vmbus_drv.c 62.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7
/*
 * Copyright (c) 2009, Microsoft Corporation.
 *
 * Authors:
 *   Haiyang Zhang <haiyangz@microsoft.com>
 *   Hank Janssen  <hjanssen@microsoft.com>
8
 *   K. Y. Srinivasan <kys@microsoft.com>
9
 */
10 11
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

12 13 14 15 16
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/sysctl.h>
17
#include <linux/slab.h>
18
#include <linux/acpi.h>
19
#include <linux/completion.h>
20
#include <linux/hyperv.h>
21
#include <linux/kernel_stat.h>
22
#include <linux/clockchips.h>
23
#include <linux/cpu.h>
24 25
#include <linux/sched/task_stack.h>

26
#include <asm/mshyperv.h>
27
#include <linux/delay.h>
28 29
#include <linux/notifier.h>
#include <linux/ptrace.h>
30
#include <linux/screen_info.h>
31
#include <linux/kdebug.h>
32
#include <linux/efi.h>
33
#include <linux/random.h>
34
#include <linux/syscore_ops.h>
35
#include <clocksource/hyperv_timer.h>
36
#include "hyperv_vmbus.h"
37

38 39 40 41 42
struct vmbus_dynid {
	struct list_head node;
	struct hv_vmbus_device_id id;
};

43
static struct acpi_device  *hv_acpi_dev;
44

45
static struct completion probe_event;
46

47
static int hyperv_cpuhp_online;
48

49 50
static void *hv_panic_page;

51 52 53 54 55 56 57 58 59 60 61 62
/*
 * Boolean to control whether to report panic messages over Hyper-V.
 *
 * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
 */
static int sysctl_record_panic_msg = 1;

static int hyperv_report_reg(void)
{
	return !sysctl_record_panic_msg || !hv_panic_page;
}

63 64 65 66 67
static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
			      void *args)
{
	struct pt_regs *regs;

68
	vmbus_initiate_unload(true);
69

70 71 72 73 74 75
	/*
	 * Hyper-V should be notified only once about a panic.  If we will be
	 * doing hyperv_report_panic_msg() later with kmsg data, don't do
	 * the notification here.
	 */
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE
76
	    && hyperv_report_reg()) {
77 78 79
		regs = current_pt_regs();
		hyperv_report_panic(regs, val);
	}
80 81 82
	return NOTIFY_DONE;
}

83 84 85 86 87 88
static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
			    void *args)
{
	struct die_args *die = (struct die_args *)args;
	struct pt_regs *regs = die->regs;

89 90 91 92 93
	/*
	 * Hyper-V should be notified only once about a panic.  If we will be
	 * doing hyperv_report_panic_msg() later with kmsg data, don't do
	 * the notification here.
	 */
94
	if (hyperv_report_reg())
95
		hyperv_report_panic(regs, val);
96 97 98 99 100 101
	return NOTIFY_DONE;
}

static struct notifier_block hyperv_die_block = {
	.notifier_call = hyperv_die_event,
};
102 103 104 105
static struct notifier_block hyperv_panic_block = {
	.notifier_call = hyperv_panic_event,
};

106 107
static const char *fb_mmio_name = "fb_range";
static struct resource *fb_mmio;
108
static struct resource *hyperv_mmio;
109
static DEFINE_MUTEX(hyperv_mmio_lock);
110

111 112 113 114 115 116 117 118
static int vmbus_exists(void)
{
	if (hv_acpi_dev == NULL)
		return -ENODEV;

	return 0;
}

119 120 121 122 123 124 125 126
#define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
{
	int i;
	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
}

127
static u8 channel_monitor_group(const struct vmbus_channel *channel)
128 129 130 131
{
	return (u8)channel->offermsg.monitorid / 32;
}

132
static u8 channel_monitor_offset(const struct vmbus_channel *channel)
133 134 135 136
{
	return (u8)channel->offermsg.monitorid % 32;
}

137 138
static u32 channel_pending(const struct vmbus_channel *channel,
			   const struct hv_monitor_page *monitor_page)
139 140
{
	u8 monitor_group = channel_monitor_group(channel);
141

142 143 144
	return monitor_page->trigger_group[monitor_group].pending;
}

145 146
static u32 channel_latency(const struct vmbus_channel *channel,
			   const struct hv_monitor_page *monitor_page)
147 148 149
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
150

151 152 153
	return monitor_page->latency[monitor_group][monitor_offset];
}

154 155 156 157 158 159 160 161
static u32 channel_conn_id(struct vmbus_channel *channel,
			   struct hv_monitor_page *monitor_page)
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
}

162 163 164 165 166 167 168 169 170 171 172
static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
		       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
}
static DEVICE_ATTR_RO(id);

173 174 175 176 177 178 179 180 181 182 183
static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
			  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->state);
}
static DEVICE_ATTR_RO(state);

184 185 186 187 188 189 190 191 192 193 194
static ssize_t monitor_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
}
static DEVICE_ATTR_RO(monitor_id);

195 196 197 198 199 200 201 202 203 204 205 206
static ssize_t class_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_type.b);
}
static DEVICE_ATTR_RO(class_id);

207 208 209 210 211 212 213 214 215 216 217 218
static ssize_t device_id_show(struct device *dev,
			      struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_instance.b);
}
static DEVICE_ATTR_RO(device_id);

219 220 221 222 223 224 225 226 227 228 229
static ssize_t modalias_show(struct device *dev,
			     struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	char alias_name[VMBUS_ALIAS_LEN + 1];

	print_alias_name(hv_dev, alias_name);
	return sprintf(buf, "vmbus:%s\n", alias_name);
}
static DEVICE_ATTR_RO(modalias);

230 231 232 233 234 235 236 237 238 239 240 241 242 243
#ifdef CONFIG_NUMA
static ssize_t numa_node_show(struct device *dev,
			      struct device_attribute *attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;

	return sprintf(buf, "%d\n", hv_dev->channel->numa_node);
}
static DEVICE_ATTR_RO(numa_node);
#endif

244 245 246 247 248 249 250 251 252 253
static ssize_t server_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
254
				       vmbus_connection.monitor_pages[0]));
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
}
static DEVICE_ATTR_RO(server_monitor_pending);

static ssize_t client_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_pending);
271

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
static ssize_t server_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_latency);

static ssize_t client_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_latency);

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
static ssize_t server_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_conn_id);

static ssize_t client_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_conn_id);

328 329 330 331 332
static ssize_t out_intr_mask_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
333
	int ret;
334 335 336

	if (!hv_dev->channel)
		return -ENODEV;
337 338 339 340 341 342

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;

343 344 345 346 347 348 349 350 351
	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(out_intr_mask);

static ssize_t out_read_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
352
	int ret;
353 354 355

	if (!hv_dev->channel)
		return -ENODEV;
356 357 358 359 360

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
361 362 363 364 365 366 367 368 369 370
	return sprintf(buf, "%d\n", outbound.current_read_index);
}
static DEVICE_ATTR_RO(out_read_index);

static ssize_t out_write_index_show(struct device *dev,
				    struct device_attribute *dev_attr,
				    char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
371
	int ret;
372 373 374

	if (!hv_dev->channel)
		return -ENODEV;
375 376 377 378 379

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
380 381 382 383 384 385 386 387 388 389
	return sprintf(buf, "%d\n", outbound.current_write_index);
}
static DEVICE_ATTR_RO(out_write_index);

static ssize_t out_read_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
390
	int ret;
391 392 393

	if (!hv_dev->channel)
		return -ENODEV;
394 395 396 397 398

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
399 400 401 402 403 404 405 406 407 408
	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(out_read_bytes_avail);

static ssize_t out_write_bytes_avail_show(struct device *dev,
					  struct device_attribute *dev_attr,
					  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
409
	int ret;
410 411 412

	if (!hv_dev->channel)
		return -ENODEV;
413 414 415 416 417

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
418 419 420 421 422 423 424 425 426
	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(out_write_bytes_avail);

static ssize_t in_intr_mask_show(struct device *dev,
				 struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
427
	int ret;
428 429 430

	if (!hv_dev->channel)
		return -ENODEV;
431 432 433 434 435

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

436 437 438 439 440 441 442 443 444
	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(in_intr_mask);

static ssize_t in_read_index_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
445
	int ret;
446 447 448

	if (!hv_dev->channel)
		return -ENODEV;
449 450 451 452 453

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

454 455 456 457 458 459 460 461 462
	return sprintf(buf, "%d\n", inbound.current_read_index);
}
static DEVICE_ATTR_RO(in_read_index);

static ssize_t in_write_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
463
	int ret;
464 465 466

	if (!hv_dev->channel)
		return -ENODEV;
467 468 469 470 471

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

472 473 474 475 476 477 478 479 480 481
	return sprintf(buf, "%d\n", inbound.current_write_index);
}
static DEVICE_ATTR_RO(in_write_index);

static ssize_t in_read_bytes_avail_show(struct device *dev,
					struct device_attribute *dev_attr,
					char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
482
	int ret;
483 484 485

	if (!hv_dev->channel)
		return -ENODEV;
486 487 488 489 490

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

491 492 493 494 495 496 497 498 499 500
	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(in_read_bytes_avail);

static ssize_t in_write_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
501
	int ret;
502 503 504

	if (!hv_dev->channel)
		return -ENODEV;
505 506 507 508 509

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

510 511 512 513
	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(in_write_bytes_avail);

514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
static ssize_t channel_vp_mapping_show(struct device *dev,
				       struct device_attribute *dev_attr,
				       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
	unsigned long flags;
	int buf_size = PAGE_SIZE, n_written, tot_written;
	struct list_head *cur;

	if (!channel)
		return -ENODEV;

	tot_written = snprintf(buf, buf_size, "%u:%u\n",
		channel->offermsg.child_relid, channel->target_cpu);

	spin_lock_irqsave(&channel->lock, flags);

	list_for_each(cur, &channel->sc_list) {
		if (tot_written >= buf_size - 1)
			break;

		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
		n_written = scnprintf(buf + tot_written,
				     buf_size - tot_written,
				     "%u:%u\n",
				     cur_sc->offermsg.child_relid,
				     cur_sc->target_cpu);
		tot_written += n_written;
	}

	spin_unlock_irqrestore(&channel->lock, flags);

	return tot_written;
}
static DEVICE_ATTR_RO(channel_vp_mapping);

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
static ssize_t vendor_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
}
static DEVICE_ATTR_RO(vendor);

static ssize_t device_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->device_id);
}
static DEVICE_ATTR_RO(device);

569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
static ssize_t driver_override_store(struct device *dev,
				     struct device_attribute *attr,
				     const char *buf, size_t count)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	char *driver_override, *old, *cp;

	/* We need to keep extra room for a newline */
	if (count >= (PAGE_SIZE - 1))
		return -EINVAL;

	driver_override = kstrndup(buf, count, GFP_KERNEL);
	if (!driver_override)
		return -ENOMEM;

	cp = strchr(driver_override, '\n');
	if (cp)
		*cp = '\0';

	device_lock(dev);
	old = hv_dev->driver_override;
	if (strlen(driver_override)) {
		hv_dev->driver_override = driver_override;
	} else {
		kfree(driver_override);
		hv_dev->driver_override = NULL;
	}
	device_unlock(dev);

	kfree(old);

	return count;
}

static ssize_t driver_override_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	ssize_t len;

	device_lock(dev);
	len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
	device_unlock(dev);

	return len;
}
static DEVICE_ATTR_RW(driver_override);

617
/* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
618
static struct attribute *vmbus_dev_attrs[] = {
619
	&dev_attr_id.attr,
620
	&dev_attr_state.attr,
621
	&dev_attr_monitor_id.attr,
622
	&dev_attr_class_id.attr,
623
	&dev_attr_device_id.attr,
624
	&dev_attr_modalias.attr,
625 626 627
#ifdef CONFIG_NUMA
	&dev_attr_numa_node.attr,
#endif
628 629
	&dev_attr_server_monitor_pending.attr,
	&dev_attr_client_monitor_pending.attr,
630 631
	&dev_attr_server_monitor_latency.attr,
	&dev_attr_client_monitor_latency.attr,
632 633
	&dev_attr_server_monitor_conn_id.attr,
	&dev_attr_client_monitor_conn_id.attr,
634 635 636 637 638 639 640 641 642 643
	&dev_attr_out_intr_mask.attr,
	&dev_attr_out_read_index.attr,
	&dev_attr_out_write_index.attr,
	&dev_attr_out_read_bytes_avail.attr,
	&dev_attr_out_write_bytes_avail.attr,
	&dev_attr_in_intr_mask.attr,
	&dev_attr_in_read_index.attr,
	&dev_attr_in_write_index.attr,
	&dev_attr_in_read_bytes_avail.attr,
	&dev_attr_in_write_bytes_avail.attr,
644
	&dev_attr_channel_vp_mapping.attr,
645 646
	&dev_attr_vendor.attr,
	&dev_attr_device.attr,
647
	&dev_attr_driver_override.attr,
648 649
	NULL,
};
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679

/*
 * Device-level attribute_group callback function. Returns the permission for
 * each attribute, and returns 0 if an attribute is not visible.
 */
static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
{
	struct device *dev = kobj_to_dev(kobj);
	const struct hv_device *hv_dev = device_to_hv_device(dev);

	/* Hide the monitor attributes if the monitor mechanism is not used. */
	if (!hv_dev->channel->offermsg.monitor_allocated &&
	    (attr == &dev_attr_monitor_id.attr ||
	     attr == &dev_attr_server_monitor_pending.attr ||
	     attr == &dev_attr_client_monitor_pending.attr ||
	     attr == &dev_attr_server_monitor_latency.attr ||
	     attr == &dev_attr_client_monitor_latency.attr ||
	     attr == &dev_attr_server_monitor_conn_id.attr ||
	     attr == &dev_attr_client_monitor_conn_id.attr))
		return 0;

	return attr->mode;
}

static const struct attribute_group vmbus_dev_group = {
	.attrs = vmbus_dev_attrs,
	.is_visible = vmbus_dev_attr_is_visible
};
__ATTRIBUTE_GROUPS(vmbus_dev);
680

681 682 683 684 685 686
/*
 * vmbus_uevent - add uevent for our device
 *
 * This routine is invoked when a device is added or removed on the vmbus to
 * generate a uevent to udev in the userspace. The udev will then look at its
 * rule and the uevent generated here to load the appropriate driver
687 688 689 690
 *
 * The alias string will be of the form vmbus:guid where guid is the string
 * representation of the device guid (each byte of the guid will be
 * represented with two hex characters.
691 692 693 694
 */
static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
{
	struct hv_device *dev = device_to_hv_device(device);
695 696
	int ret;
	char alias_name[VMBUS_ALIAS_LEN + 1];
697

698
	print_alias_name(dev, alias_name);
699 700
	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
	return ret;
701 702
}

703
static const struct hv_vmbus_device_id *
704
hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
705 706 707 708
{
	if (id == NULL)
		return NULL; /* empty device table */

709 710
	for (; !guid_is_null(&id->guid); id++)
		if (guid_equal(&id->guid, guid))
711 712 713 714 715 716
			return id;

	return NULL;
}

static const struct hv_vmbus_device_id *
717
hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
718
{
719 720 721 722 723
	const struct hv_vmbus_device_id *id = NULL;
	struct vmbus_dynid *dynid;

	spin_lock(&drv->dynids.lock);
	list_for_each_entry(dynid, &drv->dynids.list, node) {
724
		if (guid_equal(&dynid->id.guid, guid)) {
725 726 727 728 729 730
			id = &dynid->id;
			break;
		}
	}
	spin_unlock(&drv->dynids.lock);

731 732
	return id;
}
733

734
static const struct hv_vmbus_device_id vmbus_device_null;
735

736 737 738 739 740 741 742
/*
 * Return a matching hv_vmbus_device_id pointer.
 * If there is no match, return NULL.
 */
static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
							struct hv_device *dev)
{
743
	const guid_t *guid = &dev->dev_type;
744
	const struct hv_vmbus_device_id *id;
745

746 747 748 749 750 751 752 753 754 755 756 757 758 759
	/* When driver_override is set, only bind to the matching driver */
	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
		return NULL;

	/* Look at the dynamic ids first, before the static ones */
	id = hv_vmbus_dynid_match(drv, guid);
	if (!id)
		id = hv_vmbus_dev_match(drv->id_table, guid);

	/* driver_override will always match, send a dummy id */
	if (!id && dev->driver_override)
		id = &vmbus_device_null;

	return id;
760 761
}

762
/* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
763
static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
{
	struct vmbus_dynid *dynid;

	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
	if (!dynid)
		return -ENOMEM;

	dynid->id.guid = *guid;

	spin_lock(&drv->dynids.lock);
	list_add_tail(&dynid->node, &drv->dynids.list);
	spin_unlock(&drv->dynids.lock);

	return driver_attach(&drv->driver);
}

static void vmbus_free_dynids(struct hv_driver *drv)
{
	struct vmbus_dynid *dynid, *n;

	spin_lock(&drv->dynids.lock);
	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
		list_del(&dynid->node);
		kfree(dynid);
	}
	spin_unlock(&drv->dynids.lock);
}

/*
 * store_new_id - sysfs frontend to vmbus_add_dynid()
 *
 * Allow GUIDs to be added to an existing driver via sysfs.
 */
static ssize_t new_id_store(struct device_driver *driver, const char *buf,
			    size_t count)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
801
	guid_t guid;
802 803
	ssize_t retval;

804
	retval = guid_parse(buf, &guid);
805 806
	if (retval)
		return retval;
807

808
	if (hv_vmbus_dynid_match(drv, &guid))
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
		return -EEXIST;

	retval = vmbus_add_dynid(drv, &guid);
	if (retval)
		return retval;
	return count;
}
static DRIVER_ATTR_WO(new_id);

/*
 * store_remove_id - remove a PCI device ID from this driver
 *
 * Removes a dynamic pci device ID to this driver.
 */
static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
			       size_t count)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
	struct vmbus_dynid *dynid, *n;
828
	guid_t guid;
829
	ssize_t retval;
830

831
	retval = guid_parse(buf, &guid);
832 833
	if (retval)
		return retval;
834

835
	retval = -ENODEV;
836 837 838 839
	spin_lock(&drv->dynids.lock);
	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
		struct hv_vmbus_device_id *id = &dynid->id;

840
		if (guid_equal(&id->guid, &guid)) {
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
			list_del(&dynid->node);
			kfree(dynid);
			retval = count;
			break;
		}
	}
	spin_unlock(&drv->dynids.lock);

	return retval;
}
static DRIVER_ATTR_WO(remove_id);

static struct attribute *vmbus_drv_attrs[] = {
	&driver_attr_new_id.attr,
	&driver_attr_remove_id.attr,
	NULL,
};
ATTRIBUTE_GROUPS(vmbus_drv);
859

860 861 862 863 864 865 866

/*
 * vmbus_match - Attempt to match the specified device to the specified driver
 */
static int vmbus_match(struct device *device, struct device_driver *driver)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
867
	struct hv_device *hv_dev = device_to_hv_device(device);
868

869 870 871 872
	/* The hv_sock driver handles all hv_sock offers. */
	if (is_hvsock_channel(hv_dev->channel))
		return drv->hvsock;

873
	if (hv_vmbus_get_id(drv, hv_dev))
874
		return 1;
875

876
	return 0;
877 878
}

879 880 881 882 883 884 885 886
/*
 * vmbus_probe - Add the new vmbus's child device
 */
static int vmbus_probe(struct device *child_device)
{
	int ret = 0;
	struct hv_driver *drv =
			drv_to_hv_drv(child_device->driver);
887
	struct hv_device *dev = device_to_hv_device(child_device);
888
	const struct hv_vmbus_device_id *dev_id;
889

890
	dev_id = hv_vmbus_get_id(drv, dev);
891
	if (drv->probe) {
892
		ret = drv->probe(dev, dev_id);
893
		if (ret != 0)
894 895
			pr_err("probe failed for device %s (%d)\n",
			       dev_name(child_device), ret);
896 897

	} else {
898 899
		pr_err("probe not set for driver %s\n",
		       dev_name(child_device));
900
		ret = -ENODEV;
901 902 903 904
	}
	return ret;
}

905 906 907 908 909
/*
 * vmbus_remove - Remove a vmbus device
 */
static int vmbus_remove(struct device *child_device)
{
910
	struct hv_driver *drv;
911
	struct hv_device *dev = device_to_hv_device(child_device);
912

913 914 915 916 917
	if (child_device->driver) {
		drv = drv_to_hv_drv(child_device->driver);
		if (drv->remove)
			drv->remove(dev);
	}
918 919 920 921

	return 0;
}

922 923 924 925 926 927 928

/*
 * vmbus_shutdown - Shutdown a vmbus device
 */
static void vmbus_shutdown(struct device *child_device)
{
	struct hv_driver *drv;
929
	struct hv_device *dev = device_to_hv_device(child_device);
930 931 932 933 934 935 936 937


	/* The device may not be attached yet */
	if (!child_device->driver)
		return;

	drv = drv_to_hv_drv(child_device->driver);

938 939
	if (drv->shutdown)
		drv->shutdown(dev);
940 941
}

942
#ifdef CONFIG_PM_SLEEP
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
/*
 * vmbus_suspend - Suspend a vmbus device
 */
static int vmbus_suspend(struct device *child_device)
{
	struct hv_driver *drv;
	struct hv_device *dev = device_to_hv_device(child_device);

	/* The device may not be attached yet */
	if (!child_device->driver)
		return 0;

	drv = drv_to_hv_drv(child_device->driver);
	if (!drv->suspend)
		return -EOPNOTSUPP;

	return drv->suspend(dev);
}

/*
 * vmbus_resume - Resume a vmbus device
 */
static int vmbus_resume(struct device *child_device)
{
	struct hv_driver *drv;
	struct hv_device *dev = device_to_hv_device(child_device);

	/* The device may not be attached yet */
	if (!child_device->driver)
		return 0;

	drv = drv_to_hv_drv(child_device->driver);
	if (!drv->resume)
		return -EOPNOTSUPP;

	return drv->resume(dev);
}
980
#endif /* CONFIG_PM_SLEEP */
981 982 983 984 985 986

/*
 * vmbus_device_release - Final callback release of the vmbus child device
 */
static void vmbus_device_release(struct device *device)
{
987
	struct hv_device *hv_dev = device_to_hv_device(device);
988
	struct vmbus_channel *channel = hv_dev->channel;
989

990 991
	hv_debug_rm_dev_dir(hv_dev);

992
	mutex_lock(&vmbus_connection.channel_mutex);
993
	hv_process_channel_removal(channel);
994
	mutex_unlock(&vmbus_connection.channel_mutex);
995
	kfree(hv_dev);
996 997
}

998 999 1000 1001 1002 1003 1004 1005
/*
 * Note: we must use SET_NOIRQ_SYSTEM_SLEEP_PM_OPS rather than
 * SET_SYSTEM_SLEEP_PM_OPS: see the comment before vmbus_bus_pm.
 */
static const struct dev_pm_ops vmbus_pm = {
	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(vmbus_suspend, vmbus_resume)
};

1006
/* The one and only one */
1007 1008 1009 1010 1011 1012 1013
static struct bus_type  hv_bus = {
	.name =		"vmbus",
	.match =		vmbus_match,
	.shutdown =		vmbus_shutdown,
	.remove =		vmbus_remove,
	.probe =		vmbus_probe,
	.uevent =		vmbus_uevent,
1014 1015
	.dev_groups =		vmbus_dev_groups,
	.drv_groups =		vmbus_drv_groups,
1016
	.pm =			&vmbus_pm,
1017 1018
};

1019 1020 1021 1022 1023 1024 1025 1026 1027
struct onmessage_work_context {
	struct work_struct work;
	struct hv_message msg;
};

static void vmbus_onmessage_work(struct work_struct *work)
{
	struct onmessage_work_context *ctx;

1028 1029 1030 1031
	/* Do not process messages if we're in DISCONNECTED state */
	if (vmbus_connection.conn_state == DISCONNECTED)
		return;

1032 1033 1034 1035 1036 1037
	ctx = container_of(work, struct onmessage_work_context,
			   work);
	vmbus_onmessage(&ctx->msg);
	kfree(ctx);
}

1038
void vmbus_on_msg_dpc(unsigned long data)
G
Greg Kroah-Hartman 已提交
1039
{
1040 1041
	struct hv_per_cpu_context *hv_cpu = (void *)data;
	void *page_addr = hv_cpu->synic_message_page;
G
Greg Kroah-Hartman 已提交
1042 1043
	struct hv_message *msg = (struct hv_message *)page_addr +
				  VMBUS_MESSAGE_SINT;
1044
	struct vmbus_channel_message_header *hdr;
1045
	const struct vmbus_channel_message_table_entry *entry;
1046
	struct onmessage_work_context *ctx;
1047
	u32 message_type = msg->header.message_type;
G
Greg Kroah-Hartman 已提交
1048

1049
	if (message_type == HVMSG_NONE)
1050 1051
		/* no msg */
		return;
1052

1053
	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
1054

1055 1056
	trace_vmbus_on_msg_dpc(hdr);

1057 1058 1059 1060
	if (hdr->msgtype >= CHANNELMSG_COUNT) {
		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
		goto msg_handled;
	}
1061

1062
	entry = &channel_message_table[hdr->msgtype];
1063 1064 1065 1066

	if (!entry->message_handler)
		goto msg_handled;

1067 1068 1069 1070
	if (entry->handler_type	== VMHT_BLOCKING) {
		ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
		if (ctx == NULL)
			return;
1071

1072 1073
		INIT_WORK(&ctx->work, vmbus_onmessage_work);
		memcpy(&ctx->msg, msg, sizeof(*msg));
1074

1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
		/*
		 * The host can generate a rescind message while we
		 * may still be handling the original offer. We deal with
		 * this condition by ensuring the processing is done on the
		 * same CPU.
		 */
		switch (hdr->msgtype) {
		case CHANNELMSG_RESCIND_CHANNELOFFER:
			/*
			 * If we are handling the rescind message;
			 * schedule the work on the global work queue.
			 */
			schedule_work_on(vmbus_connection.connect_cpu,
					 &ctx->work);
			break;

		case CHANNELMSG_OFFERCHANNEL:
			atomic_inc(&vmbus_connection.offer_in_progress);
			queue_work_on(vmbus_connection.connect_cpu,
				      vmbus_connection.work_queue,
				      &ctx->work);
			break;

		default:
			queue_work(vmbus_connection.work_queue, &ctx->work);
		}
1101 1102
	} else
		entry->message_handler(hdr);
G
Greg Kroah-Hartman 已提交
1103

1104
msg_handled:
1105
	vmbus_signal_eom(msg, message_type);
G
Greg Kroah-Hartman 已提交
1106 1107
}

1108
#ifdef CONFIG_PM_SLEEP
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
/*
 * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
 * hibernation, because hv_sock connections can not persist across hibernation.
 */
static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
{
	struct onmessage_work_context *ctx;
	struct vmbus_channel_rescind_offer *rescind;

	WARN_ON(!is_hvsock_channel(channel));

	/*
	 * sizeof(*ctx) is small and the allocation should really not fail,
	 * otherwise the state of the hv_sock connections ends up in limbo.
	 */
	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL | __GFP_NOFAIL);

	/*
	 * So far, these are not really used by Linux. Just set them to the
	 * reasonable values conforming to the definitions of the fields.
	 */
	ctx->msg.header.message_type = 1;
	ctx->msg.header.payload_size = sizeof(*rescind);

	/* These values are actually used by Linux. */
	rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.u.payload;
	rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
	rescind->child_relid = channel->offermsg.child_relid;

	INIT_WORK(&ctx->work, vmbus_onmessage_work);

	queue_work_on(vmbus_connection.connect_cpu,
		      vmbus_connection.work_queue,
		      &ctx->work);
}
1144
#endif /* CONFIG_PM_SLEEP */
1145

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
/*
 * Direct callback for channels using other deferred processing
 */
static void vmbus_channel_isr(struct vmbus_channel *channel)
{
	void (*callback_fn)(void *);

	callback_fn = READ_ONCE(channel->onchannel_callback);
	if (likely(callback_fn != NULL))
		(*callback_fn)(channel->channel_callback_context);
}

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
/*
 * Schedule all channels with events pending
 */
static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
{
	unsigned long *recv_int_page;
	u32 maxbits, relid;

	if (vmbus_proto_version < VERSION_WIN8) {
		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
		recv_int_page = vmbus_connection.recv_int_page;
	} else {
		/*
		 * When the host is win8 and beyond, the event page
		 * can be directly checked to get the id of the channel
		 * that has the interrupt pending.
		 */
		void *page_addr = hv_cpu->synic_event_page;
		union hv_synic_event_flags *event
			= (union hv_synic_event_flags *)page_addr +
						 VMBUS_MESSAGE_SINT;

		maxbits = HV_EVENT_FLAGS_COUNT;
		recv_int_page = event->flags;
	}

	if (unlikely(!recv_int_page))
		return;

	for_each_set_bit(relid, recv_int_page, maxbits) {
		struct vmbus_channel *channel;

		if (!sync_test_and_clear_bit(relid, recv_int_page))
			continue;

		/* Special case - vmbus channel protocol msg */
		if (relid == 0)
			continue;

1197 1198
		rcu_read_lock();

1199
		/* Find channel based on relid */
1200
		list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
1201 1202 1203
			if (channel->offermsg.child_relid != relid)
				continue;

1204 1205 1206
			if (channel->rescind)
				continue;

V
Vitaly Kuznetsov 已提交
1207 1208
			trace_vmbus_chan_sched(channel);

1209 1210
			++channel->interrupts;

1211 1212 1213
			switch (channel->callback_mode) {
			case HV_CALL_ISR:
				vmbus_channel_isr(channel);
1214
				break;
1215 1216 1217 1218 1219 1220

			case HV_CALL_BATCHED:
				hv_begin_read(&channel->inbound);
				/* fallthrough */
			case HV_CALL_DIRECT:
				tasklet_schedule(&channel->callback_event);
1221 1222
			}
		}
1223 1224

		rcu_read_unlock();
1225 1226 1227
	}
}

1228
static void vmbus_isr(void)
G
Greg Kroah-Hartman 已提交
1229
{
1230 1231 1232
	struct hv_per_cpu_context *hv_cpu
		= this_cpu_ptr(hv_context.cpu_context);
	void *page_addr = hv_cpu->synic_event_page;
G
Greg Kroah-Hartman 已提交
1233 1234
	struct hv_message *msg;
	union hv_synic_event_flags *event;
1235
	bool handled = false;
G
Greg Kroah-Hartman 已提交
1236

1237
	if (unlikely(page_addr == NULL))
1238
		return;
1239 1240 1241

	event = (union hv_synic_event_flags *)page_addr +
					 VMBUS_MESSAGE_SINT;
1242 1243 1244 1245 1246
	/*
	 * Check for events before checking for messages. This is the order
	 * in which events and messages are checked in Windows guests on
	 * Hyper-V, and the Windows team suggested we do the same.
	 */
G
Greg Kroah-Hartman 已提交
1247

1248 1249
	if ((vmbus_proto_version == VERSION_WS2008) ||
		(vmbus_proto_version == VERSION_WIN7)) {
G
Greg Kroah-Hartman 已提交
1250

1251
		/* Since we are a child, we only need to check bit 0 */
1252
		if (sync_test_and_clear_bit(0, event->flags))
1253 1254 1255 1256 1257 1258 1259 1260
			handled = true;
	} else {
		/*
		 * Our host is win8 or above. The signaling mechanism
		 * has changed and we can directly look at the event page.
		 * If bit n is set then we have an interrup on the channel
		 * whose id is n.
		 */
1261 1262
		handled = true;
	}
1263

1264
	if (handled)
1265
		vmbus_chan_sched(hv_cpu);
1266

1267
	page_addr = hv_cpu->synic_message_page;
1268 1269 1270
	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;

	/* Check if there are actual msgs to be processed */
1271
	if (msg->header.message_type != HVMSG_NONE) {
1272 1273 1274 1275
		if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
			hv_stimer0_isr();
			vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
		} else
1276
			tasklet_schedule(&hv_cpu->msg_dpc);
1277
	}
1278 1279

	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1280 1281
}

1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
/*
 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
 * buffer and call into Hyper-V to transfer the data.
 */
static void hv_kmsg_dump(struct kmsg_dumper *dumper,
			 enum kmsg_dump_reason reason)
{
	size_t bytes_written;
	phys_addr_t panic_pa;

	/* We are only interested in panics. */
	if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
		return;

	panic_pa = virt_to_phys(hv_panic_page);

	/*
	 * Write dump contents to the page. No need to synchronize; panic should
	 * be single-threaded.
	 */
1302
	kmsg_dump_get_buffer(dumper, true, hv_panic_page, HV_HYP_PAGE_SIZE,
1303 1304 1305
			     &bytes_written);
	if (bytes_written)
		hyperv_report_panic_msg(panic_pa, bytes_written);
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
}

static struct kmsg_dumper hv_kmsg_dumper = {
	.dump = hv_kmsg_dump,
};

static struct ctl_table_header *hv_ctl_table_hdr;

/*
 * sysctl option to allow the user to control whether kmsg data should be
 * reported to Hyper-V on panic.
 */
static struct ctl_table hv_ctl_table[] = {
	{
		.procname       = "hyperv_record_panic_msg",
		.data           = &sysctl_record_panic_msg,
		.maxlen         = sizeof(int),
		.mode           = 0644,
		.proc_handler   = proc_dointvec_minmax,
1325 1326
		.extra1		= SYSCTL_ZERO,
		.extra2		= SYSCTL_ONE
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
	},
	{}
};

static struct ctl_table hv_root_table[] = {
	{
		.procname	= "kernel",
		.mode		= 0555,
		.child		= hv_ctl_table
	},
	{}
};
1339

1340
/*
1341 1342 1343
 * vmbus_bus_init -Main vmbus driver initialization routine.
 *
 * Here, we
1344 1345 1346
 *	- initialize the vmbus driver context
 *	- invoke the vmbus hv main init routine
 *	- retrieve the channel offers
1347
 */
1348
static int vmbus_bus_init(void)
1349
{
1350
	int ret;
1351

1352 1353
	/* Hypervisor initialization...setup hypercall page..etc */
	ret = hv_init();
1354
	if (ret != 0) {
1355
		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1356
		return ret;
1357 1358
	}

1359
	ret = bus_register(&hv_bus);
1360
	if (ret)
1361
		return ret;
1362

1363
	hv_setup_vmbus_irq(vmbus_isr);
1364

1365 1366 1367
	ret = hv_synic_alloc();
	if (ret)
		goto err_alloc;
1368

1369
	/*
1370 1371
	 * Initialize the per-cpu interrupt state and stimer state.
	 * Then connect to the host.
1372
	 */
1373
	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1374 1375
				hv_synic_init, hv_synic_cleanup);
	if (ret < 0)
1376
		goto err_cpuhp;
1377 1378
	hyperv_cpuhp_online = ret;

1379
	ret = vmbus_connect();
1380
	if (ret)
1381
		goto err_connect;
1382

1383 1384 1385
	/*
	 * Only register if the crash MSRs are available
	 */
1386
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
		u64 hyperv_crash_ctl;
		/*
		 * Sysctl registration is not fatal, since by default
		 * reporting is enabled.
		 */
		hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
		if (!hv_ctl_table_hdr)
			pr_err("Hyper-V: sysctl table register error");

		/*
		 * Register for panic kmsg callback only if the right
		 * capability is supported by the hypervisor.
		 */
1400
		hv_get_crash_ctl(hyperv_crash_ctl);
1401
		if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) {
1402
			hv_panic_page = (void *)hv_alloc_hyperv_zeroed_page();
1403 1404
			if (hv_panic_page) {
				ret = kmsg_dump_register(&hv_kmsg_dumper);
1405
				if (ret) {
1406 1407
					pr_err("Hyper-V: kmsg dump register "
						"error 0x%x\n", ret);
1408 1409 1410 1411
					hv_free_hyperv_page(
					    (unsigned long)hv_panic_page);
					hv_panic_page = NULL;
				}
1412 1413 1414 1415 1416
			} else
				pr_err("Hyper-V: panic message page memory "
					"allocation failed");
		}

1417
		register_die_notifier(&hyperv_die_block);
1418 1419
	}

1420 1421 1422 1423 1424 1425 1426 1427
	/*
	 * Always register the panic notifier because we need to unload
	 * the VMbus channel connection to prevent any VMbus
	 * activity after the VM panics.
	 */
	atomic_notifier_chain_register(&panic_notifier_list,
			       &hyperv_panic_block);

1428
	vmbus_request_offers();
1429

1430
	return 0;
1431

1432
err_connect:
1433
	cpuhp_remove_state(hyperv_cpuhp_online);
1434
err_cpuhp:
1435
	hv_synic_free();
1436
err_alloc:
1437
	hv_remove_vmbus_irq();
1438 1439

	bus_unregister(&hv_bus);
1440 1441
	unregister_sysctl_table(hv_ctl_table_hdr);
	hv_ctl_table_hdr = NULL;
1442
	return ret;
1443 1444
}

1445
/**
1446 1447
 * __vmbus_child_driver_register() - Register a vmbus's driver
 * @hv_driver: Pointer to driver structure you want to register
1448 1449
 * @owner: owner module of the drv
 * @mod_name: module name string
1450 1451
 *
 * Registers the given driver with Linux through the 'driver_register()' call
1452
 * and sets up the hyper-v vmbus handling for this driver.
1453 1454
 * It will return the state of the 'driver_register()' call.
 *
1455
 */
1456
int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1457
{
1458
	int ret;
1459

1460
	pr_info("registering driver %s\n", hv_driver->name);
1461

1462 1463 1464 1465
	ret = vmbus_exists();
	if (ret < 0)
		return ret;

1466 1467 1468 1469
	hv_driver->driver.name = hv_driver->name;
	hv_driver->driver.owner = owner;
	hv_driver->driver.mod_name = mod_name;
	hv_driver->driver.bus = &hv_bus;
1470

1471 1472 1473
	spin_lock_init(&hv_driver->dynids.lock);
	INIT_LIST_HEAD(&hv_driver->dynids.list);

1474
	ret = driver_register(&hv_driver->driver);
1475

1476
	return ret;
1477
}
1478
EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1479

1480
/**
1481
 * vmbus_driver_unregister() - Unregister a vmbus's driver
1482 1483
 * @hv_driver: Pointer to driver structure you want to
 *             un-register
1484
 *
1485 1486
 * Un-register the given driver that was previous registered with a call to
 * vmbus_driver_register()
1487
 */
1488
void vmbus_driver_unregister(struct hv_driver *hv_driver)
1489
{
1490
	pr_info("unregistering driver %s\n", hv_driver->name);
1491

1492
	if (!vmbus_exists()) {
1493
		driver_unregister(&hv_driver->driver);
1494 1495
		vmbus_free_dynids(hv_driver);
	}
1496
}
1497
EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1498

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512

/*
 * Called when last reference to channel is gone.
 */
static void vmbus_chan_release(struct kobject *kobj)
{
	struct vmbus_channel *channel
		= container_of(kobj, struct vmbus_channel, kobj);

	kfree_rcu(channel, rcu);
}

struct vmbus_chan_attribute {
	struct attribute attr;
1513
	ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
	ssize_t (*store)(struct vmbus_channel *chan,
			 const char *buf, size_t count);
};
#define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
	struct vmbus_chan_attribute chan_attr_##_name \
		= __ATTR(_name, _mode, _show, _store)
#define VMBUS_CHAN_ATTR_RW(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
#define VMBUS_CHAN_ATTR_RO(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
#define VMBUS_CHAN_ATTR_WO(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)

static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
				    struct attribute *attr, char *buf)
{
	const struct vmbus_chan_attribute *attribute
		= container_of(attr, struct vmbus_chan_attribute, attr);
1532
	struct vmbus_channel *chan
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
		= container_of(kobj, struct vmbus_channel, kobj);

	if (!attribute->show)
		return -EIO;

	return attribute->show(chan, buf);
}

static const struct sysfs_ops vmbus_chan_sysfs_ops = {
	.show = vmbus_chan_attr_show,
};

1545
static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1546
{
1547 1548
	struct hv_ring_buffer_info *rbi = &channel->outbound;
	ssize_t ret;
1549

1550 1551 1552
	mutex_lock(&rbi->ring_buffer_mutex);
	if (!rbi->ring_buffer) {
		mutex_unlock(&rbi->ring_buffer_mutex);
1553
		return -EINVAL;
1554
	}
1555

1556 1557 1558
	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
	mutex_unlock(&rbi->ring_buffer_mutex);
	return ret;
1559
}
1560
static VMBUS_CHAN_ATTR_RO(out_mask);
1561

1562
static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1563
{
1564 1565
	struct hv_ring_buffer_info *rbi = &channel->inbound;
	ssize_t ret;
1566

1567 1568 1569
	mutex_lock(&rbi->ring_buffer_mutex);
	if (!rbi->ring_buffer) {
		mutex_unlock(&rbi->ring_buffer_mutex);
1570
		return -EINVAL;
1571
	}
1572

1573 1574 1575
	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
	mutex_unlock(&rbi->ring_buffer_mutex);
	return ret;
1576
}
1577
static VMBUS_CHAN_ATTR_RO(in_mask);
1578

1579
static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1580
{
1581 1582
	struct hv_ring_buffer_info *rbi = &channel->inbound;
	ssize_t ret;
1583

1584 1585 1586
	mutex_lock(&rbi->ring_buffer_mutex);
	if (!rbi->ring_buffer) {
		mutex_unlock(&rbi->ring_buffer_mutex);
1587
		return -EINVAL;
1588
	}
1589

1590 1591 1592
	ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
	mutex_unlock(&rbi->ring_buffer_mutex);
	return ret;
1593
}
1594
static VMBUS_CHAN_ATTR_RO(read_avail);
1595

1596
static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1597
{
1598 1599
	struct hv_ring_buffer_info *rbi = &channel->outbound;
	ssize_t ret;
1600

1601 1602 1603
	mutex_lock(&rbi->ring_buffer_mutex);
	if (!rbi->ring_buffer) {
		mutex_unlock(&rbi->ring_buffer_mutex);
1604
		return -EINVAL;
1605
	}
1606

1607 1608 1609
	ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
	mutex_unlock(&rbi->ring_buffer_mutex);
	return ret;
1610
}
1611
static VMBUS_CHAN_ATTR_RO(write_avail);
1612

1613
static ssize_t show_target_cpu(struct vmbus_channel *channel, char *buf)
1614 1615 1616
{
	return sprintf(buf, "%u\n", channel->target_cpu);
}
1617
static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1618

1619
static ssize_t channel_pending_show(struct vmbus_channel *channel,
1620 1621 1622 1623 1624 1625
				    char *buf)
{
	return sprintf(buf, "%d\n",
		       channel_pending(channel,
				       vmbus_connection.monitor_pages[1]));
}
1626
static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1627

1628
static ssize_t channel_latency_show(struct vmbus_channel *channel,
1629 1630 1631 1632 1633 1634
				    char *buf)
{
	return sprintf(buf, "%d\n",
		       channel_latency(channel,
				       vmbus_connection.monitor_pages[1]));
}
1635
static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1636

1637
static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1638 1639 1640
{
	return sprintf(buf, "%llu\n", channel->interrupts);
}
1641
static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1642

1643
static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1644 1645 1646
{
	return sprintf(buf, "%llu\n", channel->sig_events);
}
1647
static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1648

1649
static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1650 1651 1652 1653 1654 1655 1656
					 char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->intr_in_full);
}
static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);

1657
static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1658 1659 1660 1661 1662 1663 1664
					   char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->intr_out_empty);
}
static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);

1665
static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1666 1667 1668 1669 1670 1671 1672
					   char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->out_full_first);
}
static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);

1673
static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1674 1675 1676 1677 1678 1679 1680
					   char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->out_full_total);
}
static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);

1681
static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1682 1683 1684 1685 1686 1687
					  char *buf)
{
	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
}
static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);

1688
static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1689 1690 1691 1692 1693 1694 1695
				  char *buf)
{
	return sprintf(buf, "%u\n",
		       channel->offermsg.offer.sub_channel_index);
}
static VMBUS_CHAN_ATTR_RO(subchannel_id);

1696 1697 1698 1699 1700 1701 1702 1703
static struct attribute *vmbus_chan_attrs[] = {
	&chan_attr_out_mask.attr,
	&chan_attr_in_mask.attr,
	&chan_attr_read_avail.attr,
	&chan_attr_write_avail.attr,
	&chan_attr_cpu.attr,
	&chan_attr_pending.attr,
	&chan_attr_latency.attr,
1704 1705
	&chan_attr_interrupts.attr,
	&chan_attr_events.attr,
1706 1707 1708 1709
	&chan_attr_intr_in_full.attr,
	&chan_attr_intr_out_empty.attr,
	&chan_attr_out_full_first.attr,
	&chan_attr_out_full_total.attr,
1710 1711
	&chan_attr_monitor_id.attr,
	&chan_attr_subchannel_id.attr,
1712 1713 1714
	NULL
};

1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
/*
 * Channel-level attribute_group callback function. Returns the permission for
 * each attribute, and returns 0 if an attribute is not visible.
 */
static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
					  struct attribute *attr, int idx)
{
	const struct vmbus_channel *channel =
		container_of(kobj, struct vmbus_channel, kobj);

	/* Hide the monitor attributes if the monitor mechanism is not used. */
	if (!channel->offermsg.monitor_allocated &&
	    (attr == &chan_attr_pending.attr ||
	     attr == &chan_attr_latency.attr ||
	     attr == &chan_attr_monitor_id.attr))
		return 0;

	return attr->mode;
}

static struct attribute_group vmbus_chan_group = {
	.attrs = vmbus_chan_attrs,
	.is_visible = vmbus_chan_attr_is_visible
};

1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
static struct kobj_type vmbus_chan_ktype = {
	.sysfs_ops = &vmbus_chan_sysfs_ops,
	.release = vmbus_chan_release,
};

/*
 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
 */
int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
{
1750
	const struct device *device = &dev->device;
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
	struct kobject *kobj = &channel->kobj;
	u32 relid = channel->offermsg.child_relid;
	int ret;

	kobj->kset = dev->channels_kset;
	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
				   "%u", relid);
	if (ret)
		return ret;

1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
	ret = sysfs_create_group(kobj, &vmbus_chan_group);

	if (ret) {
		/*
		 * The calling functions' error handling paths will cleanup the
		 * empty channel directory.
		 */
		dev_err(device, "Unable to set up channel sysfs files\n");
		return ret;
	}

1772 1773 1774 1775 1776
	kobject_uevent(kobj, KOBJ_ADD);

	return 0;
}

1777 1778 1779 1780 1781 1782 1783 1784
/*
 * vmbus_remove_channel_attr_group - remove the channel's attribute group
 */
void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
{
	sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
}

1785
/*
1786
 * vmbus_device_create - Creates and registers a new child device
1787
 * on the vmbus.
1788
 */
1789 1790
struct hv_device *vmbus_device_create(const guid_t *type,
				      const guid_t *instance,
S
stephen hemminger 已提交
1791
				      struct vmbus_channel *channel)
1792
{
1793
	struct hv_device *child_device_obj;
1794

1795 1796
	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
	if (!child_device_obj) {
1797
		pr_err("Unable to allocate device object for child device\n");
1798 1799 1800
		return NULL;
	}

1801
	child_device_obj->channel = channel;
1802 1803
	guid_copy(&child_device_obj->dev_type, type);
	guid_copy(&child_device_obj->dev_instance, instance);
1804
	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1805 1806 1807 1808

	return child_device_obj;
}

1809
/*
1810
 * vmbus_device_register - Register the child device
1811
 */
1812
int vmbus_device_register(struct hv_device *child_device_obj)
1813
{
1814 1815
	struct kobject *kobj = &child_device_obj->device.kobj;
	int ret;
1816

1817
	dev_set_name(&child_device_obj->device, "%pUl",
1818
		     child_device_obj->channel->offermsg.offer.if_instance.b);
1819

1820
	child_device_obj->device.bus = &hv_bus;
1821
	child_device_obj->device.parent = &hv_acpi_dev->dev;
1822
	child_device_obj->device.release = vmbus_device_release;
1823

1824 1825 1826 1827
	/*
	 * Register with the LDM. This will kick off the driver/device
	 * binding...which will eventually call vmbus_match() and vmbus_probe()
	 */
1828
	ret = device_register(&child_device_obj->device);
1829
	if (ret) {
1830
		pr_err("Unable to register child device\n");
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
		return ret;
	}

	child_device_obj->channels_kset = kset_create_and_add("channels",
							      NULL, kobj);
	if (!child_device_obj->channels_kset) {
		ret = -ENOMEM;
		goto err_dev_unregister;
	}

	ret = vmbus_add_channel_kobj(child_device_obj,
				     child_device_obj->channel);
	if (ret) {
		pr_err("Unable to register primary channeln");
		goto err_kset_unregister;
	}
1847
	hv_debug_add_dev_dir(child_device_obj);
1848 1849 1850 1851 1852

	return 0;

err_kset_unregister:
	kset_unregister(child_device_obj->channels_kset);
1853

1854 1855
err_dev_unregister:
	device_unregister(&child_device_obj->device);
1856 1857 1858
	return ret;
}

1859
/*
1860
 * vmbus_device_unregister - Remove the specified child device
1861
 * from the vmbus.
1862
 */
1863
void vmbus_device_unregister(struct hv_device *device_obj)
1864
{
1865 1866 1867
	pr_debug("child device %s unregistered\n",
		dev_name(&device_obj->device));

1868 1869
	kset_unregister(device_obj->channels_kset);

1870 1871 1872 1873
	/*
	 * Kick off the process of unregistering the device.
	 * This will call vmbus_remove() and eventually vmbus_device_release()
	 */
1874
	device_unregister(&device_obj->device);
1875 1876 1877
}


1878
/*
1879
 * VMBUS is an acpi enumerated device. Get the information we
1880
 * need from DSDT.
1881
 */
1882
#define VTPM_BASE_ADDRESS 0xfed40000
1883
static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1884
{
1885 1886 1887 1888 1889 1890
	resource_size_t start = 0;
	resource_size_t end = 0;
	struct resource *new_res;
	struct resource **old_res = &hyperv_mmio;
	struct resource **prev_res = NULL;

1891
	switch (res->type) {
1892 1893 1894 1895 1896 1897 1898 1899 1900

	/*
	 * "Address" descriptors are for bus windows. Ignore
	 * "memory" descriptors, which are for registers on
	 * devices.
	 */
	case ACPI_RESOURCE_TYPE_ADDRESS32:
		start = res->data.address32.address.minimum;
		end = res->data.address32.address.maximum;
G
Gerd Hoffmann 已提交
1901
		break;
1902

1903
	case ACPI_RESOURCE_TYPE_ADDRESS64:
1904 1905
		start = res->data.address64.address.minimum;
		end = res->data.address64.address.maximum;
G
Gerd Hoffmann 已提交
1906
		break;
1907 1908 1909 1910 1911

	default:
		/* Unused resource type */
		return AE_OK;

1912
	}
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
	/*
	 * Ignore ranges that are below 1MB, as they're not
	 * necessary or useful here.
	 */
	if (end < 0x100000)
		return AE_OK;

	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
	if (!new_res)
		return AE_NO_MEMORY;

	/* If this range overlaps the virtual TPM, truncate it. */
	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
		end = VTPM_BASE_ADDRESS;

	new_res->name = "hyperv mmio";
	new_res->flags = IORESOURCE_MEM;
	new_res->start = start;
	new_res->end = end;

1933 1934 1935
	/*
	 * If two ranges are adjacent, merge them.
	 */
1936 1937 1938 1939 1940 1941
	do {
		if (!*old_res) {
			*old_res = new_res;
			break;
		}

1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
		if (((*old_res)->end + 1) == new_res->start) {
			(*old_res)->end = new_res->end;
			kfree(new_res);
			break;
		}

		if ((*old_res)->start == new_res->end + 1) {
			(*old_res)->start = new_res->start;
			kfree(new_res);
			break;
		}

1954
		if ((*old_res)->start > new_res->end) {
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
			new_res->sibling = *old_res;
			if (prev_res)
				(*prev_res)->sibling = new_res;
			*old_res = new_res;
			break;
		}

		prev_res = old_res;
		old_res = &(*old_res)->sibling;

	} while (1);
1966 1967 1968 1969

	return AE_OK;
}

1970 1971 1972 1973 1974 1975
static int vmbus_acpi_remove(struct acpi_device *device)
{
	struct resource *cur_res;
	struct resource *next_res;

	if (hyperv_mmio) {
1976 1977 1978 1979 1980 1981
		if (fb_mmio) {
			__release_region(hyperv_mmio, fb_mmio->start,
					 resource_size(fb_mmio));
			fb_mmio = NULL;
		}

1982 1983 1984 1985 1986 1987 1988 1989 1990
		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
			next_res = cur_res->sibling;
			kfree(cur_res);
		}
	}

	return 0;
}

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
static void vmbus_reserve_fb(void)
{
	int size;
	/*
	 * Make a claim for the frame buffer in the resource tree under the
	 * first node, which will be the one below 4GB.  The length seems to
	 * be underreported, particularly in a Generation 1 VM.  So start out
	 * reserving a larger area and make it smaller until it succeeds.
	 */

	if (screen_info.lfb_base) {
		if (efi_enabled(EFI_BOOT))
			size = max_t(__u32, screen_info.lfb_size, 0x800000);
		else
			size = max_t(__u32, screen_info.lfb_size, 0x4000000);

		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
			fb_mmio = __request_region(hyperv_mmio,
						   screen_info.lfb_base, size,
						   fb_mmio_name, 0);
		}
	}
}

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
/**
 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
 * @new:		If successful, supplied a pointer to the
 *			allocated MMIO space.
 * @device_obj:		Identifies the caller
 * @min:		Minimum guest physical address of the
 *			allocation
 * @max:		Maximum guest physical address
 * @size:		Size of the range to be allocated
 * @align:		Alignment of the range to be allocated
 * @fb_overlap_ok:	Whether this allocation can be allowed
 *			to overlap the video frame buffer.
 *
 * This function walks the resources granted to VMBus by the
 * _CRS object in the ACPI namespace underneath the parent
 * "bridge" whether that's a root PCI bus in the Generation 1
 * case or a Module Device in the Generation 2 case.  It then
 * attempts to allocate from the global MMIO pool in a way that
 * matches the constraints supplied in these parameters and by
 * that _CRS.
 *
 * Return: 0 on success, -errno on failure
 */
int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
			resource_size_t min, resource_size_t max,
			resource_size_t size, resource_size_t align,
			bool fb_overlap_ok)
{
2043
	struct resource *iter, *shadow;
2044
	resource_size_t range_min, range_max, start;
2045
	const char *dev_n = dev_name(&device_obj->device);
2046
	int retval;
2047 2048

	retval = -ENXIO;
2049
	mutex_lock(&hyperv_mmio_lock);
2050

2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
	/*
	 * If overlaps with frame buffers are allowed, then first attempt to
	 * make the allocation from within the reserved region.  Because it
	 * is already reserved, no shadow allocation is necessary.
	 */
	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
	    !(max < fb_mmio->start)) {

		range_min = fb_mmio->start;
		range_max = fb_mmio->end;
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				retval = 0;
				goto exit;
			}
		}
	}

2071 2072 2073 2074 2075 2076
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= max) || (iter->end <= min))
			continue;

		range_min = iter->start;
		range_max = iter->end;
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			shadow = __request_region(iter, start, size, NULL,
						  IORESOURCE_BUSY);
			if (!shadow)
				continue;

			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				shadow->name = (char *)*new;
				retval = 0;
				goto exit;
2089 2090
			}

2091
			__release_region(iter, start, size);
2092 2093 2094
		}
	}

2095
exit:
2096
	mutex_unlock(&hyperv_mmio_lock);
2097
	return retval;
2098 2099 2100
}
EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);

2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
/**
 * vmbus_free_mmio() - Free a memory-mapped I/O range.
 * @start:		Base address of region to release.
 * @size:		Size of the range to be allocated
 *
 * This function releases anything requested by
 * vmbus_mmio_allocate().
 */
void vmbus_free_mmio(resource_size_t start, resource_size_t size)
{
2111 2112
	struct resource *iter;

2113
	mutex_lock(&hyperv_mmio_lock);
2114 2115 2116 2117 2118 2119
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= start + size) || (iter->end <= start))
			continue;

		__release_region(iter, start, size);
	}
2120
	release_mem_region(start, size);
2121
	mutex_unlock(&hyperv_mmio_lock);
2122 2123 2124 2125

}
EXPORT_SYMBOL_GPL(vmbus_free_mmio);

2126 2127 2128
static int vmbus_acpi_add(struct acpi_device *device)
{
	acpi_status result;
2129
	int ret_val = -ENODEV;
2130
	struct acpi_device *ancestor;
2131

2132 2133
	hv_acpi_dev = device;

2134
	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2135
					vmbus_walk_resources, NULL);
2136

2137 2138 2139
	if (ACPI_FAILURE(result))
		goto acpi_walk_err;
	/*
2140 2141
	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
	 * firmware) is the VMOD that has the mmio ranges. Get that.
2142
	 */
2143 2144 2145
	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
					     vmbus_walk_resources, NULL);
2146 2147

		if (ACPI_FAILURE(result))
2148
			continue;
2149 2150
		if (hyperv_mmio) {
			vmbus_reserve_fb();
2151
			break;
2152
		}
2153
	}
2154 2155 2156
	ret_val = 0;

acpi_walk_err:
2157
	complete(&probe_event);
2158 2159
	if (ret_val)
		vmbus_acpi_remove(device);
2160
	return ret_val;
2161 2162
}

2163
#ifdef CONFIG_PM_SLEEP
2164 2165
static int vmbus_bus_suspend(struct device *dev)
{
2166 2167
	struct vmbus_channel *channel, *sc;
	unsigned long flags;
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185

	while (atomic_read(&vmbus_connection.offer_in_progress) != 0) {
		/*
		 * We wait here until the completion of any channel
		 * offers that are currently in progress.
		 */
		msleep(1);
	}

	mutex_lock(&vmbus_connection.channel_mutex);
	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
		if (!is_hvsock_channel(channel))
			continue;

		vmbus_force_channel_rescinded(channel);
	}
	mutex_unlock(&vmbus_connection.channel_mutex);

2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
	/*
	 * Wait until all the sub-channels and hv_sock channels have been
	 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
	 * they would conflict with the new sub-channels that will be created
	 * in the resume path. hv_sock channels should also be destroyed, but
	 * a hv_sock channel of an established hv_sock connection can not be
	 * really destroyed since it may still be referenced by the userspace
	 * application, so we just force the hv_sock channel to be rescinded
	 * by vmbus_force_channel_rescinded(), and the userspace application
	 * will thoroughly destroy the channel after hibernation.
	 *
	 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
	 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
	 */
	if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0)
		wait_for_completion(&vmbus_connection.ready_for_suspend_event);

2203 2204
	WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0);

2205 2206 2207
	mutex_lock(&vmbus_connection.channel_mutex);

	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2208 2209 2210 2211 2212 2213
		/*
		 * Invalidate the field. Upon resume, vmbus_onoffer() will fix
		 * up the field, and the other fields (if necessary).
		 */
		channel->offermsg.child_relid = INVALID_RELID;

2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
		if (is_hvsock_channel(channel)) {
			if (!channel->rescind) {
				pr_err("hv_sock channel not rescinded!\n");
				WARN_ON_ONCE(1);
			}
			continue;
		}

		spin_lock_irqsave(&channel->lock, flags);
		list_for_each_entry(sc, &channel->sc_list, sc_list) {
			pr_err("Sub-channel not deleted!\n");
			WARN_ON_ONCE(1);
		}
		spin_unlock_irqrestore(&channel->lock, flags);
2228 2229

		atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume);
2230 2231 2232 2233
	}

	mutex_unlock(&vmbus_connection.channel_mutex);

2234 2235
	vmbus_initiate_unload(false);

2236 2237 2238
	/* Reset the event for the next resume. */
	reinit_completion(&vmbus_connection.ready_for_resume_event);

2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
	return 0;
}

static int vmbus_bus_resume(struct device *dev)
{
	struct vmbus_channel_msginfo *msginfo;
	size_t msgsize;
	int ret;

	/*
	 * We only use the 'vmbus_proto_version', which was in use before
	 * hibernation, to re-negotiate with the host.
	 */
2252
	if (!vmbus_proto_version) {
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
		pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
		return -EINVAL;
	}

	msgsize = sizeof(*msginfo) +
		  sizeof(struct vmbus_channel_initiate_contact);

	msginfo = kzalloc(msgsize, GFP_KERNEL);

	if (msginfo == NULL)
		return -ENOMEM;

	ret = vmbus_negotiate_version(msginfo, vmbus_proto_version);

	kfree(msginfo);

	if (ret != 0)
		return ret;

2272 2273
	WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0);

2274 2275
	vmbus_request_offers();

2276 2277
	wait_for_completion(&vmbus_connection.ready_for_resume_event);

2278 2279 2280
	/* Reset the event for the next suspend. */
	reinit_completion(&vmbus_connection.ready_for_suspend_event);

2281 2282
	return 0;
}
2283
#endif /* CONFIG_PM_SLEEP */
2284

2285 2286
static const struct acpi_device_id vmbus_acpi_device_ids[] = {
	{"VMBUS", 0},
2287
	{"VMBus", 0},
2288 2289 2290 2291
	{"", 0},
};
MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);

2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
/*
 * Note: we must use SET_NOIRQ_SYSTEM_SLEEP_PM_OPS rather than
 * SET_SYSTEM_SLEEP_PM_OPS, otherwise NIC SR-IOV can not work, because the
 * "pci_dev_pm_ops" uses the "noirq" callbacks: in the resume path, the
 * pci "noirq" restore callback runs before "non-noirq" callbacks (see
 * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
 * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
 * resume callback must also run via the "noirq" callbacks.
 */
static const struct dev_pm_ops vmbus_bus_pm = {
	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(vmbus_bus_suspend, vmbus_bus_resume)
};

2305 2306 2307 2308 2309
static struct acpi_driver vmbus_acpi_driver = {
	.name = "vmbus",
	.ids = vmbus_acpi_device_ids,
	.ops = {
		.add = vmbus_acpi_add,
2310
		.remove = vmbus_acpi_remove,
2311
	},
2312
	.drv.pm = &vmbus_bus_pm,
2313 2314
};

2315 2316
static void hv_kexec_handler(void)
{
2317
	hv_stimer_global_cleanup();
2318
	vmbus_initiate_unload(false);
2319 2320
	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
	mb();
2321
	cpuhp_remove_state(hyperv_cpuhp_online);
2322
	hyperv_cleanup();
2323 2324
};

2325 2326
static void hv_crash_handler(struct pt_regs *regs)
{
2327 2328
	int cpu;

2329
	vmbus_initiate_unload(true);
2330 2331 2332 2333 2334
	/*
	 * In crash handler we can't schedule synic cleanup for all CPUs,
	 * doing the cleanup for current CPU only. This should be sufficient
	 * for kdump.
	 */
2335 2336
	cpu = smp_processor_id();
	hv_stimer_cleanup(cpu);
2337
	hv_synic_disable_regs(cpu);
2338
	hyperv_cleanup();
2339 2340
};

2341 2342 2343
static int hv_synic_suspend(void)
{
	/*
2344 2345 2346 2347
	 * When we reach here, all the non-boot CPUs have been offlined.
	 * If we're in a legacy configuration where stimer Direct Mode is
	 * not enabled, the stimers on the non-boot CPUs have been unbound
	 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() ->
2348 2349
	 * hv_stimer_cleanup() -> clockevents_unbind_device().
	 *
2350 2351 2352 2353 2354
	 * hv_synic_suspend() only runs on CPU0 with interrupts disabled.
	 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because:
	 * 1) it's unnecessary as interrupts remain disabled between
	 * syscore_suspend() and syscore_resume(): see create_image() and
	 * resume_target_kernel()
2355 2356
	 * 2) the stimer on CPU0 is automatically disabled later by
	 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
2357 2358 2359 2360
	 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown()
	 * 3) a warning would be triggered if we call
	 * clockevents_unbind_device(), which may sleep, in an
	 * interrupts-disabled context.
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
	 */

	hv_synic_disable_regs(0);

	return 0;
}

static void hv_synic_resume(void)
{
	hv_synic_enable_regs(0);

	/*
	 * Note: we don't need to call hv_stimer_init(0), because the timer
	 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
	 * automatically re-enabled in timekeeping_resume().
	 */
}

/* The callbacks run only on CPU0, with irqs_disabled. */
static struct syscore_ops hv_synic_syscore_ops = {
	.suspend = hv_synic_suspend,
	.resume = hv_synic_resume,
};

2385
static int __init hv_acpi_init(void)
2386
{
2387
	int ret, t;
2388

2389
	if (!hv_is_hyperv_initialized())
2390 2391
		return -ENODEV;

2392 2393 2394
	init_completion(&probe_event);

	/*
2395
	 * Get ACPI resources first.
2396
	 */
2397 2398
	ret = acpi_bus_register_driver(&vmbus_acpi_driver);

2399 2400 2401
	if (ret)
		return ret;

2402 2403 2404 2405 2406
	t = wait_for_completion_timeout(&probe_event, 5*HZ);
	if (t == 0) {
		ret = -ETIMEDOUT;
		goto cleanup;
	}
2407
	hv_debug_init();
2408

2409
	ret = vmbus_bus_init();
2410
	if (ret)
2411 2412
		goto cleanup;

2413
	hv_setup_kexec_handler(hv_kexec_handler);
2414
	hv_setup_crash_handler(hv_crash_handler);
2415

2416 2417
	register_syscore_ops(&hv_synic_syscore_ops);

2418 2419 2420 2421
	return 0;

cleanup:
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2422
	hv_acpi_dev = NULL;
2423
	return ret;
2424 2425
}

2426 2427
static void __exit vmbus_exit(void)
{
2428 2429
	int cpu;

2430 2431
	unregister_syscore_ops(&hv_synic_syscore_ops);

2432
	hv_remove_kexec_handler();
2433
	hv_remove_crash_handler();
2434
	vmbus_connection.conn_state = DISCONNECTED;
2435
	hv_stimer_global_cleanup();
2436
	vmbus_disconnect();
2437
	hv_remove_vmbus_irq();
2438 2439 2440 2441 2442 2443
	for_each_online_cpu(cpu) {
		struct hv_per_cpu_context *hv_cpu
			= per_cpu_ptr(hv_context.cpu_context, cpu);

		tasklet_kill(&hv_cpu->msg_dpc);
	}
2444 2445
	hv_debug_rm_all_dir();

2446
	vmbus_free_channels();
2447

2448
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
2449
		kmsg_dump_unregister(&hv_kmsg_dumper);
2450
		unregister_die_notifier(&hyperv_die_block);
2451 2452 2453
		atomic_notifier_chain_unregister(&panic_notifier_list,
						 &hyperv_panic_block);
	}
2454 2455

	free_page((unsigned long)hv_panic_page);
2456 2457
	unregister_sysctl_table(hv_ctl_table_hdr);
	hv_ctl_table_hdr = NULL;
2458
	bus_unregister(&hv_bus);
2459

2460
	cpuhp_remove_state(hyperv_cpuhp_online);
2461
	hv_synic_free();
2462 2463 2464
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
}

2465

2466
MODULE_LICENSE("GPL");
2467
MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2468

2469
subsys_initcall(hv_acpi_init);
2470
module_exit(vmbus_exit);