vmbus_drv.c 45.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (c) 2009, Microsoft Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 *
 * Authors:
 *   Haiyang Zhang <haiyangz@microsoft.com>
 *   Hank Janssen  <hjanssen@microsoft.com>
20
 *   K. Y. Srinivasan <kys@microsoft.com>
21
 *
22
 */
23 24
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

25 26 27 28 29
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/sysctl.h>
30
#include <linux/slab.h>
31
#include <linux/acpi.h>
32
#include <linux/completion.h>
33
#include <linux/hyperv.h>
34
#include <linux/kernel_stat.h>
35
#include <linux/clockchips.h>
36
#include <linux/cpu.h>
37 38
#include <linux/sched/task_stack.h>

39
#include <asm/mshyperv.h>
40 41
#include <linux/notifier.h>
#include <linux/ptrace.h>
42
#include <linux/screen_info.h>
43
#include <linux/kdebug.h>
44
#include <linux/efi.h>
45
#include <linux/random.h>
46
#include "hyperv_vmbus.h"
47

48 49 50 51 52
struct vmbus_dynid {
	struct list_head node;
	struct hv_vmbus_device_id id;
};

53
static struct acpi_device  *hv_acpi_dev;
54

55
static struct completion probe_event;
56

57
static int hyperv_cpuhp_online;
58

59 60 61 62 63 64 65
static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
			      void *args)
{
	struct pt_regs *regs;

	regs = current_pt_regs();

66
	hyperv_report_panic(regs, val);
67 68 69
	return NOTIFY_DONE;
}

70 71 72 73 74 75
static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
			    void *args)
{
	struct die_args *die = (struct die_args *)args;
	struct pt_regs *regs = die->regs;

76
	hyperv_report_panic(regs, val);
77 78 79 80 81 82
	return NOTIFY_DONE;
}

static struct notifier_block hyperv_die_block = {
	.notifier_call = hyperv_die_event,
};
83 84 85 86
static struct notifier_block hyperv_panic_block = {
	.notifier_call = hyperv_panic_event,
};

87 88
static const char *fb_mmio_name = "fb_range";
static struct resource *fb_mmio;
89 90
static struct resource *hyperv_mmio;
static DEFINE_SEMAPHORE(hyperv_mmio_lock);
91

92 93 94 95 96 97 98 99
static int vmbus_exists(void)
{
	if (hv_acpi_dev == NULL)
		return -ENODEV;

	return 0;
}

100 101 102 103 104 105 106 107
#define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
{
	int i;
	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
}

108
static u8 channel_monitor_group(const struct vmbus_channel *channel)
109 110 111 112
{
	return (u8)channel->offermsg.monitorid / 32;
}

113
static u8 channel_monitor_offset(const struct vmbus_channel *channel)
114 115 116 117
{
	return (u8)channel->offermsg.monitorid % 32;
}

118 119
static u32 channel_pending(const struct vmbus_channel *channel,
			   const struct hv_monitor_page *monitor_page)
120 121
{
	u8 monitor_group = channel_monitor_group(channel);
122

123 124 125
	return monitor_page->trigger_group[monitor_group].pending;
}

126 127
static u32 channel_latency(const struct vmbus_channel *channel,
			   const struct hv_monitor_page *monitor_page)
128 129 130
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
131

132 133 134
	return monitor_page->latency[monitor_group][monitor_offset];
}

135 136 137 138 139 140 141 142
static u32 channel_conn_id(struct vmbus_channel *channel,
			   struct hv_monitor_page *monitor_page)
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
}

143 144 145 146 147 148 149 150 151 152 153
static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
		       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
}
static DEVICE_ATTR_RO(id);

154 155 156 157 158 159 160 161 162 163 164
static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
			  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->state);
}
static DEVICE_ATTR_RO(state);

165 166 167 168 169 170 171 172 173 174 175
static ssize_t monitor_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
}
static DEVICE_ATTR_RO(monitor_id);

176 177 178 179 180 181 182 183 184 185 186 187
static ssize_t class_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_type.b);
}
static DEVICE_ATTR_RO(class_id);

188 189 190 191 192 193 194 195 196 197 198 199
static ssize_t device_id_show(struct device *dev,
			      struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_instance.b);
}
static DEVICE_ATTR_RO(device_id);

200 201 202 203 204 205 206 207 208 209 210
static ssize_t modalias_show(struct device *dev,
			     struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	char alias_name[VMBUS_ALIAS_LEN + 1];

	print_alias_name(hv_dev, alias_name);
	return sprintf(buf, "vmbus:%s\n", alias_name);
}
static DEVICE_ATTR_RO(modalias);

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
static ssize_t server_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(server_monitor_pending);

static ssize_t client_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_pending);
238

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
static ssize_t server_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_latency);

static ssize_t client_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_latency);

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
static ssize_t server_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_conn_id);

static ssize_t client_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_conn_id);

295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
static ssize_t out_intr_mask_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(out_intr_mask);

static ssize_t out_read_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.current_read_index);
}
static DEVICE_ATTR_RO(out_read_index);

static ssize_t out_write_index_show(struct device *dev,
				    struct device_attribute *dev_attr,
				    char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.current_write_index);
}
static DEVICE_ATTR_RO(out_write_index);

static ssize_t out_read_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(out_read_bytes_avail);

static ssize_t out_write_bytes_avail_show(struct device *dev,
					  struct device_attribute *dev_attr,
					  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(out_write_bytes_avail);

static ssize_t in_intr_mask_show(struct device *dev,
				 struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(in_intr_mask);

static ssize_t in_read_index_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.current_read_index);
}
static DEVICE_ATTR_RO(in_read_index);

static ssize_t in_write_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.current_write_index);
}
static DEVICE_ATTR_RO(in_write_index);

static ssize_t in_read_bytes_avail_show(struct device *dev,
					struct device_attribute *dev_attr,
					char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(in_read_bytes_avail);

static ssize_t in_write_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(in_write_bytes_avail);

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
static ssize_t channel_vp_mapping_show(struct device *dev,
				       struct device_attribute *dev_attr,
				       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
	unsigned long flags;
	int buf_size = PAGE_SIZE, n_written, tot_written;
	struct list_head *cur;

	if (!channel)
		return -ENODEV;

	tot_written = snprintf(buf, buf_size, "%u:%u\n",
		channel->offermsg.child_relid, channel->target_cpu);

	spin_lock_irqsave(&channel->lock, flags);

	list_for_each(cur, &channel->sc_list) {
		if (tot_written >= buf_size - 1)
			break;

		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
		n_written = scnprintf(buf + tot_written,
				     buf_size - tot_written,
				     "%u:%u\n",
				     cur_sc->offermsg.child_relid,
				     cur_sc->target_cpu);
		tot_written += n_written;
	}

	spin_unlock_irqrestore(&channel->lock, flags);

	return tot_written;
}
static DEVICE_ATTR_RO(channel_vp_mapping);

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
static ssize_t vendor_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
}
static DEVICE_ATTR_RO(vendor);

static ssize_t device_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->device_id);
}
static DEVICE_ATTR_RO(device);

485
/* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
486
static struct attribute *vmbus_dev_attrs[] = {
487
	&dev_attr_id.attr,
488
	&dev_attr_state.attr,
489
	&dev_attr_monitor_id.attr,
490
	&dev_attr_class_id.attr,
491
	&dev_attr_device_id.attr,
492
	&dev_attr_modalias.attr,
493 494
	&dev_attr_server_monitor_pending.attr,
	&dev_attr_client_monitor_pending.attr,
495 496
	&dev_attr_server_monitor_latency.attr,
	&dev_attr_client_monitor_latency.attr,
497 498
	&dev_attr_server_monitor_conn_id.attr,
	&dev_attr_client_monitor_conn_id.attr,
499 500 501 502 503 504 505 506 507 508
	&dev_attr_out_intr_mask.attr,
	&dev_attr_out_read_index.attr,
	&dev_attr_out_write_index.attr,
	&dev_attr_out_read_bytes_avail.attr,
	&dev_attr_out_write_bytes_avail.attr,
	&dev_attr_in_intr_mask.attr,
	&dev_attr_in_read_index.attr,
	&dev_attr_in_write_index.attr,
	&dev_attr_in_read_bytes_avail.attr,
	&dev_attr_in_write_bytes_avail.attr,
509
	&dev_attr_channel_vp_mapping.attr,
510 511
	&dev_attr_vendor.attr,
	&dev_attr_device.attr,
512 513
	NULL,
};
514
ATTRIBUTE_GROUPS(vmbus_dev);
515

516 517 518 519 520 521
/*
 * vmbus_uevent - add uevent for our device
 *
 * This routine is invoked when a device is added or removed on the vmbus to
 * generate a uevent to udev in the userspace. The udev will then look at its
 * rule and the uevent generated here to load the appropriate driver
522 523 524 525
 *
 * The alias string will be of the form vmbus:guid where guid is the string
 * representation of the device guid (each byte of the guid will be
 * represented with two hex characters.
526 527 528 529
 */
static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
{
	struct hv_device *dev = device_to_hv_device(device);
530 531
	int ret;
	char alias_name[VMBUS_ALIAS_LEN + 1];
532

533
	print_alias_name(dev, alias_name);
534 535
	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
	return ret;
536 537
}

S
stephen hemminger 已提交
538
static const uuid_le null_guid;
539

540
static inline bool is_null_guid(const uuid_le *guid)
541
{
542
	if (uuid_le_cmp(*guid, null_guid))
543 544 545 546
		return false;
	return true;
}

547 548 549 550
/*
 * Return a matching hv_vmbus_device_id pointer.
 * If there is no match, return NULL.
 */
551
static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
552
					const uuid_le *guid)
553
{
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
	const struct hv_vmbus_device_id *id = NULL;
	struct vmbus_dynid *dynid;

	/* Look at the dynamic ids first, before the static ones */
	spin_lock(&drv->dynids.lock);
	list_for_each_entry(dynid, &drv->dynids.list, node) {
		if (!uuid_le_cmp(dynid->id.guid, *guid)) {
			id = &dynid->id;
			break;
		}
	}
	spin_unlock(&drv->dynids.lock);

	if (id)
		return id;

	id = drv->id_table;
	if (id == NULL)
		return NULL; /* empty device table */

574
	for (; !is_null_guid(&id->guid); id++)
575
		if (!uuid_le_cmp(id->guid, *guid))
576 577 578 579 580
			return id;

	return NULL;
}

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
/* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid)
{
	struct vmbus_dynid *dynid;

	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
	if (!dynid)
		return -ENOMEM;

	dynid->id.guid = *guid;

	spin_lock(&drv->dynids.lock);
	list_add_tail(&dynid->node, &drv->dynids.list);
	spin_unlock(&drv->dynids.lock);

	return driver_attach(&drv->driver);
}

static void vmbus_free_dynids(struct hv_driver *drv)
{
	struct vmbus_dynid *dynid, *n;

	spin_lock(&drv->dynids.lock);
	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
		list_del(&dynid->node);
		kfree(dynid);
	}
	spin_unlock(&drv->dynids.lock);
}

/*
 * store_new_id - sysfs frontend to vmbus_add_dynid()
 *
 * Allow GUIDs to be added to an existing driver via sysfs.
 */
static ssize_t new_id_store(struct device_driver *driver, const char *buf,
			    size_t count)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
620
	uuid_le guid;
621 622
	ssize_t retval;

623 624 625
	retval = uuid_le_to_bin(buf, &guid);
	if (retval)
		return retval;
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646

	if (hv_vmbus_get_id(drv, &guid))
		return -EEXIST;

	retval = vmbus_add_dynid(drv, &guid);
	if (retval)
		return retval;
	return count;
}
static DRIVER_ATTR_WO(new_id);

/*
 * store_remove_id - remove a PCI device ID from this driver
 *
 * Removes a dynamic pci device ID to this driver.
 */
static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
			       size_t count)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
	struct vmbus_dynid *dynid, *n;
647 648
	uuid_le guid;
	ssize_t retval;
649

650 651 652
	retval = uuid_le_to_bin(buf, &guid);
	if (retval)
		return retval;
653

654
	retval = -ENODEV;
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
	spin_lock(&drv->dynids.lock);
	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
		struct hv_vmbus_device_id *id = &dynid->id;

		if (!uuid_le_cmp(id->guid, guid)) {
			list_del(&dynid->node);
			kfree(dynid);
			retval = count;
			break;
		}
	}
	spin_unlock(&drv->dynids.lock);

	return retval;
}
static DRIVER_ATTR_WO(remove_id);

static struct attribute *vmbus_drv_attrs[] = {
	&driver_attr_new_id.attr,
	&driver_attr_remove_id.attr,
	NULL,
};
ATTRIBUTE_GROUPS(vmbus_drv);
678

679 680 681 682 683 684 685

/*
 * vmbus_match - Attempt to match the specified device to the specified driver
 */
static int vmbus_match(struct device *device, struct device_driver *driver)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
686
	struct hv_device *hv_dev = device_to_hv_device(device);
687

688 689 690 691
	/* The hv_sock driver handles all hv_sock offers. */
	if (is_hvsock_channel(hv_dev->channel))
		return drv->hvsock;

692
	if (hv_vmbus_get_id(drv, &hv_dev->dev_type))
693
		return 1;
694

695
	return 0;
696 697
}

698 699 700 701 702 703 704 705
/*
 * vmbus_probe - Add the new vmbus's child device
 */
static int vmbus_probe(struct device *child_device)
{
	int ret = 0;
	struct hv_driver *drv =
			drv_to_hv_drv(child_device->driver);
706
	struct hv_device *dev = device_to_hv_device(child_device);
707
	const struct hv_vmbus_device_id *dev_id;
708

709
	dev_id = hv_vmbus_get_id(drv, &dev->dev_type);
710
	if (drv->probe) {
711
		ret = drv->probe(dev, dev_id);
712
		if (ret != 0)
713 714
			pr_err("probe failed for device %s (%d)\n",
			       dev_name(child_device), ret);
715 716

	} else {
717 718
		pr_err("probe not set for driver %s\n",
		       dev_name(child_device));
719
		ret = -ENODEV;
720 721 722 723
	}
	return ret;
}

724 725 726 727 728
/*
 * vmbus_remove - Remove a vmbus device
 */
static int vmbus_remove(struct device *child_device)
{
729
	struct hv_driver *drv;
730
	struct hv_device *dev = device_to_hv_device(child_device);
731

732 733 734 735 736
	if (child_device->driver) {
		drv = drv_to_hv_drv(child_device->driver);
		if (drv->remove)
			drv->remove(dev);
	}
737 738 739 740

	return 0;
}

741 742 743 744 745 746 747

/*
 * vmbus_shutdown - Shutdown a vmbus device
 */
static void vmbus_shutdown(struct device *child_device)
{
	struct hv_driver *drv;
748
	struct hv_device *dev = device_to_hv_device(child_device);
749 750 751 752 753 754 755 756


	/* The device may not be attached yet */
	if (!child_device->driver)
		return;

	drv = drv_to_hv_drv(child_device->driver);

757 758
	if (drv->shutdown)
		drv->shutdown(dev);
759 760
}

761 762 763 764 765 766

/*
 * vmbus_device_release - Final callback release of the vmbus child device
 */
static void vmbus_device_release(struct device *device)
{
767
	struct hv_device *hv_dev = device_to_hv_device(device);
768
	struct vmbus_channel *channel = hv_dev->channel;
769

770
	mutex_lock(&vmbus_connection.channel_mutex);
771
	hv_process_channel_removal(channel->offermsg.child_relid);
772
	mutex_unlock(&vmbus_connection.channel_mutex);
773
	kfree(hv_dev);
774 775 776

}

777
/* The one and only one */
778 779 780 781 782 783 784
static struct bus_type  hv_bus = {
	.name =		"vmbus",
	.match =		vmbus_match,
	.shutdown =		vmbus_shutdown,
	.remove =		vmbus_remove,
	.probe =		vmbus_probe,
	.uevent =		vmbus_uevent,
785 786
	.dev_groups =		vmbus_dev_groups,
	.drv_groups =		vmbus_drv_groups,
787 788
};

789 790 791 792 793 794 795 796 797
struct onmessage_work_context {
	struct work_struct work;
	struct hv_message msg;
};

static void vmbus_onmessage_work(struct work_struct *work)
{
	struct onmessage_work_context *ctx;

798 799 800 801
	/* Do not process messages if we're in DISCONNECTED state */
	if (vmbus_connection.conn_state == DISCONNECTED)
		return;

802 803 804 805 806 807
	ctx = container_of(work, struct onmessage_work_context,
			   work);
	vmbus_onmessage(&ctx->msg);
	kfree(ctx);
}

808 809
static void hv_process_timer_expiration(struct hv_message *msg,
					struct hv_per_cpu_context *hv_cpu)
810
{
811
	struct clock_event_device *dev = hv_cpu->clk_evt;
812 813 814 815

	if (dev->event_handler)
		dev->event_handler(dev);

816
	vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
817 818
}

819
void vmbus_on_msg_dpc(unsigned long data)
G
Greg Kroah-Hartman 已提交
820
{
821 822
	struct hv_per_cpu_context *hv_cpu = (void *)data;
	void *page_addr = hv_cpu->synic_message_page;
G
Greg Kroah-Hartman 已提交
823 824
	struct hv_message *msg = (struct hv_message *)page_addr +
				  VMBUS_MESSAGE_SINT;
825
	struct vmbus_channel_message_header *hdr;
826
	const struct vmbus_channel_message_table_entry *entry;
827
	struct onmessage_work_context *ctx;
828
	u32 message_type = msg->header.message_type;
G
Greg Kroah-Hartman 已提交
829

830
	if (message_type == HVMSG_NONE)
831 832
		/* no msg */
		return;
833

834
	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
835

836 837
	trace_vmbus_on_msg_dpc(hdr);

838 839 840 841
	if (hdr->msgtype >= CHANNELMSG_COUNT) {
		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
		goto msg_handled;
	}
842

843 844 845 846 847
	entry = &channel_message_table[hdr->msgtype];
	if (entry->handler_type	== VMHT_BLOCKING) {
		ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
		if (ctx == NULL)
			return;
848

849 850
		INIT_WORK(&ctx->work, vmbus_onmessage_work);
		memcpy(&ctx->msg, msg, sizeof(*msg));
851

852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
		/*
		 * The host can generate a rescind message while we
		 * may still be handling the original offer. We deal with
		 * this condition by ensuring the processing is done on the
		 * same CPU.
		 */
		switch (hdr->msgtype) {
		case CHANNELMSG_RESCIND_CHANNELOFFER:
			/*
			 * If we are handling the rescind message;
			 * schedule the work on the global work queue.
			 */
			schedule_work_on(vmbus_connection.connect_cpu,
					 &ctx->work);
			break;

		case CHANNELMSG_OFFERCHANNEL:
			atomic_inc(&vmbus_connection.offer_in_progress);
			queue_work_on(vmbus_connection.connect_cpu,
				      vmbus_connection.work_queue,
				      &ctx->work);
			break;

		default:
			queue_work(vmbus_connection.work_queue, &ctx->work);
		}
878 879
	} else
		entry->message_handler(hdr);
G
Greg Kroah-Hartman 已提交
880

881
msg_handled:
882
	vmbus_signal_eom(msg, message_type);
G
Greg Kroah-Hartman 已提交
883 884
}

885

886 887 888 889 890 891 892 893 894 895 896 897
/*
 * Direct callback for channels using other deferred processing
 */
static void vmbus_channel_isr(struct vmbus_channel *channel)
{
	void (*callback_fn)(void *);

	callback_fn = READ_ONCE(channel->onchannel_callback);
	if (likely(callback_fn != NULL))
		(*callback_fn)(channel->channel_callback_context);
}

898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
/*
 * Schedule all channels with events pending
 */
static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
{
	unsigned long *recv_int_page;
	u32 maxbits, relid;

	if (vmbus_proto_version < VERSION_WIN8) {
		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
		recv_int_page = vmbus_connection.recv_int_page;
	} else {
		/*
		 * When the host is win8 and beyond, the event page
		 * can be directly checked to get the id of the channel
		 * that has the interrupt pending.
		 */
		void *page_addr = hv_cpu->synic_event_page;
		union hv_synic_event_flags *event
			= (union hv_synic_event_flags *)page_addr +
						 VMBUS_MESSAGE_SINT;

		maxbits = HV_EVENT_FLAGS_COUNT;
		recv_int_page = event->flags;
	}

	if (unlikely(!recv_int_page))
		return;

	for_each_set_bit(relid, recv_int_page, maxbits) {
		struct vmbus_channel *channel;

		if (!sync_test_and_clear_bit(relid, recv_int_page))
			continue;

		/* Special case - vmbus channel protocol msg */
		if (relid == 0)
			continue;

937 938
		rcu_read_lock();

939
		/* Find channel based on relid */
940
		list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
941 942 943
			if (channel->offermsg.child_relid != relid)
				continue;

944 945 946
			if (channel->rescind)
				continue;

V
Vitaly Kuznetsov 已提交
947 948
			trace_vmbus_chan_sched(channel);

949 950
			++channel->interrupts;

951 952 953
			switch (channel->callback_mode) {
			case HV_CALL_ISR:
				vmbus_channel_isr(channel);
954
				break;
955 956 957 958 959 960

			case HV_CALL_BATCHED:
				hv_begin_read(&channel->inbound);
				/* fallthrough */
			case HV_CALL_DIRECT:
				tasklet_schedule(&channel->callback_event);
961 962
			}
		}
963 964

		rcu_read_unlock();
965 966 967
	}
}

968
static void vmbus_isr(void)
G
Greg Kroah-Hartman 已提交
969
{
970 971 972
	struct hv_per_cpu_context *hv_cpu
		= this_cpu_ptr(hv_context.cpu_context);
	void *page_addr = hv_cpu->synic_event_page;
G
Greg Kroah-Hartman 已提交
973 974
	struct hv_message *msg;
	union hv_synic_event_flags *event;
975
	bool handled = false;
G
Greg Kroah-Hartman 已提交
976

977
	if (unlikely(page_addr == NULL))
978
		return;
979 980 981

	event = (union hv_synic_event_flags *)page_addr +
					 VMBUS_MESSAGE_SINT;
982 983 984 985 986
	/*
	 * Check for events before checking for messages. This is the order
	 * in which events and messages are checked in Windows guests on
	 * Hyper-V, and the Windows team suggested we do the same.
	 */
G
Greg Kroah-Hartman 已提交
987

988 989
	if ((vmbus_proto_version == VERSION_WS2008) ||
		(vmbus_proto_version == VERSION_WIN7)) {
G
Greg Kroah-Hartman 已提交
990

991
		/* Since we are a child, we only need to check bit 0 */
992
		if (sync_test_and_clear_bit(0, event->flags))
993 994 995 996 997 998 999 1000
			handled = true;
	} else {
		/*
		 * Our host is win8 or above. The signaling mechanism
		 * has changed and we can directly look at the event page.
		 * If bit n is set then we have an interrup on the channel
		 * whose id is n.
		 */
1001 1002
		handled = true;
	}
1003

1004
	if (handled)
1005
		vmbus_chan_sched(hv_cpu);
1006

1007
	page_addr = hv_cpu->synic_message_page;
1008 1009 1010
	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;

	/* Check if there are actual msgs to be processed */
1011 1012
	if (msg->header.message_type != HVMSG_NONE) {
		if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
1013
			hv_process_timer_expiration(msg, hv_cpu);
1014
		else
1015
			tasklet_schedule(&hv_cpu->msg_dpc);
1016
	}
1017 1018

	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1019 1020
}

1021

1022
/*
1023 1024 1025
 * vmbus_bus_init -Main vmbus driver initialization routine.
 *
 * Here, we
1026 1027 1028
 *	- initialize the vmbus driver context
 *	- invoke the vmbus hv main init routine
 *	- retrieve the channel offers
1029
 */
1030
static int vmbus_bus_init(void)
1031
{
1032
	int ret;
1033

1034 1035
	/* Hypervisor initialization...setup hypercall page..etc */
	ret = hv_init();
1036
	if (ret != 0) {
1037
		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1038
		return ret;
1039 1040
	}

1041
	ret = bus_register(&hv_bus);
1042
	if (ret)
1043
		return ret;
1044

1045
	hv_setup_vmbus_irq(vmbus_isr);
1046

1047 1048 1049
	ret = hv_synic_alloc();
	if (ret)
		goto err_alloc;
1050
	/*
1051
	 * Initialize the per-cpu interrupt state and
1052 1053
	 * connect to the host.
	 */
1054
	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1055 1056 1057 1058 1059
				hv_synic_init, hv_synic_cleanup);
	if (ret < 0)
		goto err_alloc;
	hyperv_cpuhp_online = ret;

1060
	ret = vmbus_connect();
1061
	if (ret)
1062
		goto err_connect;
1063

1064 1065 1066
	/*
	 * Only register if the crash MSRs are available
	 */
1067
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1068
		register_die_notifier(&hyperv_die_block);
1069 1070 1071 1072
		atomic_notifier_chain_register(&panic_notifier_list,
					       &hyperv_panic_block);
	}

1073
	vmbus_request_offers();
1074

1075
	return 0;
1076

1077
err_connect:
1078
	cpuhp_remove_state(hyperv_cpuhp_online);
1079 1080
err_alloc:
	hv_synic_free();
1081
	hv_remove_vmbus_irq();
1082 1083 1084 1085

	bus_unregister(&hv_bus);

	return ret;
1086 1087
}

1088
/**
1089 1090
 * __vmbus_child_driver_register() - Register a vmbus's driver
 * @hv_driver: Pointer to driver structure you want to register
1091 1092
 * @owner: owner module of the drv
 * @mod_name: module name string
1093 1094
 *
 * Registers the given driver with Linux through the 'driver_register()' call
1095
 * and sets up the hyper-v vmbus handling for this driver.
1096 1097
 * It will return the state of the 'driver_register()' call.
 *
1098
 */
1099
int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1100
{
1101
	int ret;
1102

1103
	pr_info("registering driver %s\n", hv_driver->name);
1104

1105 1106 1107 1108
	ret = vmbus_exists();
	if (ret < 0)
		return ret;

1109 1110 1111 1112
	hv_driver->driver.name = hv_driver->name;
	hv_driver->driver.owner = owner;
	hv_driver->driver.mod_name = mod_name;
	hv_driver->driver.bus = &hv_bus;
1113

1114 1115 1116
	spin_lock_init(&hv_driver->dynids.lock);
	INIT_LIST_HEAD(&hv_driver->dynids.list);

1117
	ret = driver_register(&hv_driver->driver);
1118

1119
	return ret;
1120
}
1121
EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1122

1123
/**
1124
 * vmbus_driver_unregister() - Unregister a vmbus's driver
1125 1126
 * @hv_driver: Pointer to driver structure you want to
 *             un-register
1127
 *
1128 1129
 * Un-register the given driver that was previous registered with a call to
 * vmbus_driver_register()
1130
 */
1131
void vmbus_driver_unregister(struct hv_driver *hv_driver)
1132
{
1133
	pr_info("unregistering driver %s\n", hv_driver->name);
1134

1135
	if (!vmbus_exists()) {
1136
		driver_unregister(&hv_driver->driver);
1137 1138
		vmbus_free_dynids(hv_driver);
	}
1139
}
1140
EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1141

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193

/*
 * Called when last reference to channel is gone.
 */
static void vmbus_chan_release(struct kobject *kobj)
{
	struct vmbus_channel *channel
		= container_of(kobj, struct vmbus_channel, kobj);

	kfree_rcu(channel, rcu);
}

struct vmbus_chan_attribute {
	struct attribute attr;
	ssize_t (*show)(const struct vmbus_channel *chan, char *buf);
	ssize_t (*store)(struct vmbus_channel *chan,
			 const char *buf, size_t count);
};
#define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
	struct vmbus_chan_attribute chan_attr_##_name \
		= __ATTR(_name, _mode, _show, _store)
#define VMBUS_CHAN_ATTR_RW(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
#define VMBUS_CHAN_ATTR_RO(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
#define VMBUS_CHAN_ATTR_WO(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)

static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
				    struct attribute *attr, char *buf)
{
	const struct vmbus_chan_attribute *attribute
		= container_of(attr, struct vmbus_chan_attribute, attr);
	const struct vmbus_channel *chan
		= container_of(kobj, struct vmbus_channel, kobj);

	if (!attribute->show)
		return -EIO;

	return attribute->show(chan, buf);
}

static const struct sysfs_ops vmbus_chan_sysfs_ops = {
	.show = vmbus_chan_attr_show,
};

static ssize_t out_mask_show(const struct vmbus_channel *channel, char *buf)
{
	const struct hv_ring_buffer_info *rbi = &channel->outbound;

	return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
}
1194
static VMBUS_CHAN_ATTR_RO(out_mask);
1195 1196 1197 1198 1199 1200 1201

static ssize_t in_mask_show(const struct vmbus_channel *channel, char *buf)
{
	const struct hv_ring_buffer_info *rbi = &channel->inbound;

	return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
}
1202
static VMBUS_CHAN_ATTR_RO(in_mask);
1203 1204 1205 1206 1207 1208 1209

static ssize_t read_avail_show(const struct vmbus_channel *channel, char *buf)
{
	const struct hv_ring_buffer_info *rbi = &channel->inbound;

	return sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
}
1210
static VMBUS_CHAN_ATTR_RO(read_avail);
1211 1212 1213 1214 1215 1216 1217

static ssize_t write_avail_show(const struct vmbus_channel *channel, char *buf)
{
	const struct hv_ring_buffer_info *rbi = &channel->outbound;

	return sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
}
1218
static VMBUS_CHAN_ATTR_RO(write_avail);
1219 1220 1221 1222 1223

static ssize_t show_target_cpu(const struct vmbus_channel *channel, char *buf)
{
	return sprintf(buf, "%u\n", channel->target_cpu);
}
1224
static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1225 1226 1227 1228 1229 1230 1231 1232

static ssize_t channel_pending_show(const struct vmbus_channel *channel,
				    char *buf)
{
	return sprintf(buf, "%d\n",
		       channel_pending(channel,
				       vmbus_connection.monitor_pages[1]));
}
1233
static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1234 1235 1236 1237 1238 1239 1240 1241

static ssize_t channel_latency_show(const struct vmbus_channel *channel,
				    char *buf)
{
	return sprintf(buf, "%d\n",
		       channel_latency(channel,
				       vmbus_connection.monitor_pages[1]));
}
1242
static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1243

1244 1245 1246 1247
static ssize_t channel_interrupts_show(const struct vmbus_channel *channel, char *buf)
{
	return sprintf(buf, "%llu\n", channel->interrupts);
}
1248
static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1249 1250 1251 1252 1253

static ssize_t channel_events_show(const struct vmbus_channel *channel, char *buf)
{
	return sprintf(buf, "%llu\n", channel->sig_events);
}
1254
static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1255

1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
static ssize_t subchannel_monitor_id_show(const struct vmbus_channel *channel,
					  char *buf)
{
	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
}
static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);

static ssize_t subchannel_id_show(const struct vmbus_channel *channel,
				  char *buf)
{
	return sprintf(buf, "%u\n",
		       channel->offermsg.offer.sub_channel_index);
}
static VMBUS_CHAN_ATTR_RO(subchannel_id);

1271 1272 1273 1274 1275 1276 1277 1278
static struct attribute *vmbus_chan_attrs[] = {
	&chan_attr_out_mask.attr,
	&chan_attr_in_mask.attr,
	&chan_attr_read_avail.attr,
	&chan_attr_write_avail.attr,
	&chan_attr_cpu.attr,
	&chan_attr_pending.attr,
	&chan_attr_latency.attr,
1279 1280
	&chan_attr_interrupts.attr,
	&chan_attr_events.attr,
1281 1282
	&chan_attr_monitor_id.attr,
	&chan_attr_subchannel_id.attr,
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	NULL
};

static struct kobj_type vmbus_chan_ktype = {
	.sysfs_ops = &vmbus_chan_sysfs_ops,
	.release = vmbus_chan_release,
	.default_attrs = vmbus_chan_attrs,
};

/*
 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
 */
int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
{
	struct kobject *kobj = &channel->kobj;
	u32 relid = channel->offermsg.child_relid;
	int ret;

	kobj->kset = dev->channels_kset;
	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
				   "%u", relid);
	if (ret)
		return ret;

	kobject_uevent(kobj, KOBJ_ADD);

	return 0;
}

1312
/*
1313
 * vmbus_device_create - Creates and registers a new child device
1314
 * on the vmbus.
1315
 */
S
stephen hemminger 已提交
1316 1317 1318
struct hv_device *vmbus_device_create(const uuid_le *type,
				      const uuid_le *instance,
				      struct vmbus_channel *channel)
1319
{
1320
	struct hv_device *child_device_obj;
1321

1322 1323
	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
	if (!child_device_obj) {
1324
		pr_err("Unable to allocate device object for child device\n");
1325 1326 1327
		return NULL;
	}

1328
	child_device_obj->channel = channel;
1329
	memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
1330
	memcpy(&child_device_obj->dev_instance, instance,
1331
	       sizeof(uuid_le));
1332
	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1333 1334 1335 1336 1337


	return child_device_obj;
}

1338
/*
1339
 * vmbus_device_register - Register the child device
1340
 */
1341
int vmbus_device_register(struct hv_device *child_device_obj)
1342
{
1343 1344
	struct kobject *kobj = &child_device_obj->device.kobj;
	int ret;
1345

1346
	dev_set_name(&child_device_obj->device, "%pUl",
1347
		     child_device_obj->channel->offermsg.offer.if_instance.b);
1348

1349
	child_device_obj->device.bus = &hv_bus;
1350
	child_device_obj->device.parent = &hv_acpi_dev->dev;
1351
	child_device_obj->device.release = vmbus_device_release;
1352

1353 1354 1355 1356
	/*
	 * Register with the LDM. This will kick off the driver/device
	 * binding...which will eventually call vmbus_match() and vmbus_probe()
	 */
1357
	ret = device_register(&child_device_obj->device);
1358
	if (ret) {
1359
		pr_err("Unable to register child device\n");
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
		return ret;
	}

	child_device_obj->channels_kset = kset_create_and_add("channels",
							      NULL, kobj);
	if (!child_device_obj->channels_kset) {
		ret = -ENOMEM;
		goto err_dev_unregister;
	}

	ret = vmbus_add_channel_kobj(child_device_obj,
				     child_device_obj->channel);
	if (ret) {
		pr_err("Unable to register primary channeln");
		goto err_kset_unregister;
	}

	return 0;

err_kset_unregister:
	kset_unregister(child_device_obj->channels_kset);
1381

1382 1383
err_dev_unregister:
	device_unregister(&child_device_obj->device);
1384 1385 1386
	return ret;
}

1387
/*
1388
 * vmbus_device_unregister - Remove the specified child device
1389
 * from the vmbus.
1390
 */
1391
void vmbus_device_unregister(struct hv_device *device_obj)
1392
{
1393 1394 1395
	pr_debug("child device %s unregistered\n",
		dev_name(&device_obj->device));

1396 1397
	kset_unregister(device_obj->channels_kset);

1398 1399 1400 1401
	/*
	 * Kick off the process of unregistering the device.
	 * This will call vmbus_remove() and eventually vmbus_device_release()
	 */
1402
	device_unregister(&device_obj->device);
1403 1404 1405
}


1406
/*
1407
 * VMBUS is an acpi enumerated device. Get the information we
1408
 * need from DSDT.
1409
 */
1410
#define VTPM_BASE_ADDRESS 0xfed40000
1411
static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1412
{
1413 1414 1415 1416 1417 1418
	resource_size_t start = 0;
	resource_size_t end = 0;
	struct resource *new_res;
	struct resource **old_res = &hyperv_mmio;
	struct resource **prev_res = NULL;

1419
	switch (res->type) {
1420 1421 1422 1423 1424 1425 1426 1427 1428

	/*
	 * "Address" descriptors are for bus windows. Ignore
	 * "memory" descriptors, which are for registers on
	 * devices.
	 */
	case ACPI_RESOURCE_TYPE_ADDRESS32:
		start = res->data.address32.address.minimum;
		end = res->data.address32.address.maximum;
G
Gerd Hoffmann 已提交
1429
		break;
1430

1431
	case ACPI_RESOURCE_TYPE_ADDRESS64:
1432 1433
		start = res->data.address64.address.minimum;
		end = res->data.address64.address.maximum;
G
Gerd Hoffmann 已提交
1434
		break;
1435 1436 1437 1438 1439

	default:
		/* Unused resource type */
		return AE_OK;

1440
	}
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
	/*
	 * Ignore ranges that are below 1MB, as they're not
	 * necessary or useful here.
	 */
	if (end < 0x100000)
		return AE_OK;

	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
	if (!new_res)
		return AE_NO_MEMORY;

	/* If this range overlaps the virtual TPM, truncate it. */
	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
		end = VTPM_BASE_ADDRESS;

	new_res->name = "hyperv mmio";
	new_res->flags = IORESOURCE_MEM;
	new_res->start = start;
	new_res->end = end;

1461 1462 1463
	/*
	 * If two ranges are adjacent, merge them.
	 */
1464 1465 1466 1467 1468 1469
	do {
		if (!*old_res) {
			*old_res = new_res;
			break;
		}

1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
		if (((*old_res)->end + 1) == new_res->start) {
			(*old_res)->end = new_res->end;
			kfree(new_res);
			break;
		}

		if ((*old_res)->start == new_res->end + 1) {
			(*old_res)->start = new_res->start;
			kfree(new_res);
			break;
		}

1482
		if ((*old_res)->start > new_res->end) {
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
			new_res->sibling = *old_res;
			if (prev_res)
				(*prev_res)->sibling = new_res;
			*old_res = new_res;
			break;
		}

		prev_res = old_res;
		old_res = &(*old_res)->sibling;

	} while (1);
1494 1495 1496 1497

	return AE_OK;
}

1498 1499 1500 1501 1502 1503
static int vmbus_acpi_remove(struct acpi_device *device)
{
	struct resource *cur_res;
	struct resource *next_res;

	if (hyperv_mmio) {
1504 1505 1506 1507 1508 1509
		if (fb_mmio) {
			__release_region(hyperv_mmio, fb_mmio->start,
					 resource_size(fb_mmio));
			fb_mmio = NULL;
		}

1510 1511 1512 1513 1514 1515 1516 1517 1518
		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
			next_res = cur_res->sibling;
			kfree(cur_res);
		}
	}

	return 0;
}

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
static void vmbus_reserve_fb(void)
{
	int size;
	/*
	 * Make a claim for the frame buffer in the resource tree under the
	 * first node, which will be the one below 4GB.  The length seems to
	 * be underreported, particularly in a Generation 1 VM.  So start out
	 * reserving a larger area and make it smaller until it succeeds.
	 */

	if (screen_info.lfb_base) {
		if (efi_enabled(EFI_BOOT))
			size = max_t(__u32, screen_info.lfb_size, 0x800000);
		else
			size = max_t(__u32, screen_info.lfb_size, 0x4000000);

		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
			fb_mmio = __request_region(hyperv_mmio,
						   screen_info.lfb_base, size,
						   fb_mmio_name, 0);
		}
	}
}

1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
/**
 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
 * @new:		If successful, supplied a pointer to the
 *			allocated MMIO space.
 * @device_obj:		Identifies the caller
 * @min:		Minimum guest physical address of the
 *			allocation
 * @max:		Maximum guest physical address
 * @size:		Size of the range to be allocated
 * @align:		Alignment of the range to be allocated
 * @fb_overlap_ok:	Whether this allocation can be allowed
 *			to overlap the video frame buffer.
 *
 * This function walks the resources granted to VMBus by the
 * _CRS object in the ACPI namespace underneath the parent
 * "bridge" whether that's a root PCI bus in the Generation 1
 * case or a Module Device in the Generation 2 case.  It then
 * attempts to allocate from the global MMIO pool in a way that
 * matches the constraints supplied in these parameters and by
 * that _CRS.
 *
 * Return: 0 on success, -errno on failure
 */
int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
			resource_size_t min, resource_size_t max,
			resource_size_t size, resource_size_t align,
			bool fb_overlap_ok)
{
1571
	struct resource *iter, *shadow;
1572
	resource_size_t range_min, range_max, start;
1573
	const char *dev_n = dev_name(&device_obj->device);
1574
	int retval;
1575 1576 1577

	retval = -ENXIO;
	down(&hyperv_mmio_lock);
1578

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
	/*
	 * If overlaps with frame buffers are allowed, then first attempt to
	 * make the allocation from within the reserved region.  Because it
	 * is already reserved, no shadow allocation is necessary.
	 */
	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
	    !(max < fb_mmio->start)) {

		range_min = fb_mmio->start;
		range_max = fb_mmio->end;
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				retval = 0;
				goto exit;
			}
		}
	}

1599 1600 1601 1602 1603 1604
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= max) || (iter->end <= min))
			continue;

		range_min = iter->start;
		range_max = iter->end;
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			shadow = __request_region(iter, start, size, NULL,
						  IORESOURCE_BUSY);
			if (!shadow)
				continue;

			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				shadow->name = (char *)*new;
				retval = 0;
				goto exit;
1617 1618
			}

1619
			__release_region(iter, start, size);
1620 1621 1622
		}
	}

1623 1624 1625
exit:
	up(&hyperv_mmio_lock);
	return retval;
1626 1627 1628
}
EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);

1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
/**
 * vmbus_free_mmio() - Free a memory-mapped I/O range.
 * @start:		Base address of region to release.
 * @size:		Size of the range to be allocated
 *
 * This function releases anything requested by
 * vmbus_mmio_allocate().
 */
void vmbus_free_mmio(resource_size_t start, resource_size_t size)
{
1639 1640 1641 1642 1643 1644 1645 1646 1647
	struct resource *iter;

	down(&hyperv_mmio_lock);
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= start + size) || (iter->end <= start))
			continue;

		__release_region(iter, start, size);
	}
1648
	release_mem_region(start, size);
1649
	up(&hyperv_mmio_lock);
1650 1651 1652 1653

}
EXPORT_SYMBOL_GPL(vmbus_free_mmio);

1654 1655 1656
static int vmbus_acpi_add(struct acpi_device *device)
{
	acpi_status result;
1657
	int ret_val = -ENODEV;
1658
	struct acpi_device *ancestor;
1659

1660 1661
	hv_acpi_dev = device;

1662
	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1663
					vmbus_walk_resources, NULL);
1664

1665 1666 1667
	if (ACPI_FAILURE(result))
		goto acpi_walk_err;
	/*
1668 1669
	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
	 * firmware) is the VMOD that has the mmio ranges. Get that.
1670
	 */
1671 1672 1673
	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
					     vmbus_walk_resources, NULL);
1674 1675

		if (ACPI_FAILURE(result))
1676
			continue;
1677 1678
		if (hyperv_mmio) {
			vmbus_reserve_fb();
1679
			break;
1680
		}
1681
	}
1682 1683 1684
	ret_val = 0;

acpi_walk_err:
1685
	complete(&probe_event);
1686 1687
	if (ret_val)
		vmbus_acpi_remove(device);
1688
	return ret_val;
1689 1690 1691 1692
}

static const struct acpi_device_id vmbus_acpi_device_ids[] = {
	{"VMBUS", 0},
1693
	{"VMBus", 0},
1694 1695 1696 1697 1698 1699 1700 1701 1702
	{"", 0},
};
MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);

static struct acpi_driver vmbus_acpi_driver = {
	.name = "vmbus",
	.ids = vmbus_acpi_device_ids,
	.ops = {
		.add = vmbus_acpi_add,
1703
		.remove = vmbus_acpi_remove,
1704 1705 1706
	},
};

1707 1708 1709
static void hv_kexec_handler(void)
{
	hv_synic_clockevents_cleanup();
1710
	vmbus_initiate_unload(false);
1711 1712 1713
	vmbus_connection.conn_state = DISCONNECTED;
	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
	mb();
1714
	cpuhp_remove_state(hyperv_cpuhp_online);
1715
	hyperv_cleanup();
1716 1717
};

1718 1719
static void hv_crash_handler(struct pt_regs *regs)
{
1720
	vmbus_initiate_unload(true);
1721 1722 1723 1724 1725
	/*
	 * In crash handler we can't schedule synic cleanup for all CPUs,
	 * doing the cleanup for current CPU only. This should be sufficient
	 * for kdump.
	 */
1726
	vmbus_connection.conn_state = DISCONNECTED;
1727
	hv_synic_cleanup(smp_processor_id());
1728
	hyperv_cleanup();
1729 1730
};

1731
static int __init hv_acpi_init(void)
1732
{
1733
	int ret, t;
1734

1735
	if (!hv_is_hyperv_initialized())
1736 1737
		return -ENODEV;

1738 1739 1740
	init_completion(&probe_event);

	/*
1741
	 * Get ACPI resources first.
1742
	 */
1743 1744
	ret = acpi_bus_register_driver(&vmbus_acpi_driver);

1745 1746 1747
	if (ret)
		return ret;

1748 1749 1750 1751 1752
	t = wait_for_completion_timeout(&probe_event, 5*HZ);
	if (t == 0) {
		ret = -ETIMEDOUT;
		goto cleanup;
	}
1753

1754
	ret = vmbus_bus_init();
1755
	if (ret)
1756 1757
		goto cleanup;

1758
	hv_setup_kexec_handler(hv_kexec_handler);
1759
	hv_setup_crash_handler(hv_crash_handler);
1760

1761 1762 1763 1764
	return 0;

cleanup:
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1765
	hv_acpi_dev = NULL;
1766
	return ret;
1767 1768
}

1769 1770
static void __exit vmbus_exit(void)
{
1771 1772
	int cpu;

1773
	hv_remove_kexec_handler();
1774
	hv_remove_crash_handler();
1775
	vmbus_connection.conn_state = DISCONNECTED;
1776
	hv_synic_clockevents_cleanup();
1777
	vmbus_disconnect();
1778
	hv_remove_vmbus_irq();
1779 1780 1781 1782 1783 1784
	for_each_online_cpu(cpu) {
		struct hv_per_cpu_context *hv_cpu
			= per_cpu_ptr(hv_context.cpu_context, cpu);

		tasklet_kill(&hv_cpu->msg_dpc);
	}
1785
	vmbus_free_channels();
1786

1787
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1788
		unregister_die_notifier(&hyperv_die_block);
1789 1790 1791
		atomic_notifier_chain_unregister(&panic_notifier_list,
						 &hyperv_panic_block);
	}
1792
	bus_unregister(&hv_bus);
1793

1794
	cpuhp_remove_state(hyperv_cpuhp_online);
1795
	hv_synic_free();
1796 1797 1798
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
}

1799

1800
MODULE_LICENSE("GPL");
1801

1802
subsys_initcall(hv_acpi_init);
1803
module_exit(vmbus_exit);