vmbus_drv.c 56.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7
/*
 * Copyright (c) 2009, Microsoft Corporation.
 *
 * Authors:
 *   Haiyang Zhang <haiyangz@microsoft.com>
 *   Hank Janssen  <hjanssen@microsoft.com>
8
 *   K. Y. Srinivasan <kys@microsoft.com>
9
 */
10 11
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

12 13 14 15 16
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/sysctl.h>
17
#include <linux/slab.h>
18
#include <linux/acpi.h>
19
#include <linux/completion.h>
20
#include <linux/hyperv.h>
21
#include <linux/kernel_stat.h>
22
#include <linux/clockchips.h>
23
#include <linux/cpu.h>
24 25
#include <linux/sched/task_stack.h>

26
#include <asm/mshyperv.h>
27 28
#include <linux/notifier.h>
#include <linux/ptrace.h>
29
#include <linux/screen_info.h>
30
#include <linux/kdebug.h>
31
#include <linux/efi.h>
32
#include <linux/random.h>
33
#include <linux/syscore_ops.h>
34
#include <clocksource/hyperv_timer.h>
35
#include "hyperv_vmbus.h"
36

37 38 39 40 41
struct vmbus_dynid {
	struct list_head node;
	struct hv_vmbus_device_id id;
};

42
static struct acpi_device  *hv_acpi_dev;
43

44
static struct completion probe_event;
45

46
static int hyperv_cpuhp_online;
47

48 49
static void *hv_panic_page;

50 51 52 53 54 55 56
static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
			      void *args)
{
	struct pt_regs *regs;

	regs = current_pt_regs();

57
	hyperv_report_panic(regs, val);
58 59 60
	return NOTIFY_DONE;
}

61 62 63 64 65 66
static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
			    void *args)
{
	struct die_args *die = (struct die_args *)args;
	struct pt_regs *regs = die->regs;

67
	hyperv_report_panic(regs, val);
68 69 70 71 72 73
	return NOTIFY_DONE;
}

static struct notifier_block hyperv_die_block = {
	.notifier_call = hyperv_die_event,
};
74 75 76 77
static struct notifier_block hyperv_panic_block = {
	.notifier_call = hyperv_panic_event,
};

78 79
static const char *fb_mmio_name = "fb_range";
static struct resource *fb_mmio;
80 81
static struct resource *hyperv_mmio;
static DEFINE_SEMAPHORE(hyperv_mmio_lock);
82

83 84 85 86 87 88 89 90
static int vmbus_exists(void)
{
	if (hv_acpi_dev == NULL)
		return -ENODEV;

	return 0;
}

91 92 93 94 95 96 97 98
#define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
{
	int i;
	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
}

99
static u8 channel_monitor_group(const struct vmbus_channel *channel)
100 101 102 103
{
	return (u8)channel->offermsg.monitorid / 32;
}

104
static u8 channel_monitor_offset(const struct vmbus_channel *channel)
105 106 107 108
{
	return (u8)channel->offermsg.monitorid % 32;
}

109 110
static u32 channel_pending(const struct vmbus_channel *channel,
			   const struct hv_monitor_page *monitor_page)
111 112
{
	u8 monitor_group = channel_monitor_group(channel);
113

114 115 116
	return monitor_page->trigger_group[monitor_group].pending;
}

117 118
static u32 channel_latency(const struct vmbus_channel *channel,
			   const struct hv_monitor_page *monitor_page)
119 120 121
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
122

123 124 125
	return monitor_page->latency[monitor_group][monitor_offset];
}

126 127 128 129 130 131 132 133
static u32 channel_conn_id(struct vmbus_channel *channel,
			   struct hv_monitor_page *monitor_page)
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
}

134 135 136 137 138 139 140 141 142 143 144
static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
		       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
}
static DEVICE_ATTR_RO(id);

145 146 147 148 149 150 151 152 153 154 155
static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
			  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->state);
}
static DEVICE_ATTR_RO(state);

156 157 158 159 160 161 162 163 164 165 166
static ssize_t monitor_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
}
static DEVICE_ATTR_RO(monitor_id);

167 168 169 170 171 172 173 174 175 176 177 178
static ssize_t class_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_type.b);
}
static DEVICE_ATTR_RO(class_id);

179 180 181 182 183 184 185 186 187 188 189 190
static ssize_t device_id_show(struct device *dev,
			      struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_instance.b);
}
static DEVICE_ATTR_RO(device_id);

191 192 193 194 195 196 197 198 199 200 201
static ssize_t modalias_show(struct device *dev,
			     struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	char alias_name[VMBUS_ALIAS_LEN + 1];

	print_alias_name(hv_dev, alias_name);
	return sprintf(buf, "vmbus:%s\n", alias_name);
}
static DEVICE_ATTR_RO(modalias);

202 203 204 205 206 207 208 209 210 211 212 213 214 215
#ifdef CONFIG_NUMA
static ssize_t numa_node_show(struct device *dev,
			      struct device_attribute *attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;

	return sprintf(buf, "%d\n", hv_dev->channel->numa_node);
}
static DEVICE_ATTR_RO(numa_node);
#endif

216 217 218 219 220 221 222 223 224 225
static ssize_t server_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
226
				       vmbus_connection.monitor_pages[0]));
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
}
static DEVICE_ATTR_RO(server_monitor_pending);

static ssize_t client_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_pending);
243

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
static ssize_t server_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_latency);

static ssize_t client_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_latency);

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
static ssize_t server_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_conn_id);

static ssize_t client_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_conn_id);

300 301 302 303 304
static ssize_t out_intr_mask_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
305
	int ret;
306 307 308

	if (!hv_dev->channel)
		return -ENODEV;
309 310 311 312 313 314

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;

315 316 317 318 319 320 321 322 323
	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(out_intr_mask);

static ssize_t out_read_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
324
	int ret;
325 326 327

	if (!hv_dev->channel)
		return -ENODEV;
328 329 330 331 332

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
333 334 335 336 337 338 339 340 341 342
	return sprintf(buf, "%d\n", outbound.current_read_index);
}
static DEVICE_ATTR_RO(out_read_index);

static ssize_t out_write_index_show(struct device *dev,
				    struct device_attribute *dev_attr,
				    char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
343
	int ret;
344 345 346

	if (!hv_dev->channel)
		return -ENODEV;
347 348 349 350 351

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
352 353 354 355 356 357 358 359 360 361
	return sprintf(buf, "%d\n", outbound.current_write_index);
}
static DEVICE_ATTR_RO(out_write_index);

static ssize_t out_read_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
362
	int ret;
363 364 365

	if (!hv_dev->channel)
		return -ENODEV;
366 367 368 369 370

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
371 372 373 374 375 376 377 378 379 380
	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(out_read_bytes_avail);

static ssize_t out_write_bytes_avail_show(struct device *dev,
					  struct device_attribute *dev_attr,
					  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
381
	int ret;
382 383 384

	if (!hv_dev->channel)
		return -ENODEV;
385 386 387 388 389

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
390 391 392 393 394 395 396 397 398
	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(out_write_bytes_avail);

static ssize_t in_intr_mask_show(struct device *dev,
				 struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
399
	int ret;
400 401 402

	if (!hv_dev->channel)
		return -ENODEV;
403 404 405 406 407

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

408 409 410 411 412 413 414 415 416
	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(in_intr_mask);

static ssize_t in_read_index_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
417
	int ret;
418 419 420

	if (!hv_dev->channel)
		return -ENODEV;
421 422 423 424 425

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

426 427 428 429 430 431 432 433 434
	return sprintf(buf, "%d\n", inbound.current_read_index);
}
static DEVICE_ATTR_RO(in_read_index);

static ssize_t in_write_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
435
	int ret;
436 437 438

	if (!hv_dev->channel)
		return -ENODEV;
439 440 441 442 443

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

444 445 446 447 448 449 450 451 452 453
	return sprintf(buf, "%d\n", inbound.current_write_index);
}
static DEVICE_ATTR_RO(in_write_index);

static ssize_t in_read_bytes_avail_show(struct device *dev,
					struct device_attribute *dev_attr,
					char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
454
	int ret;
455 456 457

	if (!hv_dev->channel)
		return -ENODEV;
458 459 460 461 462

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

463 464 465 466 467 468 469 470 471 472
	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(in_read_bytes_avail);

static ssize_t in_write_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
473
	int ret;
474 475 476

	if (!hv_dev->channel)
		return -ENODEV;
477 478 479 480 481

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

482 483 484 485
	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(in_write_bytes_avail);

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
static ssize_t channel_vp_mapping_show(struct device *dev,
				       struct device_attribute *dev_attr,
				       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
	unsigned long flags;
	int buf_size = PAGE_SIZE, n_written, tot_written;
	struct list_head *cur;

	if (!channel)
		return -ENODEV;

	tot_written = snprintf(buf, buf_size, "%u:%u\n",
		channel->offermsg.child_relid, channel->target_cpu);

	spin_lock_irqsave(&channel->lock, flags);

	list_for_each(cur, &channel->sc_list) {
		if (tot_written >= buf_size - 1)
			break;

		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
		n_written = scnprintf(buf + tot_written,
				     buf_size - tot_written,
				     "%u:%u\n",
				     cur_sc->offermsg.child_relid,
				     cur_sc->target_cpu);
		tot_written += n_written;
	}

	spin_unlock_irqrestore(&channel->lock, flags);

	return tot_written;
}
static DEVICE_ATTR_RO(channel_vp_mapping);

523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
static ssize_t vendor_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
}
static DEVICE_ATTR_RO(vendor);

static ssize_t device_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->device_id);
}
static DEVICE_ATTR_RO(device);

541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
static ssize_t driver_override_store(struct device *dev,
				     struct device_attribute *attr,
				     const char *buf, size_t count)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	char *driver_override, *old, *cp;

	/* We need to keep extra room for a newline */
	if (count >= (PAGE_SIZE - 1))
		return -EINVAL;

	driver_override = kstrndup(buf, count, GFP_KERNEL);
	if (!driver_override)
		return -ENOMEM;

	cp = strchr(driver_override, '\n');
	if (cp)
		*cp = '\0';

	device_lock(dev);
	old = hv_dev->driver_override;
	if (strlen(driver_override)) {
		hv_dev->driver_override = driver_override;
	} else {
		kfree(driver_override);
		hv_dev->driver_override = NULL;
	}
	device_unlock(dev);

	kfree(old);

	return count;
}

static ssize_t driver_override_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	ssize_t len;

	device_lock(dev);
	len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
	device_unlock(dev);

	return len;
}
static DEVICE_ATTR_RW(driver_override);

589
/* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
590
static struct attribute *vmbus_dev_attrs[] = {
591
	&dev_attr_id.attr,
592
	&dev_attr_state.attr,
593
	&dev_attr_monitor_id.attr,
594
	&dev_attr_class_id.attr,
595
	&dev_attr_device_id.attr,
596
	&dev_attr_modalias.attr,
597 598 599
#ifdef CONFIG_NUMA
	&dev_attr_numa_node.attr,
#endif
600 601
	&dev_attr_server_monitor_pending.attr,
	&dev_attr_client_monitor_pending.attr,
602 603
	&dev_attr_server_monitor_latency.attr,
	&dev_attr_client_monitor_latency.attr,
604 605
	&dev_attr_server_monitor_conn_id.attr,
	&dev_attr_client_monitor_conn_id.attr,
606 607 608 609 610 611 612 613 614 615
	&dev_attr_out_intr_mask.attr,
	&dev_attr_out_read_index.attr,
	&dev_attr_out_write_index.attr,
	&dev_attr_out_read_bytes_avail.attr,
	&dev_attr_out_write_bytes_avail.attr,
	&dev_attr_in_intr_mask.attr,
	&dev_attr_in_read_index.attr,
	&dev_attr_in_write_index.attr,
	&dev_attr_in_read_bytes_avail.attr,
	&dev_attr_in_write_bytes_avail.attr,
616
	&dev_attr_channel_vp_mapping.attr,
617 618
	&dev_attr_vendor.attr,
	&dev_attr_device.attr,
619
	&dev_attr_driver_override.attr,
620 621
	NULL,
};
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651

/*
 * Device-level attribute_group callback function. Returns the permission for
 * each attribute, and returns 0 if an attribute is not visible.
 */
static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
{
	struct device *dev = kobj_to_dev(kobj);
	const struct hv_device *hv_dev = device_to_hv_device(dev);

	/* Hide the monitor attributes if the monitor mechanism is not used. */
	if (!hv_dev->channel->offermsg.monitor_allocated &&
	    (attr == &dev_attr_monitor_id.attr ||
	     attr == &dev_attr_server_monitor_pending.attr ||
	     attr == &dev_attr_client_monitor_pending.attr ||
	     attr == &dev_attr_server_monitor_latency.attr ||
	     attr == &dev_attr_client_monitor_latency.attr ||
	     attr == &dev_attr_server_monitor_conn_id.attr ||
	     attr == &dev_attr_client_monitor_conn_id.attr))
		return 0;

	return attr->mode;
}

static const struct attribute_group vmbus_dev_group = {
	.attrs = vmbus_dev_attrs,
	.is_visible = vmbus_dev_attr_is_visible
};
__ATTRIBUTE_GROUPS(vmbus_dev);
652

653 654 655 656 657 658
/*
 * vmbus_uevent - add uevent for our device
 *
 * This routine is invoked when a device is added or removed on the vmbus to
 * generate a uevent to udev in the userspace. The udev will then look at its
 * rule and the uevent generated here to load the appropriate driver
659 660 661 662
 *
 * The alias string will be of the form vmbus:guid where guid is the string
 * representation of the device guid (each byte of the guid will be
 * represented with two hex characters.
663 664 665 666
 */
static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
{
	struct hv_device *dev = device_to_hv_device(device);
667 668
	int ret;
	char alias_name[VMBUS_ALIAS_LEN + 1];
669

670
	print_alias_name(dev, alias_name);
671 672
	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
	return ret;
673 674
}

675
static const struct hv_vmbus_device_id *
676
hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
677 678 679 680
{
	if (id == NULL)
		return NULL; /* empty device table */

681 682
	for (; !guid_is_null(&id->guid); id++)
		if (guid_equal(&id->guid, guid))
683 684 685 686 687 688
			return id;

	return NULL;
}

static const struct hv_vmbus_device_id *
689
hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
690
{
691 692 693 694 695
	const struct hv_vmbus_device_id *id = NULL;
	struct vmbus_dynid *dynid;

	spin_lock(&drv->dynids.lock);
	list_for_each_entry(dynid, &drv->dynids.list, node) {
696
		if (guid_equal(&dynid->id.guid, guid)) {
697 698 699 700 701 702
			id = &dynid->id;
			break;
		}
	}
	spin_unlock(&drv->dynids.lock);

703 704
	return id;
}
705

706
static const struct hv_vmbus_device_id vmbus_device_null;
707

708 709 710 711 712 713 714
/*
 * Return a matching hv_vmbus_device_id pointer.
 * If there is no match, return NULL.
 */
static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
							struct hv_device *dev)
{
715
	const guid_t *guid = &dev->dev_type;
716
	const struct hv_vmbus_device_id *id;
717

718 719 720 721 722 723 724 725 726 727 728 729 730 731
	/* When driver_override is set, only bind to the matching driver */
	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
		return NULL;

	/* Look at the dynamic ids first, before the static ones */
	id = hv_vmbus_dynid_match(drv, guid);
	if (!id)
		id = hv_vmbus_dev_match(drv->id_table, guid);

	/* driver_override will always match, send a dummy id */
	if (!id && dev->driver_override)
		id = &vmbus_device_null;

	return id;
732 733
}

734
/* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
735
static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
{
	struct vmbus_dynid *dynid;

	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
	if (!dynid)
		return -ENOMEM;

	dynid->id.guid = *guid;

	spin_lock(&drv->dynids.lock);
	list_add_tail(&dynid->node, &drv->dynids.list);
	spin_unlock(&drv->dynids.lock);

	return driver_attach(&drv->driver);
}

static void vmbus_free_dynids(struct hv_driver *drv)
{
	struct vmbus_dynid *dynid, *n;

	spin_lock(&drv->dynids.lock);
	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
		list_del(&dynid->node);
		kfree(dynid);
	}
	spin_unlock(&drv->dynids.lock);
}

/*
 * store_new_id - sysfs frontend to vmbus_add_dynid()
 *
 * Allow GUIDs to be added to an existing driver via sysfs.
 */
static ssize_t new_id_store(struct device_driver *driver, const char *buf,
			    size_t count)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
773
	guid_t guid;
774 775
	ssize_t retval;

776
	retval = guid_parse(buf, &guid);
777 778
	if (retval)
		return retval;
779

780
	if (hv_vmbus_dynid_match(drv, &guid))
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
		return -EEXIST;

	retval = vmbus_add_dynid(drv, &guid);
	if (retval)
		return retval;
	return count;
}
static DRIVER_ATTR_WO(new_id);

/*
 * store_remove_id - remove a PCI device ID from this driver
 *
 * Removes a dynamic pci device ID to this driver.
 */
static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
			       size_t count)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
	struct vmbus_dynid *dynid, *n;
800
	guid_t guid;
801
	ssize_t retval;
802

803
	retval = guid_parse(buf, &guid);
804 805
	if (retval)
		return retval;
806

807
	retval = -ENODEV;
808 809 810 811
	spin_lock(&drv->dynids.lock);
	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
		struct hv_vmbus_device_id *id = &dynid->id;

812
		if (guid_equal(&id->guid, &guid)) {
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
			list_del(&dynid->node);
			kfree(dynid);
			retval = count;
			break;
		}
	}
	spin_unlock(&drv->dynids.lock);

	return retval;
}
static DRIVER_ATTR_WO(remove_id);

static struct attribute *vmbus_drv_attrs[] = {
	&driver_attr_new_id.attr,
	&driver_attr_remove_id.attr,
	NULL,
};
ATTRIBUTE_GROUPS(vmbus_drv);
831

832 833 834 835 836 837 838

/*
 * vmbus_match - Attempt to match the specified device to the specified driver
 */
static int vmbus_match(struct device *device, struct device_driver *driver)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
839
	struct hv_device *hv_dev = device_to_hv_device(device);
840

841 842 843 844
	/* The hv_sock driver handles all hv_sock offers. */
	if (is_hvsock_channel(hv_dev->channel))
		return drv->hvsock;

845
	if (hv_vmbus_get_id(drv, hv_dev))
846
		return 1;
847

848
	return 0;
849 850
}

851 852 853 854 855 856 857 858
/*
 * vmbus_probe - Add the new vmbus's child device
 */
static int vmbus_probe(struct device *child_device)
{
	int ret = 0;
	struct hv_driver *drv =
			drv_to_hv_drv(child_device->driver);
859
	struct hv_device *dev = device_to_hv_device(child_device);
860
	const struct hv_vmbus_device_id *dev_id;
861

862
	dev_id = hv_vmbus_get_id(drv, dev);
863
	if (drv->probe) {
864
		ret = drv->probe(dev, dev_id);
865
		if (ret != 0)
866 867
			pr_err("probe failed for device %s (%d)\n",
			       dev_name(child_device), ret);
868 869

	} else {
870 871
		pr_err("probe not set for driver %s\n",
		       dev_name(child_device));
872
		ret = -ENODEV;
873 874 875 876
	}
	return ret;
}

877 878 879 880 881
/*
 * vmbus_remove - Remove a vmbus device
 */
static int vmbus_remove(struct device *child_device)
{
882
	struct hv_driver *drv;
883
	struct hv_device *dev = device_to_hv_device(child_device);
884

885 886 887 888 889
	if (child_device->driver) {
		drv = drv_to_hv_drv(child_device->driver);
		if (drv->remove)
			drv->remove(dev);
	}
890 891 892 893

	return 0;
}

894 895 896 897 898 899 900

/*
 * vmbus_shutdown - Shutdown a vmbus device
 */
static void vmbus_shutdown(struct device *child_device)
{
	struct hv_driver *drv;
901
	struct hv_device *dev = device_to_hv_device(child_device);
902 903 904 905 906 907 908 909


	/* The device may not be attached yet */
	if (!child_device->driver)
		return;

	drv = drv_to_hv_drv(child_device->driver);

910 911
	if (drv->shutdown)
		drv->shutdown(dev);
912 913
}

914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
/*
 * vmbus_suspend - Suspend a vmbus device
 */
static int vmbus_suspend(struct device *child_device)
{
	struct hv_driver *drv;
	struct hv_device *dev = device_to_hv_device(child_device);

	/* The device may not be attached yet */
	if (!child_device->driver)
		return 0;

	drv = drv_to_hv_drv(child_device->driver);
	if (!drv->suspend)
		return -EOPNOTSUPP;

	return drv->suspend(dev);
}

/*
 * vmbus_resume - Resume a vmbus device
 */
static int vmbus_resume(struct device *child_device)
{
	struct hv_driver *drv;
	struct hv_device *dev = device_to_hv_device(child_device);

	/* The device may not be attached yet */
	if (!child_device->driver)
		return 0;

	drv = drv_to_hv_drv(child_device->driver);
	if (!drv->resume)
		return -EOPNOTSUPP;

	return drv->resume(dev);
}
951 952 953 954 955 956

/*
 * vmbus_device_release - Final callback release of the vmbus child device
 */
static void vmbus_device_release(struct device *device)
{
957
	struct hv_device *hv_dev = device_to_hv_device(device);
958
	struct vmbus_channel *channel = hv_dev->channel;
959

960
	mutex_lock(&vmbus_connection.channel_mutex);
961
	hv_process_channel_removal(channel);
962
	mutex_unlock(&vmbus_connection.channel_mutex);
963
	kfree(hv_dev);
964 965
}

966 967 968 969 970 971 972 973
/*
 * Note: we must use SET_NOIRQ_SYSTEM_SLEEP_PM_OPS rather than
 * SET_SYSTEM_SLEEP_PM_OPS: see the comment before vmbus_bus_pm.
 */
static const struct dev_pm_ops vmbus_pm = {
	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(vmbus_suspend, vmbus_resume)
};

974
/* The one and only one */
975 976 977 978 979 980 981
static struct bus_type  hv_bus = {
	.name =		"vmbus",
	.match =		vmbus_match,
	.shutdown =		vmbus_shutdown,
	.remove =		vmbus_remove,
	.probe =		vmbus_probe,
	.uevent =		vmbus_uevent,
982 983
	.dev_groups =		vmbus_dev_groups,
	.drv_groups =		vmbus_drv_groups,
984
	.pm =			&vmbus_pm,
985 986
};

987 988 989 990 991 992 993 994 995
struct onmessage_work_context {
	struct work_struct work;
	struct hv_message msg;
};

static void vmbus_onmessage_work(struct work_struct *work)
{
	struct onmessage_work_context *ctx;

996 997 998 999
	/* Do not process messages if we're in DISCONNECTED state */
	if (vmbus_connection.conn_state == DISCONNECTED)
		return;

1000 1001 1002 1003 1004 1005
	ctx = container_of(work, struct onmessage_work_context,
			   work);
	vmbus_onmessage(&ctx->msg);
	kfree(ctx);
}

1006
void vmbus_on_msg_dpc(unsigned long data)
G
Greg Kroah-Hartman 已提交
1007
{
1008 1009
	struct hv_per_cpu_context *hv_cpu = (void *)data;
	void *page_addr = hv_cpu->synic_message_page;
G
Greg Kroah-Hartman 已提交
1010 1011
	struct hv_message *msg = (struct hv_message *)page_addr +
				  VMBUS_MESSAGE_SINT;
1012
	struct vmbus_channel_message_header *hdr;
1013
	const struct vmbus_channel_message_table_entry *entry;
1014
	struct onmessage_work_context *ctx;
1015
	u32 message_type = msg->header.message_type;
G
Greg Kroah-Hartman 已提交
1016

1017
	if (message_type == HVMSG_NONE)
1018 1019
		/* no msg */
		return;
1020

1021
	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
1022

1023 1024
	trace_vmbus_on_msg_dpc(hdr);

1025 1026 1027 1028
	if (hdr->msgtype >= CHANNELMSG_COUNT) {
		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
		goto msg_handled;
	}
1029

1030 1031 1032 1033 1034
	entry = &channel_message_table[hdr->msgtype];
	if (entry->handler_type	== VMHT_BLOCKING) {
		ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
		if (ctx == NULL)
			return;
1035

1036 1037
		INIT_WORK(&ctx->work, vmbus_onmessage_work);
		memcpy(&ctx->msg, msg, sizeof(*msg));
1038

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
		/*
		 * The host can generate a rescind message while we
		 * may still be handling the original offer. We deal with
		 * this condition by ensuring the processing is done on the
		 * same CPU.
		 */
		switch (hdr->msgtype) {
		case CHANNELMSG_RESCIND_CHANNELOFFER:
			/*
			 * If we are handling the rescind message;
			 * schedule the work on the global work queue.
			 */
			schedule_work_on(vmbus_connection.connect_cpu,
					 &ctx->work);
			break;

		case CHANNELMSG_OFFERCHANNEL:
			atomic_inc(&vmbus_connection.offer_in_progress);
			queue_work_on(vmbus_connection.connect_cpu,
				      vmbus_connection.work_queue,
				      &ctx->work);
			break;

		default:
			queue_work(vmbus_connection.work_queue, &ctx->work);
		}
1065 1066
	} else
		entry->message_handler(hdr);
G
Greg Kroah-Hartman 已提交
1067

1068
msg_handled:
1069
	vmbus_signal_eom(msg, message_type);
G
Greg Kroah-Hartman 已提交
1070 1071
}

1072

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
/*
 * Direct callback for channels using other deferred processing
 */
static void vmbus_channel_isr(struct vmbus_channel *channel)
{
	void (*callback_fn)(void *);

	callback_fn = READ_ONCE(channel->onchannel_callback);
	if (likely(callback_fn != NULL))
		(*callback_fn)(channel->channel_callback_context);
}

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
/*
 * Schedule all channels with events pending
 */
static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
{
	unsigned long *recv_int_page;
	u32 maxbits, relid;

	if (vmbus_proto_version < VERSION_WIN8) {
		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
		recv_int_page = vmbus_connection.recv_int_page;
	} else {
		/*
		 * When the host is win8 and beyond, the event page
		 * can be directly checked to get the id of the channel
		 * that has the interrupt pending.
		 */
		void *page_addr = hv_cpu->synic_event_page;
		union hv_synic_event_flags *event
			= (union hv_synic_event_flags *)page_addr +
						 VMBUS_MESSAGE_SINT;

		maxbits = HV_EVENT_FLAGS_COUNT;
		recv_int_page = event->flags;
	}

	if (unlikely(!recv_int_page))
		return;

	for_each_set_bit(relid, recv_int_page, maxbits) {
		struct vmbus_channel *channel;

		if (!sync_test_and_clear_bit(relid, recv_int_page))
			continue;

		/* Special case - vmbus channel protocol msg */
		if (relid == 0)
			continue;

1124 1125
		rcu_read_lock();

1126
		/* Find channel based on relid */
1127
		list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
1128 1129 1130
			if (channel->offermsg.child_relid != relid)
				continue;

1131 1132 1133
			if (channel->rescind)
				continue;

V
Vitaly Kuznetsov 已提交
1134 1135
			trace_vmbus_chan_sched(channel);

1136 1137
			++channel->interrupts;

1138 1139 1140
			switch (channel->callback_mode) {
			case HV_CALL_ISR:
				vmbus_channel_isr(channel);
1141
				break;
1142 1143 1144 1145 1146 1147

			case HV_CALL_BATCHED:
				hv_begin_read(&channel->inbound);
				/* fallthrough */
			case HV_CALL_DIRECT:
				tasklet_schedule(&channel->callback_event);
1148 1149
			}
		}
1150 1151

		rcu_read_unlock();
1152 1153 1154
	}
}

1155
static void vmbus_isr(void)
G
Greg Kroah-Hartman 已提交
1156
{
1157 1158 1159
	struct hv_per_cpu_context *hv_cpu
		= this_cpu_ptr(hv_context.cpu_context);
	void *page_addr = hv_cpu->synic_event_page;
G
Greg Kroah-Hartman 已提交
1160 1161
	struct hv_message *msg;
	union hv_synic_event_flags *event;
1162
	bool handled = false;
G
Greg Kroah-Hartman 已提交
1163

1164
	if (unlikely(page_addr == NULL))
1165
		return;
1166 1167 1168

	event = (union hv_synic_event_flags *)page_addr +
					 VMBUS_MESSAGE_SINT;
1169 1170 1171 1172 1173
	/*
	 * Check for events before checking for messages. This is the order
	 * in which events and messages are checked in Windows guests on
	 * Hyper-V, and the Windows team suggested we do the same.
	 */
G
Greg Kroah-Hartman 已提交
1174

1175 1176
	if ((vmbus_proto_version == VERSION_WS2008) ||
		(vmbus_proto_version == VERSION_WIN7)) {
G
Greg Kroah-Hartman 已提交
1177

1178
		/* Since we are a child, we only need to check bit 0 */
1179
		if (sync_test_and_clear_bit(0, event->flags))
1180 1181 1182 1183 1184 1185 1186 1187
			handled = true;
	} else {
		/*
		 * Our host is win8 or above. The signaling mechanism
		 * has changed and we can directly look at the event page.
		 * If bit n is set then we have an interrup on the channel
		 * whose id is n.
		 */
1188 1189
		handled = true;
	}
1190

1191
	if (handled)
1192
		vmbus_chan_sched(hv_cpu);
1193

1194
	page_addr = hv_cpu->synic_message_page;
1195 1196 1197
	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;

	/* Check if there are actual msgs to be processed */
1198
	if (msg->header.message_type != HVMSG_NONE) {
1199 1200 1201 1202
		if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
			hv_stimer0_isr();
			vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
		} else
1203
			tasklet_schedule(&hv_cpu->msg_dpc);
1204
	}
1205 1206

	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1207 1208
}

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
/*
 * Boolean to control whether to report panic messages over Hyper-V.
 *
 * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
 */
static int sysctl_record_panic_msg = 1;

/*
 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
 * buffer and call into Hyper-V to transfer the data.
 */
static void hv_kmsg_dump(struct kmsg_dumper *dumper,
			 enum kmsg_dump_reason reason)
{
	size_t bytes_written;
	phys_addr_t panic_pa;

	/* We are only interested in panics. */
	if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
		return;

	panic_pa = virt_to_phys(hv_panic_page);

	/*
	 * Write dump contents to the page. No need to synchronize; panic should
	 * be single-threaded.
	 */
1236 1237 1238 1239
	kmsg_dump_get_buffer(dumper, true, hv_panic_page, PAGE_SIZE,
			     &bytes_written);
	if (bytes_written)
		hyperv_report_panic_msg(panic_pa, bytes_written);
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
}

static struct kmsg_dumper hv_kmsg_dumper = {
	.dump = hv_kmsg_dump,
};

static struct ctl_table_header *hv_ctl_table_hdr;

/*
 * sysctl option to allow the user to control whether kmsg data should be
 * reported to Hyper-V on panic.
 */
static struct ctl_table hv_ctl_table[] = {
	{
		.procname       = "hyperv_record_panic_msg",
		.data           = &sysctl_record_panic_msg,
		.maxlen         = sizeof(int),
		.mode           = 0644,
		.proc_handler   = proc_dointvec_minmax,
1259 1260
		.extra1		= SYSCTL_ZERO,
		.extra2		= SYSCTL_ONE
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
	},
	{}
};

static struct ctl_table hv_root_table[] = {
	{
		.procname	= "kernel",
		.mode		= 0555,
		.child		= hv_ctl_table
	},
	{}
};
1273

1274
/*
1275 1276 1277
 * vmbus_bus_init -Main vmbus driver initialization routine.
 *
 * Here, we
1278 1279 1280
 *	- initialize the vmbus driver context
 *	- invoke the vmbus hv main init routine
 *	- retrieve the channel offers
1281
 */
1282
static int vmbus_bus_init(void)
1283
{
1284
	int ret;
1285

1286 1287
	/* Hypervisor initialization...setup hypercall page..etc */
	ret = hv_init();
1288
	if (ret != 0) {
1289
		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1290
		return ret;
1291 1292
	}

1293
	ret = bus_register(&hv_bus);
1294
	if (ret)
1295
		return ret;
1296

1297
	hv_setup_vmbus_irq(vmbus_isr);
1298

1299 1300 1301
	ret = hv_synic_alloc();
	if (ret)
		goto err_alloc;
1302 1303 1304 1305 1306

	ret = hv_stimer_alloc(VMBUS_MESSAGE_SINT);
	if (ret < 0)
		goto err_alloc;

1307
	/*
1308 1309
	 * Initialize the per-cpu interrupt state and stimer state.
	 * Then connect to the host.
1310
	 */
1311
	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1312 1313
				hv_synic_init, hv_synic_cleanup);
	if (ret < 0)
1314
		goto err_cpuhp;
1315 1316
	hyperv_cpuhp_online = ret;

1317
	ret = vmbus_connect();
1318
	if (ret)
1319
		goto err_connect;
1320

1321 1322 1323
	/*
	 * Only register if the crash MSRs are available
	 */
1324
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
		u64 hyperv_crash_ctl;
		/*
		 * Sysctl registration is not fatal, since by default
		 * reporting is enabled.
		 */
		hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
		if (!hv_ctl_table_hdr)
			pr_err("Hyper-V: sysctl table register error");

		/*
		 * Register for panic kmsg callback only if the right
		 * capability is supported by the hypervisor.
		 */
1338
		hv_get_crash_ctl(hyperv_crash_ctl);
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
		if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) {
			hv_panic_page = (void *)get_zeroed_page(GFP_KERNEL);
			if (hv_panic_page) {
				ret = kmsg_dump_register(&hv_kmsg_dumper);
				if (ret)
					pr_err("Hyper-V: kmsg dump register "
						"error 0x%x\n", ret);
			} else
				pr_err("Hyper-V: panic message page memory "
					"allocation failed");
		}

1351
		register_die_notifier(&hyperv_die_block);
1352 1353 1354 1355
		atomic_notifier_chain_register(&panic_notifier_list,
					       &hyperv_panic_block);
	}

1356
	vmbus_request_offers();
1357

1358
	return 0;
1359

1360
err_connect:
1361
	cpuhp_remove_state(hyperv_cpuhp_online);
1362 1363
err_cpuhp:
	hv_stimer_free();
1364 1365
err_alloc:
	hv_synic_free();
1366
	hv_remove_vmbus_irq();
1367 1368

	bus_unregister(&hv_bus);
1369
	free_page((unsigned long)hv_panic_page);
1370 1371
	unregister_sysctl_table(hv_ctl_table_hdr);
	hv_ctl_table_hdr = NULL;
1372
	return ret;
1373 1374
}

1375
/**
1376 1377
 * __vmbus_child_driver_register() - Register a vmbus's driver
 * @hv_driver: Pointer to driver structure you want to register
1378 1379
 * @owner: owner module of the drv
 * @mod_name: module name string
1380 1381
 *
 * Registers the given driver with Linux through the 'driver_register()' call
1382
 * and sets up the hyper-v vmbus handling for this driver.
1383 1384
 * It will return the state of the 'driver_register()' call.
 *
1385
 */
1386
int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1387
{
1388
	int ret;
1389

1390
	pr_info("registering driver %s\n", hv_driver->name);
1391

1392 1393 1394 1395
	ret = vmbus_exists();
	if (ret < 0)
		return ret;

1396 1397 1398 1399
	hv_driver->driver.name = hv_driver->name;
	hv_driver->driver.owner = owner;
	hv_driver->driver.mod_name = mod_name;
	hv_driver->driver.bus = &hv_bus;
1400

1401 1402 1403
	spin_lock_init(&hv_driver->dynids.lock);
	INIT_LIST_HEAD(&hv_driver->dynids.list);

1404
	ret = driver_register(&hv_driver->driver);
1405

1406
	return ret;
1407
}
1408
EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1409

1410
/**
1411
 * vmbus_driver_unregister() - Unregister a vmbus's driver
1412 1413
 * @hv_driver: Pointer to driver structure you want to
 *             un-register
1414
 *
1415 1416
 * Un-register the given driver that was previous registered with a call to
 * vmbus_driver_register()
1417
 */
1418
void vmbus_driver_unregister(struct hv_driver *hv_driver)
1419
{
1420
	pr_info("unregistering driver %s\n", hv_driver->name);
1421

1422
	if (!vmbus_exists()) {
1423
		driver_unregister(&hv_driver->driver);
1424 1425
		vmbus_free_dynids(hv_driver);
	}
1426
}
1427
EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1428

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442

/*
 * Called when last reference to channel is gone.
 */
static void vmbus_chan_release(struct kobject *kobj)
{
	struct vmbus_channel *channel
		= container_of(kobj, struct vmbus_channel, kobj);

	kfree_rcu(channel, rcu);
}

struct vmbus_chan_attribute {
	struct attribute attr;
1443
	ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
	ssize_t (*store)(struct vmbus_channel *chan,
			 const char *buf, size_t count);
};
#define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
	struct vmbus_chan_attribute chan_attr_##_name \
		= __ATTR(_name, _mode, _show, _store)
#define VMBUS_CHAN_ATTR_RW(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
#define VMBUS_CHAN_ATTR_RO(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
#define VMBUS_CHAN_ATTR_WO(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)

static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
				    struct attribute *attr, char *buf)
{
	const struct vmbus_chan_attribute *attribute
		= container_of(attr, struct vmbus_chan_attribute, attr);
1462
	struct vmbus_channel *chan
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
		= container_of(kobj, struct vmbus_channel, kobj);

	if (!attribute->show)
		return -EIO;

	return attribute->show(chan, buf);
}

static const struct sysfs_ops vmbus_chan_sysfs_ops = {
	.show = vmbus_chan_attr_show,
};

1475
static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1476
{
1477 1478
	struct hv_ring_buffer_info *rbi = &channel->outbound;
	ssize_t ret;
1479

1480 1481 1482
	mutex_lock(&rbi->ring_buffer_mutex);
	if (!rbi->ring_buffer) {
		mutex_unlock(&rbi->ring_buffer_mutex);
1483
		return -EINVAL;
1484
	}
1485

1486 1487 1488
	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
	mutex_unlock(&rbi->ring_buffer_mutex);
	return ret;
1489
}
1490
static VMBUS_CHAN_ATTR_RO(out_mask);
1491

1492
static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1493
{
1494 1495
	struct hv_ring_buffer_info *rbi = &channel->inbound;
	ssize_t ret;
1496

1497 1498 1499
	mutex_lock(&rbi->ring_buffer_mutex);
	if (!rbi->ring_buffer) {
		mutex_unlock(&rbi->ring_buffer_mutex);
1500
		return -EINVAL;
1501
	}
1502

1503 1504 1505
	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
	mutex_unlock(&rbi->ring_buffer_mutex);
	return ret;
1506
}
1507
static VMBUS_CHAN_ATTR_RO(in_mask);
1508

1509
static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1510
{
1511 1512
	struct hv_ring_buffer_info *rbi = &channel->inbound;
	ssize_t ret;
1513

1514 1515 1516
	mutex_lock(&rbi->ring_buffer_mutex);
	if (!rbi->ring_buffer) {
		mutex_unlock(&rbi->ring_buffer_mutex);
1517
		return -EINVAL;
1518
	}
1519

1520 1521 1522
	ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
	mutex_unlock(&rbi->ring_buffer_mutex);
	return ret;
1523
}
1524
static VMBUS_CHAN_ATTR_RO(read_avail);
1525

1526
static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1527
{
1528 1529
	struct hv_ring_buffer_info *rbi = &channel->outbound;
	ssize_t ret;
1530

1531 1532 1533
	mutex_lock(&rbi->ring_buffer_mutex);
	if (!rbi->ring_buffer) {
		mutex_unlock(&rbi->ring_buffer_mutex);
1534
		return -EINVAL;
1535
	}
1536

1537 1538 1539
	ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
	mutex_unlock(&rbi->ring_buffer_mutex);
	return ret;
1540
}
1541
static VMBUS_CHAN_ATTR_RO(write_avail);
1542

1543
static ssize_t show_target_cpu(struct vmbus_channel *channel, char *buf)
1544 1545 1546
{
	return sprintf(buf, "%u\n", channel->target_cpu);
}
1547
static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1548

1549
static ssize_t channel_pending_show(struct vmbus_channel *channel,
1550 1551 1552 1553 1554 1555
				    char *buf)
{
	return sprintf(buf, "%d\n",
		       channel_pending(channel,
				       vmbus_connection.monitor_pages[1]));
}
1556
static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1557

1558
static ssize_t channel_latency_show(struct vmbus_channel *channel,
1559 1560 1561 1562 1563 1564
				    char *buf)
{
	return sprintf(buf, "%d\n",
		       channel_latency(channel,
				       vmbus_connection.monitor_pages[1]));
}
1565
static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1566

1567
static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1568 1569 1570
{
	return sprintf(buf, "%llu\n", channel->interrupts);
}
1571
static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1572

1573
static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1574 1575 1576
{
	return sprintf(buf, "%llu\n", channel->sig_events);
}
1577
static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1578

1579
static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1580 1581 1582 1583 1584 1585 1586
					 char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->intr_in_full);
}
static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);

1587
static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1588 1589 1590 1591 1592 1593 1594
					   char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->intr_out_empty);
}
static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);

1595
static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1596 1597 1598 1599 1600 1601 1602
					   char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->out_full_first);
}
static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);

1603
static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1604 1605 1606 1607 1608 1609 1610
					   char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->out_full_total);
}
static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);

1611
static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1612 1613 1614 1615 1616 1617
					  char *buf)
{
	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
}
static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);

1618
static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1619 1620 1621 1622 1623 1624 1625
				  char *buf)
{
	return sprintf(buf, "%u\n",
		       channel->offermsg.offer.sub_channel_index);
}
static VMBUS_CHAN_ATTR_RO(subchannel_id);

1626 1627 1628 1629 1630 1631 1632 1633
static struct attribute *vmbus_chan_attrs[] = {
	&chan_attr_out_mask.attr,
	&chan_attr_in_mask.attr,
	&chan_attr_read_avail.attr,
	&chan_attr_write_avail.attr,
	&chan_attr_cpu.attr,
	&chan_attr_pending.attr,
	&chan_attr_latency.attr,
1634 1635
	&chan_attr_interrupts.attr,
	&chan_attr_events.attr,
1636 1637 1638 1639
	&chan_attr_intr_in_full.attr,
	&chan_attr_intr_out_empty.attr,
	&chan_attr_out_full_first.attr,
	&chan_attr_out_full_total.attr,
1640 1641
	&chan_attr_monitor_id.attr,
	&chan_attr_subchannel_id.attr,
1642 1643 1644
	NULL
};

1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
/*
 * Channel-level attribute_group callback function. Returns the permission for
 * each attribute, and returns 0 if an attribute is not visible.
 */
static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
					  struct attribute *attr, int idx)
{
	const struct vmbus_channel *channel =
		container_of(kobj, struct vmbus_channel, kobj);

	/* Hide the monitor attributes if the monitor mechanism is not used. */
	if (!channel->offermsg.monitor_allocated &&
	    (attr == &chan_attr_pending.attr ||
	     attr == &chan_attr_latency.attr ||
	     attr == &chan_attr_monitor_id.attr))
		return 0;

	return attr->mode;
}

static struct attribute_group vmbus_chan_group = {
	.attrs = vmbus_chan_attrs,
	.is_visible = vmbus_chan_attr_is_visible
};

1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
static struct kobj_type vmbus_chan_ktype = {
	.sysfs_ops = &vmbus_chan_sysfs_ops,
	.release = vmbus_chan_release,
};

/*
 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
 */
int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
{
1680
	const struct device *device = &dev->device;
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
	struct kobject *kobj = &channel->kobj;
	u32 relid = channel->offermsg.child_relid;
	int ret;

	kobj->kset = dev->channels_kset;
	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
				   "%u", relid);
	if (ret)
		return ret;

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
	ret = sysfs_create_group(kobj, &vmbus_chan_group);

	if (ret) {
		/*
		 * The calling functions' error handling paths will cleanup the
		 * empty channel directory.
		 */
		dev_err(device, "Unable to set up channel sysfs files\n");
		return ret;
	}

1702 1703 1704 1705 1706
	kobject_uevent(kobj, KOBJ_ADD);

	return 0;
}

1707 1708 1709 1710 1711 1712 1713 1714
/*
 * vmbus_remove_channel_attr_group - remove the channel's attribute group
 */
void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
{
	sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
}

1715
/*
1716
 * vmbus_device_create - Creates and registers a new child device
1717
 * on the vmbus.
1718
 */
1719 1720
struct hv_device *vmbus_device_create(const guid_t *type,
				      const guid_t *instance,
S
stephen hemminger 已提交
1721
				      struct vmbus_channel *channel)
1722
{
1723
	struct hv_device *child_device_obj;
1724

1725 1726
	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
	if (!child_device_obj) {
1727
		pr_err("Unable to allocate device object for child device\n");
1728 1729 1730
		return NULL;
	}

1731
	child_device_obj->channel = channel;
1732 1733
	guid_copy(&child_device_obj->dev_type, type);
	guid_copy(&child_device_obj->dev_instance, instance);
1734
	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1735 1736 1737 1738

	return child_device_obj;
}

1739
/*
1740
 * vmbus_device_register - Register the child device
1741
 */
1742
int vmbus_device_register(struct hv_device *child_device_obj)
1743
{
1744 1745
	struct kobject *kobj = &child_device_obj->device.kobj;
	int ret;
1746

1747
	dev_set_name(&child_device_obj->device, "%pUl",
1748
		     child_device_obj->channel->offermsg.offer.if_instance.b);
1749

1750
	child_device_obj->device.bus = &hv_bus;
1751
	child_device_obj->device.parent = &hv_acpi_dev->dev;
1752
	child_device_obj->device.release = vmbus_device_release;
1753

1754 1755 1756 1757
	/*
	 * Register with the LDM. This will kick off the driver/device
	 * binding...which will eventually call vmbus_match() and vmbus_probe()
	 */
1758
	ret = device_register(&child_device_obj->device);
1759
	if (ret) {
1760
		pr_err("Unable to register child device\n");
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
		return ret;
	}

	child_device_obj->channels_kset = kset_create_and_add("channels",
							      NULL, kobj);
	if (!child_device_obj->channels_kset) {
		ret = -ENOMEM;
		goto err_dev_unregister;
	}

	ret = vmbus_add_channel_kobj(child_device_obj,
				     child_device_obj->channel);
	if (ret) {
		pr_err("Unable to register primary channeln");
		goto err_kset_unregister;
	}

	return 0;

err_kset_unregister:
	kset_unregister(child_device_obj->channels_kset);
1782

1783 1784
err_dev_unregister:
	device_unregister(&child_device_obj->device);
1785 1786 1787
	return ret;
}

1788
/*
1789
 * vmbus_device_unregister - Remove the specified child device
1790
 * from the vmbus.
1791
 */
1792
void vmbus_device_unregister(struct hv_device *device_obj)
1793
{
1794 1795 1796
	pr_debug("child device %s unregistered\n",
		dev_name(&device_obj->device));

1797 1798
	kset_unregister(device_obj->channels_kset);

1799 1800 1801 1802
	/*
	 * Kick off the process of unregistering the device.
	 * This will call vmbus_remove() and eventually vmbus_device_release()
	 */
1803
	device_unregister(&device_obj->device);
1804 1805 1806
}


1807
/*
1808
 * VMBUS is an acpi enumerated device. Get the information we
1809
 * need from DSDT.
1810
 */
1811
#define VTPM_BASE_ADDRESS 0xfed40000
1812
static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1813
{
1814 1815 1816 1817 1818 1819
	resource_size_t start = 0;
	resource_size_t end = 0;
	struct resource *new_res;
	struct resource **old_res = &hyperv_mmio;
	struct resource **prev_res = NULL;

1820
	switch (res->type) {
1821 1822 1823 1824 1825 1826 1827 1828 1829

	/*
	 * "Address" descriptors are for bus windows. Ignore
	 * "memory" descriptors, which are for registers on
	 * devices.
	 */
	case ACPI_RESOURCE_TYPE_ADDRESS32:
		start = res->data.address32.address.minimum;
		end = res->data.address32.address.maximum;
G
Gerd Hoffmann 已提交
1830
		break;
1831

1832
	case ACPI_RESOURCE_TYPE_ADDRESS64:
1833 1834
		start = res->data.address64.address.minimum;
		end = res->data.address64.address.maximum;
G
Gerd Hoffmann 已提交
1835
		break;
1836 1837 1838 1839 1840

	default:
		/* Unused resource type */
		return AE_OK;

1841
	}
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
	/*
	 * Ignore ranges that are below 1MB, as they're not
	 * necessary or useful here.
	 */
	if (end < 0x100000)
		return AE_OK;

	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
	if (!new_res)
		return AE_NO_MEMORY;

	/* If this range overlaps the virtual TPM, truncate it. */
	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
		end = VTPM_BASE_ADDRESS;

	new_res->name = "hyperv mmio";
	new_res->flags = IORESOURCE_MEM;
	new_res->start = start;
	new_res->end = end;

1862 1863 1864
	/*
	 * If two ranges are adjacent, merge them.
	 */
1865 1866 1867 1868 1869 1870
	do {
		if (!*old_res) {
			*old_res = new_res;
			break;
		}

1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
		if (((*old_res)->end + 1) == new_res->start) {
			(*old_res)->end = new_res->end;
			kfree(new_res);
			break;
		}

		if ((*old_res)->start == new_res->end + 1) {
			(*old_res)->start = new_res->start;
			kfree(new_res);
			break;
		}

1883
		if ((*old_res)->start > new_res->end) {
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
			new_res->sibling = *old_res;
			if (prev_res)
				(*prev_res)->sibling = new_res;
			*old_res = new_res;
			break;
		}

		prev_res = old_res;
		old_res = &(*old_res)->sibling;

	} while (1);
1895 1896 1897 1898

	return AE_OK;
}

1899 1900 1901 1902 1903 1904
static int vmbus_acpi_remove(struct acpi_device *device)
{
	struct resource *cur_res;
	struct resource *next_res;

	if (hyperv_mmio) {
1905 1906 1907 1908 1909 1910
		if (fb_mmio) {
			__release_region(hyperv_mmio, fb_mmio->start,
					 resource_size(fb_mmio));
			fb_mmio = NULL;
		}

1911 1912 1913 1914 1915 1916 1917 1918 1919
		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
			next_res = cur_res->sibling;
			kfree(cur_res);
		}
	}

	return 0;
}

1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
static void vmbus_reserve_fb(void)
{
	int size;
	/*
	 * Make a claim for the frame buffer in the resource tree under the
	 * first node, which will be the one below 4GB.  The length seems to
	 * be underreported, particularly in a Generation 1 VM.  So start out
	 * reserving a larger area and make it smaller until it succeeds.
	 */

	if (screen_info.lfb_base) {
		if (efi_enabled(EFI_BOOT))
			size = max_t(__u32, screen_info.lfb_size, 0x800000);
		else
			size = max_t(__u32, screen_info.lfb_size, 0x4000000);

		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
			fb_mmio = __request_region(hyperv_mmio,
						   screen_info.lfb_base, size,
						   fb_mmio_name, 0);
		}
	}
}

1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
/**
 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
 * @new:		If successful, supplied a pointer to the
 *			allocated MMIO space.
 * @device_obj:		Identifies the caller
 * @min:		Minimum guest physical address of the
 *			allocation
 * @max:		Maximum guest physical address
 * @size:		Size of the range to be allocated
 * @align:		Alignment of the range to be allocated
 * @fb_overlap_ok:	Whether this allocation can be allowed
 *			to overlap the video frame buffer.
 *
 * This function walks the resources granted to VMBus by the
 * _CRS object in the ACPI namespace underneath the parent
 * "bridge" whether that's a root PCI bus in the Generation 1
 * case or a Module Device in the Generation 2 case.  It then
 * attempts to allocate from the global MMIO pool in a way that
 * matches the constraints supplied in these parameters and by
 * that _CRS.
 *
 * Return: 0 on success, -errno on failure
 */
int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
			resource_size_t min, resource_size_t max,
			resource_size_t size, resource_size_t align,
			bool fb_overlap_ok)
{
1972
	struct resource *iter, *shadow;
1973
	resource_size_t range_min, range_max, start;
1974
	const char *dev_n = dev_name(&device_obj->device);
1975
	int retval;
1976 1977 1978

	retval = -ENXIO;
	down(&hyperv_mmio_lock);
1979

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
	/*
	 * If overlaps with frame buffers are allowed, then first attempt to
	 * make the allocation from within the reserved region.  Because it
	 * is already reserved, no shadow allocation is necessary.
	 */
	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
	    !(max < fb_mmio->start)) {

		range_min = fb_mmio->start;
		range_max = fb_mmio->end;
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				retval = 0;
				goto exit;
			}
		}
	}

2000 2001 2002 2003 2004 2005
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= max) || (iter->end <= min))
			continue;

		range_min = iter->start;
		range_max = iter->end;
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			shadow = __request_region(iter, start, size, NULL,
						  IORESOURCE_BUSY);
			if (!shadow)
				continue;

			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				shadow->name = (char *)*new;
				retval = 0;
				goto exit;
2018 2019
			}

2020
			__release_region(iter, start, size);
2021 2022 2023
		}
	}

2024 2025 2026
exit:
	up(&hyperv_mmio_lock);
	return retval;
2027 2028 2029
}
EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);

2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
/**
 * vmbus_free_mmio() - Free a memory-mapped I/O range.
 * @start:		Base address of region to release.
 * @size:		Size of the range to be allocated
 *
 * This function releases anything requested by
 * vmbus_mmio_allocate().
 */
void vmbus_free_mmio(resource_size_t start, resource_size_t size)
{
2040 2041 2042 2043 2044 2045 2046 2047 2048
	struct resource *iter;

	down(&hyperv_mmio_lock);
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= start + size) || (iter->end <= start))
			continue;

		__release_region(iter, start, size);
	}
2049
	release_mem_region(start, size);
2050
	up(&hyperv_mmio_lock);
2051 2052 2053 2054

}
EXPORT_SYMBOL_GPL(vmbus_free_mmio);

2055 2056 2057
static int vmbus_acpi_add(struct acpi_device *device)
{
	acpi_status result;
2058
	int ret_val = -ENODEV;
2059
	struct acpi_device *ancestor;
2060

2061 2062
	hv_acpi_dev = device;

2063
	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2064
					vmbus_walk_resources, NULL);
2065

2066 2067 2068
	if (ACPI_FAILURE(result))
		goto acpi_walk_err;
	/*
2069 2070
	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
	 * firmware) is the VMOD that has the mmio ranges. Get that.
2071
	 */
2072 2073 2074
	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
					     vmbus_walk_resources, NULL);
2075 2076

		if (ACPI_FAILURE(result))
2077
			continue;
2078 2079
		if (hyperv_mmio) {
			vmbus_reserve_fb();
2080
			break;
2081
		}
2082
	}
2083 2084 2085
	ret_val = 0;

acpi_walk_err:
2086
	complete(&probe_event);
2087 2088
	if (ret_val)
		vmbus_acpi_remove(device);
2089
	return ret_val;
2090 2091 2092 2093
}

static const struct acpi_device_id vmbus_acpi_device_ids[] = {
	{"VMBUS", 0},
2094
	{"VMBus", 0},
2095 2096 2097 2098 2099 2100 2101 2102 2103
	{"", 0},
};
MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);

static struct acpi_driver vmbus_acpi_driver = {
	.name = "vmbus",
	.ids = vmbus_acpi_device_ids,
	.ops = {
		.add = vmbus_acpi_add,
2104
		.remove = vmbus_acpi_remove,
2105 2106 2107
	},
};

2108 2109
static void hv_kexec_handler(void)
{
2110
	hv_stimer_global_cleanup();
2111
	vmbus_initiate_unload(false);
2112 2113 2114
	vmbus_connection.conn_state = DISCONNECTED;
	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
	mb();
2115
	cpuhp_remove_state(hyperv_cpuhp_online);
2116
	hyperv_cleanup();
2117 2118
};

2119 2120
static void hv_crash_handler(struct pt_regs *regs)
{
2121 2122
	int cpu;

2123
	vmbus_initiate_unload(true);
2124 2125 2126 2127 2128
	/*
	 * In crash handler we can't schedule synic cleanup for all CPUs,
	 * doing the cleanup for current CPU only. This should be sufficient
	 * for kdump.
	 */
2129
	vmbus_connection.conn_state = DISCONNECTED;
2130 2131 2132
	cpu = smp_processor_id();
	hv_stimer_cleanup(cpu);
	hv_synic_cleanup(cpu);
2133
	hyperv_cleanup();
2134 2135
};

2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
static int hv_synic_suspend(void)
{
	/*
	 * When we reach here, all the non-boot CPUs have been offlined, and
	 * the stimers on them have been unbound in hv_synic_cleanup() ->
	 * hv_stimer_cleanup() -> clockevents_unbind_device().
	 *
	 * hv_synic_suspend() only runs on CPU0 with interrupts disabled. Here
	 * we do not unbind the stimer on CPU0 because: 1) it's unnecessary
	 * because the interrupts remain disabled between syscore_suspend()
	 * and syscore_resume(): see create_image() and resume_target_kernel();
	 * 2) the stimer on CPU0 is automatically disabled later by
	 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
	 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown(); 3) a warning
	 * would be triggered if we call clockevents_unbind_device(), which
	 * may sleep, in an interrupts-disabled context. So, we intentionally
	 * don't call hv_stimer_cleanup(0) here.
	 */

	hv_synic_disable_regs(0);

	return 0;
}

static void hv_synic_resume(void)
{
	hv_synic_enable_regs(0);

	/*
	 * Note: we don't need to call hv_stimer_init(0), because the timer
	 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
	 * automatically re-enabled in timekeeping_resume().
	 */
}

/* The callbacks run only on CPU0, with irqs_disabled. */
static struct syscore_ops hv_synic_syscore_ops = {
	.suspend = hv_synic_suspend,
	.resume = hv_synic_resume,
};

2177
static int __init hv_acpi_init(void)
2178
{
2179
	int ret, t;
2180

2181
	if (!hv_is_hyperv_initialized())
2182 2183
		return -ENODEV;

2184 2185 2186
	init_completion(&probe_event);

	/*
2187
	 * Get ACPI resources first.
2188
	 */
2189 2190
	ret = acpi_bus_register_driver(&vmbus_acpi_driver);

2191 2192 2193
	if (ret)
		return ret;

2194 2195 2196 2197 2198
	t = wait_for_completion_timeout(&probe_event, 5*HZ);
	if (t == 0) {
		ret = -ETIMEDOUT;
		goto cleanup;
	}
2199

2200
	ret = vmbus_bus_init();
2201
	if (ret)
2202 2203
		goto cleanup;

2204
	hv_setup_kexec_handler(hv_kexec_handler);
2205
	hv_setup_crash_handler(hv_crash_handler);
2206

2207 2208
	register_syscore_ops(&hv_synic_syscore_ops);

2209 2210 2211 2212
	return 0;

cleanup:
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2213
	hv_acpi_dev = NULL;
2214
	return ret;
2215 2216
}

2217 2218
static void __exit vmbus_exit(void)
{
2219 2220
	int cpu;

2221 2222
	unregister_syscore_ops(&hv_synic_syscore_ops);

2223
	hv_remove_kexec_handler();
2224
	hv_remove_crash_handler();
2225
	vmbus_connection.conn_state = DISCONNECTED;
2226
	hv_stimer_global_cleanup();
2227
	vmbus_disconnect();
2228
	hv_remove_vmbus_irq();
2229 2230 2231 2232 2233 2234
	for_each_online_cpu(cpu) {
		struct hv_per_cpu_context *hv_cpu
			= per_cpu_ptr(hv_context.cpu_context, cpu);

		tasklet_kill(&hv_cpu->msg_dpc);
	}
2235
	vmbus_free_channels();
2236

2237
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
2238
		kmsg_dump_unregister(&hv_kmsg_dumper);
2239
		unregister_die_notifier(&hyperv_die_block);
2240 2241 2242
		atomic_notifier_chain_unregister(&panic_notifier_list,
						 &hyperv_panic_block);
	}
2243 2244

	free_page((unsigned long)hv_panic_page);
2245 2246
	unregister_sysctl_table(hv_ctl_table_hdr);
	hv_ctl_table_hdr = NULL;
2247
	bus_unregister(&hv_bus);
2248

2249
	cpuhp_remove_state(hyperv_cpuhp_online);
2250
	hv_synic_free();
2251 2252 2253
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
}

2254

2255
MODULE_LICENSE("GPL");
2256
MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2257

2258
subsys_initcall(hv_acpi_init);
2259
module_exit(vmbus_exit);