vmbus_drv.c 53.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (c) 2009, Microsoft Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 *
 * Authors:
 *   Haiyang Zhang <haiyangz@microsoft.com>
 *   Hank Janssen  <hjanssen@microsoft.com>
20
 *   K. Y. Srinivasan <kys@microsoft.com>
21
 *
22
 */
23 24
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

25 26 27 28 29
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/sysctl.h>
30
#include <linux/slab.h>
31
#include <linux/acpi.h>
32
#include <linux/completion.h>
33
#include <linux/hyperv.h>
34
#include <linux/kernel_stat.h>
35
#include <linux/clockchips.h>
36
#include <linux/cpu.h>
37 38
#include <linux/sched/task_stack.h>

39
#include <asm/mshyperv.h>
40 41
#include <linux/notifier.h>
#include <linux/ptrace.h>
42
#include <linux/screen_info.h>
43
#include <linux/kdebug.h>
44
#include <linux/efi.h>
45
#include <linux/random.h>
46
#include "hyperv_vmbus.h"
47

48 49 50 51 52
struct vmbus_dynid {
	struct list_head node;
	struct hv_vmbus_device_id id;
};

53
static struct acpi_device  *hv_acpi_dev;
54

55
static struct completion probe_event;
56

57
static int hyperv_cpuhp_online;
58

59 60
static void *hv_panic_page;

61 62 63 64 65 66 67
static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
			      void *args)
{
	struct pt_regs *regs;

	regs = current_pt_regs();

68
	hyperv_report_panic(regs, val);
69 70 71
	return NOTIFY_DONE;
}

72 73 74 75 76 77
static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
			    void *args)
{
	struct die_args *die = (struct die_args *)args;
	struct pt_regs *regs = die->regs;

78
	hyperv_report_panic(regs, val);
79 80 81 82 83 84
	return NOTIFY_DONE;
}

static struct notifier_block hyperv_die_block = {
	.notifier_call = hyperv_die_event,
};
85 86 87 88
static struct notifier_block hyperv_panic_block = {
	.notifier_call = hyperv_panic_event,
};

89 90
static const char *fb_mmio_name = "fb_range";
static struct resource *fb_mmio;
91 92
static struct resource *hyperv_mmio;
static DEFINE_SEMAPHORE(hyperv_mmio_lock);
93

94 95 96 97 98 99 100 101
static int vmbus_exists(void)
{
	if (hv_acpi_dev == NULL)
		return -ENODEV;

	return 0;
}

102 103 104 105 106 107 108 109
#define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
{
	int i;
	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
}

110
static u8 channel_monitor_group(const struct vmbus_channel *channel)
111 112 113 114
{
	return (u8)channel->offermsg.monitorid / 32;
}

115
static u8 channel_monitor_offset(const struct vmbus_channel *channel)
116 117 118 119
{
	return (u8)channel->offermsg.monitorid % 32;
}

120 121
static u32 channel_pending(const struct vmbus_channel *channel,
			   const struct hv_monitor_page *monitor_page)
122 123
{
	u8 monitor_group = channel_monitor_group(channel);
124

125 126 127
	return monitor_page->trigger_group[monitor_group].pending;
}

128 129
static u32 channel_latency(const struct vmbus_channel *channel,
			   const struct hv_monitor_page *monitor_page)
130 131 132
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
133

134 135 136
	return monitor_page->latency[monitor_group][monitor_offset];
}

137 138 139 140 141 142 143 144
static u32 channel_conn_id(struct vmbus_channel *channel,
			   struct hv_monitor_page *monitor_page)
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
}

145 146 147 148 149 150 151 152 153 154 155
static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
		       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
}
static DEVICE_ATTR_RO(id);

156 157 158 159 160 161 162 163 164 165 166
static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
			  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->state);
}
static DEVICE_ATTR_RO(state);

167 168 169 170 171 172 173 174 175 176 177
static ssize_t monitor_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
}
static DEVICE_ATTR_RO(monitor_id);

178 179 180 181 182 183 184 185 186 187 188 189
static ssize_t class_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_type.b);
}
static DEVICE_ATTR_RO(class_id);

190 191 192 193 194 195 196 197 198 199 200 201
static ssize_t device_id_show(struct device *dev,
			      struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_instance.b);
}
static DEVICE_ATTR_RO(device_id);

202 203 204 205 206 207 208 209 210 211 212
static ssize_t modalias_show(struct device *dev,
			     struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	char alias_name[VMBUS_ALIAS_LEN + 1];

	print_alias_name(hv_dev, alias_name);
	return sprintf(buf, "vmbus:%s\n", alias_name);
}
static DEVICE_ATTR_RO(modalias);

213 214 215 216 217 218 219 220 221 222 223 224 225 226
#ifdef CONFIG_NUMA
static ssize_t numa_node_show(struct device *dev,
			      struct device_attribute *attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;

	return sprintf(buf, "%d\n", hv_dev->channel->numa_node);
}
static DEVICE_ATTR_RO(numa_node);
#endif

227 228 229 230 231 232 233 234 235 236
static ssize_t server_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
237
				       vmbus_connection.monitor_pages[0]));
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
}
static DEVICE_ATTR_RO(server_monitor_pending);

static ssize_t client_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_pending);
254

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
static ssize_t server_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_latency);

static ssize_t client_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_latency);

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
static ssize_t server_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_conn_id);

static ssize_t client_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_conn_id);

311 312 313 314 315
static ssize_t out_intr_mask_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
316
	int ret;
317 318 319

	if (!hv_dev->channel)
		return -ENODEV;
320 321 322 323 324 325

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;

326 327 328 329 330 331 332 333 334
	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(out_intr_mask);

static ssize_t out_read_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
335
	int ret;
336 337 338

	if (!hv_dev->channel)
		return -ENODEV;
339 340 341 342 343

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
344 345 346 347 348 349 350 351 352 353
	return sprintf(buf, "%d\n", outbound.current_read_index);
}
static DEVICE_ATTR_RO(out_read_index);

static ssize_t out_write_index_show(struct device *dev,
				    struct device_attribute *dev_attr,
				    char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
354
	int ret;
355 356 357

	if (!hv_dev->channel)
		return -ENODEV;
358 359 360 361 362

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
363 364 365 366 367 368 369 370 371 372
	return sprintf(buf, "%d\n", outbound.current_write_index);
}
static DEVICE_ATTR_RO(out_write_index);

static ssize_t out_read_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
373
	int ret;
374 375 376

	if (!hv_dev->channel)
		return -ENODEV;
377 378 379 380 381

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
382 383 384 385 386 387 388 389 390 391
	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(out_read_bytes_avail);

static ssize_t out_write_bytes_avail_show(struct device *dev,
					  struct device_attribute *dev_attr,
					  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
392
	int ret;
393 394 395

	if (!hv_dev->channel)
		return -ENODEV;
396 397 398 399 400

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
401 402 403 404 405 406 407 408 409
	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(out_write_bytes_avail);

static ssize_t in_intr_mask_show(struct device *dev,
				 struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
410
	int ret;
411 412 413

	if (!hv_dev->channel)
		return -ENODEV;
414 415 416 417 418

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

419 420 421 422 423 424 425 426 427
	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(in_intr_mask);

static ssize_t in_read_index_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
428
	int ret;
429 430 431

	if (!hv_dev->channel)
		return -ENODEV;
432 433 434 435 436

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

437 438 439 440 441 442 443 444 445
	return sprintf(buf, "%d\n", inbound.current_read_index);
}
static DEVICE_ATTR_RO(in_read_index);

static ssize_t in_write_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
446
	int ret;
447 448 449

	if (!hv_dev->channel)
		return -ENODEV;
450 451 452 453 454

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

455 456 457 458 459 460 461 462 463 464
	return sprintf(buf, "%d\n", inbound.current_write_index);
}
static DEVICE_ATTR_RO(in_write_index);

static ssize_t in_read_bytes_avail_show(struct device *dev,
					struct device_attribute *dev_attr,
					char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
465
	int ret;
466 467 468

	if (!hv_dev->channel)
		return -ENODEV;
469 470 471 472 473

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

474 475 476 477 478 479 480 481 482 483
	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(in_read_bytes_avail);

static ssize_t in_write_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
484
	int ret;
485 486 487

	if (!hv_dev->channel)
		return -ENODEV;
488 489 490 491 492

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

493 494 495 496
	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(in_write_bytes_avail);

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
static ssize_t channel_vp_mapping_show(struct device *dev,
				       struct device_attribute *dev_attr,
				       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
	unsigned long flags;
	int buf_size = PAGE_SIZE, n_written, tot_written;
	struct list_head *cur;

	if (!channel)
		return -ENODEV;

	tot_written = snprintf(buf, buf_size, "%u:%u\n",
		channel->offermsg.child_relid, channel->target_cpu);

	spin_lock_irqsave(&channel->lock, flags);

	list_for_each(cur, &channel->sc_list) {
		if (tot_written >= buf_size - 1)
			break;

		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
		n_written = scnprintf(buf + tot_written,
				     buf_size - tot_written,
				     "%u:%u\n",
				     cur_sc->offermsg.child_relid,
				     cur_sc->target_cpu);
		tot_written += n_written;
	}

	spin_unlock_irqrestore(&channel->lock, flags);

	return tot_written;
}
static DEVICE_ATTR_RO(channel_vp_mapping);

534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
static ssize_t vendor_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
}
static DEVICE_ATTR_RO(vendor);

static ssize_t device_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->device_id);
}
static DEVICE_ATTR_RO(device);

552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
static ssize_t driver_override_store(struct device *dev,
				     struct device_attribute *attr,
				     const char *buf, size_t count)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	char *driver_override, *old, *cp;

	/* We need to keep extra room for a newline */
	if (count >= (PAGE_SIZE - 1))
		return -EINVAL;

	driver_override = kstrndup(buf, count, GFP_KERNEL);
	if (!driver_override)
		return -ENOMEM;

	cp = strchr(driver_override, '\n');
	if (cp)
		*cp = '\0';

	device_lock(dev);
	old = hv_dev->driver_override;
	if (strlen(driver_override)) {
		hv_dev->driver_override = driver_override;
	} else {
		kfree(driver_override);
		hv_dev->driver_override = NULL;
	}
	device_unlock(dev);

	kfree(old);

	return count;
}

static ssize_t driver_override_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	ssize_t len;

	device_lock(dev);
	len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
	device_unlock(dev);

	return len;
}
static DEVICE_ATTR_RW(driver_override);

600
/* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
601
static struct attribute *vmbus_dev_attrs[] = {
602
	&dev_attr_id.attr,
603
	&dev_attr_state.attr,
604
	&dev_attr_monitor_id.attr,
605
	&dev_attr_class_id.attr,
606
	&dev_attr_device_id.attr,
607
	&dev_attr_modalias.attr,
608 609 610
#ifdef CONFIG_NUMA
	&dev_attr_numa_node.attr,
#endif
611 612
	&dev_attr_server_monitor_pending.attr,
	&dev_attr_client_monitor_pending.attr,
613 614
	&dev_attr_server_monitor_latency.attr,
	&dev_attr_client_monitor_latency.attr,
615 616
	&dev_attr_server_monitor_conn_id.attr,
	&dev_attr_client_monitor_conn_id.attr,
617 618 619 620 621 622 623 624 625 626
	&dev_attr_out_intr_mask.attr,
	&dev_attr_out_read_index.attr,
	&dev_attr_out_write_index.attr,
	&dev_attr_out_read_bytes_avail.attr,
	&dev_attr_out_write_bytes_avail.attr,
	&dev_attr_in_intr_mask.attr,
	&dev_attr_in_read_index.attr,
	&dev_attr_in_write_index.attr,
	&dev_attr_in_read_bytes_avail.attr,
	&dev_attr_in_write_bytes_avail.attr,
627
	&dev_attr_channel_vp_mapping.attr,
628 629
	&dev_attr_vendor.attr,
	&dev_attr_device.attr,
630
	&dev_attr_driver_override.attr,
631 632
	NULL,
};
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662

/*
 * Device-level attribute_group callback function. Returns the permission for
 * each attribute, and returns 0 if an attribute is not visible.
 */
static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
{
	struct device *dev = kobj_to_dev(kobj);
	const struct hv_device *hv_dev = device_to_hv_device(dev);

	/* Hide the monitor attributes if the monitor mechanism is not used. */
	if (!hv_dev->channel->offermsg.monitor_allocated &&
	    (attr == &dev_attr_monitor_id.attr ||
	     attr == &dev_attr_server_monitor_pending.attr ||
	     attr == &dev_attr_client_monitor_pending.attr ||
	     attr == &dev_attr_server_monitor_latency.attr ||
	     attr == &dev_attr_client_monitor_latency.attr ||
	     attr == &dev_attr_server_monitor_conn_id.attr ||
	     attr == &dev_attr_client_monitor_conn_id.attr))
		return 0;

	return attr->mode;
}

static const struct attribute_group vmbus_dev_group = {
	.attrs = vmbus_dev_attrs,
	.is_visible = vmbus_dev_attr_is_visible
};
__ATTRIBUTE_GROUPS(vmbus_dev);
663

664 665 666 667 668 669
/*
 * vmbus_uevent - add uevent for our device
 *
 * This routine is invoked when a device is added or removed on the vmbus to
 * generate a uevent to udev in the userspace. The udev will then look at its
 * rule and the uevent generated here to load the appropriate driver
670 671 672 673
 *
 * The alias string will be of the form vmbus:guid where guid is the string
 * representation of the device guid (each byte of the guid will be
 * represented with two hex characters.
674 675 676 677
 */
static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
{
	struct hv_device *dev = device_to_hv_device(device);
678 679
	int ret;
	char alias_name[VMBUS_ALIAS_LEN + 1];
680

681
	print_alias_name(dev, alias_name);
682 683
	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
	return ret;
684 685
}

686
static const struct hv_vmbus_device_id *
687
hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
688 689 690 691
{
	if (id == NULL)
		return NULL; /* empty device table */

692 693
	for (; !guid_is_null(&id->guid); id++)
		if (guid_equal(&id->guid, guid))
694 695 696 697 698 699
			return id;

	return NULL;
}

static const struct hv_vmbus_device_id *
700
hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
701
{
702 703 704 705 706
	const struct hv_vmbus_device_id *id = NULL;
	struct vmbus_dynid *dynid;

	spin_lock(&drv->dynids.lock);
	list_for_each_entry(dynid, &drv->dynids.list, node) {
707
		if (guid_equal(&dynid->id.guid, guid)) {
708 709 710 711 712 713
			id = &dynid->id;
			break;
		}
	}
	spin_unlock(&drv->dynids.lock);

714 715
	return id;
}
716

717
static const struct hv_vmbus_device_id vmbus_device_null;
718

719 720 721 722 723 724 725
/*
 * Return a matching hv_vmbus_device_id pointer.
 * If there is no match, return NULL.
 */
static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
							struct hv_device *dev)
{
726
	const guid_t *guid = &dev->dev_type;
727
	const struct hv_vmbus_device_id *id;
728

729 730 731 732 733 734 735 736 737 738 739 740 741 742
	/* When driver_override is set, only bind to the matching driver */
	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
		return NULL;

	/* Look at the dynamic ids first, before the static ones */
	id = hv_vmbus_dynid_match(drv, guid);
	if (!id)
		id = hv_vmbus_dev_match(drv->id_table, guid);

	/* driver_override will always match, send a dummy id */
	if (!id && dev->driver_override)
		id = &vmbus_device_null;

	return id;
743 744
}

745
/* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
746
static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
{
	struct vmbus_dynid *dynid;

	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
	if (!dynid)
		return -ENOMEM;

	dynid->id.guid = *guid;

	spin_lock(&drv->dynids.lock);
	list_add_tail(&dynid->node, &drv->dynids.list);
	spin_unlock(&drv->dynids.lock);

	return driver_attach(&drv->driver);
}

static void vmbus_free_dynids(struct hv_driver *drv)
{
	struct vmbus_dynid *dynid, *n;

	spin_lock(&drv->dynids.lock);
	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
		list_del(&dynid->node);
		kfree(dynid);
	}
	spin_unlock(&drv->dynids.lock);
}

/*
 * store_new_id - sysfs frontend to vmbus_add_dynid()
 *
 * Allow GUIDs to be added to an existing driver via sysfs.
 */
static ssize_t new_id_store(struct device_driver *driver, const char *buf,
			    size_t count)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
784
	guid_t guid;
785 786
	ssize_t retval;

787
	retval = guid_parse(buf, &guid);
788 789
	if (retval)
		return retval;
790

791
	if (hv_vmbus_dynid_match(drv, &guid))
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
		return -EEXIST;

	retval = vmbus_add_dynid(drv, &guid);
	if (retval)
		return retval;
	return count;
}
static DRIVER_ATTR_WO(new_id);

/*
 * store_remove_id - remove a PCI device ID from this driver
 *
 * Removes a dynamic pci device ID to this driver.
 */
static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
			       size_t count)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
	struct vmbus_dynid *dynid, *n;
811
	guid_t guid;
812
	ssize_t retval;
813

814
	retval = guid_parse(buf, &guid);
815 816
	if (retval)
		return retval;
817

818
	retval = -ENODEV;
819 820 821 822
	spin_lock(&drv->dynids.lock);
	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
		struct hv_vmbus_device_id *id = &dynid->id;

823
		if (guid_equal(&id->guid, &guid)) {
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
			list_del(&dynid->node);
			kfree(dynid);
			retval = count;
			break;
		}
	}
	spin_unlock(&drv->dynids.lock);

	return retval;
}
static DRIVER_ATTR_WO(remove_id);

static struct attribute *vmbus_drv_attrs[] = {
	&driver_attr_new_id.attr,
	&driver_attr_remove_id.attr,
	NULL,
};
ATTRIBUTE_GROUPS(vmbus_drv);
842

843 844 845 846 847 848 849

/*
 * vmbus_match - Attempt to match the specified device to the specified driver
 */
static int vmbus_match(struct device *device, struct device_driver *driver)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
850
	struct hv_device *hv_dev = device_to_hv_device(device);
851

852 853 854 855
	/* The hv_sock driver handles all hv_sock offers. */
	if (is_hvsock_channel(hv_dev->channel))
		return drv->hvsock;

856
	if (hv_vmbus_get_id(drv, hv_dev))
857
		return 1;
858

859
	return 0;
860 861
}

862 863 864 865 866 867 868 869
/*
 * vmbus_probe - Add the new vmbus's child device
 */
static int vmbus_probe(struct device *child_device)
{
	int ret = 0;
	struct hv_driver *drv =
			drv_to_hv_drv(child_device->driver);
870
	struct hv_device *dev = device_to_hv_device(child_device);
871
	const struct hv_vmbus_device_id *dev_id;
872

873
	dev_id = hv_vmbus_get_id(drv, dev);
874
	if (drv->probe) {
875
		ret = drv->probe(dev, dev_id);
876
		if (ret != 0)
877 878
			pr_err("probe failed for device %s (%d)\n",
			       dev_name(child_device), ret);
879 880

	} else {
881 882
		pr_err("probe not set for driver %s\n",
		       dev_name(child_device));
883
		ret = -ENODEV;
884 885 886 887
	}
	return ret;
}

888 889 890 891 892
/*
 * vmbus_remove - Remove a vmbus device
 */
static int vmbus_remove(struct device *child_device)
{
893
	struct hv_driver *drv;
894
	struct hv_device *dev = device_to_hv_device(child_device);
895

896 897 898 899 900
	if (child_device->driver) {
		drv = drv_to_hv_drv(child_device->driver);
		if (drv->remove)
			drv->remove(dev);
	}
901 902 903 904

	return 0;
}

905 906 907 908 909 910 911

/*
 * vmbus_shutdown - Shutdown a vmbus device
 */
static void vmbus_shutdown(struct device *child_device)
{
	struct hv_driver *drv;
912
	struct hv_device *dev = device_to_hv_device(child_device);
913 914 915 916 917 918 919 920


	/* The device may not be attached yet */
	if (!child_device->driver)
		return;

	drv = drv_to_hv_drv(child_device->driver);

921 922
	if (drv->shutdown)
		drv->shutdown(dev);
923 924
}

925 926 927 928 929 930

/*
 * vmbus_device_release - Final callback release of the vmbus child device
 */
static void vmbus_device_release(struct device *device)
{
931
	struct hv_device *hv_dev = device_to_hv_device(device);
932
	struct vmbus_channel *channel = hv_dev->channel;
933

934
	mutex_lock(&vmbus_connection.channel_mutex);
935
	hv_process_channel_removal(channel);
936
	mutex_unlock(&vmbus_connection.channel_mutex);
937
	kfree(hv_dev);
938 939
}

940
/* The one and only one */
941 942 943 944 945 946 947
static struct bus_type  hv_bus = {
	.name =		"vmbus",
	.match =		vmbus_match,
	.shutdown =		vmbus_shutdown,
	.remove =		vmbus_remove,
	.probe =		vmbus_probe,
	.uevent =		vmbus_uevent,
948 949
	.dev_groups =		vmbus_dev_groups,
	.drv_groups =		vmbus_drv_groups,
950 951
};

952 953 954 955 956 957 958 959 960
struct onmessage_work_context {
	struct work_struct work;
	struct hv_message msg;
};

static void vmbus_onmessage_work(struct work_struct *work)
{
	struct onmessage_work_context *ctx;

961 962 963 964
	/* Do not process messages if we're in DISCONNECTED state */
	if (vmbus_connection.conn_state == DISCONNECTED)
		return;

965 966 967 968 969 970
	ctx = container_of(work, struct onmessage_work_context,
			   work);
	vmbus_onmessage(&ctx->msg);
	kfree(ctx);
}

971 972
static void hv_process_timer_expiration(struct hv_message *msg,
					struct hv_per_cpu_context *hv_cpu)
973
{
974
	struct clock_event_device *dev = hv_cpu->clk_evt;
975 976 977 978

	if (dev->event_handler)
		dev->event_handler(dev);

979
	vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
980 981
}

982
void vmbus_on_msg_dpc(unsigned long data)
G
Greg Kroah-Hartman 已提交
983
{
984 985
	struct hv_per_cpu_context *hv_cpu = (void *)data;
	void *page_addr = hv_cpu->synic_message_page;
G
Greg Kroah-Hartman 已提交
986 987
	struct hv_message *msg = (struct hv_message *)page_addr +
				  VMBUS_MESSAGE_SINT;
988
	struct vmbus_channel_message_header *hdr;
989
	const struct vmbus_channel_message_table_entry *entry;
990
	struct onmessage_work_context *ctx;
991
	u32 message_type = msg->header.message_type;
G
Greg Kroah-Hartman 已提交
992

993
	if (message_type == HVMSG_NONE)
994 995
		/* no msg */
		return;
996

997
	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
998

999 1000
	trace_vmbus_on_msg_dpc(hdr);

1001 1002 1003 1004
	if (hdr->msgtype >= CHANNELMSG_COUNT) {
		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
		goto msg_handled;
	}
1005

1006 1007 1008 1009 1010
	entry = &channel_message_table[hdr->msgtype];
	if (entry->handler_type	== VMHT_BLOCKING) {
		ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
		if (ctx == NULL)
			return;
1011

1012 1013
		INIT_WORK(&ctx->work, vmbus_onmessage_work);
		memcpy(&ctx->msg, msg, sizeof(*msg));
1014

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
		/*
		 * The host can generate a rescind message while we
		 * may still be handling the original offer. We deal with
		 * this condition by ensuring the processing is done on the
		 * same CPU.
		 */
		switch (hdr->msgtype) {
		case CHANNELMSG_RESCIND_CHANNELOFFER:
			/*
			 * If we are handling the rescind message;
			 * schedule the work on the global work queue.
			 */
			schedule_work_on(vmbus_connection.connect_cpu,
					 &ctx->work);
			break;

		case CHANNELMSG_OFFERCHANNEL:
			atomic_inc(&vmbus_connection.offer_in_progress);
			queue_work_on(vmbus_connection.connect_cpu,
				      vmbus_connection.work_queue,
				      &ctx->work);
			break;

		default:
			queue_work(vmbus_connection.work_queue, &ctx->work);
		}
1041 1042
	} else
		entry->message_handler(hdr);
G
Greg Kroah-Hartman 已提交
1043

1044
msg_handled:
1045
	vmbus_signal_eom(msg, message_type);
G
Greg Kroah-Hartman 已提交
1046 1047
}

1048

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
/*
 * Direct callback for channels using other deferred processing
 */
static void vmbus_channel_isr(struct vmbus_channel *channel)
{
	void (*callback_fn)(void *);

	callback_fn = READ_ONCE(channel->onchannel_callback);
	if (likely(callback_fn != NULL))
		(*callback_fn)(channel->channel_callback_context);
}

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
/*
 * Schedule all channels with events pending
 */
static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
{
	unsigned long *recv_int_page;
	u32 maxbits, relid;

	if (vmbus_proto_version < VERSION_WIN8) {
		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
		recv_int_page = vmbus_connection.recv_int_page;
	} else {
		/*
		 * When the host is win8 and beyond, the event page
		 * can be directly checked to get the id of the channel
		 * that has the interrupt pending.
		 */
		void *page_addr = hv_cpu->synic_event_page;
		union hv_synic_event_flags *event
			= (union hv_synic_event_flags *)page_addr +
						 VMBUS_MESSAGE_SINT;

		maxbits = HV_EVENT_FLAGS_COUNT;
		recv_int_page = event->flags;
	}

	if (unlikely(!recv_int_page))
		return;

	for_each_set_bit(relid, recv_int_page, maxbits) {
		struct vmbus_channel *channel;

		if (!sync_test_and_clear_bit(relid, recv_int_page))
			continue;

		/* Special case - vmbus channel protocol msg */
		if (relid == 0)
			continue;

1100 1101
		rcu_read_lock();

1102
		/* Find channel based on relid */
1103
		list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
1104 1105 1106
			if (channel->offermsg.child_relid != relid)
				continue;

1107 1108 1109
			if (channel->rescind)
				continue;

V
Vitaly Kuznetsov 已提交
1110 1111
			trace_vmbus_chan_sched(channel);

1112 1113
			++channel->interrupts;

1114 1115 1116
			switch (channel->callback_mode) {
			case HV_CALL_ISR:
				vmbus_channel_isr(channel);
1117
				break;
1118 1119 1120 1121 1122 1123

			case HV_CALL_BATCHED:
				hv_begin_read(&channel->inbound);
				/* fallthrough */
			case HV_CALL_DIRECT:
				tasklet_schedule(&channel->callback_event);
1124 1125
			}
		}
1126 1127

		rcu_read_unlock();
1128 1129 1130
	}
}

1131
static void vmbus_isr(void)
G
Greg Kroah-Hartman 已提交
1132
{
1133 1134 1135
	struct hv_per_cpu_context *hv_cpu
		= this_cpu_ptr(hv_context.cpu_context);
	void *page_addr = hv_cpu->synic_event_page;
G
Greg Kroah-Hartman 已提交
1136 1137
	struct hv_message *msg;
	union hv_synic_event_flags *event;
1138
	bool handled = false;
G
Greg Kroah-Hartman 已提交
1139

1140
	if (unlikely(page_addr == NULL))
1141
		return;
1142 1143 1144

	event = (union hv_synic_event_flags *)page_addr +
					 VMBUS_MESSAGE_SINT;
1145 1146 1147 1148 1149
	/*
	 * Check for events before checking for messages. This is the order
	 * in which events and messages are checked in Windows guests on
	 * Hyper-V, and the Windows team suggested we do the same.
	 */
G
Greg Kroah-Hartman 已提交
1150

1151 1152
	if ((vmbus_proto_version == VERSION_WS2008) ||
		(vmbus_proto_version == VERSION_WIN7)) {
G
Greg Kroah-Hartman 已提交
1153

1154
		/* Since we are a child, we only need to check bit 0 */
1155
		if (sync_test_and_clear_bit(0, event->flags))
1156 1157 1158 1159 1160 1161 1162 1163
			handled = true;
	} else {
		/*
		 * Our host is win8 or above. The signaling mechanism
		 * has changed and we can directly look at the event page.
		 * If bit n is set then we have an interrup on the channel
		 * whose id is n.
		 */
1164 1165
		handled = true;
	}
1166

1167
	if (handled)
1168
		vmbus_chan_sched(hv_cpu);
1169

1170
	page_addr = hv_cpu->synic_message_page;
1171 1172 1173
	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;

	/* Check if there are actual msgs to be processed */
1174 1175
	if (msg->header.message_type != HVMSG_NONE) {
		if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
1176
			hv_process_timer_expiration(msg, hv_cpu);
1177
		else
1178
			tasklet_schedule(&hv_cpu->msg_dpc);
1179
	}
1180 1181

	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1182 1183
}

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
/*
 * Boolean to control whether to report panic messages over Hyper-V.
 *
 * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
 */
static int sysctl_record_panic_msg = 1;

/*
 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
 * buffer and call into Hyper-V to transfer the data.
 */
static void hv_kmsg_dump(struct kmsg_dumper *dumper,
			 enum kmsg_dump_reason reason)
{
	size_t bytes_written;
	phys_addr_t panic_pa;

	/* We are only interested in panics. */
	if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
		return;

	panic_pa = virt_to_phys(hv_panic_page);

	/*
	 * Write dump contents to the page. No need to synchronize; panic should
	 * be single-threaded.
	 */
1211 1212 1213 1214
	kmsg_dump_get_buffer(dumper, true, hv_panic_page, PAGE_SIZE,
			     &bytes_written);
	if (bytes_written)
		hyperv_report_panic_msg(panic_pa, bytes_written);
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
}

static struct kmsg_dumper hv_kmsg_dumper = {
	.dump = hv_kmsg_dump,
};

static struct ctl_table_header *hv_ctl_table_hdr;
static int zero;
static int one = 1;

/*
 * sysctl option to allow the user to control whether kmsg data should be
 * reported to Hyper-V on panic.
 */
static struct ctl_table hv_ctl_table[] = {
	{
		.procname       = "hyperv_record_panic_msg",
		.data           = &sysctl_record_panic_msg,
		.maxlen         = sizeof(int),
		.mode           = 0644,
		.proc_handler   = proc_dointvec_minmax,
		.extra1		= &zero,
		.extra2		= &one
	},
	{}
};

static struct ctl_table hv_root_table[] = {
	{
		.procname	= "kernel",
		.mode		= 0555,
		.child		= hv_ctl_table
	},
	{}
};
1250

1251
/*
1252 1253 1254
 * vmbus_bus_init -Main vmbus driver initialization routine.
 *
 * Here, we
1255 1256 1257
 *	- initialize the vmbus driver context
 *	- invoke the vmbus hv main init routine
 *	- retrieve the channel offers
1258
 */
1259
static int vmbus_bus_init(void)
1260
{
1261
	int ret;
1262

1263 1264
	/* Hypervisor initialization...setup hypercall page..etc */
	ret = hv_init();
1265
	if (ret != 0) {
1266
		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1267
		return ret;
1268 1269
	}

1270
	ret = bus_register(&hv_bus);
1271
	if (ret)
1272
		return ret;
1273

1274
	hv_setup_vmbus_irq(vmbus_isr);
1275

1276 1277 1278
	ret = hv_synic_alloc();
	if (ret)
		goto err_alloc;
1279
	/*
1280
	 * Initialize the per-cpu interrupt state and
1281 1282
	 * connect to the host.
	 */
1283
	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1284 1285 1286 1287 1288
				hv_synic_init, hv_synic_cleanup);
	if (ret < 0)
		goto err_alloc;
	hyperv_cpuhp_online = ret;

1289
	ret = vmbus_connect();
1290
	if (ret)
1291
		goto err_connect;
1292

1293 1294 1295
	/*
	 * Only register if the crash MSRs are available
	 */
1296
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
		u64 hyperv_crash_ctl;
		/*
		 * Sysctl registration is not fatal, since by default
		 * reporting is enabled.
		 */
		hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
		if (!hv_ctl_table_hdr)
			pr_err("Hyper-V: sysctl table register error");

		/*
		 * Register for panic kmsg callback only if the right
		 * capability is supported by the hypervisor.
		 */
1310
		hv_get_crash_ctl(hyperv_crash_ctl);
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
		if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) {
			hv_panic_page = (void *)get_zeroed_page(GFP_KERNEL);
			if (hv_panic_page) {
				ret = kmsg_dump_register(&hv_kmsg_dumper);
				if (ret)
					pr_err("Hyper-V: kmsg dump register "
						"error 0x%x\n", ret);
			} else
				pr_err("Hyper-V: panic message page memory "
					"allocation failed");
		}

1323
		register_die_notifier(&hyperv_die_block);
1324 1325 1326 1327
		atomic_notifier_chain_register(&panic_notifier_list,
					       &hyperv_panic_block);
	}

1328
	vmbus_request_offers();
1329

1330
	return 0;
1331

1332
err_connect:
1333
	cpuhp_remove_state(hyperv_cpuhp_online);
1334 1335
err_alloc:
	hv_synic_free();
1336
	hv_remove_vmbus_irq();
1337 1338

	bus_unregister(&hv_bus);
1339
	free_page((unsigned long)hv_panic_page);
1340 1341
	unregister_sysctl_table(hv_ctl_table_hdr);
	hv_ctl_table_hdr = NULL;
1342
	return ret;
1343 1344
}

1345
/**
1346 1347
 * __vmbus_child_driver_register() - Register a vmbus's driver
 * @hv_driver: Pointer to driver structure you want to register
1348 1349
 * @owner: owner module of the drv
 * @mod_name: module name string
1350 1351
 *
 * Registers the given driver with Linux through the 'driver_register()' call
1352
 * and sets up the hyper-v vmbus handling for this driver.
1353 1354
 * It will return the state of the 'driver_register()' call.
 *
1355
 */
1356
int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1357
{
1358
	int ret;
1359

1360
	pr_info("registering driver %s\n", hv_driver->name);
1361

1362 1363 1364 1365
	ret = vmbus_exists();
	if (ret < 0)
		return ret;

1366 1367 1368 1369
	hv_driver->driver.name = hv_driver->name;
	hv_driver->driver.owner = owner;
	hv_driver->driver.mod_name = mod_name;
	hv_driver->driver.bus = &hv_bus;
1370

1371 1372 1373
	spin_lock_init(&hv_driver->dynids.lock);
	INIT_LIST_HEAD(&hv_driver->dynids.list);

1374
	ret = driver_register(&hv_driver->driver);
1375

1376
	return ret;
1377
}
1378
EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1379

1380
/**
1381
 * vmbus_driver_unregister() - Unregister a vmbus's driver
1382 1383
 * @hv_driver: Pointer to driver structure you want to
 *             un-register
1384
 *
1385 1386
 * Un-register the given driver that was previous registered with a call to
 * vmbus_driver_register()
1387
 */
1388
void vmbus_driver_unregister(struct hv_driver *hv_driver)
1389
{
1390
	pr_info("unregistering driver %s\n", hv_driver->name);
1391

1392
	if (!vmbus_exists()) {
1393
		driver_unregister(&hv_driver->driver);
1394 1395
		vmbus_free_dynids(hv_driver);
	}
1396
}
1397
EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1398

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437

/*
 * Called when last reference to channel is gone.
 */
static void vmbus_chan_release(struct kobject *kobj)
{
	struct vmbus_channel *channel
		= container_of(kobj, struct vmbus_channel, kobj);

	kfree_rcu(channel, rcu);
}

struct vmbus_chan_attribute {
	struct attribute attr;
	ssize_t (*show)(const struct vmbus_channel *chan, char *buf);
	ssize_t (*store)(struct vmbus_channel *chan,
			 const char *buf, size_t count);
};
#define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
	struct vmbus_chan_attribute chan_attr_##_name \
		= __ATTR(_name, _mode, _show, _store)
#define VMBUS_CHAN_ATTR_RW(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
#define VMBUS_CHAN_ATTR_RO(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
#define VMBUS_CHAN_ATTR_WO(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)

static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
				    struct attribute *attr, char *buf)
{
	const struct vmbus_chan_attribute *attribute
		= container_of(attr, struct vmbus_chan_attribute, attr);
	const struct vmbus_channel *chan
		= container_of(kobj, struct vmbus_channel, kobj);

	if (!attribute->show)
		return -EIO;

1438 1439 1440
	if (chan->state != CHANNEL_OPENED_STATE)
		return -EINVAL;

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
	return attribute->show(chan, buf);
}

static const struct sysfs_ops vmbus_chan_sysfs_ops = {
	.show = vmbus_chan_attr_show,
};

static ssize_t out_mask_show(const struct vmbus_channel *channel, char *buf)
{
	const struct hv_ring_buffer_info *rbi = &channel->outbound;

	return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
}
1454
static VMBUS_CHAN_ATTR_RO(out_mask);
1455 1456 1457 1458 1459 1460 1461

static ssize_t in_mask_show(const struct vmbus_channel *channel, char *buf)
{
	const struct hv_ring_buffer_info *rbi = &channel->inbound;

	return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
}
1462
static VMBUS_CHAN_ATTR_RO(in_mask);
1463 1464 1465 1466 1467 1468 1469

static ssize_t read_avail_show(const struct vmbus_channel *channel, char *buf)
{
	const struct hv_ring_buffer_info *rbi = &channel->inbound;

	return sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
}
1470
static VMBUS_CHAN_ATTR_RO(read_avail);
1471 1472 1473 1474 1475 1476 1477

static ssize_t write_avail_show(const struct vmbus_channel *channel, char *buf)
{
	const struct hv_ring_buffer_info *rbi = &channel->outbound;

	return sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
}
1478
static VMBUS_CHAN_ATTR_RO(write_avail);
1479 1480 1481 1482 1483

static ssize_t show_target_cpu(const struct vmbus_channel *channel, char *buf)
{
	return sprintf(buf, "%u\n", channel->target_cpu);
}
1484
static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1485 1486 1487 1488 1489 1490 1491 1492

static ssize_t channel_pending_show(const struct vmbus_channel *channel,
				    char *buf)
{
	return sprintf(buf, "%d\n",
		       channel_pending(channel,
				       vmbus_connection.monitor_pages[1]));
}
1493
static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1494 1495 1496 1497 1498 1499 1500 1501

static ssize_t channel_latency_show(const struct vmbus_channel *channel,
				    char *buf)
{
	return sprintf(buf, "%d\n",
		       channel_latency(channel,
				       vmbus_connection.monitor_pages[1]));
}
1502
static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1503

1504 1505 1506 1507
static ssize_t channel_interrupts_show(const struct vmbus_channel *channel, char *buf)
{
	return sprintf(buf, "%llu\n", channel->interrupts);
}
1508
static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1509 1510 1511 1512 1513

static ssize_t channel_events_show(const struct vmbus_channel *channel, char *buf)
{
	return sprintf(buf, "%llu\n", channel->sig_events);
}
1514
static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1515

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
static ssize_t channel_intr_in_full_show(const struct vmbus_channel *channel,
					 char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->intr_in_full);
}
static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);

static ssize_t channel_intr_out_empty_show(const struct vmbus_channel *channel,
					   char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->intr_out_empty);
}
static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);

static ssize_t channel_out_full_first_show(const struct vmbus_channel *channel,
					   char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->out_full_first);
}
static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);

static ssize_t channel_out_full_total_show(const struct vmbus_channel *channel,
					   char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->out_full_total);
}
static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
static ssize_t subchannel_monitor_id_show(const struct vmbus_channel *channel,
					  char *buf)
{
	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
}
static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);

static ssize_t subchannel_id_show(const struct vmbus_channel *channel,
				  char *buf)
{
	return sprintf(buf, "%u\n",
		       channel->offermsg.offer.sub_channel_index);
}
static VMBUS_CHAN_ATTR_RO(subchannel_id);

1563 1564 1565 1566 1567 1568 1569 1570
static struct attribute *vmbus_chan_attrs[] = {
	&chan_attr_out_mask.attr,
	&chan_attr_in_mask.attr,
	&chan_attr_read_avail.attr,
	&chan_attr_write_avail.attr,
	&chan_attr_cpu.attr,
	&chan_attr_pending.attr,
	&chan_attr_latency.attr,
1571 1572
	&chan_attr_interrupts.attr,
	&chan_attr_events.attr,
1573 1574 1575 1576
	&chan_attr_intr_in_full.attr,
	&chan_attr_intr_out_empty.attr,
	&chan_attr_out_full_first.attr,
	&chan_attr_out_full_total.attr,
1577 1578
	&chan_attr_monitor_id.attr,
	&chan_attr_subchannel_id.attr,
1579 1580 1581
	NULL
};

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
/*
 * Channel-level attribute_group callback function. Returns the permission for
 * each attribute, and returns 0 if an attribute is not visible.
 */
static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
					  struct attribute *attr, int idx)
{
	const struct vmbus_channel *channel =
		container_of(kobj, struct vmbus_channel, kobj);

	/* Hide the monitor attributes if the monitor mechanism is not used. */
	if (!channel->offermsg.monitor_allocated &&
	    (attr == &chan_attr_pending.attr ||
	     attr == &chan_attr_latency.attr ||
	     attr == &chan_attr_monitor_id.attr))
		return 0;

	return attr->mode;
}

static struct attribute_group vmbus_chan_group = {
	.attrs = vmbus_chan_attrs,
	.is_visible = vmbus_chan_attr_is_visible
};

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
static struct kobj_type vmbus_chan_ktype = {
	.sysfs_ops = &vmbus_chan_sysfs_ops,
	.release = vmbus_chan_release,
};

/*
 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
 */
int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
{
1617
	const struct device *device = &dev->device;
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
	struct kobject *kobj = &channel->kobj;
	u32 relid = channel->offermsg.child_relid;
	int ret;

	kobj->kset = dev->channels_kset;
	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
				   "%u", relid);
	if (ret)
		return ret;

1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
	ret = sysfs_create_group(kobj, &vmbus_chan_group);

	if (ret) {
		/*
		 * The calling functions' error handling paths will cleanup the
		 * empty channel directory.
		 */
		dev_err(device, "Unable to set up channel sysfs files\n");
		return ret;
	}

1639 1640 1641 1642 1643
	kobject_uevent(kobj, KOBJ_ADD);

	return 0;
}

1644 1645 1646 1647 1648 1649 1650 1651
/*
 * vmbus_remove_channel_attr_group - remove the channel's attribute group
 */
void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
{
	sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
}

1652
/*
1653
 * vmbus_device_create - Creates and registers a new child device
1654
 * on the vmbus.
1655
 */
1656 1657
struct hv_device *vmbus_device_create(const guid_t *type,
				      const guid_t *instance,
S
stephen hemminger 已提交
1658
				      struct vmbus_channel *channel)
1659
{
1660
	struct hv_device *child_device_obj;
1661

1662 1663
	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
	if (!child_device_obj) {
1664
		pr_err("Unable to allocate device object for child device\n");
1665 1666 1667
		return NULL;
	}

1668
	child_device_obj->channel = channel;
1669 1670
	guid_copy(&child_device_obj->dev_type, type);
	guid_copy(&child_device_obj->dev_instance, instance);
1671
	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1672 1673 1674 1675

	return child_device_obj;
}

1676
/*
1677
 * vmbus_device_register - Register the child device
1678
 */
1679
int vmbus_device_register(struct hv_device *child_device_obj)
1680
{
1681 1682
	struct kobject *kobj = &child_device_obj->device.kobj;
	int ret;
1683

1684
	dev_set_name(&child_device_obj->device, "%pUl",
1685
		     child_device_obj->channel->offermsg.offer.if_instance.b);
1686

1687
	child_device_obj->device.bus = &hv_bus;
1688
	child_device_obj->device.parent = &hv_acpi_dev->dev;
1689
	child_device_obj->device.release = vmbus_device_release;
1690

1691 1692 1693 1694
	/*
	 * Register with the LDM. This will kick off the driver/device
	 * binding...which will eventually call vmbus_match() and vmbus_probe()
	 */
1695
	ret = device_register(&child_device_obj->device);
1696
	if (ret) {
1697
		pr_err("Unable to register child device\n");
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
		return ret;
	}

	child_device_obj->channels_kset = kset_create_and_add("channels",
							      NULL, kobj);
	if (!child_device_obj->channels_kset) {
		ret = -ENOMEM;
		goto err_dev_unregister;
	}

	ret = vmbus_add_channel_kobj(child_device_obj,
				     child_device_obj->channel);
	if (ret) {
		pr_err("Unable to register primary channeln");
		goto err_kset_unregister;
	}

	return 0;

err_kset_unregister:
	kset_unregister(child_device_obj->channels_kset);
1719

1720 1721
err_dev_unregister:
	device_unregister(&child_device_obj->device);
1722 1723 1724
	return ret;
}

1725
/*
1726
 * vmbus_device_unregister - Remove the specified child device
1727
 * from the vmbus.
1728
 */
1729
void vmbus_device_unregister(struct hv_device *device_obj)
1730
{
1731 1732 1733
	pr_debug("child device %s unregistered\n",
		dev_name(&device_obj->device));

1734 1735
	kset_unregister(device_obj->channels_kset);

1736 1737 1738 1739
	/*
	 * Kick off the process of unregistering the device.
	 * This will call vmbus_remove() and eventually vmbus_device_release()
	 */
1740
	device_unregister(&device_obj->device);
1741 1742 1743
}


1744
/*
1745
 * VMBUS is an acpi enumerated device. Get the information we
1746
 * need from DSDT.
1747
 */
1748
#define VTPM_BASE_ADDRESS 0xfed40000
1749
static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1750
{
1751 1752 1753 1754 1755 1756
	resource_size_t start = 0;
	resource_size_t end = 0;
	struct resource *new_res;
	struct resource **old_res = &hyperv_mmio;
	struct resource **prev_res = NULL;

1757
	switch (res->type) {
1758 1759 1760 1761 1762 1763 1764 1765 1766

	/*
	 * "Address" descriptors are for bus windows. Ignore
	 * "memory" descriptors, which are for registers on
	 * devices.
	 */
	case ACPI_RESOURCE_TYPE_ADDRESS32:
		start = res->data.address32.address.minimum;
		end = res->data.address32.address.maximum;
G
Gerd Hoffmann 已提交
1767
		break;
1768

1769
	case ACPI_RESOURCE_TYPE_ADDRESS64:
1770 1771
		start = res->data.address64.address.minimum;
		end = res->data.address64.address.maximum;
G
Gerd Hoffmann 已提交
1772
		break;
1773 1774 1775 1776 1777

	default:
		/* Unused resource type */
		return AE_OK;

1778
	}
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
	/*
	 * Ignore ranges that are below 1MB, as they're not
	 * necessary or useful here.
	 */
	if (end < 0x100000)
		return AE_OK;

	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
	if (!new_res)
		return AE_NO_MEMORY;

	/* If this range overlaps the virtual TPM, truncate it. */
	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
		end = VTPM_BASE_ADDRESS;

	new_res->name = "hyperv mmio";
	new_res->flags = IORESOURCE_MEM;
	new_res->start = start;
	new_res->end = end;

1799 1800 1801
	/*
	 * If two ranges are adjacent, merge them.
	 */
1802 1803 1804 1805 1806 1807
	do {
		if (!*old_res) {
			*old_res = new_res;
			break;
		}

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
		if (((*old_res)->end + 1) == new_res->start) {
			(*old_res)->end = new_res->end;
			kfree(new_res);
			break;
		}

		if ((*old_res)->start == new_res->end + 1) {
			(*old_res)->start = new_res->start;
			kfree(new_res);
			break;
		}

1820
		if ((*old_res)->start > new_res->end) {
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
			new_res->sibling = *old_res;
			if (prev_res)
				(*prev_res)->sibling = new_res;
			*old_res = new_res;
			break;
		}

		prev_res = old_res;
		old_res = &(*old_res)->sibling;

	} while (1);
1832 1833 1834 1835

	return AE_OK;
}

1836 1837 1838 1839 1840 1841
static int vmbus_acpi_remove(struct acpi_device *device)
{
	struct resource *cur_res;
	struct resource *next_res;

	if (hyperv_mmio) {
1842 1843 1844 1845 1846 1847
		if (fb_mmio) {
			__release_region(hyperv_mmio, fb_mmio->start,
					 resource_size(fb_mmio));
			fb_mmio = NULL;
		}

1848 1849 1850 1851 1852 1853 1854 1855 1856
		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
			next_res = cur_res->sibling;
			kfree(cur_res);
		}
	}

	return 0;
}

1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
static void vmbus_reserve_fb(void)
{
	int size;
	/*
	 * Make a claim for the frame buffer in the resource tree under the
	 * first node, which will be the one below 4GB.  The length seems to
	 * be underreported, particularly in a Generation 1 VM.  So start out
	 * reserving a larger area and make it smaller until it succeeds.
	 */

	if (screen_info.lfb_base) {
		if (efi_enabled(EFI_BOOT))
			size = max_t(__u32, screen_info.lfb_size, 0x800000);
		else
			size = max_t(__u32, screen_info.lfb_size, 0x4000000);

		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
			fb_mmio = __request_region(hyperv_mmio,
						   screen_info.lfb_base, size,
						   fb_mmio_name, 0);
		}
	}
}

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
/**
 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
 * @new:		If successful, supplied a pointer to the
 *			allocated MMIO space.
 * @device_obj:		Identifies the caller
 * @min:		Minimum guest physical address of the
 *			allocation
 * @max:		Maximum guest physical address
 * @size:		Size of the range to be allocated
 * @align:		Alignment of the range to be allocated
 * @fb_overlap_ok:	Whether this allocation can be allowed
 *			to overlap the video frame buffer.
 *
 * This function walks the resources granted to VMBus by the
 * _CRS object in the ACPI namespace underneath the parent
 * "bridge" whether that's a root PCI bus in the Generation 1
 * case or a Module Device in the Generation 2 case.  It then
 * attempts to allocate from the global MMIO pool in a way that
 * matches the constraints supplied in these parameters and by
 * that _CRS.
 *
 * Return: 0 on success, -errno on failure
 */
int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
			resource_size_t min, resource_size_t max,
			resource_size_t size, resource_size_t align,
			bool fb_overlap_ok)
{
1909
	struct resource *iter, *shadow;
1910
	resource_size_t range_min, range_max, start;
1911
	const char *dev_n = dev_name(&device_obj->device);
1912
	int retval;
1913 1914 1915

	retval = -ENXIO;
	down(&hyperv_mmio_lock);
1916

1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
	/*
	 * If overlaps with frame buffers are allowed, then first attempt to
	 * make the allocation from within the reserved region.  Because it
	 * is already reserved, no shadow allocation is necessary.
	 */
	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
	    !(max < fb_mmio->start)) {

		range_min = fb_mmio->start;
		range_max = fb_mmio->end;
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				retval = 0;
				goto exit;
			}
		}
	}

1937 1938 1939 1940 1941 1942
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= max) || (iter->end <= min))
			continue;

		range_min = iter->start;
		range_max = iter->end;
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			shadow = __request_region(iter, start, size, NULL,
						  IORESOURCE_BUSY);
			if (!shadow)
				continue;

			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				shadow->name = (char *)*new;
				retval = 0;
				goto exit;
1955 1956
			}

1957
			__release_region(iter, start, size);
1958 1959 1960
		}
	}

1961 1962 1963
exit:
	up(&hyperv_mmio_lock);
	return retval;
1964 1965 1966
}
EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);

1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
/**
 * vmbus_free_mmio() - Free a memory-mapped I/O range.
 * @start:		Base address of region to release.
 * @size:		Size of the range to be allocated
 *
 * This function releases anything requested by
 * vmbus_mmio_allocate().
 */
void vmbus_free_mmio(resource_size_t start, resource_size_t size)
{
1977 1978 1979 1980 1981 1982 1983 1984 1985
	struct resource *iter;

	down(&hyperv_mmio_lock);
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= start + size) || (iter->end <= start))
			continue;

		__release_region(iter, start, size);
	}
1986
	release_mem_region(start, size);
1987
	up(&hyperv_mmio_lock);
1988 1989 1990 1991

}
EXPORT_SYMBOL_GPL(vmbus_free_mmio);

1992 1993 1994
static int vmbus_acpi_add(struct acpi_device *device)
{
	acpi_status result;
1995
	int ret_val = -ENODEV;
1996
	struct acpi_device *ancestor;
1997

1998 1999
	hv_acpi_dev = device;

2000
	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2001
					vmbus_walk_resources, NULL);
2002

2003 2004 2005
	if (ACPI_FAILURE(result))
		goto acpi_walk_err;
	/*
2006 2007
	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
	 * firmware) is the VMOD that has the mmio ranges. Get that.
2008
	 */
2009 2010 2011
	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
					     vmbus_walk_resources, NULL);
2012 2013

		if (ACPI_FAILURE(result))
2014
			continue;
2015 2016
		if (hyperv_mmio) {
			vmbus_reserve_fb();
2017
			break;
2018
		}
2019
	}
2020 2021 2022
	ret_val = 0;

acpi_walk_err:
2023
	complete(&probe_event);
2024 2025
	if (ret_val)
		vmbus_acpi_remove(device);
2026
	return ret_val;
2027 2028 2029 2030
}

static const struct acpi_device_id vmbus_acpi_device_ids[] = {
	{"VMBUS", 0},
2031
	{"VMBus", 0},
2032 2033 2034 2035 2036 2037 2038 2039 2040
	{"", 0},
};
MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);

static struct acpi_driver vmbus_acpi_driver = {
	.name = "vmbus",
	.ids = vmbus_acpi_device_ids,
	.ops = {
		.add = vmbus_acpi_add,
2041
		.remove = vmbus_acpi_remove,
2042 2043 2044
	},
};

2045 2046 2047
static void hv_kexec_handler(void)
{
	hv_synic_clockevents_cleanup();
2048
	vmbus_initiate_unload(false);
2049 2050 2051
	vmbus_connection.conn_state = DISCONNECTED;
	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
	mb();
2052
	cpuhp_remove_state(hyperv_cpuhp_online);
2053
	hyperv_cleanup();
2054 2055
};

2056 2057
static void hv_crash_handler(struct pt_regs *regs)
{
2058
	vmbus_initiate_unload(true);
2059 2060 2061 2062 2063
	/*
	 * In crash handler we can't schedule synic cleanup for all CPUs,
	 * doing the cleanup for current CPU only. This should be sufficient
	 * for kdump.
	 */
2064
	vmbus_connection.conn_state = DISCONNECTED;
2065
	hv_synic_cleanup(smp_processor_id());
2066
	hyperv_cleanup();
2067 2068
};

2069
static int __init hv_acpi_init(void)
2070
{
2071
	int ret, t;
2072

2073
	if (!hv_is_hyperv_initialized())
2074 2075
		return -ENODEV;

2076 2077 2078
	init_completion(&probe_event);

	/*
2079
	 * Get ACPI resources first.
2080
	 */
2081 2082
	ret = acpi_bus_register_driver(&vmbus_acpi_driver);

2083 2084 2085
	if (ret)
		return ret;

2086 2087 2088 2089 2090
	t = wait_for_completion_timeout(&probe_event, 5*HZ);
	if (t == 0) {
		ret = -ETIMEDOUT;
		goto cleanup;
	}
2091

2092
	ret = vmbus_bus_init();
2093
	if (ret)
2094 2095
		goto cleanup;

2096
	hv_setup_kexec_handler(hv_kexec_handler);
2097
	hv_setup_crash_handler(hv_crash_handler);
2098

2099 2100 2101 2102
	return 0;

cleanup:
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2103
	hv_acpi_dev = NULL;
2104
	return ret;
2105 2106
}

2107 2108
static void __exit vmbus_exit(void)
{
2109 2110
	int cpu;

2111
	hv_remove_kexec_handler();
2112
	hv_remove_crash_handler();
2113
	vmbus_connection.conn_state = DISCONNECTED;
2114
	hv_synic_clockevents_cleanup();
2115
	vmbus_disconnect();
2116
	hv_remove_vmbus_irq();
2117 2118 2119 2120 2121 2122
	for_each_online_cpu(cpu) {
		struct hv_per_cpu_context *hv_cpu
			= per_cpu_ptr(hv_context.cpu_context, cpu);

		tasklet_kill(&hv_cpu->msg_dpc);
	}
2123
	vmbus_free_channels();
2124

2125
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
2126
		kmsg_dump_unregister(&hv_kmsg_dumper);
2127
		unregister_die_notifier(&hyperv_die_block);
2128 2129 2130
		atomic_notifier_chain_unregister(&panic_notifier_list,
						 &hyperv_panic_block);
	}
2131 2132

	free_page((unsigned long)hv_panic_page);
2133 2134
	unregister_sysctl_table(hv_ctl_table_hdr);
	hv_ctl_table_hdr = NULL;
2135
	bus_unregister(&hv_bus);
2136

2137
	cpuhp_remove_state(hyperv_cpuhp_online);
2138
	hv_synic_free();
2139 2140 2141
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
}

2142

2143
MODULE_LICENSE("GPL");
2144

2145
subsys_initcall(hv_acpi_init);
2146
module_exit(vmbus_exit);