vmbus_drv.c 61.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7
/*
 * Copyright (c) 2009, Microsoft Corporation.
 *
 * Authors:
 *   Haiyang Zhang <haiyangz@microsoft.com>
 *   Hank Janssen  <hjanssen@microsoft.com>
8
 *   K. Y. Srinivasan <kys@microsoft.com>
9
 */
10 11
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

12 13 14 15 16
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/sysctl.h>
17
#include <linux/slab.h>
18
#include <linux/acpi.h>
19
#include <linux/completion.h>
20
#include <linux/hyperv.h>
21
#include <linux/kernel_stat.h>
22
#include <linux/clockchips.h>
23
#include <linux/cpu.h>
24 25
#include <linux/sched/task_stack.h>

26
#include <asm/mshyperv.h>
27
#include <linux/delay.h>
28 29
#include <linux/notifier.h>
#include <linux/ptrace.h>
30
#include <linux/screen_info.h>
31
#include <linux/kdebug.h>
32
#include <linux/efi.h>
33
#include <linux/random.h>
34
#include <linux/syscore_ops.h>
35
#include <clocksource/hyperv_timer.h>
36
#include "hyperv_vmbus.h"
37

38 39 40 41 42
struct vmbus_dynid {
	struct list_head node;
	struct hv_vmbus_device_id id;
};

43
static struct acpi_device  *hv_acpi_dev;
44

45
static struct completion probe_event;
46

47
static int hyperv_cpuhp_online;
48

49 50
static void *hv_panic_page;

51 52 53 54 55 56 57
static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
			      void *args)
{
	struct pt_regs *regs;

	regs = current_pt_regs();

58
	hyperv_report_panic(regs, val);
59 60 61
	return NOTIFY_DONE;
}

62 63 64 65 66 67
static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
			    void *args)
{
	struct die_args *die = (struct die_args *)args;
	struct pt_regs *regs = die->regs;

68
	hyperv_report_panic(regs, val);
69 70 71 72 73 74
	return NOTIFY_DONE;
}

static struct notifier_block hyperv_die_block = {
	.notifier_call = hyperv_die_event,
};
75 76 77 78
static struct notifier_block hyperv_panic_block = {
	.notifier_call = hyperv_panic_event,
};

79 80
static const char *fb_mmio_name = "fb_range";
static struct resource *fb_mmio;
81 82
static struct resource *hyperv_mmio;
static DEFINE_SEMAPHORE(hyperv_mmio_lock);
83

84 85 86 87 88 89 90 91
static int vmbus_exists(void)
{
	if (hv_acpi_dev == NULL)
		return -ENODEV;

	return 0;
}

92 93 94 95 96 97 98 99
#define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
{
	int i;
	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
}

100
static u8 channel_monitor_group(const struct vmbus_channel *channel)
101 102 103 104
{
	return (u8)channel->offermsg.monitorid / 32;
}

105
static u8 channel_monitor_offset(const struct vmbus_channel *channel)
106 107 108 109
{
	return (u8)channel->offermsg.monitorid % 32;
}

110 111
static u32 channel_pending(const struct vmbus_channel *channel,
			   const struct hv_monitor_page *monitor_page)
112 113
{
	u8 monitor_group = channel_monitor_group(channel);
114

115 116 117
	return monitor_page->trigger_group[monitor_group].pending;
}

118 119
static u32 channel_latency(const struct vmbus_channel *channel,
			   const struct hv_monitor_page *monitor_page)
120 121 122
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
123

124 125 126
	return monitor_page->latency[monitor_group][monitor_offset];
}

127 128 129 130 131 132 133 134
static u32 channel_conn_id(struct vmbus_channel *channel,
			   struct hv_monitor_page *monitor_page)
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
}

135 136 137 138 139 140 141 142 143 144 145
static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
		       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
}
static DEVICE_ATTR_RO(id);

146 147 148 149 150 151 152 153 154 155 156
static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
			  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->state);
}
static DEVICE_ATTR_RO(state);

157 158 159 160 161 162 163 164 165 166 167
static ssize_t monitor_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
}
static DEVICE_ATTR_RO(monitor_id);

168 169 170 171 172 173 174 175 176 177 178 179
static ssize_t class_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_type.b);
}
static DEVICE_ATTR_RO(class_id);

180 181 182 183 184 185 186 187 188 189 190 191
static ssize_t device_id_show(struct device *dev,
			      struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_instance.b);
}
static DEVICE_ATTR_RO(device_id);

192 193 194 195 196 197 198 199 200 201 202
static ssize_t modalias_show(struct device *dev,
			     struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	char alias_name[VMBUS_ALIAS_LEN + 1];

	print_alias_name(hv_dev, alias_name);
	return sprintf(buf, "vmbus:%s\n", alias_name);
}
static DEVICE_ATTR_RO(modalias);

203 204 205 206 207 208 209 210 211 212 213 214 215 216
#ifdef CONFIG_NUMA
static ssize_t numa_node_show(struct device *dev,
			      struct device_attribute *attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;

	return sprintf(buf, "%d\n", hv_dev->channel->numa_node);
}
static DEVICE_ATTR_RO(numa_node);
#endif

217 218 219 220 221 222 223 224 225 226
static ssize_t server_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
227
				       vmbus_connection.monitor_pages[0]));
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
}
static DEVICE_ATTR_RO(server_monitor_pending);

static ssize_t client_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_pending);
244

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
static ssize_t server_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_latency);

static ssize_t client_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_latency);

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
static ssize_t server_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_conn_id);

static ssize_t client_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_conn_id);

301 302 303 304 305
static ssize_t out_intr_mask_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
306
	int ret;
307 308 309

	if (!hv_dev->channel)
		return -ENODEV;
310 311 312 313 314 315

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;

316 317 318 319 320 321 322 323 324
	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(out_intr_mask);

static ssize_t out_read_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
325
	int ret;
326 327 328

	if (!hv_dev->channel)
		return -ENODEV;
329 330 331 332 333

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
334 335 336 337 338 339 340 341 342 343
	return sprintf(buf, "%d\n", outbound.current_read_index);
}
static DEVICE_ATTR_RO(out_read_index);

static ssize_t out_write_index_show(struct device *dev,
				    struct device_attribute *dev_attr,
				    char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
344
	int ret;
345 346 347

	if (!hv_dev->channel)
		return -ENODEV;
348 349 350 351 352

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
353 354 355 356 357 358 359 360 361 362
	return sprintf(buf, "%d\n", outbound.current_write_index);
}
static DEVICE_ATTR_RO(out_write_index);

static ssize_t out_read_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
363
	int ret;
364 365 366

	if (!hv_dev->channel)
		return -ENODEV;
367 368 369 370 371

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
372 373 374 375 376 377 378 379 380 381
	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(out_read_bytes_avail);

static ssize_t out_write_bytes_avail_show(struct device *dev,
					  struct device_attribute *dev_attr,
					  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
382
	int ret;
383 384 385

	if (!hv_dev->channel)
		return -ENODEV;
386 387 388 389 390

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
391 392 393 394 395 396 397 398 399
	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(out_write_bytes_avail);

static ssize_t in_intr_mask_show(struct device *dev,
				 struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
400
	int ret;
401 402 403

	if (!hv_dev->channel)
		return -ENODEV;
404 405 406 407 408

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

409 410 411 412 413 414 415 416 417
	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(in_intr_mask);

static ssize_t in_read_index_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
418
	int ret;
419 420 421

	if (!hv_dev->channel)
		return -ENODEV;
422 423 424 425 426

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

427 428 429 430 431 432 433 434 435
	return sprintf(buf, "%d\n", inbound.current_read_index);
}
static DEVICE_ATTR_RO(in_read_index);

static ssize_t in_write_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
436
	int ret;
437 438 439

	if (!hv_dev->channel)
		return -ENODEV;
440 441 442 443 444

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

445 446 447 448 449 450 451 452 453 454
	return sprintf(buf, "%d\n", inbound.current_write_index);
}
static DEVICE_ATTR_RO(in_write_index);

static ssize_t in_read_bytes_avail_show(struct device *dev,
					struct device_attribute *dev_attr,
					char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
455
	int ret;
456 457 458

	if (!hv_dev->channel)
		return -ENODEV;
459 460 461 462 463

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

464 465 466 467 468 469 470 471 472 473
	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(in_read_bytes_avail);

static ssize_t in_write_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
474
	int ret;
475 476 477

	if (!hv_dev->channel)
		return -ENODEV;
478 479 480 481 482

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

483 484 485 486
	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(in_write_bytes_avail);

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
static ssize_t channel_vp_mapping_show(struct device *dev,
				       struct device_attribute *dev_attr,
				       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
	unsigned long flags;
	int buf_size = PAGE_SIZE, n_written, tot_written;
	struct list_head *cur;

	if (!channel)
		return -ENODEV;

	tot_written = snprintf(buf, buf_size, "%u:%u\n",
		channel->offermsg.child_relid, channel->target_cpu);

	spin_lock_irqsave(&channel->lock, flags);

	list_for_each(cur, &channel->sc_list) {
		if (tot_written >= buf_size - 1)
			break;

		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
		n_written = scnprintf(buf + tot_written,
				     buf_size - tot_written,
				     "%u:%u\n",
				     cur_sc->offermsg.child_relid,
				     cur_sc->target_cpu);
		tot_written += n_written;
	}

	spin_unlock_irqrestore(&channel->lock, flags);

	return tot_written;
}
static DEVICE_ATTR_RO(channel_vp_mapping);

524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
static ssize_t vendor_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
}
static DEVICE_ATTR_RO(vendor);

static ssize_t device_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->device_id);
}
static DEVICE_ATTR_RO(device);

542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
static ssize_t driver_override_store(struct device *dev,
				     struct device_attribute *attr,
				     const char *buf, size_t count)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	char *driver_override, *old, *cp;

	/* We need to keep extra room for a newline */
	if (count >= (PAGE_SIZE - 1))
		return -EINVAL;

	driver_override = kstrndup(buf, count, GFP_KERNEL);
	if (!driver_override)
		return -ENOMEM;

	cp = strchr(driver_override, '\n');
	if (cp)
		*cp = '\0';

	device_lock(dev);
	old = hv_dev->driver_override;
	if (strlen(driver_override)) {
		hv_dev->driver_override = driver_override;
	} else {
		kfree(driver_override);
		hv_dev->driver_override = NULL;
	}
	device_unlock(dev);

	kfree(old);

	return count;
}

static ssize_t driver_override_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	ssize_t len;

	device_lock(dev);
	len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
	device_unlock(dev);

	return len;
}
static DEVICE_ATTR_RW(driver_override);

590
/* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
591
static struct attribute *vmbus_dev_attrs[] = {
592
	&dev_attr_id.attr,
593
	&dev_attr_state.attr,
594
	&dev_attr_monitor_id.attr,
595
	&dev_attr_class_id.attr,
596
	&dev_attr_device_id.attr,
597
	&dev_attr_modalias.attr,
598 599 600
#ifdef CONFIG_NUMA
	&dev_attr_numa_node.attr,
#endif
601 602
	&dev_attr_server_monitor_pending.attr,
	&dev_attr_client_monitor_pending.attr,
603 604
	&dev_attr_server_monitor_latency.attr,
	&dev_attr_client_monitor_latency.attr,
605 606
	&dev_attr_server_monitor_conn_id.attr,
	&dev_attr_client_monitor_conn_id.attr,
607 608 609 610 611 612 613 614 615 616
	&dev_attr_out_intr_mask.attr,
	&dev_attr_out_read_index.attr,
	&dev_attr_out_write_index.attr,
	&dev_attr_out_read_bytes_avail.attr,
	&dev_attr_out_write_bytes_avail.attr,
	&dev_attr_in_intr_mask.attr,
	&dev_attr_in_read_index.attr,
	&dev_attr_in_write_index.attr,
	&dev_attr_in_read_bytes_avail.attr,
	&dev_attr_in_write_bytes_avail.attr,
617
	&dev_attr_channel_vp_mapping.attr,
618 619
	&dev_attr_vendor.attr,
	&dev_attr_device.attr,
620
	&dev_attr_driver_override.attr,
621 622
	NULL,
};
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652

/*
 * Device-level attribute_group callback function. Returns the permission for
 * each attribute, and returns 0 if an attribute is not visible.
 */
static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
{
	struct device *dev = kobj_to_dev(kobj);
	const struct hv_device *hv_dev = device_to_hv_device(dev);

	/* Hide the monitor attributes if the monitor mechanism is not used. */
	if (!hv_dev->channel->offermsg.monitor_allocated &&
	    (attr == &dev_attr_monitor_id.attr ||
	     attr == &dev_attr_server_monitor_pending.attr ||
	     attr == &dev_attr_client_monitor_pending.attr ||
	     attr == &dev_attr_server_monitor_latency.attr ||
	     attr == &dev_attr_client_monitor_latency.attr ||
	     attr == &dev_attr_server_monitor_conn_id.attr ||
	     attr == &dev_attr_client_monitor_conn_id.attr))
		return 0;

	return attr->mode;
}

static const struct attribute_group vmbus_dev_group = {
	.attrs = vmbus_dev_attrs,
	.is_visible = vmbus_dev_attr_is_visible
};
__ATTRIBUTE_GROUPS(vmbus_dev);
653

654 655 656 657 658 659
/*
 * vmbus_uevent - add uevent for our device
 *
 * This routine is invoked when a device is added or removed on the vmbus to
 * generate a uevent to udev in the userspace. The udev will then look at its
 * rule and the uevent generated here to load the appropriate driver
660 661 662 663
 *
 * The alias string will be of the form vmbus:guid where guid is the string
 * representation of the device guid (each byte of the guid will be
 * represented with two hex characters.
664 665 666 667
 */
static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
{
	struct hv_device *dev = device_to_hv_device(device);
668 669
	int ret;
	char alias_name[VMBUS_ALIAS_LEN + 1];
670

671
	print_alias_name(dev, alias_name);
672 673
	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
	return ret;
674 675
}

676
static const struct hv_vmbus_device_id *
677
hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
678 679 680 681
{
	if (id == NULL)
		return NULL; /* empty device table */

682 683
	for (; !guid_is_null(&id->guid); id++)
		if (guid_equal(&id->guid, guid))
684 685 686 687 688 689
			return id;

	return NULL;
}

static const struct hv_vmbus_device_id *
690
hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
691
{
692 693 694 695 696
	const struct hv_vmbus_device_id *id = NULL;
	struct vmbus_dynid *dynid;

	spin_lock(&drv->dynids.lock);
	list_for_each_entry(dynid, &drv->dynids.list, node) {
697
		if (guid_equal(&dynid->id.guid, guid)) {
698 699 700 701 702 703
			id = &dynid->id;
			break;
		}
	}
	spin_unlock(&drv->dynids.lock);

704 705
	return id;
}
706

707
static const struct hv_vmbus_device_id vmbus_device_null;
708

709 710 711 712 713 714 715
/*
 * Return a matching hv_vmbus_device_id pointer.
 * If there is no match, return NULL.
 */
static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
							struct hv_device *dev)
{
716
	const guid_t *guid = &dev->dev_type;
717
	const struct hv_vmbus_device_id *id;
718

719 720 721 722 723 724 725 726 727 728 729 730 731 732
	/* When driver_override is set, only bind to the matching driver */
	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
		return NULL;

	/* Look at the dynamic ids first, before the static ones */
	id = hv_vmbus_dynid_match(drv, guid);
	if (!id)
		id = hv_vmbus_dev_match(drv->id_table, guid);

	/* driver_override will always match, send a dummy id */
	if (!id && dev->driver_override)
		id = &vmbus_device_null;

	return id;
733 734
}

735
/* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
736
static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
{
	struct vmbus_dynid *dynid;

	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
	if (!dynid)
		return -ENOMEM;

	dynid->id.guid = *guid;

	spin_lock(&drv->dynids.lock);
	list_add_tail(&dynid->node, &drv->dynids.list);
	spin_unlock(&drv->dynids.lock);

	return driver_attach(&drv->driver);
}

static void vmbus_free_dynids(struct hv_driver *drv)
{
	struct vmbus_dynid *dynid, *n;

	spin_lock(&drv->dynids.lock);
	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
		list_del(&dynid->node);
		kfree(dynid);
	}
	spin_unlock(&drv->dynids.lock);
}

/*
 * store_new_id - sysfs frontend to vmbus_add_dynid()
 *
 * Allow GUIDs to be added to an existing driver via sysfs.
 */
static ssize_t new_id_store(struct device_driver *driver, const char *buf,
			    size_t count)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
774
	guid_t guid;
775 776
	ssize_t retval;

777
	retval = guid_parse(buf, &guid);
778 779
	if (retval)
		return retval;
780

781
	if (hv_vmbus_dynid_match(drv, &guid))
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
		return -EEXIST;

	retval = vmbus_add_dynid(drv, &guid);
	if (retval)
		return retval;
	return count;
}
static DRIVER_ATTR_WO(new_id);

/*
 * store_remove_id - remove a PCI device ID from this driver
 *
 * Removes a dynamic pci device ID to this driver.
 */
static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
			       size_t count)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
	struct vmbus_dynid *dynid, *n;
801
	guid_t guid;
802
	ssize_t retval;
803

804
	retval = guid_parse(buf, &guid);
805 806
	if (retval)
		return retval;
807

808
	retval = -ENODEV;
809 810 811 812
	spin_lock(&drv->dynids.lock);
	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
		struct hv_vmbus_device_id *id = &dynid->id;

813
		if (guid_equal(&id->guid, &guid)) {
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
			list_del(&dynid->node);
			kfree(dynid);
			retval = count;
			break;
		}
	}
	spin_unlock(&drv->dynids.lock);

	return retval;
}
static DRIVER_ATTR_WO(remove_id);

static struct attribute *vmbus_drv_attrs[] = {
	&driver_attr_new_id.attr,
	&driver_attr_remove_id.attr,
	NULL,
};
ATTRIBUTE_GROUPS(vmbus_drv);
832

833 834 835 836 837 838 839

/*
 * vmbus_match - Attempt to match the specified device to the specified driver
 */
static int vmbus_match(struct device *device, struct device_driver *driver)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
840
	struct hv_device *hv_dev = device_to_hv_device(device);
841

842 843 844 845
	/* The hv_sock driver handles all hv_sock offers. */
	if (is_hvsock_channel(hv_dev->channel))
		return drv->hvsock;

846
	if (hv_vmbus_get_id(drv, hv_dev))
847
		return 1;
848

849
	return 0;
850 851
}

852 853 854 855 856 857 858 859
/*
 * vmbus_probe - Add the new vmbus's child device
 */
static int vmbus_probe(struct device *child_device)
{
	int ret = 0;
	struct hv_driver *drv =
			drv_to_hv_drv(child_device->driver);
860
	struct hv_device *dev = device_to_hv_device(child_device);
861
	const struct hv_vmbus_device_id *dev_id;
862

863
	dev_id = hv_vmbus_get_id(drv, dev);
864
	if (drv->probe) {
865
		ret = drv->probe(dev, dev_id);
866
		if (ret != 0)
867 868
			pr_err("probe failed for device %s (%d)\n",
			       dev_name(child_device), ret);
869 870

	} else {
871 872
		pr_err("probe not set for driver %s\n",
		       dev_name(child_device));
873
		ret = -ENODEV;
874 875 876 877
	}
	return ret;
}

878 879 880 881 882
/*
 * vmbus_remove - Remove a vmbus device
 */
static int vmbus_remove(struct device *child_device)
{
883
	struct hv_driver *drv;
884
	struct hv_device *dev = device_to_hv_device(child_device);
885

886 887 888 889 890
	if (child_device->driver) {
		drv = drv_to_hv_drv(child_device->driver);
		if (drv->remove)
			drv->remove(dev);
	}
891 892 893 894

	return 0;
}

895 896 897 898 899 900 901

/*
 * vmbus_shutdown - Shutdown a vmbus device
 */
static void vmbus_shutdown(struct device *child_device)
{
	struct hv_driver *drv;
902
	struct hv_device *dev = device_to_hv_device(child_device);
903 904 905 906 907 908 909 910


	/* The device may not be attached yet */
	if (!child_device->driver)
		return;

	drv = drv_to_hv_drv(child_device->driver);

911 912
	if (drv->shutdown)
		drv->shutdown(dev);
913 914
}

915
#ifdef CONFIG_PM_SLEEP
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
/*
 * vmbus_suspend - Suspend a vmbus device
 */
static int vmbus_suspend(struct device *child_device)
{
	struct hv_driver *drv;
	struct hv_device *dev = device_to_hv_device(child_device);

	/* The device may not be attached yet */
	if (!child_device->driver)
		return 0;

	drv = drv_to_hv_drv(child_device->driver);
	if (!drv->suspend)
		return -EOPNOTSUPP;

	return drv->suspend(dev);
}

/*
 * vmbus_resume - Resume a vmbus device
 */
static int vmbus_resume(struct device *child_device)
{
	struct hv_driver *drv;
	struct hv_device *dev = device_to_hv_device(child_device);

	/* The device may not be attached yet */
	if (!child_device->driver)
		return 0;

	drv = drv_to_hv_drv(child_device->driver);
	if (!drv->resume)
		return -EOPNOTSUPP;

	return drv->resume(dev);
}
953
#endif /* CONFIG_PM_SLEEP */
954 955 956 957 958 959

/*
 * vmbus_device_release - Final callback release of the vmbus child device
 */
static void vmbus_device_release(struct device *device)
{
960
	struct hv_device *hv_dev = device_to_hv_device(device);
961
	struct vmbus_channel *channel = hv_dev->channel;
962

963 964
	hv_debug_rm_dev_dir(hv_dev);

965
	mutex_lock(&vmbus_connection.channel_mutex);
966
	hv_process_channel_removal(channel);
967
	mutex_unlock(&vmbus_connection.channel_mutex);
968
	kfree(hv_dev);
969 970
}

971 972 973 974 975 976 977 978
/*
 * Note: we must use SET_NOIRQ_SYSTEM_SLEEP_PM_OPS rather than
 * SET_SYSTEM_SLEEP_PM_OPS: see the comment before vmbus_bus_pm.
 */
static const struct dev_pm_ops vmbus_pm = {
	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(vmbus_suspend, vmbus_resume)
};

979
/* The one and only one */
980 981 982 983 984 985 986
static struct bus_type  hv_bus = {
	.name =		"vmbus",
	.match =		vmbus_match,
	.shutdown =		vmbus_shutdown,
	.remove =		vmbus_remove,
	.probe =		vmbus_probe,
	.uevent =		vmbus_uevent,
987 988
	.dev_groups =		vmbus_dev_groups,
	.drv_groups =		vmbus_drv_groups,
989
	.pm =			&vmbus_pm,
990 991
};

992 993 994 995 996 997 998 999 1000
struct onmessage_work_context {
	struct work_struct work;
	struct hv_message msg;
};

static void vmbus_onmessage_work(struct work_struct *work)
{
	struct onmessage_work_context *ctx;

1001 1002 1003 1004
	/* Do not process messages if we're in DISCONNECTED state */
	if (vmbus_connection.conn_state == DISCONNECTED)
		return;

1005 1006 1007 1008 1009 1010
	ctx = container_of(work, struct onmessage_work_context,
			   work);
	vmbus_onmessage(&ctx->msg);
	kfree(ctx);
}

1011
void vmbus_on_msg_dpc(unsigned long data)
G
Greg Kroah-Hartman 已提交
1012
{
1013 1014
	struct hv_per_cpu_context *hv_cpu = (void *)data;
	void *page_addr = hv_cpu->synic_message_page;
G
Greg Kroah-Hartman 已提交
1015 1016
	struct hv_message *msg = (struct hv_message *)page_addr +
				  VMBUS_MESSAGE_SINT;
1017
	struct vmbus_channel_message_header *hdr;
1018
	const struct vmbus_channel_message_table_entry *entry;
1019
	struct onmessage_work_context *ctx;
1020
	u32 message_type = msg->header.message_type;
G
Greg Kroah-Hartman 已提交
1021

1022
	if (message_type == HVMSG_NONE)
1023 1024
		/* no msg */
		return;
1025

1026
	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
1027

1028 1029
	trace_vmbus_on_msg_dpc(hdr);

1030 1031 1032 1033
	if (hdr->msgtype >= CHANNELMSG_COUNT) {
		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
		goto msg_handled;
	}
1034

1035 1036 1037 1038 1039
	entry = &channel_message_table[hdr->msgtype];
	if (entry->handler_type	== VMHT_BLOCKING) {
		ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
		if (ctx == NULL)
			return;
1040

1041 1042
		INIT_WORK(&ctx->work, vmbus_onmessage_work);
		memcpy(&ctx->msg, msg, sizeof(*msg));
1043

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
		/*
		 * The host can generate a rescind message while we
		 * may still be handling the original offer. We deal with
		 * this condition by ensuring the processing is done on the
		 * same CPU.
		 */
		switch (hdr->msgtype) {
		case CHANNELMSG_RESCIND_CHANNELOFFER:
			/*
			 * If we are handling the rescind message;
			 * schedule the work on the global work queue.
			 */
			schedule_work_on(vmbus_connection.connect_cpu,
					 &ctx->work);
			break;

		case CHANNELMSG_OFFERCHANNEL:
			atomic_inc(&vmbus_connection.offer_in_progress);
			queue_work_on(vmbus_connection.connect_cpu,
				      vmbus_connection.work_queue,
				      &ctx->work);
			break;

		default:
			queue_work(vmbus_connection.work_queue, &ctx->work);
		}
1070 1071
	} else
		entry->message_handler(hdr);
G
Greg Kroah-Hartman 已提交
1072

1073
msg_handled:
1074
	vmbus_signal_eom(msg, message_type);
G
Greg Kroah-Hartman 已提交
1075 1076
}

1077
#ifdef CONFIG_PM_SLEEP
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
/*
 * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
 * hibernation, because hv_sock connections can not persist across hibernation.
 */
static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
{
	struct onmessage_work_context *ctx;
	struct vmbus_channel_rescind_offer *rescind;

	WARN_ON(!is_hvsock_channel(channel));

	/*
	 * sizeof(*ctx) is small and the allocation should really not fail,
	 * otherwise the state of the hv_sock connections ends up in limbo.
	 */
	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL | __GFP_NOFAIL);

	/*
	 * So far, these are not really used by Linux. Just set them to the
	 * reasonable values conforming to the definitions of the fields.
	 */
	ctx->msg.header.message_type = 1;
	ctx->msg.header.payload_size = sizeof(*rescind);

	/* These values are actually used by Linux. */
	rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.u.payload;
	rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
	rescind->child_relid = channel->offermsg.child_relid;

	INIT_WORK(&ctx->work, vmbus_onmessage_work);

	queue_work_on(vmbus_connection.connect_cpu,
		      vmbus_connection.work_queue,
		      &ctx->work);
}
1113
#endif /* CONFIG_PM_SLEEP */
1114

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
/*
 * Direct callback for channels using other deferred processing
 */
static void vmbus_channel_isr(struct vmbus_channel *channel)
{
	void (*callback_fn)(void *);

	callback_fn = READ_ONCE(channel->onchannel_callback);
	if (likely(callback_fn != NULL))
		(*callback_fn)(channel->channel_callback_context);
}

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
/*
 * Schedule all channels with events pending
 */
static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
{
	unsigned long *recv_int_page;
	u32 maxbits, relid;

	if (vmbus_proto_version < VERSION_WIN8) {
		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
		recv_int_page = vmbus_connection.recv_int_page;
	} else {
		/*
		 * When the host is win8 and beyond, the event page
		 * can be directly checked to get the id of the channel
		 * that has the interrupt pending.
		 */
		void *page_addr = hv_cpu->synic_event_page;
		union hv_synic_event_flags *event
			= (union hv_synic_event_flags *)page_addr +
						 VMBUS_MESSAGE_SINT;

		maxbits = HV_EVENT_FLAGS_COUNT;
		recv_int_page = event->flags;
	}

	if (unlikely(!recv_int_page))
		return;

	for_each_set_bit(relid, recv_int_page, maxbits) {
		struct vmbus_channel *channel;

		if (!sync_test_and_clear_bit(relid, recv_int_page))
			continue;

		/* Special case - vmbus channel protocol msg */
		if (relid == 0)
			continue;

1166 1167
		rcu_read_lock();

1168
		/* Find channel based on relid */
1169
		list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
1170 1171 1172
			if (channel->offermsg.child_relid != relid)
				continue;

1173 1174 1175
			if (channel->rescind)
				continue;

V
Vitaly Kuznetsov 已提交
1176 1177
			trace_vmbus_chan_sched(channel);

1178 1179
			++channel->interrupts;

1180 1181 1182
			switch (channel->callback_mode) {
			case HV_CALL_ISR:
				vmbus_channel_isr(channel);
1183
				break;
1184 1185 1186 1187 1188 1189

			case HV_CALL_BATCHED:
				hv_begin_read(&channel->inbound);
				/* fallthrough */
			case HV_CALL_DIRECT:
				tasklet_schedule(&channel->callback_event);
1190 1191
			}
		}
1192 1193

		rcu_read_unlock();
1194 1195 1196
	}
}

1197
static void vmbus_isr(void)
G
Greg Kroah-Hartman 已提交
1198
{
1199 1200 1201
	struct hv_per_cpu_context *hv_cpu
		= this_cpu_ptr(hv_context.cpu_context);
	void *page_addr = hv_cpu->synic_event_page;
G
Greg Kroah-Hartman 已提交
1202 1203
	struct hv_message *msg;
	union hv_synic_event_flags *event;
1204
	bool handled = false;
G
Greg Kroah-Hartman 已提交
1205

1206
	if (unlikely(page_addr == NULL))
1207
		return;
1208 1209 1210

	event = (union hv_synic_event_flags *)page_addr +
					 VMBUS_MESSAGE_SINT;
1211 1212 1213 1214 1215
	/*
	 * Check for events before checking for messages. This is the order
	 * in which events and messages are checked in Windows guests on
	 * Hyper-V, and the Windows team suggested we do the same.
	 */
G
Greg Kroah-Hartman 已提交
1216

1217 1218
	if ((vmbus_proto_version == VERSION_WS2008) ||
		(vmbus_proto_version == VERSION_WIN7)) {
G
Greg Kroah-Hartman 已提交
1219

1220
		/* Since we are a child, we only need to check bit 0 */
1221
		if (sync_test_and_clear_bit(0, event->flags))
1222 1223 1224 1225 1226 1227 1228 1229
			handled = true;
	} else {
		/*
		 * Our host is win8 or above. The signaling mechanism
		 * has changed and we can directly look at the event page.
		 * If bit n is set then we have an interrup on the channel
		 * whose id is n.
		 */
1230 1231
		handled = true;
	}
1232

1233
	if (handled)
1234
		vmbus_chan_sched(hv_cpu);
1235

1236
	page_addr = hv_cpu->synic_message_page;
1237 1238 1239
	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;

	/* Check if there are actual msgs to be processed */
1240
	if (msg->header.message_type != HVMSG_NONE) {
1241 1242 1243 1244
		if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
			hv_stimer0_isr();
			vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
		} else
1245
			tasklet_schedule(&hv_cpu->msg_dpc);
1246
	}
1247 1248

	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1249 1250
}

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
/*
 * Boolean to control whether to report panic messages over Hyper-V.
 *
 * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
 */
static int sysctl_record_panic_msg = 1;

/*
 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
 * buffer and call into Hyper-V to transfer the data.
 */
static void hv_kmsg_dump(struct kmsg_dumper *dumper,
			 enum kmsg_dump_reason reason)
{
	size_t bytes_written;
	phys_addr_t panic_pa;

	/* We are only interested in panics. */
	if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
		return;

	panic_pa = virt_to_phys(hv_panic_page);

	/*
	 * Write dump contents to the page. No need to synchronize; panic should
	 * be single-threaded.
	 */
1278 1279 1280 1281
	kmsg_dump_get_buffer(dumper, true, hv_panic_page, PAGE_SIZE,
			     &bytes_written);
	if (bytes_written)
		hyperv_report_panic_msg(panic_pa, bytes_written);
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
}

static struct kmsg_dumper hv_kmsg_dumper = {
	.dump = hv_kmsg_dump,
};

static struct ctl_table_header *hv_ctl_table_hdr;

/*
 * sysctl option to allow the user to control whether kmsg data should be
 * reported to Hyper-V on panic.
 */
static struct ctl_table hv_ctl_table[] = {
	{
		.procname       = "hyperv_record_panic_msg",
		.data           = &sysctl_record_panic_msg,
		.maxlen         = sizeof(int),
		.mode           = 0644,
		.proc_handler   = proc_dointvec_minmax,
1301 1302
		.extra1		= SYSCTL_ZERO,
		.extra2		= SYSCTL_ONE
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	},
	{}
};

static struct ctl_table hv_root_table[] = {
	{
		.procname	= "kernel",
		.mode		= 0555,
		.child		= hv_ctl_table
	},
	{}
};
1315

1316
/*
1317 1318 1319
 * vmbus_bus_init -Main vmbus driver initialization routine.
 *
 * Here, we
1320 1321 1322
 *	- initialize the vmbus driver context
 *	- invoke the vmbus hv main init routine
 *	- retrieve the channel offers
1323
 */
1324
static int vmbus_bus_init(void)
1325
{
1326
	int ret;
1327

1328 1329
	/* Hypervisor initialization...setup hypercall page..etc */
	ret = hv_init();
1330
	if (ret != 0) {
1331
		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1332
		return ret;
1333 1334
	}

1335
	ret = bus_register(&hv_bus);
1336
	if (ret)
1337
		return ret;
1338

1339
	hv_setup_vmbus_irq(vmbus_isr);
1340

1341 1342 1343
	ret = hv_synic_alloc();
	if (ret)
		goto err_alloc;
1344 1345 1346 1347 1348

	ret = hv_stimer_alloc(VMBUS_MESSAGE_SINT);
	if (ret < 0)
		goto err_alloc;

1349
	/*
1350 1351
	 * Initialize the per-cpu interrupt state and stimer state.
	 * Then connect to the host.
1352
	 */
1353
	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1354 1355
				hv_synic_init, hv_synic_cleanup);
	if (ret < 0)
1356
		goto err_cpuhp;
1357 1358
	hyperv_cpuhp_online = ret;

1359
	ret = vmbus_connect();
1360
	if (ret)
1361
		goto err_connect;
1362

1363 1364 1365
	/*
	 * Only register if the crash MSRs are available
	 */
1366
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
		u64 hyperv_crash_ctl;
		/*
		 * Sysctl registration is not fatal, since by default
		 * reporting is enabled.
		 */
		hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
		if (!hv_ctl_table_hdr)
			pr_err("Hyper-V: sysctl table register error");

		/*
		 * Register for panic kmsg callback only if the right
		 * capability is supported by the hypervisor.
		 */
1380
		hv_get_crash_ctl(hyperv_crash_ctl);
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
		if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) {
			hv_panic_page = (void *)get_zeroed_page(GFP_KERNEL);
			if (hv_panic_page) {
				ret = kmsg_dump_register(&hv_kmsg_dumper);
				if (ret)
					pr_err("Hyper-V: kmsg dump register "
						"error 0x%x\n", ret);
			} else
				pr_err("Hyper-V: panic message page memory "
					"allocation failed");
		}

1393
		register_die_notifier(&hyperv_die_block);
1394 1395 1396 1397
		atomic_notifier_chain_register(&panic_notifier_list,
					       &hyperv_panic_block);
	}

1398
	vmbus_request_offers();
1399

1400
	return 0;
1401

1402
err_connect:
1403
	cpuhp_remove_state(hyperv_cpuhp_online);
1404 1405
err_cpuhp:
	hv_stimer_free();
1406 1407
err_alloc:
	hv_synic_free();
1408
	hv_remove_vmbus_irq();
1409 1410

	bus_unregister(&hv_bus);
1411
	free_page((unsigned long)hv_panic_page);
1412 1413
	unregister_sysctl_table(hv_ctl_table_hdr);
	hv_ctl_table_hdr = NULL;
1414
	return ret;
1415 1416
}

1417
/**
1418 1419
 * __vmbus_child_driver_register() - Register a vmbus's driver
 * @hv_driver: Pointer to driver structure you want to register
1420 1421
 * @owner: owner module of the drv
 * @mod_name: module name string
1422 1423
 *
 * Registers the given driver with Linux through the 'driver_register()' call
1424
 * and sets up the hyper-v vmbus handling for this driver.
1425 1426
 * It will return the state of the 'driver_register()' call.
 *
1427
 */
1428
int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1429
{
1430
	int ret;
1431

1432
	pr_info("registering driver %s\n", hv_driver->name);
1433

1434 1435 1436 1437
	ret = vmbus_exists();
	if (ret < 0)
		return ret;

1438 1439 1440 1441
	hv_driver->driver.name = hv_driver->name;
	hv_driver->driver.owner = owner;
	hv_driver->driver.mod_name = mod_name;
	hv_driver->driver.bus = &hv_bus;
1442

1443 1444 1445
	spin_lock_init(&hv_driver->dynids.lock);
	INIT_LIST_HEAD(&hv_driver->dynids.list);

1446
	ret = driver_register(&hv_driver->driver);
1447

1448
	return ret;
1449
}
1450
EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1451

1452
/**
1453
 * vmbus_driver_unregister() - Unregister a vmbus's driver
1454 1455
 * @hv_driver: Pointer to driver structure you want to
 *             un-register
1456
 *
1457 1458
 * Un-register the given driver that was previous registered with a call to
 * vmbus_driver_register()
1459
 */
1460
void vmbus_driver_unregister(struct hv_driver *hv_driver)
1461
{
1462
	pr_info("unregistering driver %s\n", hv_driver->name);
1463

1464
	if (!vmbus_exists()) {
1465
		driver_unregister(&hv_driver->driver);
1466 1467
		vmbus_free_dynids(hv_driver);
	}
1468
}
1469
EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1470

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484

/*
 * Called when last reference to channel is gone.
 */
static void vmbus_chan_release(struct kobject *kobj)
{
	struct vmbus_channel *channel
		= container_of(kobj, struct vmbus_channel, kobj);

	kfree_rcu(channel, rcu);
}

struct vmbus_chan_attribute {
	struct attribute attr;
1485
	ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
	ssize_t (*store)(struct vmbus_channel *chan,
			 const char *buf, size_t count);
};
#define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
	struct vmbus_chan_attribute chan_attr_##_name \
		= __ATTR(_name, _mode, _show, _store)
#define VMBUS_CHAN_ATTR_RW(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
#define VMBUS_CHAN_ATTR_RO(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
#define VMBUS_CHAN_ATTR_WO(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)

static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
				    struct attribute *attr, char *buf)
{
	const struct vmbus_chan_attribute *attribute
		= container_of(attr, struct vmbus_chan_attribute, attr);
1504
	struct vmbus_channel *chan
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
		= container_of(kobj, struct vmbus_channel, kobj);

	if (!attribute->show)
		return -EIO;

	return attribute->show(chan, buf);
}

static const struct sysfs_ops vmbus_chan_sysfs_ops = {
	.show = vmbus_chan_attr_show,
};

1517
static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1518
{
1519 1520
	struct hv_ring_buffer_info *rbi = &channel->outbound;
	ssize_t ret;
1521

1522 1523 1524
	mutex_lock(&rbi->ring_buffer_mutex);
	if (!rbi->ring_buffer) {
		mutex_unlock(&rbi->ring_buffer_mutex);
1525
		return -EINVAL;
1526
	}
1527

1528 1529 1530
	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
	mutex_unlock(&rbi->ring_buffer_mutex);
	return ret;
1531
}
1532
static VMBUS_CHAN_ATTR_RO(out_mask);
1533

1534
static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1535
{
1536 1537
	struct hv_ring_buffer_info *rbi = &channel->inbound;
	ssize_t ret;
1538

1539 1540 1541
	mutex_lock(&rbi->ring_buffer_mutex);
	if (!rbi->ring_buffer) {
		mutex_unlock(&rbi->ring_buffer_mutex);
1542
		return -EINVAL;
1543
	}
1544

1545 1546 1547
	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
	mutex_unlock(&rbi->ring_buffer_mutex);
	return ret;
1548
}
1549
static VMBUS_CHAN_ATTR_RO(in_mask);
1550

1551
static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1552
{
1553 1554
	struct hv_ring_buffer_info *rbi = &channel->inbound;
	ssize_t ret;
1555

1556 1557 1558
	mutex_lock(&rbi->ring_buffer_mutex);
	if (!rbi->ring_buffer) {
		mutex_unlock(&rbi->ring_buffer_mutex);
1559
		return -EINVAL;
1560
	}
1561

1562 1563 1564
	ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
	mutex_unlock(&rbi->ring_buffer_mutex);
	return ret;
1565
}
1566
static VMBUS_CHAN_ATTR_RO(read_avail);
1567

1568
static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1569
{
1570 1571
	struct hv_ring_buffer_info *rbi = &channel->outbound;
	ssize_t ret;
1572

1573 1574 1575
	mutex_lock(&rbi->ring_buffer_mutex);
	if (!rbi->ring_buffer) {
		mutex_unlock(&rbi->ring_buffer_mutex);
1576
		return -EINVAL;
1577
	}
1578

1579 1580 1581
	ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
	mutex_unlock(&rbi->ring_buffer_mutex);
	return ret;
1582
}
1583
static VMBUS_CHAN_ATTR_RO(write_avail);
1584

1585
static ssize_t show_target_cpu(struct vmbus_channel *channel, char *buf)
1586 1587 1588
{
	return sprintf(buf, "%u\n", channel->target_cpu);
}
1589
static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1590

1591
static ssize_t channel_pending_show(struct vmbus_channel *channel,
1592 1593 1594 1595 1596 1597
				    char *buf)
{
	return sprintf(buf, "%d\n",
		       channel_pending(channel,
				       vmbus_connection.monitor_pages[1]));
}
1598
static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1599

1600
static ssize_t channel_latency_show(struct vmbus_channel *channel,
1601 1602 1603 1604 1605 1606
				    char *buf)
{
	return sprintf(buf, "%d\n",
		       channel_latency(channel,
				       vmbus_connection.monitor_pages[1]));
}
1607
static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1608

1609
static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1610 1611 1612
{
	return sprintf(buf, "%llu\n", channel->interrupts);
}
1613
static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1614

1615
static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1616 1617 1618
{
	return sprintf(buf, "%llu\n", channel->sig_events);
}
1619
static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1620

1621
static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1622 1623 1624 1625 1626 1627 1628
					 char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->intr_in_full);
}
static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);

1629
static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1630 1631 1632 1633 1634 1635 1636
					   char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->intr_out_empty);
}
static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);

1637
static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1638 1639 1640 1641 1642 1643 1644
					   char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->out_full_first);
}
static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);

1645
static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1646 1647 1648 1649 1650 1651 1652
					   char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->out_full_total);
}
static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);

1653
static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1654 1655 1656 1657 1658 1659
					  char *buf)
{
	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
}
static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);

1660
static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1661 1662 1663 1664 1665 1666 1667
				  char *buf)
{
	return sprintf(buf, "%u\n",
		       channel->offermsg.offer.sub_channel_index);
}
static VMBUS_CHAN_ATTR_RO(subchannel_id);

1668 1669 1670 1671 1672 1673 1674 1675
static struct attribute *vmbus_chan_attrs[] = {
	&chan_attr_out_mask.attr,
	&chan_attr_in_mask.attr,
	&chan_attr_read_avail.attr,
	&chan_attr_write_avail.attr,
	&chan_attr_cpu.attr,
	&chan_attr_pending.attr,
	&chan_attr_latency.attr,
1676 1677
	&chan_attr_interrupts.attr,
	&chan_attr_events.attr,
1678 1679 1680 1681
	&chan_attr_intr_in_full.attr,
	&chan_attr_intr_out_empty.attr,
	&chan_attr_out_full_first.attr,
	&chan_attr_out_full_total.attr,
1682 1683
	&chan_attr_monitor_id.attr,
	&chan_attr_subchannel_id.attr,
1684 1685 1686
	NULL
};

1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
/*
 * Channel-level attribute_group callback function. Returns the permission for
 * each attribute, and returns 0 if an attribute is not visible.
 */
static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
					  struct attribute *attr, int idx)
{
	const struct vmbus_channel *channel =
		container_of(kobj, struct vmbus_channel, kobj);

	/* Hide the monitor attributes if the monitor mechanism is not used. */
	if (!channel->offermsg.monitor_allocated &&
	    (attr == &chan_attr_pending.attr ||
	     attr == &chan_attr_latency.attr ||
	     attr == &chan_attr_monitor_id.attr))
		return 0;

	return attr->mode;
}

static struct attribute_group vmbus_chan_group = {
	.attrs = vmbus_chan_attrs,
	.is_visible = vmbus_chan_attr_is_visible
};

1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
static struct kobj_type vmbus_chan_ktype = {
	.sysfs_ops = &vmbus_chan_sysfs_ops,
	.release = vmbus_chan_release,
};

/*
 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
 */
int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
{
1722
	const struct device *device = &dev->device;
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
	struct kobject *kobj = &channel->kobj;
	u32 relid = channel->offermsg.child_relid;
	int ret;

	kobj->kset = dev->channels_kset;
	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
				   "%u", relid);
	if (ret)
		return ret;

1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
	ret = sysfs_create_group(kobj, &vmbus_chan_group);

	if (ret) {
		/*
		 * The calling functions' error handling paths will cleanup the
		 * empty channel directory.
		 */
		dev_err(device, "Unable to set up channel sysfs files\n");
		return ret;
	}

1744 1745 1746 1747 1748
	kobject_uevent(kobj, KOBJ_ADD);

	return 0;
}

1749 1750 1751 1752 1753 1754 1755 1756
/*
 * vmbus_remove_channel_attr_group - remove the channel's attribute group
 */
void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
{
	sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
}

1757
/*
1758
 * vmbus_device_create - Creates and registers a new child device
1759
 * on the vmbus.
1760
 */
1761 1762
struct hv_device *vmbus_device_create(const guid_t *type,
				      const guid_t *instance,
S
stephen hemminger 已提交
1763
				      struct vmbus_channel *channel)
1764
{
1765
	struct hv_device *child_device_obj;
1766

1767 1768
	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
	if (!child_device_obj) {
1769
		pr_err("Unable to allocate device object for child device\n");
1770 1771 1772
		return NULL;
	}

1773
	child_device_obj->channel = channel;
1774 1775
	guid_copy(&child_device_obj->dev_type, type);
	guid_copy(&child_device_obj->dev_instance, instance);
1776
	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1777 1778 1779 1780

	return child_device_obj;
}

1781
/*
1782
 * vmbus_device_register - Register the child device
1783
 */
1784
int vmbus_device_register(struct hv_device *child_device_obj)
1785
{
1786 1787
	struct kobject *kobj = &child_device_obj->device.kobj;
	int ret;
1788

1789
	dev_set_name(&child_device_obj->device, "%pUl",
1790
		     child_device_obj->channel->offermsg.offer.if_instance.b);
1791

1792
	child_device_obj->device.bus = &hv_bus;
1793
	child_device_obj->device.parent = &hv_acpi_dev->dev;
1794
	child_device_obj->device.release = vmbus_device_release;
1795

1796 1797 1798 1799
	/*
	 * Register with the LDM. This will kick off the driver/device
	 * binding...which will eventually call vmbus_match() and vmbus_probe()
	 */
1800
	ret = device_register(&child_device_obj->device);
1801
	if (ret) {
1802
		pr_err("Unable to register child device\n");
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
		return ret;
	}

	child_device_obj->channels_kset = kset_create_and_add("channels",
							      NULL, kobj);
	if (!child_device_obj->channels_kset) {
		ret = -ENOMEM;
		goto err_dev_unregister;
	}

	ret = vmbus_add_channel_kobj(child_device_obj,
				     child_device_obj->channel);
	if (ret) {
		pr_err("Unable to register primary channeln");
		goto err_kset_unregister;
	}
1819
	hv_debug_add_dev_dir(child_device_obj);
1820 1821 1822 1823 1824

	return 0;

err_kset_unregister:
	kset_unregister(child_device_obj->channels_kset);
1825

1826 1827
err_dev_unregister:
	device_unregister(&child_device_obj->device);
1828 1829 1830
	return ret;
}

1831
/*
1832
 * vmbus_device_unregister - Remove the specified child device
1833
 * from the vmbus.
1834
 */
1835
void vmbus_device_unregister(struct hv_device *device_obj)
1836
{
1837 1838 1839
	pr_debug("child device %s unregistered\n",
		dev_name(&device_obj->device));

1840 1841
	kset_unregister(device_obj->channels_kset);

1842 1843 1844 1845
	/*
	 * Kick off the process of unregistering the device.
	 * This will call vmbus_remove() and eventually vmbus_device_release()
	 */
1846
	device_unregister(&device_obj->device);
1847 1848 1849
}


1850
/*
1851
 * VMBUS is an acpi enumerated device. Get the information we
1852
 * need from DSDT.
1853
 */
1854
#define VTPM_BASE_ADDRESS 0xfed40000
1855
static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1856
{
1857 1858 1859 1860 1861 1862
	resource_size_t start = 0;
	resource_size_t end = 0;
	struct resource *new_res;
	struct resource **old_res = &hyperv_mmio;
	struct resource **prev_res = NULL;

1863
	switch (res->type) {
1864 1865 1866 1867 1868 1869 1870 1871 1872

	/*
	 * "Address" descriptors are for bus windows. Ignore
	 * "memory" descriptors, which are for registers on
	 * devices.
	 */
	case ACPI_RESOURCE_TYPE_ADDRESS32:
		start = res->data.address32.address.minimum;
		end = res->data.address32.address.maximum;
G
Gerd Hoffmann 已提交
1873
		break;
1874

1875
	case ACPI_RESOURCE_TYPE_ADDRESS64:
1876 1877
		start = res->data.address64.address.minimum;
		end = res->data.address64.address.maximum;
G
Gerd Hoffmann 已提交
1878
		break;
1879 1880 1881 1882 1883

	default:
		/* Unused resource type */
		return AE_OK;

1884
	}
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
	/*
	 * Ignore ranges that are below 1MB, as they're not
	 * necessary or useful here.
	 */
	if (end < 0x100000)
		return AE_OK;

	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
	if (!new_res)
		return AE_NO_MEMORY;

	/* If this range overlaps the virtual TPM, truncate it. */
	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
		end = VTPM_BASE_ADDRESS;

	new_res->name = "hyperv mmio";
	new_res->flags = IORESOURCE_MEM;
	new_res->start = start;
	new_res->end = end;

1905 1906 1907
	/*
	 * If two ranges are adjacent, merge them.
	 */
1908 1909 1910 1911 1912 1913
	do {
		if (!*old_res) {
			*old_res = new_res;
			break;
		}

1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
		if (((*old_res)->end + 1) == new_res->start) {
			(*old_res)->end = new_res->end;
			kfree(new_res);
			break;
		}

		if ((*old_res)->start == new_res->end + 1) {
			(*old_res)->start = new_res->start;
			kfree(new_res);
			break;
		}

1926
		if ((*old_res)->start > new_res->end) {
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
			new_res->sibling = *old_res;
			if (prev_res)
				(*prev_res)->sibling = new_res;
			*old_res = new_res;
			break;
		}

		prev_res = old_res;
		old_res = &(*old_res)->sibling;

	} while (1);
1938 1939 1940 1941

	return AE_OK;
}

1942 1943 1944 1945 1946 1947
static int vmbus_acpi_remove(struct acpi_device *device)
{
	struct resource *cur_res;
	struct resource *next_res;

	if (hyperv_mmio) {
1948 1949 1950 1951 1952 1953
		if (fb_mmio) {
			__release_region(hyperv_mmio, fb_mmio->start,
					 resource_size(fb_mmio));
			fb_mmio = NULL;
		}

1954 1955 1956 1957 1958 1959 1960 1961 1962
		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
			next_res = cur_res->sibling;
			kfree(cur_res);
		}
	}

	return 0;
}

1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
static void vmbus_reserve_fb(void)
{
	int size;
	/*
	 * Make a claim for the frame buffer in the resource tree under the
	 * first node, which will be the one below 4GB.  The length seems to
	 * be underreported, particularly in a Generation 1 VM.  So start out
	 * reserving a larger area and make it smaller until it succeeds.
	 */

	if (screen_info.lfb_base) {
		if (efi_enabled(EFI_BOOT))
			size = max_t(__u32, screen_info.lfb_size, 0x800000);
		else
			size = max_t(__u32, screen_info.lfb_size, 0x4000000);

		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
			fb_mmio = __request_region(hyperv_mmio,
						   screen_info.lfb_base, size,
						   fb_mmio_name, 0);
		}
	}
}

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
/**
 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
 * @new:		If successful, supplied a pointer to the
 *			allocated MMIO space.
 * @device_obj:		Identifies the caller
 * @min:		Minimum guest physical address of the
 *			allocation
 * @max:		Maximum guest physical address
 * @size:		Size of the range to be allocated
 * @align:		Alignment of the range to be allocated
 * @fb_overlap_ok:	Whether this allocation can be allowed
 *			to overlap the video frame buffer.
 *
 * This function walks the resources granted to VMBus by the
 * _CRS object in the ACPI namespace underneath the parent
 * "bridge" whether that's a root PCI bus in the Generation 1
 * case or a Module Device in the Generation 2 case.  It then
 * attempts to allocate from the global MMIO pool in a way that
 * matches the constraints supplied in these parameters and by
 * that _CRS.
 *
 * Return: 0 on success, -errno on failure
 */
int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
			resource_size_t min, resource_size_t max,
			resource_size_t size, resource_size_t align,
			bool fb_overlap_ok)
{
2015
	struct resource *iter, *shadow;
2016
	resource_size_t range_min, range_max, start;
2017
	const char *dev_n = dev_name(&device_obj->device);
2018
	int retval;
2019 2020 2021

	retval = -ENXIO;
	down(&hyperv_mmio_lock);
2022

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
	/*
	 * If overlaps with frame buffers are allowed, then first attempt to
	 * make the allocation from within the reserved region.  Because it
	 * is already reserved, no shadow allocation is necessary.
	 */
	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
	    !(max < fb_mmio->start)) {

		range_min = fb_mmio->start;
		range_max = fb_mmio->end;
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				retval = 0;
				goto exit;
			}
		}
	}

2043 2044 2045 2046 2047 2048
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= max) || (iter->end <= min))
			continue;

		range_min = iter->start;
		range_max = iter->end;
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			shadow = __request_region(iter, start, size, NULL,
						  IORESOURCE_BUSY);
			if (!shadow)
				continue;

			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				shadow->name = (char *)*new;
				retval = 0;
				goto exit;
2061 2062
			}

2063
			__release_region(iter, start, size);
2064 2065 2066
		}
	}

2067 2068 2069
exit:
	up(&hyperv_mmio_lock);
	return retval;
2070 2071 2072
}
EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);

2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
/**
 * vmbus_free_mmio() - Free a memory-mapped I/O range.
 * @start:		Base address of region to release.
 * @size:		Size of the range to be allocated
 *
 * This function releases anything requested by
 * vmbus_mmio_allocate().
 */
void vmbus_free_mmio(resource_size_t start, resource_size_t size)
{
2083 2084 2085 2086 2087 2088 2089 2090 2091
	struct resource *iter;

	down(&hyperv_mmio_lock);
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= start + size) || (iter->end <= start))
			continue;

		__release_region(iter, start, size);
	}
2092
	release_mem_region(start, size);
2093
	up(&hyperv_mmio_lock);
2094 2095 2096 2097

}
EXPORT_SYMBOL_GPL(vmbus_free_mmio);

2098 2099 2100
static int vmbus_acpi_add(struct acpi_device *device)
{
	acpi_status result;
2101
	int ret_val = -ENODEV;
2102
	struct acpi_device *ancestor;
2103

2104 2105
	hv_acpi_dev = device;

2106
	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2107
					vmbus_walk_resources, NULL);
2108

2109 2110 2111
	if (ACPI_FAILURE(result))
		goto acpi_walk_err;
	/*
2112 2113
	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
	 * firmware) is the VMOD that has the mmio ranges. Get that.
2114
	 */
2115 2116 2117
	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
					     vmbus_walk_resources, NULL);
2118 2119

		if (ACPI_FAILURE(result))
2120
			continue;
2121 2122
		if (hyperv_mmio) {
			vmbus_reserve_fb();
2123
			break;
2124
		}
2125
	}
2126 2127 2128
	ret_val = 0;

acpi_walk_err:
2129
	complete(&probe_event);
2130 2131
	if (ret_val)
		vmbus_acpi_remove(device);
2132
	return ret_val;
2133 2134
}

2135
#ifdef CONFIG_PM_SLEEP
2136 2137
static int vmbus_bus_suspend(struct device *dev)
{
2138 2139
	struct vmbus_channel *channel, *sc;
	unsigned long flags;
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157

	while (atomic_read(&vmbus_connection.offer_in_progress) != 0) {
		/*
		 * We wait here until the completion of any channel
		 * offers that are currently in progress.
		 */
		msleep(1);
	}

	mutex_lock(&vmbus_connection.channel_mutex);
	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
		if (!is_hvsock_channel(channel))
			continue;

		vmbus_force_channel_rescinded(channel);
	}
	mutex_unlock(&vmbus_connection.channel_mutex);

2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
	/*
	 * Wait until all the sub-channels and hv_sock channels have been
	 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
	 * they would conflict with the new sub-channels that will be created
	 * in the resume path. hv_sock channels should also be destroyed, but
	 * a hv_sock channel of an established hv_sock connection can not be
	 * really destroyed since it may still be referenced by the userspace
	 * application, so we just force the hv_sock channel to be rescinded
	 * by vmbus_force_channel_rescinded(), and the userspace application
	 * will thoroughly destroy the channel after hibernation.
	 *
	 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
	 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
	 */
	if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0)
		wait_for_completion(&vmbus_connection.ready_for_suspend_event);

2175 2176
	WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0);

2177 2178 2179
	mutex_lock(&vmbus_connection.channel_mutex);

	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2180 2181 2182 2183 2184 2185
		/*
		 * Invalidate the field. Upon resume, vmbus_onoffer() will fix
		 * up the field, and the other fields (if necessary).
		 */
		channel->offermsg.child_relid = INVALID_RELID;

2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
		if (is_hvsock_channel(channel)) {
			if (!channel->rescind) {
				pr_err("hv_sock channel not rescinded!\n");
				WARN_ON_ONCE(1);
			}
			continue;
		}

		spin_lock_irqsave(&channel->lock, flags);
		list_for_each_entry(sc, &channel->sc_list, sc_list) {
			pr_err("Sub-channel not deleted!\n");
			WARN_ON_ONCE(1);
		}
		spin_unlock_irqrestore(&channel->lock, flags);
2200 2201

		atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume);
2202 2203 2204 2205
	}

	mutex_unlock(&vmbus_connection.channel_mutex);

2206 2207 2208 2209
	vmbus_initiate_unload(false);

	vmbus_connection.conn_state = DISCONNECTED;

2210 2211 2212
	/* Reset the event for the next resume. */
	reinit_completion(&vmbus_connection.ready_for_resume_event);

2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
	return 0;
}

static int vmbus_bus_resume(struct device *dev)
{
	struct vmbus_channel_msginfo *msginfo;
	size_t msgsize;
	int ret;

	/*
	 * We only use the 'vmbus_proto_version', which was in use before
	 * hibernation, to re-negotiate with the host.
	 */
2226
	if (!vmbus_proto_version) {
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
		pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
		return -EINVAL;
	}

	msgsize = sizeof(*msginfo) +
		  sizeof(struct vmbus_channel_initiate_contact);

	msginfo = kzalloc(msgsize, GFP_KERNEL);

	if (msginfo == NULL)
		return -ENOMEM;

	ret = vmbus_negotiate_version(msginfo, vmbus_proto_version);

	kfree(msginfo);

	if (ret != 0)
		return ret;

2246 2247
	WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0);

2248 2249
	vmbus_request_offers();

2250 2251
	wait_for_completion(&vmbus_connection.ready_for_resume_event);

2252 2253 2254
	/* Reset the event for the next suspend. */
	reinit_completion(&vmbus_connection.ready_for_suspend_event);

2255 2256
	return 0;
}
2257
#endif /* CONFIG_PM_SLEEP */
2258

2259 2260
static const struct acpi_device_id vmbus_acpi_device_ids[] = {
	{"VMBUS", 0},
2261
	{"VMBus", 0},
2262 2263 2264 2265
	{"", 0},
};
MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);

2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
/*
 * Note: we must use SET_NOIRQ_SYSTEM_SLEEP_PM_OPS rather than
 * SET_SYSTEM_SLEEP_PM_OPS, otherwise NIC SR-IOV can not work, because the
 * "pci_dev_pm_ops" uses the "noirq" callbacks: in the resume path, the
 * pci "noirq" restore callback runs before "non-noirq" callbacks (see
 * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
 * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
 * resume callback must also run via the "noirq" callbacks.
 */
static const struct dev_pm_ops vmbus_bus_pm = {
	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(vmbus_bus_suspend, vmbus_bus_resume)
};

2279 2280 2281 2282 2283
static struct acpi_driver vmbus_acpi_driver = {
	.name = "vmbus",
	.ids = vmbus_acpi_device_ids,
	.ops = {
		.add = vmbus_acpi_add,
2284
		.remove = vmbus_acpi_remove,
2285
	},
2286
	.drv.pm = &vmbus_bus_pm,
2287 2288
};

2289 2290
static void hv_kexec_handler(void)
{
2291
	hv_stimer_global_cleanup();
2292
	vmbus_initiate_unload(false);
2293 2294 2295
	vmbus_connection.conn_state = DISCONNECTED;
	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
	mb();
2296
	cpuhp_remove_state(hyperv_cpuhp_online);
2297
	hyperv_cleanup();
2298 2299
};

2300 2301
static void hv_crash_handler(struct pt_regs *regs)
{
2302 2303
	int cpu;

2304
	vmbus_initiate_unload(true);
2305 2306 2307 2308 2309
	/*
	 * In crash handler we can't schedule synic cleanup for all CPUs,
	 * doing the cleanup for current CPU only. This should be sufficient
	 * for kdump.
	 */
2310
	vmbus_connection.conn_state = DISCONNECTED;
2311 2312 2313
	cpu = smp_processor_id();
	hv_stimer_cleanup(cpu);
	hv_synic_cleanup(cpu);
2314
	hyperv_cleanup();
2315 2316
};

2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
static int hv_synic_suspend(void)
{
	/*
	 * When we reach here, all the non-boot CPUs have been offlined, and
	 * the stimers on them have been unbound in hv_synic_cleanup() ->
	 * hv_stimer_cleanup() -> clockevents_unbind_device().
	 *
	 * hv_synic_suspend() only runs on CPU0 with interrupts disabled. Here
	 * we do not unbind the stimer on CPU0 because: 1) it's unnecessary
	 * because the interrupts remain disabled between syscore_suspend()
	 * and syscore_resume(): see create_image() and resume_target_kernel();
	 * 2) the stimer on CPU0 is automatically disabled later by
	 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
	 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown(); 3) a warning
	 * would be triggered if we call clockevents_unbind_device(), which
	 * may sleep, in an interrupts-disabled context. So, we intentionally
	 * don't call hv_stimer_cleanup(0) here.
	 */

	hv_synic_disable_regs(0);

	return 0;
}

static void hv_synic_resume(void)
{
	hv_synic_enable_regs(0);

	/*
	 * Note: we don't need to call hv_stimer_init(0), because the timer
	 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
	 * automatically re-enabled in timekeeping_resume().
	 */
}

/* The callbacks run only on CPU0, with irqs_disabled. */
static struct syscore_ops hv_synic_syscore_ops = {
	.suspend = hv_synic_suspend,
	.resume = hv_synic_resume,
};

2358
static int __init hv_acpi_init(void)
2359
{
2360
	int ret, t;
2361

2362
	if (!hv_is_hyperv_initialized())
2363 2364
		return -ENODEV;

2365 2366 2367
	init_completion(&probe_event);

	/*
2368
	 * Get ACPI resources first.
2369
	 */
2370 2371
	ret = acpi_bus_register_driver(&vmbus_acpi_driver);

2372 2373 2374
	if (ret)
		return ret;

2375 2376 2377 2378 2379
	t = wait_for_completion_timeout(&probe_event, 5*HZ);
	if (t == 0) {
		ret = -ETIMEDOUT;
		goto cleanup;
	}
2380
	hv_debug_init();
2381

2382
	ret = vmbus_bus_init();
2383
	if (ret)
2384 2385
		goto cleanup;

2386
	hv_setup_kexec_handler(hv_kexec_handler);
2387
	hv_setup_crash_handler(hv_crash_handler);
2388

2389 2390
	register_syscore_ops(&hv_synic_syscore_ops);

2391 2392 2393 2394
	return 0;

cleanup:
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2395
	hv_acpi_dev = NULL;
2396
	return ret;
2397 2398
}

2399 2400
static void __exit vmbus_exit(void)
{
2401 2402
	int cpu;

2403 2404
	unregister_syscore_ops(&hv_synic_syscore_ops);

2405
	hv_remove_kexec_handler();
2406
	hv_remove_crash_handler();
2407
	vmbus_connection.conn_state = DISCONNECTED;
2408
	hv_stimer_global_cleanup();
2409
	vmbus_disconnect();
2410
	hv_remove_vmbus_irq();
2411 2412 2413 2414 2415 2416
	for_each_online_cpu(cpu) {
		struct hv_per_cpu_context *hv_cpu
			= per_cpu_ptr(hv_context.cpu_context, cpu);

		tasklet_kill(&hv_cpu->msg_dpc);
	}
2417 2418
	hv_debug_rm_all_dir();

2419
	vmbus_free_channels();
2420

2421
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
2422
		kmsg_dump_unregister(&hv_kmsg_dumper);
2423
		unregister_die_notifier(&hyperv_die_block);
2424 2425 2426
		atomic_notifier_chain_unregister(&panic_notifier_list,
						 &hyperv_panic_block);
	}
2427 2428

	free_page((unsigned long)hv_panic_page);
2429 2430
	unregister_sysctl_table(hv_ctl_table_hdr);
	hv_ctl_table_hdr = NULL;
2431
	bus_unregister(&hv_bus);
2432

2433
	cpuhp_remove_state(hyperv_cpuhp_online);
2434
	hv_synic_free();
2435 2436 2437
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
}

2438

2439
MODULE_LICENSE("GPL");
2440
MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2441

2442
subsys_initcall(hv_acpi_init);
2443
module_exit(vmbus_exit);