vmbus_drv.c 38.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (c) 2009, Microsoft Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 *
 * Authors:
 *   Haiyang Zhang <haiyangz@microsoft.com>
 *   Hank Janssen  <hjanssen@microsoft.com>
20
 *   K. Y. Srinivasan <kys@microsoft.com>
21
 *
22
 */
23 24
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

25 26 27 28 29
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/sysctl.h>
30
#include <linux/slab.h>
31
#include <linux/acpi.h>
32
#include <linux/completion.h>
33
#include <linux/hyperv.h>
34
#include <linux/kernel_stat.h>
35
#include <linux/clockchips.h>
36
#include <linux/cpu.h>
37
#include <asm/hyperv.h>
38
#include <asm/hypervisor.h>
39
#include <asm/mshyperv.h>
40 41
#include <linux/notifier.h>
#include <linux/ptrace.h>
42
#include <linux/screen_info.h>
43
#include <linux/kdebug.h>
44
#include <linux/efi.h>
45
#include <linux/random.h>
46
#include "hyperv_vmbus.h"
47

48 49 50 51 52
struct vmbus_dynid {
	struct list_head node;
	struct hv_vmbus_device_id id;
};

53
static struct acpi_device  *hv_acpi_dev;
54

55
static struct completion probe_event;
56

57
static int hyperv_cpuhp_online;
58

59 60 61 62 63 64 65 66
static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
			      void *args)
{
	struct pt_regs *regs;

	regs = current_pt_regs();

	hyperv_report_panic(regs);
67 68 69
	return NOTIFY_DONE;
}

70 71 72 73 74 75 76 77 78 79 80 81 82
static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
			    void *args)
{
	struct die_args *die = (struct die_args *)args;
	struct pt_regs *regs = die->regs;

	hyperv_report_panic(regs);
	return NOTIFY_DONE;
}

static struct notifier_block hyperv_die_block = {
	.notifier_call = hyperv_die_event,
};
83 84 85 86
static struct notifier_block hyperv_panic_block = {
	.notifier_call = hyperv_panic_event,
};

87 88
static const char *fb_mmio_name = "fb_range";
static struct resource *fb_mmio;
89 90
static struct resource *hyperv_mmio;
static DEFINE_SEMAPHORE(hyperv_mmio_lock);
91

92 93 94 95 96 97 98 99
static int vmbus_exists(void)
{
	if (hv_acpi_dev == NULL)
		return -ENODEV;

	return 0;
}

100 101 102 103 104 105 106 107
#define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
{
	int i;
	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
}

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
static u8 channel_monitor_group(struct vmbus_channel *channel)
{
	return (u8)channel->offermsg.monitorid / 32;
}

static u8 channel_monitor_offset(struct vmbus_channel *channel)
{
	return (u8)channel->offermsg.monitorid % 32;
}

static u32 channel_pending(struct vmbus_channel *channel,
			   struct hv_monitor_page *monitor_page)
{
	u8 monitor_group = channel_monitor_group(channel);
	return monitor_page->trigger_group[monitor_group].pending;
}

125 126 127 128 129 130 131 132
static u32 channel_latency(struct vmbus_channel *channel,
			   struct hv_monitor_page *monitor_page)
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
	return monitor_page->latency[monitor_group][monitor_offset];
}

133 134 135 136 137 138 139 140
static u32 channel_conn_id(struct vmbus_channel *channel,
			   struct hv_monitor_page *monitor_page)
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
}

141 142 143 144 145 146 147 148 149 150 151
static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
		       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
}
static DEVICE_ATTR_RO(id);

152 153 154 155 156 157 158 159 160 161 162
static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
			  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->state);
}
static DEVICE_ATTR_RO(state);

163 164 165 166 167 168 169 170 171 172 173
static ssize_t monitor_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
}
static DEVICE_ATTR_RO(monitor_id);

174 175 176 177 178 179 180 181 182 183 184 185
static ssize_t class_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_type.b);
}
static DEVICE_ATTR_RO(class_id);

186 187 188 189 190 191 192 193 194 195 196 197
static ssize_t device_id_show(struct device *dev,
			      struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_instance.b);
}
static DEVICE_ATTR_RO(device_id);

198 199 200 201 202 203 204 205 206 207 208
static ssize_t modalias_show(struct device *dev,
			     struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	char alias_name[VMBUS_ALIAS_LEN + 1];

	print_alias_name(hv_dev, alias_name);
	return sprintf(buf, "vmbus:%s\n", alias_name);
}
static DEVICE_ATTR_RO(modalias);

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
static ssize_t server_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(server_monitor_pending);

static ssize_t client_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_pending);
236

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
static ssize_t server_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_latency);

static ssize_t client_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_latency);

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
static ssize_t server_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_conn_id);

static ssize_t client_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_conn_id);

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
static ssize_t out_intr_mask_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(out_intr_mask);

static ssize_t out_read_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.current_read_index);
}
static DEVICE_ATTR_RO(out_read_index);

static ssize_t out_write_index_show(struct device *dev,
				    struct device_attribute *dev_attr,
				    char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.current_write_index);
}
static DEVICE_ATTR_RO(out_write_index);

static ssize_t out_read_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(out_read_bytes_avail);

static ssize_t out_write_bytes_avail_show(struct device *dev,
					  struct device_attribute *dev_attr,
					  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(out_write_bytes_avail);

static ssize_t in_intr_mask_show(struct device *dev,
				 struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(in_intr_mask);

static ssize_t in_read_index_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.current_read_index);
}
static DEVICE_ATTR_RO(in_read_index);

static ssize_t in_write_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.current_write_index);
}
static DEVICE_ATTR_RO(in_write_index);

static ssize_t in_read_bytes_avail_show(struct device *dev,
					struct device_attribute *dev_attr,
					char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(in_read_bytes_avail);

static ssize_t in_write_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(in_write_bytes_avail);

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
static ssize_t channel_vp_mapping_show(struct device *dev,
				       struct device_attribute *dev_attr,
				       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
	unsigned long flags;
	int buf_size = PAGE_SIZE, n_written, tot_written;
	struct list_head *cur;

	if (!channel)
		return -ENODEV;

	tot_written = snprintf(buf, buf_size, "%u:%u\n",
		channel->offermsg.child_relid, channel->target_cpu);

	spin_lock_irqsave(&channel->lock, flags);

	list_for_each(cur, &channel->sc_list) {
		if (tot_written >= buf_size - 1)
			break;

		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
		n_written = scnprintf(buf + tot_written,
				     buf_size - tot_written,
				     "%u:%u\n",
				     cur_sc->offermsg.child_relid,
				     cur_sc->target_cpu);
		tot_written += n_written;
	}

	spin_unlock_irqrestore(&channel->lock, flags);

	return tot_written;
}
static DEVICE_ATTR_RO(channel_vp_mapping);

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
static ssize_t vendor_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
}
static DEVICE_ATTR_RO(vendor);

static ssize_t device_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->device_id);
}
static DEVICE_ATTR_RO(device);

483
/* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
484
static struct attribute *vmbus_dev_attrs[] = {
485
	&dev_attr_id.attr,
486
	&dev_attr_state.attr,
487
	&dev_attr_monitor_id.attr,
488
	&dev_attr_class_id.attr,
489
	&dev_attr_device_id.attr,
490
	&dev_attr_modalias.attr,
491 492
	&dev_attr_server_monitor_pending.attr,
	&dev_attr_client_monitor_pending.attr,
493 494
	&dev_attr_server_monitor_latency.attr,
	&dev_attr_client_monitor_latency.attr,
495 496
	&dev_attr_server_monitor_conn_id.attr,
	&dev_attr_client_monitor_conn_id.attr,
497 498 499 500 501 502 503 504 505 506
	&dev_attr_out_intr_mask.attr,
	&dev_attr_out_read_index.attr,
	&dev_attr_out_write_index.attr,
	&dev_attr_out_read_bytes_avail.attr,
	&dev_attr_out_write_bytes_avail.attr,
	&dev_attr_in_intr_mask.attr,
	&dev_attr_in_read_index.attr,
	&dev_attr_in_write_index.attr,
	&dev_attr_in_read_bytes_avail.attr,
	&dev_attr_in_write_bytes_avail.attr,
507
	&dev_attr_channel_vp_mapping.attr,
508 509
	&dev_attr_vendor.attr,
	&dev_attr_device.attr,
510 511
	NULL,
};
512
ATTRIBUTE_GROUPS(vmbus_dev);
513

514 515 516 517 518 519
/*
 * vmbus_uevent - add uevent for our device
 *
 * This routine is invoked when a device is added or removed on the vmbus to
 * generate a uevent to udev in the userspace. The udev will then look at its
 * rule and the uevent generated here to load the appropriate driver
520 521 522 523
 *
 * The alias string will be of the form vmbus:guid where guid is the string
 * representation of the device guid (each byte of the guid will be
 * represented with two hex characters.
524 525 526 527
 */
static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
{
	struct hv_device *dev = device_to_hv_device(device);
528 529
	int ret;
	char alias_name[VMBUS_ALIAS_LEN + 1];
530

531
	print_alias_name(dev, alias_name);
532 533
	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
	return ret;
534 535
}

S
stephen hemminger 已提交
536
static const uuid_le null_guid;
537

538
static inline bool is_null_guid(const uuid_le *guid)
539
{
540
	if (uuid_le_cmp(*guid, null_guid))
541 542 543 544
		return false;
	return true;
}

545 546 547 548
/*
 * Return a matching hv_vmbus_device_id pointer.
 * If there is no match, return NULL.
 */
549
static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
550
					const uuid_le *guid)
551
{
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
	const struct hv_vmbus_device_id *id = NULL;
	struct vmbus_dynid *dynid;

	/* Look at the dynamic ids first, before the static ones */
	spin_lock(&drv->dynids.lock);
	list_for_each_entry(dynid, &drv->dynids.list, node) {
		if (!uuid_le_cmp(dynid->id.guid, *guid)) {
			id = &dynid->id;
			break;
		}
	}
	spin_unlock(&drv->dynids.lock);

	if (id)
		return id;

	id = drv->id_table;
	if (id == NULL)
		return NULL; /* empty device table */

572
	for (; !is_null_guid(&id->guid); id++)
573
		if (!uuid_le_cmp(id->guid, *guid))
574 575 576 577 578
			return id;

	return NULL;
}

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
/* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid)
{
	struct vmbus_dynid *dynid;

	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
	if (!dynid)
		return -ENOMEM;

	dynid->id.guid = *guid;

	spin_lock(&drv->dynids.lock);
	list_add_tail(&dynid->node, &drv->dynids.list);
	spin_unlock(&drv->dynids.lock);

	return driver_attach(&drv->driver);
}

static void vmbus_free_dynids(struct hv_driver *drv)
{
	struct vmbus_dynid *dynid, *n;

	spin_lock(&drv->dynids.lock);
	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
		list_del(&dynid->node);
		kfree(dynid);
	}
	spin_unlock(&drv->dynids.lock);
}

/* Parse string of form: 1b4e28ba-2fa1-11d2-883f-b9a761bde3f */
static int get_uuid_le(const char *str, uuid_le *uu)
{
	unsigned int b[16];
	int i;

	if (strlen(str) < 37)
		return -1;

	for (i = 0; i < 36; i++) {
		switch (i) {
		case 8: case 13: case 18: case 23:
			if (str[i] != '-')
				return -1;
			break;
		default:
			if (!isxdigit(str[i]))
				return -1;
		}
	}

	/* unparse little endian output byte order */
	if (sscanf(str,
		   "%2x%2x%2x%2x-%2x%2x-%2x%2x-%2x%2x-%2x%2x%2x%2x%2x%2x",
		   &b[3], &b[2], &b[1], &b[0],
		   &b[5], &b[4], &b[7], &b[6], &b[8], &b[9],
		   &b[10], &b[11], &b[12], &b[13], &b[14], &b[15]) != 16)
		return -1;

	for (i = 0; i < 16; i++)
		uu->b[i] = b[i];
	return 0;
}

/*
 * store_new_id - sysfs frontend to vmbus_add_dynid()
 *
 * Allow GUIDs to be added to an existing driver via sysfs.
 */
static ssize_t new_id_store(struct device_driver *driver, const char *buf,
			    size_t count)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
	uuid_le guid = NULL_UUID_LE;
	ssize_t retval;

	if (get_uuid_le(buf, &guid) != 0)
		return -EINVAL;

	if (hv_vmbus_get_id(drv, &guid))
		return -EEXIST;

	retval = vmbus_add_dynid(drv, &guid);
	if (retval)
		return retval;
	return count;
}
static DRIVER_ATTR_WO(new_id);

/*
 * store_remove_id - remove a PCI device ID from this driver
 *
 * Removes a dynamic pci device ID to this driver.
 */
static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
			       size_t count)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
	struct vmbus_dynid *dynid, *n;
	uuid_le guid = NULL_UUID_LE;
	size_t retval = -ENODEV;

	if (get_uuid_le(buf, &guid))
		return -EINVAL;

	spin_lock(&drv->dynids.lock);
	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
		struct hv_vmbus_device_id *id = &dynid->id;

		if (!uuid_le_cmp(id->guid, guid)) {
			list_del(&dynid->node);
			kfree(dynid);
			retval = count;
			break;
		}
	}
	spin_unlock(&drv->dynids.lock);

	return retval;
}
static DRIVER_ATTR_WO(remove_id);

static struct attribute *vmbus_drv_attrs[] = {
	&driver_attr_new_id.attr,
	&driver_attr_remove_id.attr,
	NULL,
};
ATTRIBUTE_GROUPS(vmbus_drv);
707

708 709 710 711 712 713 714

/*
 * vmbus_match - Attempt to match the specified device to the specified driver
 */
static int vmbus_match(struct device *device, struct device_driver *driver)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
715
	struct hv_device *hv_dev = device_to_hv_device(device);
716

717 718 719 720
	/* The hv_sock driver handles all hv_sock offers. */
	if (is_hvsock_channel(hv_dev->channel))
		return drv->hvsock;

721
	if (hv_vmbus_get_id(drv, &hv_dev->dev_type))
722
		return 1;
723

724
	return 0;
725 726
}

727 728 729 730 731 732 733 734
/*
 * vmbus_probe - Add the new vmbus's child device
 */
static int vmbus_probe(struct device *child_device)
{
	int ret = 0;
	struct hv_driver *drv =
			drv_to_hv_drv(child_device->driver);
735
	struct hv_device *dev = device_to_hv_device(child_device);
736
	const struct hv_vmbus_device_id *dev_id;
737

738
	dev_id = hv_vmbus_get_id(drv, &dev->dev_type);
739
	if (drv->probe) {
740
		ret = drv->probe(dev, dev_id);
741
		if (ret != 0)
742 743
			pr_err("probe failed for device %s (%d)\n",
			       dev_name(child_device), ret);
744 745

	} else {
746 747
		pr_err("probe not set for driver %s\n",
		       dev_name(child_device));
748
		ret = -ENODEV;
749 750 751 752
	}
	return ret;
}

753 754 755 756 757
/*
 * vmbus_remove - Remove a vmbus device
 */
static int vmbus_remove(struct device *child_device)
{
758
	struct hv_driver *drv;
759
	struct hv_device *dev = device_to_hv_device(child_device);
760

761 762 763 764 765
	if (child_device->driver) {
		drv = drv_to_hv_drv(child_device->driver);
		if (drv->remove)
			drv->remove(dev);
	}
766 767 768 769

	return 0;
}

770 771 772 773 774 775 776

/*
 * vmbus_shutdown - Shutdown a vmbus device
 */
static void vmbus_shutdown(struct device *child_device)
{
	struct hv_driver *drv;
777
	struct hv_device *dev = device_to_hv_device(child_device);
778 779 780 781 782 783 784 785


	/* The device may not be attached yet */
	if (!child_device->driver)
		return;

	drv = drv_to_hv_drv(child_device->driver);

786 787
	if (drv->shutdown)
		drv->shutdown(dev);
788 789 790 791

	return;
}

792 793 794 795 796 797

/*
 * vmbus_device_release - Final callback release of the vmbus child device
 */
static void vmbus_device_release(struct device *device)
{
798
	struct hv_device *hv_dev = device_to_hv_device(device);
799
	struct vmbus_channel *channel = hv_dev->channel;
800

801 802
	hv_process_channel_removal(channel,
				   channel->offermsg.child_relid);
803
	kfree(hv_dev);
804 805 806

}

807
/* The one and only one */
808 809 810 811 812 813 814
static struct bus_type  hv_bus = {
	.name =		"vmbus",
	.match =		vmbus_match,
	.shutdown =		vmbus_shutdown,
	.remove =		vmbus_remove,
	.probe =		vmbus_probe,
	.uevent =		vmbus_uevent,
815 816
	.dev_groups =		vmbus_dev_groups,
	.drv_groups =		vmbus_drv_groups,
817 818
};

819 820 821 822 823 824 825 826 827
struct onmessage_work_context {
	struct work_struct work;
	struct hv_message msg;
};

static void vmbus_onmessage_work(struct work_struct *work)
{
	struct onmessage_work_context *ctx;

828 829 830 831
	/* Do not process messages if we're in DISCONNECTED state */
	if (vmbus_connection.conn_state == DISCONNECTED)
		return;

832 833 834 835 836 837
	ctx = container_of(work, struct onmessage_work_context,
			   work);
	vmbus_onmessage(&ctx->msg);
	kfree(ctx);
}

838 839
static void hv_process_timer_expiration(struct hv_message *msg,
					struct hv_per_cpu_context *hv_cpu)
840
{
841
	struct clock_event_device *dev = hv_cpu->clk_evt;
842 843 844 845

	if (dev->event_handler)
		dev->event_handler(dev);

846
	vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
847 848
}

849
void vmbus_on_msg_dpc(unsigned long data)
G
Greg Kroah-Hartman 已提交
850
{
851 852
	struct hv_per_cpu_context *hv_cpu = (void *)data;
	void *page_addr = hv_cpu->synic_message_page;
G
Greg Kroah-Hartman 已提交
853 854
	struct hv_message *msg = (struct hv_message *)page_addr +
				  VMBUS_MESSAGE_SINT;
855 856
	struct vmbus_channel_message_header *hdr;
	struct vmbus_channel_message_table_entry *entry;
857
	struct onmessage_work_context *ctx;
858
	u32 message_type = msg->header.message_type;
G
Greg Kroah-Hartman 已提交
859

860
	if (message_type == HVMSG_NONE)
861 862
		/* no msg */
		return;
863

864
	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
865

866 867 868 869
	if (hdr->msgtype >= CHANNELMSG_COUNT) {
		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
		goto msg_handled;
	}
870

871 872 873 874 875
	entry = &channel_message_table[hdr->msgtype];
	if (entry->handler_type	== VMHT_BLOCKING) {
		ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
		if (ctx == NULL)
			return;
876

877 878
		INIT_WORK(&ctx->work, vmbus_onmessage_work);
		memcpy(&ctx->msg, msg, sizeof(*msg));
879

880 881 882
		queue_work(vmbus_connection.work_queue, &ctx->work);
	} else
		entry->message_handler(hdr);
G
Greg Kroah-Hartman 已提交
883

884
msg_handled:
885
	vmbus_signal_eom(msg, message_type);
G
Greg Kroah-Hartman 已提交
886 887
}

888
static void vmbus_isr(void)
G
Greg Kroah-Hartman 已提交
889
{
890 891 892
	struct hv_per_cpu_context *hv_cpu
		= this_cpu_ptr(hv_context.cpu_context);
	void *page_addr = hv_cpu->synic_event_page;
G
Greg Kroah-Hartman 已提交
893 894
	struct hv_message *msg;
	union hv_synic_event_flags *event;
895
	bool handled = false;
G
Greg Kroah-Hartman 已提交
896

897
	if (unlikely(page_addr == NULL))
898
		return;
899 900 901

	event = (union hv_synic_event_flags *)page_addr +
					 VMBUS_MESSAGE_SINT;
902 903 904 905 906
	/*
	 * Check for events before checking for messages. This is the order
	 * in which events and messages are checked in Windows guests on
	 * Hyper-V, and the Windows team suggested we do the same.
	 */
G
Greg Kroah-Hartman 已提交
907

908 909
	if ((vmbus_proto_version == VERSION_WS2008) ||
		(vmbus_proto_version == VERSION_WIN7)) {
G
Greg Kroah-Hartman 已提交
910

911
		/* Since we are a child, we only need to check bit 0 */
912
		if (sync_test_and_clear_bit(0, event->flags))
913 914 915 916 917 918 919 920
			handled = true;
	} else {
		/*
		 * Our host is win8 or above. The signaling mechanism
		 * has changed and we can directly look at the event page.
		 * If bit n is set then we have an interrup on the channel
		 * whose id is n.
		 */
921 922
		handled = true;
	}
923

924
	if (handled)
925
		tasklet_schedule(&hv_cpu->event_dpc);
926 927


928
	page_addr = hv_cpu->synic_message_page;
929 930 931
	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;

	/* Check if there are actual msgs to be processed */
932 933
	if (msg->header.message_type != HVMSG_NONE) {
		if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
934
			hv_process_timer_expiration(msg, hv_cpu);
935
		else
936
			tasklet_schedule(&hv_cpu->msg_dpc);
937
	}
938 939

	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
940 941
}

942

943
/*
944 945 946
 * vmbus_bus_init -Main vmbus driver initialization routine.
 *
 * Here, we
947 948 949
 *	- initialize the vmbus driver context
 *	- invoke the vmbus hv main init routine
 *	- retrieve the channel offers
950
 */
951
static int vmbus_bus_init(void)
952
{
953
	int ret;
954

955 956
	/* Hypervisor initialization...setup hypercall page..etc */
	ret = hv_init();
957
	if (ret != 0) {
958
		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
959
		return ret;
960 961
	}

962
	ret = bus_register(&hv_bus);
963
	if (ret)
964
		return ret;
965

966
	hv_setup_vmbus_irq(vmbus_isr);
967

968 969 970
	ret = hv_synic_alloc();
	if (ret)
		goto err_alloc;
971
	/*
972
	 * Initialize the per-cpu interrupt state and
973 974
	 * connect to the host.
	 */
975 976 977 978 979 980
	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv:online",
				hv_synic_init, hv_synic_cleanup);
	if (ret < 0)
		goto err_alloc;
	hyperv_cpuhp_online = ret;

981
	ret = vmbus_connect();
982
	if (ret)
983
		goto err_connect;
984

985 986 987
	/*
	 * Only register if the crash MSRs are available
	 */
988
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
989
		register_die_notifier(&hyperv_die_block);
990 991 992 993
		atomic_notifier_chain_register(&panic_notifier_list,
					       &hyperv_panic_block);
	}

994
	vmbus_request_offers();
995

996
	return 0;
997

998
err_connect:
999
	cpuhp_remove_state(hyperv_cpuhp_online);
1000 1001
err_alloc:
	hv_synic_free();
1002
	hv_remove_vmbus_irq();
1003 1004 1005 1006

	bus_unregister(&hv_bus);

	return ret;
1007 1008
}

1009
/**
1010 1011
 * __vmbus_child_driver_register() - Register a vmbus's driver
 * @hv_driver: Pointer to driver structure you want to register
1012 1013
 * @owner: owner module of the drv
 * @mod_name: module name string
1014 1015
 *
 * Registers the given driver with Linux through the 'driver_register()' call
1016
 * and sets up the hyper-v vmbus handling for this driver.
1017 1018
 * It will return the state of the 'driver_register()' call.
 *
1019
 */
1020
int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1021
{
1022
	int ret;
1023

1024
	pr_info("registering driver %s\n", hv_driver->name);
1025

1026 1027 1028 1029
	ret = vmbus_exists();
	if (ret < 0)
		return ret;

1030 1031 1032 1033
	hv_driver->driver.name = hv_driver->name;
	hv_driver->driver.owner = owner;
	hv_driver->driver.mod_name = mod_name;
	hv_driver->driver.bus = &hv_bus;
1034

1035 1036 1037
	spin_lock_init(&hv_driver->dynids.lock);
	INIT_LIST_HEAD(&hv_driver->dynids.list);

1038
	ret = driver_register(&hv_driver->driver);
1039

1040
	return ret;
1041
}
1042
EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1043

1044
/**
1045
 * vmbus_driver_unregister() - Unregister a vmbus's driver
1046 1047
 * @hv_driver: Pointer to driver structure you want to
 *             un-register
1048
 *
1049 1050
 * Un-register the given driver that was previous registered with a call to
 * vmbus_driver_register()
1051
 */
1052
void vmbus_driver_unregister(struct hv_driver *hv_driver)
1053
{
1054
	pr_info("unregistering driver %s\n", hv_driver->name);
1055

1056
	if (!vmbus_exists()) {
1057
		driver_unregister(&hv_driver->driver);
1058 1059
		vmbus_free_dynids(hv_driver);
	}
1060
}
1061
EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1062

1063
/*
1064
 * vmbus_device_create - Creates and registers a new child device
1065
 * on the vmbus.
1066
 */
S
stephen hemminger 已提交
1067 1068 1069
struct hv_device *vmbus_device_create(const uuid_le *type,
				      const uuid_le *instance,
				      struct vmbus_channel *channel)
1070
{
1071
	struct hv_device *child_device_obj;
1072

1073 1074
	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
	if (!child_device_obj) {
1075
		pr_err("Unable to allocate device object for child device\n");
1076 1077 1078
		return NULL;
	}

1079
	child_device_obj->channel = channel;
1080
	memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
1081
	memcpy(&child_device_obj->dev_instance, instance,
1082
	       sizeof(uuid_le));
1083
	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1084 1085 1086 1087 1088


	return child_device_obj;
}

1089
/*
1090
 * vmbus_device_register - Register the child device
1091
 */
1092
int vmbus_device_register(struct hv_device *child_device_obj)
1093
{
1094
	int ret = 0;
1095

1096
	dev_set_name(&child_device_obj->device, "%pUl",
1097
		     child_device_obj->channel->offermsg.offer.if_instance.b);
1098

1099
	child_device_obj->device.bus = &hv_bus;
1100
	child_device_obj->device.parent = &hv_acpi_dev->dev;
1101
	child_device_obj->device.release = vmbus_device_release;
1102

1103 1104 1105 1106
	/*
	 * Register with the LDM. This will kick off the driver/device
	 * binding...which will eventually call vmbus_match() and vmbus_probe()
	 */
1107
	ret = device_register(&child_device_obj->device);
1108 1109

	if (ret)
1110
		pr_err("Unable to register child device\n");
1111
	else
1112
		pr_debug("child device %s registered\n",
1113
			dev_name(&child_device_obj->device));
1114 1115 1116 1117

	return ret;
}

1118
/*
1119
 * vmbus_device_unregister - Remove the specified child device
1120
 * from the vmbus.
1121
 */
1122
void vmbus_device_unregister(struct hv_device *device_obj)
1123
{
1124 1125 1126
	pr_debug("child device %s unregistered\n",
		dev_name(&device_obj->device));

1127 1128 1129 1130
	/*
	 * Kick off the process of unregistering the device.
	 * This will call vmbus_remove() and eventually vmbus_device_release()
	 */
1131
	device_unregister(&device_obj->device);
1132 1133 1134
}


1135
/*
1136
 * VMBUS is an acpi enumerated device. Get the information we
1137
 * need from DSDT.
1138
 */
1139
#define VTPM_BASE_ADDRESS 0xfed40000
1140
static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1141
{
1142 1143 1144 1145 1146 1147
	resource_size_t start = 0;
	resource_size_t end = 0;
	struct resource *new_res;
	struct resource **old_res = &hyperv_mmio;
	struct resource **prev_res = NULL;

1148
	switch (res->type) {
1149 1150 1151 1152 1153 1154 1155 1156 1157

	/*
	 * "Address" descriptors are for bus windows. Ignore
	 * "memory" descriptors, which are for registers on
	 * devices.
	 */
	case ACPI_RESOURCE_TYPE_ADDRESS32:
		start = res->data.address32.address.minimum;
		end = res->data.address32.address.maximum;
G
Gerd Hoffmann 已提交
1158
		break;
1159

1160
	case ACPI_RESOURCE_TYPE_ADDRESS64:
1161 1162
		start = res->data.address64.address.minimum;
		end = res->data.address64.address.maximum;
G
Gerd Hoffmann 已提交
1163
		break;
1164 1165 1166 1167 1168

	default:
		/* Unused resource type */
		return AE_OK;

1169
	}
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
	/*
	 * Ignore ranges that are below 1MB, as they're not
	 * necessary or useful here.
	 */
	if (end < 0x100000)
		return AE_OK;

	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
	if (!new_res)
		return AE_NO_MEMORY;

	/* If this range overlaps the virtual TPM, truncate it. */
	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
		end = VTPM_BASE_ADDRESS;

	new_res->name = "hyperv mmio";
	new_res->flags = IORESOURCE_MEM;
	new_res->start = start;
	new_res->end = end;

1190 1191 1192
	/*
	 * If two ranges are adjacent, merge them.
	 */
1193 1194 1195 1196 1197 1198
	do {
		if (!*old_res) {
			*old_res = new_res;
			break;
		}

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
		if (((*old_res)->end + 1) == new_res->start) {
			(*old_res)->end = new_res->end;
			kfree(new_res);
			break;
		}

		if ((*old_res)->start == new_res->end + 1) {
			(*old_res)->start = new_res->start;
			kfree(new_res);
			break;
		}

1211
		if ((*old_res)->start > new_res->end) {
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
			new_res->sibling = *old_res;
			if (prev_res)
				(*prev_res)->sibling = new_res;
			*old_res = new_res;
			break;
		}

		prev_res = old_res;
		old_res = &(*old_res)->sibling;

	} while (1);
1223 1224 1225 1226

	return AE_OK;
}

1227 1228 1229 1230 1231 1232
static int vmbus_acpi_remove(struct acpi_device *device)
{
	struct resource *cur_res;
	struct resource *next_res;

	if (hyperv_mmio) {
1233 1234 1235 1236 1237 1238
		if (fb_mmio) {
			__release_region(hyperv_mmio, fb_mmio->start,
					 resource_size(fb_mmio));
			fb_mmio = NULL;
		}

1239 1240 1241 1242 1243 1244 1245 1246 1247
		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
			next_res = cur_res->sibling;
			kfree(cur_res);
		}
	}

	return 0;
}

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
static void vmbus_reserve_fb(void)
{
	int size;
	/*
	 * Make a claim for the frame buffer in the resource tree under the
	 * first node, which will be the one below 4GB.  The length seems to
	 * be underreported, particularly in a Generation 1 VM.  So start out
	 * reserving a larger area and make it smaller until it succeeds.
	 */

	if (screen_info.lfb_base) {
		if (efi_enabled(EFI_BOOT))
			size = max_t(__u32, screen_info.lfb_size, 0x800000);
		else
			size = max_t(__u32, screen_info.lfb_size, 0x4000000);

		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
			fb_mmio = __request_region(hyperv_mmio,
						   screen_info.lfb_base, size,
						   fb_mmio_name, 0);
		}
	}
}

1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
/**
 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
 * @new:		If successful, supplied a pointer to the
 *			allocated MMIO space.
 * @device_obj:		Identifies the caller
 * @min:		Minimum guest physical address of the
 *			allocation
 * @max:		Maximum guest physical address
 * @size:		Size of the range to be allocated
 * @align:		Alignment of the range to be allocated
 * @fb_overlap_ok:	Whether this allocation can be allowed
 *			to overlap the video frame buffer.
 *
 * This function walks the resources granted to VMBus by the
 * _CRS object in the ACPI namespace underneath the parent
 * "bridge" whether that's a root PCI bus in the Generation 1
 * case or a Module Device in the Generation 2 case.  It then
 * attempts to allocate from the global MMIO pool in a way that
 * matches the constraints supplied in these parameters and by
 * that _CRS.
 *
 * Return: 0 on success, -errno on failure
 */
int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
			resource_size_t min, resource_size_t max,
			resource_size_t size, resource_size_t align,
			bool fb_overlap_ok)
{
1300
	struct resource *iter, *shadow;
1301
	resource_size_t range_min, range_max, start;
1302
	const char *dev_n = dev_name(&device_obj->device);
1303
	int retval;
1304 1305 1306

	retval = -ENXIO;
	down(&hyperv_mmio_lock);
1307

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
	/*
	 * If overlaps with frame buffers are allowed, then first attempt to
	 * make the allocation from within the reserved region.  Because it
	 * is already reserved, no shadow allocation is necessary.
	 */
	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
	    !(max < fb_mmio->start)) {

		range_min = fb_mmio->start;
		range_max = fb_mmio->end;
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				retval = 0;
				goto exit;
			}
		}
	}

1328 1329 1330 1331 1332 1333
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= max) || (iter->end <= min))
			continue;

		range_min = iter->start;
		range_max = iter->end;
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			shadow = __request_region(iter, start, size, NULL,
						  IORESOURCE_BUSY);
			if (!shadow)
				continue;

			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				shadow->name = (char *)*new;
				retval = 0;
				goto exit;
1346 1347
			}

1348
			__release_region(iter, start, size);
1349 1350 1351
		}
	}

1352 1353 1354
exit:
	up(&hyperv_mmio_lock);
	return retval;
1355 1356 1357
}
EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
/**
 * vmbus_free_mmio() - Free a memory-mapped I/O range.
 * @start:		Base address of region to release.
 * @size:		Size of the range to be allocated
 *
 * This function releases anything requested by
 * vmbus_mmio_allocate().
 */
void vmbus_free_mmio(resource_size_t start, resource_size_t size)
{
1368 1369 1370 1371 1372 1373 1374 1375 1376
	struct resource *iter;

	down(&hyperv_mmio_lock);
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= start + size) || (iter->end <= start))
			continue;

		__release_region(iter, start, size);
	}
1377
	release_mem_region(start, size);
1378
	up(&hyperv_mmio_lock);
1379 1380 1381 1382

}
EXPORT_SYMBOL_GPL(vmbus_free_mmio);

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
/**
 * vmbus_cpu_number_to_vp_number() - Map CPU to VP.
 * @cpu_number: CPU number in Linux terms
 *
 * This function returns the mapping between the Linux processor
 * number and the hypervisor's virtual processor number, useful
 * in making hypercalls and such that talk about specific
 * processors.
 *
 * Return: Virtual processor number in Hyper-V terms
 */
int vmbus_cpu_number_to_vp_number(int cpu_number)
{
	return hv_context.vp_index[cpu_number];
}
EXPORT_SYMBOL_GPL(vmbus_cpu_number_to_vp_number);

1400 1401 1402
static int vmbus_acpi_add(struct acpi_device *device)
{
	acpi_status result;
1403
	int ret_val = -ENODEV;
1404
	struct acpi_device *ancestor;
1405

1406 1407
	hv_acpi_dev = device;

1408
	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1409
					vmbus_walk_resources, NULL);
1410

1411 1412 1413
	if (ACPI_FAILURE(result))
		goto acpi_walk_err;
	/*
1414 1415
	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
	 * firmware) is the VMOD that has the mmio ranges. Get that.
1416
	 */
1417 1418 1419
	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
					     vmbus_walk_resources, NULL);
1420 1421

		if (ACPI_FAILURE(result))
1422
			continue;
1423 1424
		if (hyperv_mmio) {
			vmbus_reserve_fb();
1425
			break;
1426
		}
1427
	}
1428 1429 1430
	ret_val = 0;

acpi_walk_err:
1431
	complete(&probe_event);
1432 1433
	if (ret_val)
		vmbus_acpi_remove(device);
1434
	return ret_val;
1435 1436 1437 1438
}

static const struct acpi_device_id vmbus_acpi_device_ids[] = {
	{"VMBUS", 0},
1439
	{"VMBus", 0},
1440 1441 1442 1443 1444 1445 1446 1447 1448
	{"", 0},
};
MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);

static struct acpi_driver vmbus_acpi_driver = {
	.name = "vmbus",
	.ids = vmbus_acpi_device_ids,
	.ops = {
		.add = vmbus_acpi_add,
1449
		.remove = vmbus_acpi_remove,
1450 1451 1452
	},
};

1453 1454 1455
static void hv_kexec_handler(void)
{
	hv_synic_clockevents_cleanup();
1456
	vmbus_initiate_unload(false);
1457 1458 1459
	vmbus_connection.conn_state = DISCONNECTED;
	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
	mb();
1460
	cpuhp_remove_state(hyperv_cpuhp_online);
1461
	hyperv_cleanup();
1462 1463
};

1464 1465
static void hv_crash_handler(struct pt_regs *regs)
{
1466
	vmbus_initiate_unload(true);
1467 1468 1469 1470 1471
	/*
	 * In crash handler we can't schedule synic cleanup for all CPUs,
	 * doing the cleanup for current CPU only. This should be sufficient
	 * for kdump.
	 */
1472
	vmbus_connection.conn_state = DISCONNECTED;
1473
	hv_synic_cleanup(smp_processor_id());
1474
	hyperv_cleanup();
1475 1476
};

1477
static int __init hv_acpi_init(void)
1478
{
1479
	int ret, t;
1480

1481
	if (x86_hyper != &x86_hyper_ms_hyperv)
1482 1483
		return -ENODEV;

1484 1485 1486
	init_completion(&probe_event);

	/*
1487
	 * Get ACPI resources first.
1488
	 */
1489 1490
	ret = acpi_bus_register_driver(&vmbus_acpi_driver);

1491 1492 1493
	if (ret)
		return ret;

1494 1495 1496 1497 1498
	t = wait_for_completion_timeout(&probe_event, 5*HZ);
	if (t == 0) {
		ret = -ETIMEDOUT;
		goto cleanup;
	}
1499

1500
	ret = vmbus_bus_init();
1501
	if (ret)
1502 1503
		goto cleanup;

1504
	hv_setup_kexec_handler(hv_kexec_handler);
1505
	hv_setup_crash_handler(hv_crash_handler);
1506

1507 1508 1509 1510
	return 0;

cleanup:
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1511
	hv_acpi_dev = NULL;
1512
	return ret;
1513 1514
}

1515 1516
static void __exit vmbus_exit(void)
{
1517 1518
	int cpu;

1519
	hv_remove_kexec_handler();
1520
	hv_remove_crash_handler();
1521
	vmbus_connection.conn_state = DISCONNECTED;
1522
	hv_synic_clockevents_cleanup();
1523
	vmbus_disconnect();
1524
	hv_remove_vmbus_irq();
1525 1526 1527 1528 1529 1530
	for_each_online_cpu(cpu) {
		struct hv_per_cpu_context *hv_cpu
			= per_cpu_ptr(hv_context.cpu_context, cpu);

		tasklet_kill(&hv_cpu->msg_dpc);
	}
1531
	vmbus_free_channels();
1532

1533
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1534
		unregister_die_notifier(&hyperv_die_block);
1535 1536 1537
		atomic_notifier_chain_unregister(&panic_notifier_list,
						 &hyperv_panic_block);
	}
1538
	bus_unregister(&hv_bus);
1539
	for_each_online_cpu(cpu) {
1540 1541 1542 1543
		struct hv_per_cpu_context *hv_cpu
			= per_cpu_ptr(hv_context.cpu_context, cpu);

		tasklet_kill(&hv_cpu->event_dpc);
1544
	}
1545
	cpuhp_remove_state(hyperv_cpuhp_online);
1546
	hv_synic_free();
1547 1548 1549
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
}

1550

1551
MODULE_LICENSE("GPL");
1552

1553
subsys_initcall(hv_acpi_init);
1554
module_exit(vmbus_exit);