ranges are adjacent, merge them.
	 */
1950 1951 1952 1953 1954 1955
	do {
		if (!*old_res) {
			*old_res = new_res;
			break;
		}

1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
		if (((*old_res)->end + 1) == new_res->start) {
			(*old_res)->end = new_res->end;
			kfree(new_res);
			break;
		}

		if ((*old_res)->start == new_res->end + 1) {
			(*old_res)->start = new_res->start;
			kfree(new_res);
			break;
		}

1968
		if ((*old_res)->start > new_res->end) {
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
			new_res->sibling = *old_res;
			if (prev_res)
				(*prev_res)->sibling = new_res;
			*old_res = new_res;
			break;
		}

		prev_res = old_res;
		old_res = &(*old_res)->sibling;

	} while (1);
1980 1981 1982 1983

	return AE_OK;
}

1984 1985 1986 1987 1988 1989
static int vmbus_acpi_remove(struct acpi_device *device)
{
	struct resource *cur_res;
	struct resource *next_res;

	if (hyperv_mmio) {
1990 1991 1992 1993 1994 1995
		if (fb_mmio) {
			__release_region(hyperv_mmio, fb_mmio->start,
					 resource_size(fb_mmio));
			fb_mmio = NULL;
		}

1996 1997 1998 1999 2000 2001 2002 2003 2004
		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
			next_res = cur_res->sibling;
			kfree(cur_res);
		}
	}

	return 0;
}

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
static void vmbus_reserve_fb(void)
{
	int size;
	/*
	 * Make a claim for the frame buffer in the resource tree under the
	 * first node, which will be the one below 4GB.  The length seems to
	 * be underreported, particularly in a Generation 1 VM.  So start out
	 * reserving a larger area and make it smaller until it succeeds.
	 */

	if (screen_info.lfb_base) {
		if (efi_enabled(EFI_BOOT))
			size = max_t(__u32, screen_info.lfb_size, 0x800000);
		else
			size = max_t(__u32, screen_info.lfb_size, 0x4000000);

		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
			fb_mmio = __request_region(hyperv_mmio,
						   screen_info.lfb_base, size,
						   fb_mmio_name, 0);
		}
	}
}

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
/**
 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
 * @new:		If successful, supplied a pointer to the
 *			allocated MMIO space.
 * @device_obj:		Identifies the caller
 * @min:		Minimum guest physical address of the
 *			allocation
 * @max:		Maximum guest physical address
 * @size:		Size of the range to be allocated
 * @align:		Alignment of the range to be allocated
 * @fb_overlap_ok:	Whether this allocation can be allowed
 *			to overlap the video frame buffer.
 *
 * This function walks the resources granted to VMBus by the
 * _CRS object in the ACPI namespace underneath the parent
 * "bridge" whether that's a root PCI bus in the Generation 1
 * case or a Module Device in the Generation 2 case.  It then
 * attempts to allocate from the global MMIO pool in a way that
 * matches the constraints supplied in these parameters and by
 * that _CRS.
 *
 * Return: 0 on success, -errno on failure
 */
int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
			resource_size_t min, resource_size_t max,
			resource_size_t size, resource_size_t align,
			bool fb_overlap_ok)
{
2057
	struct resource *iter, *shadow;
2058
	resource_size_t range_min, range_max, start;
2059
	const char *dev_n = dev_name(&device_obj->device);
2060
	int retval;
2061 2062

	retval = -ENXIO;
2063
	mutex_lock(&hyperv_mmio_lock);
2064

2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
	/*
	 * If overlaps with frame buffers are allowed, then first attempt to
	 * make the allocation from within the reserved region.  Because it
	 * is already reserved, no shadow allocation is necessary.
	 */
	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
	    !(max < fb_mmio->start)) {

		range_min = fb_mmio->start;
		range_max = fb_mmio->end;
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				retval = 0;
				goto exit;
			}
		}
	}

2085 2086 2087 2088 2089 2090
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= max) || (iter->end <= min))
			continue;

		range_min = iter->start;
		range_max = iter->end;
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			shadow = __request_region(iter, start, size, NULL,
						  IORESOURCE_BUSY);
			if (!shadow)
				continue;

			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				shadow->name = (char *)*new;
				retval = 0;
				goto exit;
2103 2104
			}

2105
			__release_region(iter, start, size);
2106 2107 2108
		}
	}

2109
exit:
2110
	mutex_unlock(&hyperv_mmio_lock);
2111
	return retval;
2112 2113 2114
}
EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);

2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
/**
 * vmbus_free_mmio() - Free a memory-mapped I/O range.
 * @start:		Base address of region to release.
 * @size:		Size of the range to be allocated
 *
 * This function releases anything requested by
 * vmbus_mmio_allocate().
 */
void vmbus_free_mmio(resource_size_t start, resource_size_t size)
{
2125 2126
	struct resource *iter;

2127
	mutex_lock(&hyperv_mmio_lock);
2128 2129 2130 2131 2132 2133
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= start + size) || (iter->end <= start))
			continue;

		__release_region(iter, start, size);
	}
2134
	release_mem_region(start, size);
2135
	mutex_unlock(&hyperv_mmio_lock);
2136 2137 2138 2139

}
EXPORT_SYMBOL_GPL(vmbus_free_mmio);

2140 2141 2142
static int vmbus_acpi_add(struct acpi_device *device)
{
	acpi_status result;
2143
	int ret_val = -ENODEV;
2144
	struct acpi_device *ancestor;
2145

2146 2147
	hv_acpi_dev = device;

2148
	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2149
					vmbus_walk_resources, NULL);
2150

2151 2152 2153
	if (ACPI_FAILURE(result))
		goto acpi_walk_err;
	/*
2154 2155
	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
	 * firmware) is the VMOD that has the mmio ranges. Get that.
2156
	 */
2157 2158 2159
	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
					     vmbus_walk_resources, NULL);
2160 2161

		if (ACPI_FAILURE(result))
2162
			continue;
2163 2164
		if (hyperv_mmio) {
			vmbus_reserve_fb();
2165
			break;
2166
		}
2167
	}
2168 2169 2170
	ret_val = 0;

acpi_walk_err:
2171
	complete(&probe_event);
2172 2173
	if (ret_val)
		vmbus_acpi_remove(device);
2174
	return ret_val;
2175 2176
}

2177
#ifdef CONFIG_PM_SLEEP
2178 2179
static int vmbus_bus_suspend(struct device *dev)
{
2180 2181
	struct vmbus_channel *channel, *sc;
	unsigned long flags;
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199

	while (atomic_read(&vmbus_connection.offer_in_progress) != 0) {
		/*
		 * We wait here until the completion of any channel
		 * offers that are currently in progress.
		 */
		msleep(1);
	}

	mutex_lock(&vmbus_connection.channel_mutex);
	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
		if (!is_hvsock_channel(channel))
			continue;

		vmbus_force_channel_rescinded(channel);
	}
	mutex_unlock(&vmbus_connection.channel_mutex);

2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
	/*
	 * Wait until all the sub-channels and hv_sock channels have been
	 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
	 * they would conflict with the new sub-channels that will be created
	 * in the resume path. hv_sock channels should also be destroyed, but
	 * a hv_sock channel of an established hv_sock connection can not be
	 * really destroyed since it may still be referenced by the userspace
	 * application, so we just force the hv_sock channel to be rescinded
	 * by vmbus_force_channel_rescinded(), and the userspace application
	 * will thoroughly destroy the channel after hibernation.
	 *
	 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
	 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
	 */
	if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0)
		wait_for_completion(&vmbus_connection.ready_for_suspend_event);

2217 2218
	WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0);

2219 2220 2221
	mutex_lock(&vmbus_connection.channel_mutex);

	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2222 2223 2224 2225 2226 2227
		/*
		 * Invalidate the field. Upon resume, vmbus_onoffer() will fix
		 * up the field, and the other fields (if necessary).
		 */
		channel->offermsg.child_relid = INVALID_RELID;

2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
		if (is_hvsock_channel(channel)) {
			if (!channel->rescind) {
				pr_err("hv_sock channel not rescinded!\n");
				WARN_ON_ONCE(1);
			}
			continue;
		}

		spin_lock_irqsave(&channel->lock, flags);
		list_for_each_entry(sc, &channel->sc_list, sc_list) {
			pr_err("Sub-channel not deleted!\n");
			WARN_ON_ONCE(1);
		}
		spin_unlock_irqrestore(&channel->lock, flags);
2242 2243

		atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume);
2244 2245 2246 2247
	}

	mutex_unlock(&vmbus_connection.channel_mutex);

2248 2249
	vmbus_initiate_unload(false);

2250 2251 2252
	/* Reset the event for the next resume. */
	reinit_completion(&vmbus_connection.ready_for_resume_event);

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
	return 0;
}

static int vmbus_bus_resume(struct device *dev)
{
	struct vmbus_channel_msginfo *msginfo;
	size_t msgsize;
	int ret;

	/*
	 * We only use the 'vmbus_proto_version', which was in use before
	 * hibernation, to re-negotiate with the host.
	 */
2266
	if (!vmbus_proto_version) {
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
		pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
		return -EINVAL;
	}

	msgsize = sizeof(*msginfo) +
		  sizeof(struct vmbus_channel_initiate_contact);

	msginfo = kzalloc(msgsize, GFP_KERNEL);

	if (msginfo == NULL)
		return -ENOMEM;

	ret = vmbus_negotiate_version(msginfo, vmbus_proto_version);

	kfree(msginfo);

	if (ret != 0)
		return ret;

2286 2287
	WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0);

2288 2289
	vmbus_request_offers();

2290 2291
	wait_for_completion(&vmbus_connection.ready_for_resume_event);

2292 2293 2294
	/* Reset the event for the next suspend. */
	reinit_completion(&vmbus_connection.ready_for_suspend_event);

2295 2296
	return 0;
}
2297
#endif /* CONFIG_PM_SLEEP */
2298

2299 2300
static const struct acpi_device_id vmbus_acpi_device_ids[] = {
	{"VMBUS", 0},
2301
	{"VMBus", 0},
2302 2303 2304 2305
	{"", 0},
};
MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);

2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
/*
 * Note: we must use SET_NOIRQ_SYSTEM_SLEEP_PM_OPS rather than
 * SET_SYSTEM_SLEEP_PM_OPS, otherwise NIC SR-IOV can not work, because the
 * "pci_dev_pm_ops" uses the "noirq" callbacks: in the resume path, the
 * pci "noirq" restore callback runs before "non-noirq" callbacks (see
 * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
 * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
 * resume callback must also run via the "noirq" callbacks.
 */
static const struct dev_pm_ops vmbus_bus_pm = {
	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(vmbus_bus_suspend, vmbus_bus_resume)
};

2319 2320 2321 2322 2323
static struct acpi_driver vmbus_acpi_driver = {
	.name = "vmbus",
	.ids = vmbus_acpi_device_ids,
	.ops = {
		.add = vmbus_acpi_add,
2324
		.remove = vmbus_acpi_remove,
2325
	},
2326
	.drv.pm = &vmbus_bus_pm,
2327 2328
};

2329 2330
static void hv_kexec_handler(void)
{
2331
	hv_stimer_global_cleanup();
2332
	vmbus_initiate_unload(false);
2333 2334
	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
	mb();
2335
	cpuhp_remove_state(hyperv_cpuhp_online);
2336
	hyperv_cleanup();
2337 2338
};

2339 2340
static void hv_crash_handler(struct pt_regs *regs)
{
2341 2342
	int cpu;

2343
	vmbus_initiate_unload(true);
2344 2345 2346 2347 2348
	/*
	 * In crash handler we can't schedule synic cleanup for all CPUs,
	 * doing the cleanup for current CPU only. This should be sufficient
	 * for kdump.
	 */
2349 2350
	cpu = smp_processor_id();
	hv_stimer_cleanup(cpu);
2351
	hv_synic_disable_regs(cpu);
2352
	hyperv_cleanup();
2353 2354
};

2355 2356 2357
static int hv_synic_suspend(void)
{
	/*
2358 2359 2360 2361
	 * When we reach here, all the non-boot CPUs have been offlined.
	 * If we're in a legacy configuration where stimer Direct Mode is
	 * not enabled, the stimers on the non-boot CPUs have been unbound
	 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() ->
2362 2363
	 * hv_stimer_cleanup() -> clockevents_unbind_device().
	 *
2364 2365 2366 2367 2368
	 * hv_synic_suspend() only runs on CPU0 with interrupts disabled.
	 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because:
	 * 1) it's unnecessary as interrupts remain disabled between
	 * syscore_suspend() and syscore_resume(): see create_image() and
	 * resume_target_kernel()
2369 2370
	 * 2) the stimer on CPU0 is automatically disabled later by
	 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
2371 2372 2373 2374
	 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown()
	 * 3) a warning would be triggered if we call
	 * clockevents_unbind_device(), which may sleep, in an
	 * interrupts-disabled context.
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
	 */

	hv_synic_disable_regs(0);

	return 0;
}

static void hv_synic_resume(void)
{
	hv_synic_enable_regs(0);

	/*
	 * Note: we don't need to call hv_stimer_init(0), because the timer
	 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
	 * automatically re-enabled in timekeeping_resume().
	 */
}

/* The callbacks run only on CPU0, with irqs_disabled. */
static struct syscore_ops hv_synic_syscore_ops = {
	.suspend = hv_synic_suspend,
	.resume = hv_synic_resume,
};

2399
static int __init hv_acpi_init(void)
2400
{
2401
	int ret, t;
2402

2403
	if (!hv_is_hyperv_initialized())
2404 2405
		return -ENODEV;

2406 2407 2408
	init_completion(&probe_event);

	/*
2409
	 * Get ACPI resources first.
2410
	 */
2411 2412
	ret = acpi_bus_register_driver(&vmbus_acpi_driver);

2413 2414 2415
	if (ret)
		return ret;

2416 2417 2418 2419 2420
	t = wait_for_completion_timeout(&probe_event, 5*HZ);
	if (t == 0) {
		ret = -ETIMEDOUT;
		goto cleanup;
	}
2421
	hv_debug_init();
2422

2423
	ret = vmbus_bus_init();
2424
	if (ret)
2425 2426
		goto cleanup;

2427
	hv_setup_kexec_handler(hv_kexec_handler);
2428
	hv_setup_crash_handler(hv_crash_handler);
2429

2430 2431
	register_syscore_ops(&hv_synic_syscore_ops);

2432 2433 2434 2435
	return 0;

cleanup:
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2436
	hv_acpi_dev = NULL;
2437
	return ret;
2438 2439
}

2440 2441
static void __exit vmbus_exit(void)
{
2442 2443
	int cpu;

2444 2445
	unregister_syscore_ops(&hv_synic_syscore_ops);

2446
	hv_remove_kexec_handler();
2447
	hv_remove_crash_handler();
2448
	vmbus_connection.conn_state = DISCONNECTED;
2449
	hv_stimer_global_cleanup();
2450
	vmbus_disconnect();
2451
	hv_remove_vmbus_irq();
2452 2453 2454 2455 2456 2457
	for_each_online_cpu(cpu) {
		struct hv_per_cpu_context *hv_cpu
			= per_cpu_ptr(hv_context.cpu_context, cpu);

		tasklet_kill(&hv_cpu->msg_dpc);
	}
2458 2459
	hv_debug_rm_all_dir();

2460
	vmbus_free_channels();
2461

2462
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
2463
		kmsg_dump_unregister(&hv_kmsg_dumper);
2464
		unregister_die_notifier(&hyperv_die_block);
2465 2466 2467
		atomic_notifier_chain_unregister(&panic_notifier_list,
						 &hyperv_panic_block);
	}
2468 2469

	free_page((unsigned long)hv_panic_page);
2470 2471
	unregister_sysctl_table(hv_ctl_table_hdr);
	hv_ctl_table_hdr = NULL;
2472
	bus_unregister(&hv_bus);
2473

2474
	cpuhp_remove_state(hyperv_cpuhp_online);
2475
	hv_synic_free();
2476 2477 2478
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
}

2479

2480
MODULE_LICENSE("GPL");
2481
MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2482

2483
subsys_initcall(hv_acpi_init);
2484
module_exit(vmbus_exit);