vmbus_drv.c 50.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (c) 2009, Microsoft Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 *
 * Authors:
 *   Haiyang Zhang <haiyangz@microsoft.com>
 *   Hank Janssen  <hjanssen@microsoft.com>
20
 *   K. Y. Srinivasan <kys@microsoft.com>
21
 *
22
 */
23 24
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

25 26 27 28 29
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/sysctl.h>
30
#include <linux/slab.h>
31
#include <linux/acpi.h>
32
#include <linux/completion.h>
33
#include <linux/hyperv.h>
34
#include <linux/kernel_stat.h>
35
#include <linux/clockchips.h>
36
#include <linux/cpu.h>
37 38
#include <linux/sched/task_stack.h>

39
#include <asm/mshyperv.h>
40 41
#include <linux/notifier.h>
#include <linux/ptrace.h>
42
#include <linux/screen_info.h>
43
#include <linux/kdebug.h>
44
#include <linux/efi.h>
45
#include <linux/random.h>
46
#include "hyperv_vmbus.h"
47

48 49 50 51 52
struct vmbus_dynid {
	struct list_head node;
	struct hv_vmbus_device_id id;
};

53
static struct acpi_device  *hv_acpi_dev;
54

55
static struct completion probe_event;
56

57
static int hyperv_cpuhp_online;
58

59 60
static void *hv_panic_page;

61 62 63 64 65 66 67
static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
			      void *args)
{
	struct pt_regs *regs;

	regs = current_pt_regs();

68
	hyperv_report_panic(regs, val);
69 70 71
	return NOTIFY_DONE;
}

72 73 74 75 76 77
static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
			    void *args)
{
	struct die_args *die = (struct die_args *)args;
	struct pt_regs *regs = die->regs;

78
	hyperv_report_panic(regs, val);
79 80 81 82 83 84
	return NOTIFY_DONE;
}

static struct notifier_block hyperv_die_block = {
	.notifier_call = hyperv_die_event,
};
85 86 87 88
static struct notifier_block hyperv_panic_block = {
	.notifier_call = hyperv_panic_event,
};

89 90
static const char *fb_mmio_name = "fb_range";
static struct resource *fb_mmio;
91 92
static struct resource *hyperv_mmio;
static DEFINE_SEMAPHORE(hyperv_mmio_lock);
93

94 95 96 97 98 99 100 101
static int vmbus_exists(void)
{
	if (hv_acpi_dev == NULL)
		return -ENODEV;

	return 0;
}

102 103 104 105 106 107 108 109
#define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
{
	int i;
	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
}

110
static u8 channel_monitor_group(const struct vmbus_channel *channel)
111 112 113 114
{
	return (u8)channel->offermsg.monitorid / 32;
}

115
static u8 channel_monitor_offset(const struct vmbus_channel *channel)
116 117 118 119
{
	return (u8)channel->offermsg.monitorid % 32;
}

120 121
static u32 channel_pending(const struct vmbus_channel *channel,
			   const struct hv_monitor_page *monitor_page)
122 123
{
	u8 monitor_group = channel_monitor_group(channel);
124

125 126 127
	return monitor_page->trigger_group[monitor_group].pending;
}

128 129
static u32 channel_latency(const struct vmbus_channel *channel,
			   const struct hv_monitor_page *monitor_page)
130 131 132
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
133

134 135 136
	return monitor_page->latency[monitor_group][monitor_offset];
}

137 138 139 140 141 142 143 144
static u32 channel_conn_id(struct vmbus_channel *channel,
			   struct hv_monitor_page *monitor_page)
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
}

145 146 147 148 149 150 151 152 153 154 155
static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
		       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
}
static DEVICE_ATTR_RO(id);

156 157 158 159 160 161 162 163 164 165 166
static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
			  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->state);
}
static DEVICE_ATTR_RO(state);

167 168 169 170 171 172 173 174 175 176 177
static ssize_t monitor_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
}
static DEVICE_ATTR_RO(monitor_id);

178 179 180 181 182 183 184 185 186 187 188 189
static ssize_t class_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_type.b);
}
static DEVICE_ATTR_RO(class_id);

190 191 192 193 194 195 196 197 198 199 200 201
static ssize_t device_id_show(struct device *dev,
			      struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_instance.b);
}
static DEVICE_ATTR_RO(device_id);

202 203 204 205 206 207 208 209 210 211 212
static ssize_t modalias_show(struct device *dev,
			     struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	char alias_name[VMBUS_ALIAS_LEN + 1];

	print_alias_name(hv_dev, alias_name);
	return sprintf(buf, "vmbus:%s\n", alias_name);
}
static DEVICE_ATTR_RO(modalias);

213 214 215 216 217 218 219 220 221 222 223 224 225 226
#ifdef CONFIG_NUMA
static ssize_t numa_node_show(struct device *dev,
			      struct device_attribute *attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;

	return sprintf(buf, "%d\n", hv_dev->channel->numa_node);
}
static DEVICE_ATTR_RO(numa_node);
#endif

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
static ssize_t server_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(server_monitor_pending);

static ssize_t client_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_pending);
254

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
static ssize_t server_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_latency);

static ssize_t client_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_latency);

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
static ssize_t server_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_conn_id);

static ssize_t client_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_conn_id);

311 312 313 314 315
static ssize_t out_intr_mask_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
316
	int ret;
317 318 319

	if (!hv_dev->channel)
		return -ENODEV;
320 321 322 323 324 325

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;

326 327 328 329 330 331 332 333 334
	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(out_intr_mask);

static ssize_t out_read_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
335
	int ret;
336 337 338

	if (!hv_dev->channel)
		return -ENODEV;
339 340 341 342 343

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
344 345 346 347 348 349 350 351 352 353
	return sprintf(buf, "%d\n", outbound.current_read_index);
}
static DEVICE_ATTR_RO(out_read_index);

static ssize_t out_write_index_show(struct device *dev,
				    struct device_attribute *dev_attr,
				    char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
354
	int ret;
355 356 357

	if (!hv_dev->channel)
		return -ENODEV;
358 359 360 361 362

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
363 364 365 366 367 368 369 370 371 372
	return sprintf(buf, "%d\n", outbound.current_write_index);
}
static DEVICE_ATTR_RO(out_write_index);

static ssize_t out_read_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
373
	int ret;
374 375 376

	if (!hv_dev->channel)
		return -ENODEV;
377 378 379 380 381

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
382 383 384 385 386 387 388 389 390 391
	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(out_read_bytes_avail);

static ssize_t out_write_bytes_avail_show(struct device *dev,
					  struct device_attribute *dev_attr,
					  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
392
	int ret;
393 394 395

	if (!hv_dev->channel)
		return -ENODEV;
396 397 398 399 400

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
401 402 403 404 405 406 407 408 409
	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(out_write_bytes_avail);

static ssize_t in_intr_mask_show(struct device *dev,
				 struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
410
	int ret;
411 412 413

	if (!hv_dev->channel)
		return -ENODEV;
414 415 416 417 418

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

419 420 421 422 423 424 425 426 427
	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(in_intr_mask);

static ssize_t in_read_index_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
428
	int ret;
429 430 431

	if (!hv_dev->channel)
		return -ENODEV;
432 433 434 435 436

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

437 438 439 440 441 442 443 444 445
	return sprintf(buf, "%d\n", inbound.current_read_index);
}
static DEVICE_ATTR_RO(in_read_index);

static ssize_t in_write_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
446
	int ret;
447 448 449

	if (!hv_dev->channel)
		return -ENODEV;
450 451 452 453 454

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

455 456 457 458 459 460 461 462 463 464
	return sprintf(buf, "%d\n", inbound.current_write_index);
}
static DEVICE_ATTR_RO(in_write_index);

static ssize_t in_read_bytes_avail_show(struct device *dev,
					struct device_attribute *dev_attr,
					char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
465
	int ret;
466 467 468

	if (!hv_dev->channel)
		return -ENODEV;
469 470 471 472 473

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

474 475 476 477 478 479 480 481 482 483
	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(in_read_bytes_avail);

static ssize_t in_write_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
484
	int ret;
485 486 487

	if (!hv_dev->channel)
		return -ENODEV;
488 489 490 491 492

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

493 494 495 496
	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(in_write_bytes_avail);

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
static ssize_t channel_vp_mapping_show(struct device *dev,
				       struct device_attribute *dev_attr,
				       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
	unsigned long flags;
	int buf_size = PAGE_SIZE, n_written, tot_written;
	struct list_head *cur;

	if (!channel)
		return -ENODEV;

	tot_written = snprintf(buf, buf_size, "%u:%u\n",
		channel->offermsg.child_relid, channel->target_cpu);

	spin_lock_irqsave(&channel->lock, flags);

	list_for_each(cur, &channel->sc_list) {
		if (tot_written >= buf_size - 1)
			break;

		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
		n_written = scnprintf(buf + tot_written,
				     buf_size - tot_written,
				     "%u:%u\n",
				     cur_sc->offermsg.child_relid,
				     cur_sc->target_cpu);
		tot_written += n_written;
	}

	spin_unlock_irqrestore(&channel->lock, flags);

	return tot_written;
}
static DEVICE_ATTR_RO(channel_vp_mapping);

534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
static ssize_t vendor_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
}
static DEVICE_ATTR_RO(vendor);

static ssize_t device_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->device_id);
}
static DEVICE_ATTR_RO(device);

552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
static ssize_t driver_override_store(struct device *dev,
				     struct device_attribute *attr,
				     const char *buf, size_t count)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	char *driver_override, *old, *cp;

	/* We need to keep extra room for a newline */
	if (count >= (PAGE_SIZE - 1))
		return -EINVAL;

	driver_override = kstrndup(buf, count, GFP_KERNEL);
	if (!driver_override)
		return -ENOMEM;

	cp = strchr(driver_override, '\n');
	if (cp)
		*cp = '\0';

	device_lock(dev);
	old = hv_dev->driver_override;
	if (strlen(driver_override)) {
		hv_dev->driver_override = driver_override;
	} else {
		kfree(driver_override);
		hv_dev->driver_override = NULL;
	}
	device_unlock(dev);

	kfree(old);

	return count;
}

static ssize_t driver_override_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	ssize_t len;

	device_lock(dev);
	len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
	device_unlock(dev);

	return len;
}
static DEVICE_ATTR_RW(driver_override);

600
/* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
601
static struct attribute *vmbus_dev_attrs[] = {
602
	&dev_attr_id.attr,
603
	&dev_attr_state.attr,
604
	&dev_attr_monitor_id.attr,
605
	&dev_attr_class_id.attr,
606
	&dev_attr_device_id.attr,
607
	&dev_attr_modalias.attr,
608 609 610
#ifdef CONFIG_NUMA
	&dev_attr_numa_node.attr,
#endif
611 612
	&dev_attr_server_monitor_pending.attr,
	&dev_attr_client_monitor_pending.attr,
613 614
	&dev_attr_server_monitor_latency.attr,
	&dev_attr_client_monitor_latency.attr,
615 616
	&dev_attr_server_monitor_conn_id.attr,
	&dev_attr_client_monitor_conn_id.attr,
617 618 619 620 621 622 623 624 625 626
	&dev_attr_out_intr_mask.attr,
	&dev_attr_out_read_index.attr,
	&dev_attr_out_write_index.attr,
	&dev_attr_out_read_bytes_avail.attr,
	&dev_attr_out_write_bytes_avail.attr,
	&dev_attr_in_intr_mask.attr,
	&dev_attr_in_read_index.attr,
	&dev_attr_in_write_index.attr,
	&dev_attr_in_read_bytes_avail.attr,
	&dev_attr_in_write_bytes_avail.attr,
627
	&dev_attr_channel_vp_mapping.attr,
628 629
	&dev_attr_vendor.attr,
	&dev_attr_device.attr,
630
	&dev_attr_driver_override.attr,
631 632
	NULL,
};
633
ATTRIBUTE_GROUPS(vmbus_dev);
634

635 636 637 638 639 640
/*
 * vmbus_uevent - add uevent for our device
 *
 * This routine is invoked when a device is added or removed on the vmbus to
 * generate a uevent to udev in the userspace. The udev will then look at its
 * rule and the uevent generated here to load the appropriate driver
641 642 643 644
 *
 * The alias string will be of the form vmbus:guid where guid is the string
 * representation of the device guid (each byte of the guid will be
 * represented with two hex characters.
645 646 647 648
 */
static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
{
	struct hv_device *dev = device_to_hv_device(device);
649 650
	int ret;
	char alias_name[VMBUS_ALIAS_LEN + 1];
651

652
	print_alias_name(dev, alias_name);
653 654
	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
	return ret;
655 656
}

S
stephen hemminger 已提交
657
static const uuid_le null_guid;
658

659
static inline bool is_null_guid(const uuid_le *guid)
660
{
661
	if (uuid_le_cmp(*guid, null_guid))
662 663 664 665
		return false;
	return true;
}

666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
static const struct hv_vmbus_device_id *
hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const uuid_le *guid)

{
	if (id == NULL)
		return NULL; /* empty device table */

	for (; !is_null_guid(&id->guid); id++)
		if (!uuid_le_cmp(id->guid, *guid))
			return id;

	return NULL;
}

static const struct hv_vmbus_device_id *
hv_vmbus_dynid_match(struct hv_driver *drv, const uuid_le *guid)
682
{
683 684 685 686 687 688 689 690 691 692 693 694
	const struct hv_vmbus_device_id *id = NULL;
	struct vmbus_dynid *dynid;

	spin_lock(&drv->dynids.lock);
	list_for_each_entry(dynid, &drv->dynids.list, node) {
		if (!uuid_le_cmp(dynid->id.guid, *guid)) {
			id = &dynid->id;
			break;
		}
	}
	spin_unlock(&drv->dynids.lock);

695 696
	return id;
}
697

698 699 700
static const struct hv_vmbus_device_id vmbus_device_null = {
	.guid = NULL_UUID_LE,
};
701

702 703 704 705 706 707 708 709 710
/*
 * Return a matching hv_vmbus_device_id pointer.
 * If there is no match, return NULL.
 */
static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
							struct hv_device *dev)
{
	const uuid_le *guid = &dev->dev_type;
	const struct hv_vmbus_device_id *id;
711

712 713 714 715 716 717 718 719 720 721 722 723 724 725
	/* When driver_override is set, only bind to the matching driver */
	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
		return NULL;

	/* Look at the dynamic ids first, before the static ones */
	id = hv_vmbus_dynid_match(drv, guid);
	if (!id)
		id = hv_vmbus_dev_match(drv->id_table, guid);

	/* driver_override will always match, send a dummy id */
	if (!id && dev->driver_override)
		id = &vmbus_device_null;

	return id;
726 727
}

728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
/* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid)
{
	struct vmbus_dynid *dynid;

	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
	if (!dynid)
		return -ENOMEM;

	dynid->id.guid = *guid;

	spin_lock(&drv->dynids.lock);
	list_add_tail(&dynid->node, &drv->dynids.list);
	spin_unlock(&drv->dynids.lock);

	return driver_attach(&drv->driver);
}

static void vmbus_free_dynids(struct hv_driver *drv)
{
	struct vmbus_dynid *dynid, *n;

	spin_lock(&drv->dynids.lock);
	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
		list_del(&dynid->node);
		kfree(dynid);
	}
	spin_unlock(&drv->dynids.lock);
}

/*
 * store_new_id - sysfs frontend to vmbus_add_dynid()
 *
 * Allow GUIDs to be added to an existing driver via sysfs.
 */
static ssize_t new_id_store(struct device_driver *driver, const char *buf,
			    size_t count)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
767
	uuid_le guid;
768 769
	ssize_t retval;

770 771 772
	retval = uuid_le_to_bin(buf, &guid);
	if (retval)
		return retval;
773

774
	if (hv_vmbus_dynid_match(drv, &guid))
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
		return -EEXIST;

	retval = vmbus_add_dynid(drv, &guid);
	if (retval)
		return retval;
	return count;
}
static DRIVER_ATTR_WO(new_id);

/*
 * store_remove_id - remove a PCI device ID from this driver
 *
 * Removes a dynamic pci device ID to this driver.
 */
static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
			       size_t count)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
	struct vmbus_dynid *dynid, *n;
794 795
	uuid_le guid;
	ssize_t retval;
796

797 798 799
	retval = uuid_le_to_bin(buf, &guid);
	if (retval)
		return retval;
800

801
	retval = -ENODEV;
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
	spin_lock(&drv->dynids.lock);
	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
		struct hv_vmbus_device_id *id = &dynid->id;

		if (!uuid_le_cmp(id->guid, guid)) {
			list_del(&dynid->node);
			kfree(dynid);
			retval = count;
			break;
		}
	}
	spin_unlock(&drv->dynids.lock);

	return retval;
}
static DRIVER_ATTR_WO(remove_id);

static struct attribute *vmbus_drv_attrs[] = {
	&driver_attr_new_id.attr,
	&driver_attr_remove_id.attr,
	NULL,
};
ATTRIBUTE_GROUPS(vmbus_drv);
825

826 827 828 829 830 831 832

/*
 * vmbus_match - Attempt to match the specified device to the specified driver
 */
static int vmbus_match(struct device *device, struct device_driver *driver)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
833
	struct hv_device *hv_dev = device_to_hv_device(device);
834

835 836 837 838
	/* The hv_sock driver handles all hv_sock offers. */
	if (is_hvsock_channel(hv_dev->channel))
		return drv->hvsock;

839
	if (hv_vmbus_get_id(drv, hv_dev))
840
		return 1;
841

842
	return 0;
843 844
}

845 846 847 848 849 850 851 852
/*
 * vmbus_probe - Add the new vmbus's child device
 */
static int vmbus_probe(struct device *child_device)
{
	int ret = 0;
	struct hv_driver *drv =
			drv_to_hv_drv(child_device->driver);
853
	struct hv_device *dev = device_to_hv_device(child_device);
854
	const struct hv_vmbus_device_id *dev_id;
855

856
	dev_id = hv_vmbus_get_id(drv, dev);
857
	if (drv->probe) {
858
		ret = drv->probe(dev, dev_id);
859
		if (ret != 0)
860 861
			pr_err("probe failed for device %s (%d)\n",
			       dev_name(child_device), ret);
862 863

	} else {
864 865
		pr_err("probe not set for driver %s\n",
		       dev_name(child_device));
866
		ret = -ENODEV;
867 868 869 870
	}
	return ret;
}

871 872 873 874 875
/*
 * vmbus_remove - Remove a vmbus device
 */
static int vmbus_remove(struct device *child_device)
{
876
	struct hv_driver *drv;
877
	struct hv_device *dev = device_to_hv_device(child_device);
878

879 880 881 882 883
	if (child_device->driver) {
		drv = drv_to_hv_drv(child_device->driver);
		if (drv->remove)
			drv->remove(dev);
	}
884 885 886 887

	return 0;
}

888 889 890 891 892 893 894

/*
 * vmbus_shutdown - Shutdown a vmbus device
 */
static void vmbus_shutdown(struct device *child_device)
{
	struct hv_driver *drv;
895
	struct hv_device *dev = device_to_hv_device(child_device);
896 897 898 899 900 901 902 903


	/* The device may not be attached yet */
	if (!child_device->driver)
		return;

	drv = drv_to_hv_drv(child_device->driver);

904 905
	if (drv->shutdown)
		drv->shutdown(dev);
906 907
}

908 909 910 911 912 913

/*
 * vmbus_device_release - Final callback release of the vmbus child device
 */
static void vmbus_device_release(struct device *device)
{
914
	struct hv_device *hv_dev = device_to_hv_device(device);
915
	struct vmbus_channel *channel = hv_dev->channel;
916

917
	mutex_lock(&vmbus_connection.channel_mutex);
918
	hv_process_channel_removal(channel);
919
	mutex_unlock(&vmbus_connection.channel_mutex);
920
	kfree(hv_dev);
921 922
}

923
/* The one and only one */
924 925 926 927 928 929 930
static struct bus_type  hv_bus = {
	.name =		"vmbus",
	.match =		vmbus_match,
	.shutdown =		vmbus_shutdown,
	.remove =		vmbus_remove,
	.probe =		vmbus_probe,
	.uevent =		vmbus_uevent,
931 932
	.dev_groups =		vmbus_dev_groups,
	.drv_groups =		vmbus_drv_groups,
933 934
};

935 936 937 938 939 940 941 942 943
struct onmessage_work_context {
	struct work_struct work;
	struct hv_message msg;
};

static void vmbus_onmessage_work(struct work_struct *work)
{
	struct onmessage_work_context *ctx;

944 945 946 947
	/* Do not process messages if we're in DISCONNECTED state */
	if (vmbus_connection.conn_state == DISCONNECTED)
		return;

948 949 950 951 952 953
	ctx = container_of(work, struct onmessage_work_context,
			   work);
	vmbus_onmessage(&ctx->msg);
	kfree(ctx);
}

954 955
static void hv_process_timer_expiration(struct hv_message *msg,
					struct hv_per_cpu_context *hv_cpu)
956
{
957
	struct clock_event_device *dev = hv_cpu->clk_evt;
958 959 960 961

	if (dev->event_handler)
		dev->event_handler(dev);

962
	vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
963 964
}

965
void vmbus_on_msg_dpc(unsigned long data)
G
Greg Kroah-Hartman 已提交
966
{
967 968
	struct hv_per_cpu_context *hv_cpu = (void *)data;
	void *page_addr = hv_cpu->synic_message_page;
G
Greg Kroah-Hartman 已提交
969 970
	struct hv_message *msg = (struct hv_message *)page_addr +
				  VMBUS_MESSAGE_SINT;
971
	struct vmbus_channel_message_header *hdr;
972
	const struct vmbus_channel_message_table_entry *entry;
973
	struct onmessage_work_context *ctx;
974
	u32 message_type = msg->header.message_type;
G
Greg Kroah-Hartman 已提交
975

976
	if (message_type == HVMSG_NONE)
977 978
		/* no msg */
		return;
979

980
	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
981

982 983
	trace_vmbus_on_msg_dpc(hdr);

984 985 986 987
	if (hdr->msgtype >= CHANNELMSG_COUNT) {
		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
		goto msg_handled;
	}
988

989 990 991 992 993
	entry = &channel_message_table[hdr->msgtype];
	if (entry->handler_type	== VMHT_BLOCKING) {
		ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
		if (ctx == NULL)
			return;
994

995 996
		INIT_WORK(&ctx->work, vmbus_onmessage_work);
		memcpy(&ctx->msg, msg, sizeof(*msg));
997

998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
		/*
		 * The host can generate a rescind message while we
		 * may still be handling the original offer. We deal with
		 * this condition by ensuring the processing is done on the
		 * same CPU.
		 */
		switch (hdr->msgtype) {
		case CHANNELMSG_RESCIND_CHANNELOFFER:
			/*
			 * If we are handling the rescind message;
			 * schedule the work on the global work queue.
			 */
			schedule_work_on(vmbus_connection.connect_cpu,
					 &ctx->work);
			break;

		case CHANNELMSG_OFFERCHANNEL:
			atomic_inc(&vmbus_connection.offer_in_progress);
			queue_work_on(vmbus_connection.connect_cpu,
				      vmbus_connection.work_queue,
				      &ctx->work);
			break;

		default:
			queue_work(vmbus_connection.work_queue, &ctx->work);
		}
1024 1025
	} else
		entry->message_handler(hdr);
G
Greg Kroah-Hartman 已提交
1026

1027
msg_handled:
1028
	vmbus_signal_eom(msg, message_type);
G
Greg Kroah-Hartman 已提交
1029 1030
}

1031

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
/*
 * Direct callback for channels using other deferred processing
 */
static void vmbus_channel_isr(struct vmbus_channel *channel)
{
	void (*callback_fn)(void *);

	callback_fn = READ_ONCE(channel->onchannel_callback);
	if (likely(callback_fn != NULL))
		(*callback_fn)(channel->channel_callback_context);
}

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
/*
 * Schedule all channels with events pending
 */
static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
{
	unsigned long *recv_int_page;
	u32 maxbits, relid;

	if (vmbus_proto_version < VERSION_WIN8) {
		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
		recv_int_page = vmbus_connection.recv_int_page;
	} else {
		/*
		 * When the host is win8 and beyond, the event page
		 * can be directly checked to get the id of the channel
		 * that has the interrupt pending.
		 */
		void *page_addr = hv_cpu->synic_event_page;
		union hv_synic_event_flags *event
			= (union hv_synic_event_flags *)page_addr +
						 VMBUS_MESSAGE_SINT;

		maxbits = HV_EVENT_FLAGS_COUNT;
		recv_int_page = event->flags;
	}

	if (unlikely(!recv_int_page))
		return;

	for_each_set_bit(relid, recv_int_page, maxbits) {
		struct vmbus_channel *channel;

		if (!sync_test_and_clear_bit(relid, recv_int_page))
			continue;

		/* Special case - vmbus channel protocol msg */
		if (relid == 0)
			continue;

1083 1084
		rcu_read_lock();

1085
		/* Find channel based on relid */
1086
		list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
1087 1088 1089
			if (channel->offermsg.child_relid != relid)
				continue;

1090 1091 1092
			if (channel->rescind)
				continue;

V
Vitaly Kuznetsov 已提交
1093 1094
			trace_vmbus_chan_sched(channel);

1095 1096
			++channel->interrupts;

1097 1098 1099
			switch (channel->callback_mode) {
			case HV_CALL_ISR:
				vmbus_channel_isr(channel);
1100
				break;
1101 1102 1103 1104 1105 1106

			case HV_CALL_BATCHED:
				hv_begin_read(&channel->inbound);
				/* fallthrough */
			case HV_CALL_DIRECT:
				tasklet_schedule(&channel->callback_event);
1107 1108
			}
		}
1109 1110

		rcu_read_unlock();
1111 1112 1113
	}
}

1114
static void vmbus_isr(void)
G
Greg Kroah-Hartman 已提交
1115
{
1116 1117 1118
	struct hv_per_cpu_context *hv_cpu
		= this_cpu_ptr(hv_context.cpu_context);
	void *page_addr = hv_cpu->synic_event_page;
G
Greg Kroah-Hartman 已提交
1119 1120
	struct hv_message *msg;
	union hv_synic_event_flags *event;
1121
	bool handled = false;
G
Greg Kroah-Hartman 已提交
1122

1123
	if (unlikely(page_addr == NULL))
1124
		return;
1125 1126 1127

	event = (union hv_synic_event_flags *)page_addr +
					 VMBUS_MESSAGE_SINT;
1128 1129 1130 1131 1132
	/*
	 * Check for events before checking for messages. This is the order
	 * in which events and messages are checked in Windows guests on
	 * Hyper-V, and the Windows team suggested we do the same.
	 */
G
Greg Kroah-Hartman 已提交
1133

1134 1135
	if ((vmbus_proto_version == VERSION_WS2008) ||
		(vmbus_proto_version == VERSION_WIN7)) {
G
Greg Kroah-Hartman 已提交
1136

1137
		/* Since we are a child, we only need to check bit 0 */
1138
		if (sync_test_and_clear_bit(0, event->flags))
1139 1140 1141 1142 1143 1144 1145 1146
			handled = true;
	} else {
		/*
		 * Our host is win8 or above. The signaling mechanism
		 * has changed and we can directly look at the event page.
		 * If bit n is set then we have an interrup on the channel
		 * whose id is n.
		 */
1147 1148
		handled = true;
	}
1149

1150
	if (handled)
1151
		vmbus_chan_sched(hv_cpu);
1152

1153
	page_addr = hv_cpu->synic_message_page;
1154 1155 1156
	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;

	/* Check if there are actual msgs to be processed */
1157 1158
	if (msg->header.message_type != HVMSG_NONE) {
		if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
1159
			hv_process_timer_expiration(msg, hv_cpu);
1160
		else
1161
			tasklet_schedule(&hv_cpu->msg_dpc);
1162
	}
1163 1164

	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1165 1166
}

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
/*
 * Boolean to control whether to report panic messages over Hyper-V.
 *
 * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
 */
static int sysctl_record_panic_msg = 1;

/*
 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
 * buffer and call into Hyper-V to transfer the data.
 */
static void hv_kmsg_dump(struct kmsg_dumper *dumper,
			 enum kmsg_dump_reason reason)
{
	size_t bytes_written;
	phys_addr_t panic_pa;

	/* We are only interested in panics. */
	if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
		return;

	panic_pa = virt_to_phys(hv_panic_page);

	/*
	 * Write dump contents to the page. No need to synchronize; panic should
	 * be single-threaded.
	 */
1194 1195 1196 1197
	kmsg_dump_get_buffer(dumper, true, hv_panic_page, PAGE_SIZE,
			     &bytes_written);
	if (bytes_written)
		hyperv_report_panic_msg(panic_pa, bytes_written);
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
}

static struct kmsg_dumper hv_kmsg_dumper = {
	.dump = hv_kmsg_dump,
};

static struct ctl_table_header *hv_ctl_table_hdr;
static int zero;
static int one = 1;

/*
 * sysctl option to allow the user to control whether kmsg data should be
 * reported to Hyper-V on panic.
 */
static struct ctl_table hv_ctl_table[] = {
	{
		.procname       = "hyperv_record_panic_msg",
		.data           = &sysctl_record_panic_msg,
		.maxlen         = sizeof(int),
		.mode           = 0644,
		.proc_handler   = proc_dointvec_minmax,
		.extra1		= &zero,
		.extra2		= &one
	},
	{}
};

static struct ctl_table hv_root_table[] = {
	{
		.procname	= "kernel",
		.mode		= 0555,
		.child		= hv_ctl_table
	},
	{}
};
1233

1234
/*
1235 1236 1237
 * vmbus_bus_init -Main vmbus driver initialization routine.
 *
 * Here, we
1238 1239 1240
 *	- initialize the vmbus driver context
 *	- invoke the vmbus hv main init routine
 *	- retrieve the channel offers
1241
 */
1242
static int vmbus_bus_init(void)
1243
{
1244
	int ret;
1245

1246 1247
	/* Hypervisor initialization...setup hypercall page..etc */
	ret = hv_init();
1248
	if (ret != 0) {
1249
		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1250
		return ret;
1251 1252
	}

1253
	ret = bus_register(&hv_bus);
1254
	if (ret)
1255
		return ret;
1256

1257
	hv_setup_vmbus_irq(vmbus_isr);
1258

1259 1260 1261
	ret = hv_synic_alloc();
	if (ret)
		goto err_alloc;
1262
	/*
1263
	 * Initialize the per-cpu interrupt state and
1264 1265
	 * connect to the host.
	 */
1266
	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1267 1268 1269 1270 1271
				hv_synic_init, hv_synic_cleanup);
	if (ret < 0)
		goto err_alloc;
	hyperv_cpuhp_online = ret;

1272
	ret = vmbus_connect();
1273
	if (ret)
1274
		goto err_connect;
1275

1276 1277 1278
	/*
	 * Only register if the crash MSRs are available
	 */
1279
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
		u64 hyperv_crash_ctl;
		/*
		 * Sysctl registration is not fatal, since by default
		 * reporting is enabled.
		 */
		hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
		if (!hv_ctl_table_hdr)
			pr_err("Hyper-V: sysctl table register error");

		/*
		 * Register for panic kmsg callback only if the right
		 * capability is supported by the hypervisor.
		 */
1293
		hv_get_crash_ctl(hyperv_crash_ctl);
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
		if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) {
			hv_panic_page = (void *)get_zeroed_page(GFP_KERNEL);
			if (hv_panic_page) {
				ret = kmsg_dump_register(&hv_kmsg_dumper);
				if (ret)
					pr_err("Hyper-V: kmsg dump register "
						"error 0x%x\n", ret);
			} else
				pr_err("Hyper-V: panic message page memory "
					"allocation failed");
		}

1306
		register_die_notifier(&hyperv_die_block);
1307 1308 1309 1310
		atomic_notifier_chain_register(&panic_notifier_list,
					       &hyperv_panic_block);
	}

1311
	vmbus_request_offers();
1312

1313
	return 0;
1314

1315
err_connect:
1316
	cpuhp_remove_state(hyperv_cpuhp_online);
1317 1318
err_alloc:
	hv_synic_free();
1319
	hv_remove_vmbus_irq();
1320 1321

	bus_unregister(&hv_bus);
1322
	free_page((unsigned long)hv_panic_page);
1323 1324
	unregister_sysctl_table(hv_ctl_table_hdr);
	hv_ctl_table_hdr = NULL;
1325
	return ret;
1326 1327
}

1328
/**
1329 1330
 * __vmbus_child_driver_register() - Register a vmbus's driver
 * @hv_driver: Pointer to driver structure you want to register
1331 1332
 * @owner: owner module of the drv
 * @mod_name: module name string
1333 1334
 *
 * Registers the given driver with Linux through the 'driver_register()' call
1335
 * and sets up the hyper-v vmbus handling for this driver.
1336 1337
 * It will return the state of the 'driver_register()' call.
 *
1338
 */
1339
int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1340
{
1341
	int ret;
1342

1343
	pr_info("registering driver %s\n", hv_driver->name);
1344

1345 1346 1347 1348
	ret = vmbus_exists();
	if (ret < 0)
		return ret;

1349 1350 1351 1352
	hv_driver->driver.name = hv_driver->name;
	hv_driver->driver.owner = owner;
	hv_driver->driver.mod_name = mod_name;
	hv_driver->driver.bus = &hv_bus;
1353

1354 1355 1356
	spin_lock_init(&hv_driver->dynids.lock);
	INIT_LIST_HEAD(&hv_driver->dynids.list);

1357
	ret = driver_register(&hv_driver->driver);
1358

1359
	return ret;
1360
}
1361
EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1362

1363
/**
1364
 * vmbus_driver_unregister() - Unregister a vmbus's driver
1365 1366
 * @hv_driver: Pointer to driver structure you want to
 *             un-register
1367
 *
1368 1369
 * Un-register the given driver that was previous registered with a call to
 * vmbus_driver_register()
1370
 */
1371
void vmbus_driver_unregister(struct hv_driver *hv_driver)
1372
{
1373
	pr_info("unregistering driver %s\n", hv_driver->name);
1374

1375
	if (!vmbus_exists()) {
1376
		driver_unregister(&hv_driver->driver);
1377 1378
		vmbus_free_dynids(hv_driver);
	}
1379
}
1380
EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1381

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420

/*
 * Called when last reference to channel is gone.
 */
static void vmbus_chan_release(struct kobject *kobj)
{
	struct vmbus_channel *channel
		= container_of(kobj, struct vmbus_channel, kobj);

	kfree_rcu(channel, rcu);
}

struct vmbus_chan_attribute {
	struct attribute attr;
	ssize_t (*show)(const struct vmbus_channel *chan, char *buf);
	ssize_t (*store)(struct vmbus_channel *chan,
			 const char *buf, size_t count);
};
#define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
	struct vmbus_chan_attribute chan_attr_##_name \
		= __ATTR(_name, _mode, _show, _store)
#define VMBUS_CHAN_ATTR_RW(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
#define VMBUS_CHAN_ATTR_RO(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
#define VMBUS_CHAN_ATTR_WO(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)

static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
				    struct attribute *attr, char *buf)
{
	const struct vmbus_chan_attribute *attribute
		= container_of(attr, struct vmbus_chan_attribute, attr);
	const struct vmbus_channel *chan
		= container_of(kobj, struct vmbus_channel, kobj);

	if (!attribute->show)
		return -EIO;

1421 1422 1423
	if (chan->state != CHANNEL_OPENED_STATE)
		return -EINVAL;

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
	return attribute->show(chan, buf);
}

static const struct sysfs_ops vmbus_chan_sysfs_ops = {
	.show = vmbus_chan_attr_show,
};

static ssize_t out_mask_show(const struct vmbus_channel *channel, char *buf)
{
	const struct hv_ring_buffer_info *rbi = &channel->outbound;

	return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
}
1437
static VMBUS_CHAN_ATTR_RO(out_mask);
1438 1439 1440 1441 1442 1443 1444

static ssize_t in_mask_show(const struct vmbus_channel *channel, char *buf)
{
	const struct hv_ring_buffer_info *rbi = &channel->inbound;

	return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
}
1445
static VMBUS_CHAN_ATTR_RO(in_mask);
1446 1447 1448 1449 1450 1451 1452

static ssize_t read_avail_show(const struct vmbus_channel *channel, char *buf)
{
	const struct hv_ring_buffer_info *rbi = &channel->inbound;

	return sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
}
1453
static VMBUS_CHAN_ATTR_RO(read_avail);
1454 1455 1456 1457 1458 1459 1460

static ssize_t write_avail_show(const struct vmbus_channel *channel, char *buf)
{
	const struct hv_ring_buffer_info *rbi = &channel->outbound;

	return sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
}
1461
static VMBUS_CHAN_ATTR_RO(write_avail);
1462 1463 1464 1465 1466

static ssize_t show_target_cpu(const struct vmbus_channel *channel, char *buf)
{
	return sprintf(buf, "%u\n", channel->target_cpu);
}
1467
static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1468 1469 1470 1471 1472 1473 1474 1475

static ssize_t channel_pending_show(const struct vmbus_channel *channel,
				    char *buf)
{
	return sprintf(buf, "%d\n",
		       channel_pending(channel,
				       vmbus_connection.monitor_pages[1]));
}
1476
static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1477 1478 1479 1480 1481 1482 1483 1484

static ssize_t channel_latency_show(const struct vmbus_channel *channel,
				    char *buf)
{
	return sprintf(buf, "%d\n",
		       channel_latency(channel,
				       vmbus_connection.monitor_pages[1]));
}
1485
static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1486

1487 1488 1489 1490
static ssize_t channel_interrupts_show(const struct vmbus_channel *channel, char *buf)
{
	return sprintf(buf, "%llu\n", channel->interrupts);
}
1491
static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1492 1493 1494 1495 1496

static ssize_t channel_events_show(const struct vmbus_channel *channel, char *buf)
{
	return sprintf(buf, "%llu\n", channel->sig_events);
}
1497
static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1498

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
static ssize_t subchannel_monitor_id_show(const struct vmbus_channel *channel,
					  char *buf)
{
	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
}
static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);

static ssize_t subchannel_id_show(const struct vmbus_channel *channel,
				  char *buf)
{
	return sprintf(buf, "%u\n",
		       channel->offermsg.offer.sub_channel_index);
}
static VMBUS_CHAN_ATTR_RO(subchannel_id);

1514 1515 1516 1517 1518 1519 1520 1521
static struct attribute *vmbus_chan_attrs[] = {
	&chan_attr_out_mask.attr,
	&chan_attr_in_mask.attr,
	&chan_attr_read_avail.attr,
	&chan_attr_write_avail.attr,
	&chan_attr_cpu.attr,
	&chan_attr_pending.attr,
	&chan_attr_latency.attr,
1522 1523
	&chan_attr_interrupts.attr,
	&chan_attr_events.attr,
1524 1525
	&chan_attr_monitor_id.attr,
	&chan_attr_subchannel_id.attr,
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
	NULL
};

static struct kobj_type vmbus_chan_ktype = {
	.sysfs_ops = &vmbus_chan_sysfs_ops,
	.release = vmbus_chan_release,
	.default_attrs = vmbus_chan_attrs,
};

/*
 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
 */
int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
{
	struct kobject *kobj = &channel->kobj;
	u32 relid = channel->offermsg.child_relid;
	int ret;

	kobj->kset = dev->channels_kset;
	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
				   "%u", relid);
	if (ret)
		return ret;

	kobject_uevent(kobj, KOBJ_ADD);

	return 0;
}

1555
/*
1556
 * vmbus_device_create - Creates and registers a new child device
1557
 * on the vmbus.
1558
 */
S
stephen hemminger 已提交
1559 1560 1561
struct hv_device *vmbus_device_create(const uuid_le *type,
				      const uuid_le *instance,
				      struct vmbus_channel *channel)
1562
{
1563
	struct hv_device *child_device_obj;
1564

1565 1566
	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
	if (!child_device_obj) {
1567
		pr_err("Unable to allocate device object for child device\n");
1568 1569 1570
		return NULL;
	}

1571
	child_device_obj->channel = channel;
1572
	memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
1573
	memcpy(&child_device_obj->dev_instance, instance,
1574
	       sizeof(uuid_le));
1575
	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1576 1577 1578 1579 1580


	return child_device_obj;
}

1581
/*
1582
 * vmbus_device_register - Register the child device
1583
 */
1584
int vmbus_device_register(struct hv_device *child_device_obj)
1585
{
1586 1587
	struct kobject *kobj = &child_device_obj->device.kobj;
	int ret;
1588

1589
	dev_set_name(&child_device_obj->device, "%pUl",
1590
		     child_device_obj->channel->offermsg.offer.if_instance.b);
1591

1592
	child_device_obj->device.bus = &hv_bus;
1593
	child_device_obj->device.parent = &hv_acpi_dev->dev;
1594
	child_device_obj->device.release = vmbus_device_release;
1595

1596 1597 1598 1599
	/*
	 * Register with the LDM. This will kick off the driver/device
	 * binding...which will eventually call vmbus_match() and vmbus_probe()
	 */
1600
	ret = device_register(&child_device_obj->device);
1601
	if (ret) {
1602
		pr_err("Unable to register child device\n");
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
		return ret;
	}

	child_device_obj->channels_kset = kset_create_and_add("channels",
							      NULL, kobj);
	if (!child_device_obj->channels_kset) {
		ret = -ENOMEM;
		goto err_dev_unregister;
	}

	ret = vmbus_add_channel_kobj(child_device_obj,
				     child_device_obj->channel);
	if (ret) {
		pr_err("Unable to register primary channeln");
		goto err_kset_unregister;
	}

	return 0;

err_kset_unregister:
	kset_unregister(child_device_obj->channels_kset);
1624

1625 1626
err_dev_unregister:
	device_unregister(&child_device_obj->device);
1627 1628 1629
	return ret;
}

1630
/*
1631
 * vmbus_device_unregister - Remove the specified child device
1632
 * from the vmbus.
1633
 */
1634
void vmbus_device_unregister(struct hv_device *device_obj)
1635
{
1636 1637 1638
	pr_debug("child device %s unregistered\n",
		dev_name(&device_obj->device));

1639 1640
	kset_unregister(device_obj->channels_kset);

1641 1642 1643 1644
	/*
	 * Kick off the process of unregistering the device.
	 * This will call vmbus_remove() and eventually vmbus_device_release()
	 */
1645
	device_unregister(&device_obj->device);
1646 1647 1648
}


1649
/*
1650
 * VMBUS is an acpi enumerated device. Get the information we
1651
 * need from DSDT.
1652
 */
1653
#define VTPM_BASE_ADDRESS 0xfed40000
1654
static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1655
{
1656 1657 1658 1659 1660 1661
	resource_size_t start = 0;
	resource_size_t end = 0;
	struct resource *new_res;
	struct resource **old_res = &hyperv_mmio;
	struct resource **prev_res = NULL;

1662
	switch (res->type) {
1663 1664 1665 1666 1667 1668 1669 1670 1671

	/*
	 * "Address" descriptors are for bus windows. Ignore
	 * "memory" descriptors, which are for registers on
	 * devices.
	 */
	case ACPI_RESOURCE_TYPE_ADDRESS32:
		start = res->data.address32.address.minimum;
		end = res->data.address32.address.maximum;
G
Gerd Hoffmann 已提交
1672
		break;
1673

1674
	case ACPI_RESOURCE_TYPE_ADDRESS64:
1675 1676
		start = res->data.address64.address.minimum;
		end = res->data.address64.address.maximum;
G
Gerd Hoffmann 已提交
1677
		break;
1678 1679 1680 1681 1682

	default:
		/* Unused resource type */
		return AE_OK;

1683
	}
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
	/*
	 * Ignore ranges that are below 1MB, as they're not
	 * necessary or useful here.
	 */
	if (end < 0x100000)
		return AE_OK;

	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
	if (!new_res)
		return AE_NO_MEMORY;

	/* If this range overlaps the virtual TPM, truncate it. */
	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
		end = VTPM_BASE_ADDRESS;

	new_res->name = "hyperv mmio";
	new_res->flags = IORESOURCE_MEM;
	new_res->start = start;
	new_res->end = end;

1704 1705 1706
	/*
	 * If two ranges are adjacent, merge them.
	 */
1707 1708 1709 1710 1711 1712
	do {
		if (!*old_res) {
			*old_res = new_res;
			break;
		}

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
		if (((*old_res)->end + 1) == new_res->start) {
			(*old_res)->end = new_res->end;
			kfree(new_res);
			break;
		}

		if ((*old_res)->start == new_res->end + 1) {
			(*old_res)->start = new_res->start;
			kfree(new_res);
			break;
		}

1725
		if ((*old_res)->start > new_res->end) {
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
			new_res->sibling = *old_res;
			if (prev_res)
				(*prev_res)->sibling = new_res;
			*old_res = new_res;
			break;
		}

		prev_res = old_res;
		old_res = &(*old_res)->sibling;

	} while (1);
1737 1738 1739 1740

	return AE_OK;
}

1741 1742 1743 1744 1745 1746
static int vmbus_acpi_remove(struct acpi_device *device)
{
	struct resource *cur_res;
	struct resource *next_res;

	if (hyperv_mmio) {
1747 1748 1749 1750 1751 1752
		if (fb_mmio) {
			__release_region(hyperv_mmio, fb_mmio->start,
					 resource_size(fb_mmio));
			fb_mmio = NULL;
		}

1753 1754 1755 1756 1757 1758 1759 1760 1761
		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
			next_res = cur_res->sibling;
			kfree(cur_res);
		}
	}

	return 0;
}

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
static void vmbus_reserve_fb(void)
{
	int size;
	/*
	 * Make a claim for the frame buffer in the resource tree under the
	 * first node, which will be the one below 4GB.  The length seems to
	 * be underreported, particularly in a Generation 1 VM.  So start out
	 * reserving a larger area and make it smaller until it succeeds.
	 */

	if (screen_info.lfb_base) {
		if (efi_enabled(EFI_BOOT))
			size = max_t(__u32, screen_info.lfb_size, 0x800000);
		else
			size = max_t(__u32, screen_info.lfb_size, 0x4000000);

		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
			fb_mmio = __request_region(hyperv_mmio,
						   screen_info.lfb_base, size,
						   fb_mmio_name, 0);
		}
	}
}

1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
/**
 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
 * @new:		If successful, supplied a pointer to the
 *			allocated MMIO space.
 * @device_obj:		Identifies the caller
 * @min:		Minimum guest physical address of the
 *			allocation
 * @max:		Maximum guest physical address
 * @size:		Size of the range to be allocated
 * @align:		Alignment of the range to be allocated
 * @fb_overlap_ok:	Whether this allocation can be allowed
 *			to overlap the video frame buffer.
 *
 * This function walks the resources granted to VMBus by the
 * _CRS object in the ACPI namespace underneath the parent
 * "bridge" whether that's a root PCI bus in the Generation 1
 * case or a Module Device in the Generation 2 case.  It then
 * attempts to allocate from the global MMIO pool in a way that
 * matches the constraints supplied in these parameters and by
 * that _CRS.
 *
 * Return: 0 on success, -errno on failure
 */
int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
			resource_size_t min, resource_size_t max,
			resource_size_t size, resource_size_t align,
			bool fb_overlap_ok)
{
1814
	struct resource *iter, *shadow;
1815
	resource_size_t range_min, range_max, start;
1816
	const char *dev_n = dev_name(&device_obj->device);
1817
	int retval;
1818 1819 1820

	retval = -ENXIO;
	down(&hyperv_mmio_lock);
1821

1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
	/*
	 * If overlaps with frame buffers are allowed, then first attempt to
	 * make the allocation from within the reserved region.  Because it
	 * is already reserved, no shadow allocation is necessary.
	 */
	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
	    !(max < fb_mmio->start)) {

		range_min = fb_mmio->start;
		range_max = fb_mmio->end;
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				retval = 0;
				goto exit;
			}
		}
	}

1842 1843 1844 1845 1846 1847
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= max) || (iter->end <= min))
			continue;

		range_min = iter->start;
		range_max = iter->end;
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			shadow = __request_region(iter, start, size, NULL,
						  IORESOURCE_BUSY);
			if (!shadow)
				continue;

			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				shadow->name = (char *)*new;
				retval = 0;
				goto exit;
1860 1861
			}

1862
			__release_region(iter, start, size);
1863 1864 1865
		}
	}

1866 1867 1868
exit:
	up(&hyperv_mmio_lock);
	return retval;
1869 1870 1871
}
EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);

1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
/**
 * vmbus_free_mmio() - Free a memory-mapped I/O range.
 * @start:		Base address of region to release.
 * @size:		Size of the range to be allocated
 *
 * This function releases anything requested by
 * vmbus_mmio_allocate().
 */
void vmbus_free_mmio(resource_size_t start, resource_size_t size)
{
1882 1883 1884 1885 1886 1887 1888 1889 1890
	struct resource *iter;

	down(&hyperv_mmio_lock);
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= start + size) || (iter->end <= start))
			continue;

		__release_region(iter, start, size);
	}
1891
	release_mem_region(start, size);
1892
	up(&hyperv_mmio_lock);
1893 1894 1895 1896

}
EXPORT_SYMBOL_GPL(vmbus_free_mmio);

1897 1898 1899
static int vmbus_acpi_add(struct acpi_device *device)
{
	acpi_status result;
1900
	int ret_val = -ENODEV;
1901
	struct acpi_device *ancestor;
1902

1903 1904
	hv_acpi_dev = device;

1905
	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1906
					vmbus_walk_resources, NULL);
1907

1908 1909 1910
	if (ACPI_FAILURE(result))
		goto acpi_walk_err;
	/*
1911 1912
	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
	 * firmware) is the VMOD that has the mmio ranges. Get that.
1913
	 */
1914 1915 1916
	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
					     vmbus_walk_resources, NULL);
1917 1918

		if (ACPI_FAILURE(result))
1919
			continue;
1920 1921
		if (hyperv_mmio) {
			vmbus_reserve_fb();
1922
			break;
1923
		}
1924
	}
1925 1926 1927
	ret_val = 0;

acpi_walk_err:
1928
	complete(&probe_event);
1929 1930
	if (ret_val)
		vmbus_acpi_remove(device);
1931
	return ret_val;
1932 1933 1934 1935
}

static const struct acpi_device_id vmbus_acpi_device_ids[] = {
	{"VMBUS", 0},
1936
	{"VMBus", 0},
1937 1938 1939 1940 1941 1942 1943 1944 1945
	{"", 0},
};
MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);

static struct acpi_driver vmbus_acpi_driver = {
	.name = "vmbus",
	.ids = vmbus_acpi_device_ids,
	.ops = {
		.add = vmbus_acpi_add,
1946
		.remove = vmbus_acpi_remove,
1947 1948 1949
	},
};

1950 1951 1952
static void hv_kexec_handler(void)
{
	hv_synic_clockevents_cleanup();
1953
	vmbus_initiate_unload(false);
1954 1955 1956
	vmbus_connection.conn_state = DISCONNECTED;
	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
	mb();
1957
	cpuhp_remove_state(hyperv_cpuhp_online);
1958
	hyperv_cleanup();
1959 1960
};

1961 1962
static void hv_crash_handler(struct pt_regs *regs)
{
1963
	vmbus_initiate_unload(true);
1964 1965 1966 1967 1968
	/*
	 * In crash handler we can't schedule synic cleanup for all CPUs,
	 * doing the cleanup for current CPU only. This should be sufficient
	 * for kdump.
	 */
1969
	vmbus_connection.conn_state = DISCONNECTED;
1970
	hv_synic_cleanup(smp_processor_id());
1971
	hyperv_cleanup();
1972 1973
};

1974
static int __init hv_acpi_init(void)
1975
{
1976
	int ret, t;
1977

1978
	if (!hv_is_hyperv_initialized())
1979 1980
		return -ENODEV;

1981 1982 1983
	init_completion(&probe_event);

	/*
1984
	 * Get ACPI resources first.
1985
	 */
1986 1987
	ret = acpi_bus_register_driver(&vmbus_acpi_driver);

1988 1989 1990
	if (ret)
		return ret;

1991 1992 1993 1994 1995
	t = wait_for_completion_timeout(&probe_event, 5*HZ);
	if (t == 0) {
		ret = -ETIMEDOUT;
		goto cleanup;
	}
1996

1997
	ret = vmbus_bus_init();
1998
	if (ret)
1999 2000
		goto cleanup;

2001
	hv_setup_kexec_handler(hv_kexec_handler);
2002
	hv_setup_crash_handler(hv_crash_handler);
2003

2004 2005 2006 2007
	return 0;

cleanup:
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2008
	hv_acpi_dev = NULL;
2009
	return ret;
2010 2011
}

2012 2013
static void __exit vmbus_exit(void)
{
2014 2015
	int cpu;

2016
	hv_remove_kexec_handler();
2017
	hv_remove_crash_handler();
2018
	vmbus_connection.conn_state = DISCONNECTED;
2019
	hv_synic_clockevents_cleanup();
2020
	vmbus_disconnect();
2021
	hv_remove_vmbus_irq();
2022 2023 2024 2025 2026 2027
	for_each_online_cpu(cpu) {
		struct hv_per_cpu_context *hv_cpu
			= per_cpu_ptr(hv_context.cpu_context, cpu);

		tasklet_kill(&hv_cpu->msg_dpc);
	}
2028
	vmbus_free_channels();
2029

2030
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
2031
		kmsg_dump_unregister(&hv_kmsg_dumper);
2032
		unregister_die_notifier(&hyperv_die_block);
2033 2034 2035
		atomic_notifier_chain_unregister(&panic_notifier_list,
						 &hyperv_panic_block);
	}
2036 2037

	free_page((unsigned long)hv_panic_page);
2038 2039
	unregister_sysctl_table(hv_ctl_table_hdr);
	hv_ctl_table_hdr = NULL;
2040
	bus_unregister(&hv_bus);
2041

2042
	cpuhp_remove_state(hyperv_cpuhp_online);
2043
	hv_synic_free();
2044 2045 2046
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
}

2047

2048
MODULE_LICENSE("GPL");
2049

2050
subsys_initcall(hv_acpi_init);
2051
module_exit(vmbus_exit);