vmbus_drv.c 48.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (c) 2009, Microsoft Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 *
 * Authors:
 *   Haiyang Zhang <haiyangz@microsoft.com>
 *   Hank Janssen  <hjanssen@microsoft.com>
20
 *   K. Y. Srinivasan <kys@microsoft.com>
21
 *
22
 */
23 24
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

25 26 27 28 29
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/sysctl.h>
30
#include <linux/slab.h>
31
#include <linux/acpi.h>
32
#include <linux/completion.h>
33
#include <linux/hyperv.h>
34
#include <linux/kernel_stat.h>
35
#include <linux/clockchips.h>
36
#include <linux/cpu.h>
37 38
#include <linux/sched/task_stack.h>

39
#include <asm/mshyperv.h>
40 41
#include <linux/notifier.h>
#include <linux/ptrace.h>
42
#include <linux/screen_info.h>
43
#include <linux/kdebug.h>
44
#include <linux/efi.h>
45
#include <linux/random.h>
46
#include "hyperv_vmbus.h"
47

48 49 50 51 52
struct vmbus_dynid {
	struct list_head node;
	struct hv_vmbus_device_id id;
};

53
static struct acpi_device  *hv_acpi_dev;
54

55
static struct completion probe_event;
56

57
static int hyperv_cpuhp_online;
58

59 60
static void *hv_panic_page;

61 62 63 64 65 66 67
static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
			      void *args)
{
	struct pt_regs *regs;

	regs = current_pt_regs();

68
	hyperv_report_panic(regs, val);
69 70 71
	return NOTIFY_DONE;
}

72 73 74 75 76 77
static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
			    void *args)
{
	struct die_args *die = (struct die_args *)args;
	struct pt_regs *regs = die->regs;

78
	hyperv_report_panic(regs, val);
79 80 81 82 83 84
	return NOTIFY_DONE;
}

static struct notifier_block hyperv_die_block = {
	.notifier_call = hyperv_die_event,
};
85 86 87 88
static struct notifier_block hyperv_panic_block = {
	.notifier_call = hyperv_panic_event,
};

89 90
static const char *fb_mmio_name = "fb_range";
static struct resource *fb_mmio;
91 92
static struct resource *hyperv_mmio;
static DEFINE_SEMAPHORE(hyperv_mmio_lock);
93

94 95 96 97 98 99 100 101
static int vmbus_exists(void)
{
	if (hv_acpi_dev == NULL)
		return -ENODEV;

	return 0;
}

102 103 104 105 106 107 108 109
#define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
{
	int i;
	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
}

110
static u8 channel_monitor_group(const struct vmbus_channel *channel)
111 112 113 114
{
	return (u8)channel->offermsg.monitorid / 32;
}

115
static u8 channel_monitor_offset(const struct vmbus_channel *channel)
116 117 118 119
{
	return (u8)channel->offermsg.monitorid % 32;
}

120 121
static u32 channel_pending(const struct vmbus_channel *channel,
			   const struct hv_monitor_page *monitor_page)
122 123
{
	u8 monitor_group = channel_monitor_group(channel);
124

125 126 127
	return monitor_page->trigger_group[monitor_group].pending;
}

128 129
static u32 channel_latency(const struct vmbus_channel *channel,
			   const struct hv_monitor_page *monitor_page)
130 131 132
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
133

134 135 136
	return monitor_page->latency[monitor_group][monitor_offset];
}

137 138 139 140 141 142 143 144
static u32 channel_conn_id(struct vmbus_channel *channel,
			   struct hv_monitor_page *monitor_page)
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
}

145 146 147 148 149 150 151 152 153 154 155
static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
		       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
}
static DEVICE_ATTR_RO(id);

156 157 158 159 160 161 162 163 164 165 166
static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
			  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->state);
}
static DEVICE_ATTR_RO(state);

167 168 169 170 171 172 173 174 175 176 177
static ssize_t monitor_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
}
static DEVICE_ATTR_RO(monitor_id);

178 179 180 181 182 183 184 185 186 187 188 189
static ssize_t class_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_type.b);
}
static DEVICE_ATTR_RO(class_id);

190 191 192 193 194 195 196 197 198 199 200 201
static ssize_t device_id_show(struct device *dev,
			      struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_instance.b);
}
static DEVICE_ATTR_RO(device_id);

202 203 204 205 206 207 208 209 210 211 212
static ssize_t modalias_show(struct device *dev,
			     struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	char alias_name[VMBUS_ALIAS_LEN + 1];

	print_alias_name(hv_dev, alias_name);
	return sprintf(buf, "vmbus:%s\n", alias_name);
}
static DEVICE_ATTR_RO(modalias);

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
static ssize_t server_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(server_monitor_pending);

static ssize_t client_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_pending);
240

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
static ssize_t server_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_latency);

static ssize_t client_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_latency);

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
static ssize_t server_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_conn_id);

static ssize_t client_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_conn_id);

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
static ssize_t out_intr_mask_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(out_intr_mask);

static ssize_t out_read_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.current_read_index);
}
static DEVICE_ATTR_RO(out_read_index);

static ssize_t out_write_index_show(struct device *dev,
				    struct device_attribute *dev_attr,
				    char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.current_write_index);
}
static DEVICE_ATTR_RO(out_write_index);

static ssize_t out_read_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(out_read_bytes_avail);

static ssize_t out_write_bytes_avail_show(struct device *dev,
					  struct device_attribute *dev_attr,
					  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(out_write_bytes_avail);

static ssize_t in_intr_mask_show(struct device *dev,
				 struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(in_intr_mask);

static ssize_t in_read_index_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.current_read_index);
}
static DEVICE_ATTR_RO(in_read_index);

static ssize_t in_write_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.current_write_index);
}
static DEVICE_ATTR_RO(in_write_index);

static ssize_t in_read_bytes_avail_show(struct device *dev,
					struct device_attribute *dev_attr,
					char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(in_read_bytes_avail);

static ssize_t in_write_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(in_write_bytes_avail);

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
static ssize_t channel_vp_mapping_show(struct device *dev,
				       struct device_attribute *dev_attr,
				       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
	unsigned long flags;
	int buf_size = PAGE_SIZE, n_written, tot_written;
	struct list_head *cur;

	if (!channel)
		return -ENODEV;

	tot_written = snprintf(buf, buf_size, "%u:%u\n",
		channel->offermsg.child_relid, channel->target_cpu);

	spin_lock_irqsave(&channel->lock, flags);

	list_for_each(cur, &channel->sc_list) {
		if (tot_written >= buf_size - 1)
			break;

		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
		n_written = scnprintf(buf + tot_written,
				     buf_size - tot_written,
				     "%u:%u\n",
				     cur_sc->offermsg.child_relid,
				     cur_sc->target_cpu);
		tot_written += n_written;
	}

	spin_unlock_irqrestore(&channel->lock, flags);

	return tot_written;
}
static DEVICE_ATTR_RO(channel_vp_mapping);

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
static ssize_t vendor_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
}
static DEVICE_ATTR_RO(vendor);

static ssize_t device_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->device_id);
}
static DEVICE_ATTR_RO(device);

487
/* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
488
static struct attribute *vmbus_dev_attrs[] = {
489
	&dev_attr_id.attr,
490
	&dev_attr_state.attr,
491
	&dev_attr_monitor_id.attr,
492
	&dev_attr_class_id.attr,
493
	&dev_attr_device_id.attr,
494
	&dev_attr_modalias.attr,
495 496
	&dev_attr_server_monitor_pending.attr,
	&dev_attr_client_monitor_pending.attr,
497 498
	&dev_attr_server_monitor_latency.attr,
	&dev_attr_client_monitor_latency.attr,
499 500
	&dev_attr_server_monitor_conn_id.attr,
	&dev_attr_client_monitor_conn_id.attr,
501 502 503 504 505 506 507 508 509 510
	&dev_attr_out_intr_mask.attr,
	&dev_attr_out_read_index.attr,
	&dev_attr_out_write_index.attr,
	&dev_attr_out_read_bytes_avail.attr,
	&dev_attr_out_write_bytes_avail.attr,
	&dev_attr_in_intr_mask.attr,
	&dev_attr_in_read_index.attr,
	&dev_attr_in_write_index.attr,
	&dev_attr_in_read_bytes_avail.attr,
	&dev_attr_in_write_bytes_avail.attr,
511
	&dev_attr_channel_vp_mapping.attr,
512 513
	&dev_attr_vendor.attr,
	&dev_attr_device.attr,
514 515
	NULL,
};
516
ATTRIBUTE_GROUPS(vmbus_dev);
517

518 519 520 521 522 523
/*
 * vmbus_uevent - add uevent for our device
 *
 * This routine is invoked when a device is added or removed on the vmbus to
 * generate a uevent to udev in the userspace. The udev will then look at its
 * rule and the uevent generated here to load the appropriate driver
524 525 526 527
 *
 * The alias string will be of the form vmbus:guid where guid is the string
 * representation of the device guid (each byte of the guid will be
 * represented with two hex characters.
528 529 530 531
 */
static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
{
	struct hv_device *dev = device_to_hv_device(device);
532 533
	int ret;
	char alias_name[VMBUS_ALIAS_LEN + 1];
534

535
	print_alias_name(dev, alias_name);
536 537
	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
	return ret;
538 539
}

S
stephen hemminger 已提交
540
static const uuid_le null_guid;
541

542
static inline bool is_null_guid(const uuid_le *guid)
543
{
544
	if (uuid_le_cmp(*guid, null_guid))
545 546 547 548
		return false;
	return true;
}

549 550 551 552
/*
 * Return a matching hv_vmbus_device_id pointer.
 * If there is no match, return NULL.
 */
553
static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
554
					const uuid_le *guid)
555
{
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
	const struct hv_vmbus_device_id *id = NULL;
	struct vmbus_dynid *dynid;

	/* Look at the dynamic ids first, before the static ones */
	spin_lock(&drv->dynids.lock);
	list_for_each_entry(dynid, &drv->dynids.list, node) {
		if (!uuid_le_cmp(dynid->id.guid, *guid)) {
			id = &dynid->id;
			break;
		}
	}
	spin_unlock(&drv->dynids.lock);

	if (id)
		return id;

	id = drv->id_table;
	if (id == NULL)
		return NULL; /* empty device table */

576
	for (; !is_null_guid(&id->guid); id++)
577
		if (!uuid_le_cmp(id->guid, *guid))
578 579 580 581 582
			return id;

	return NULL;
}

583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
/* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid)
{
	struct vmbus_dynid *dynid;

	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
	if (!dynid)
		return -ENOMEM;

	dynid->id.guid = *guid;

	spin_lock(&drv->dynids.lock);
	list_add_tail(&dynid->node, &drv->dynids.list);
	spin_unlock(&drv->dynids.lock);

	return driver_attach(&drv->driver);
}

static void vmbus_free_dynids(struct hv_driver *drv)
{
	struct vmbus_dynid *dynid, *n;

	spin_lock(&drv->dynids.lock);
	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
		list_del(&dynid->node);
		kfree(dynid);
	}
	spin_unlock(&drv->dynids.lock);
}

/*
 * store_new_id - sysfs frontend to vmbus_add_dynid()
 *
 * Allow GUIDs to be added to an existing driver via sysfs.
 */
static ssize_t new_id_store(struct device_driver *driver, const char *buf,
			    size_t count)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
622
	uuid_le guid;
623 624
	ssize_t retval;

625 626 627
	retval = uuid_le_to_bin(buf, &guid);
	if (retval)
		return retval;
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648

	if (hv_vmbus_get_id(drv, &guid))
		return -EEXIST;

	retval = vmbus_add_dynid(drv, &guid);
	if (retval)
		return retval;
	return count;
}
static DRIVER_ATTR_WO(new_id);

/*
 * store_remove_id - remove a PCI device ID from this driver
 *
 * Removes a dynamic pci device ID to this driver.
 */
static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
			       size_t count)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
	struct vmbus_dynid *dynid, *n;
649 650
	uuid_le guid;
	ssize_t retval;
651

652 653 654
	retval = uuid_le_to_bin(buf, &guid);
	if (retval)
		return retval;
655

656
	retval = -ENODEV;
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
	spin_lock(&drv->dynids.lock);
	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
		struct hv_vmbus_device_id *id = &dynid->id;

		if (!uuid_le_cmp(id->guid, guid)) {
			list_del(&dynid->node);
			kfree(dynid);
			retval = count;
			break;
		}
	}
	spin_unlock(&drv->dynids.lock);

	return retval;
}
static DRIVER_ATTR_WO(remove_id);

static struct attribute *vmbus_drv_attrs[] = {
	&driver_attr_new_id.attr,
	&driver_attr_remove_id.attr,
	NULL,
};
ATTRIBUTE_GROUPS(vmbus_drv);
680

681 682 683 684 685 686 687

/*
 * vmbus_match - Attempt to match the specified device to the specified driver
 */
static int vmbus_match(struct device *device, struct device_driver *driver)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
688
	struct hv_device *hv_dev = device_to_hv_device(device);
689

690 691 692 693
	/* The hv_sock driver handles all hv_sock offers. */
	if (is_hvsock_channel(hv_dev->channel))
		return drv->hvsock;

694
	if (hv_vmbus_get_id(drv, &hv_dev->dev_type))
695
		return 1;
696

697
	return 0;
698 699
}

700 701 702 703 704 705 706 707
/*
 * vmbus_probe - Add the new vmbus's child device
 */
static int vmbus_probe(struct device *child_device)
{
	int ret = 0;
	struct hv_driver *drv =
			drv_to_hv_drv(child_device->driver);
708
	struct hv_device *dev = device_to_hv_device(child_device);
709
	const struct hv_vmbus_device_id *dev_id;
710

711
	dev_id = hv_vmbus_get_id(drv, &dev->dev_type);
712
	if (drv->probe) {
713
		ret = drv->probe(dev, dev_id);
714
		if (ret != 0)
715 716
			pr_err("probe failed for device %s (%d)\n",
			       dev_name(child_device), ret);
717 718

	} else {
719 720
		pr_err("probe not set for driver %s\n",
		       dev_name(child_device));
721
		ret = -ENODEV;
722 723 724 725
	}
	return ret;
}

726 727 728 729 730
/*
 * vmbus_remove - Remove a vmbus device
 */
static int vmbus_remove(struct device *child_device)
{
731
	struct hv_driver *drv;
732
	struct hv_device *dev = device_to_hv_device(child_device);
733

734 735 736 737 738
	if (child_device->driver) {
		drv = drv_to_hv_drv(child_device->driver);
		if (drv->remove)
			drv->remove(dev);
	}
739 740 741 742

	return 0;
}

743 744 745 746 747 748 749

/*
 * vmbus_shutdown - Shutdown a vmbus device
 */
static void vmbus_shutdown(struct device *child_device)
{
	struct hv_driver *drv;
750
	struct hv_device *dev = device_to_hv_device(child_device);
751 752 753 754 755 756 757 758


	/* The device may not be attached yet */
	if (!child_device->driver)
		return;

	drv = drv_to_hv_drv(child_device->driver);

759 760
	if (drv->shutdown)
		drv->shutdown(dev);
761 762
}

763 764 765 766 767 768

/*
 * vmbus_device_release - Final callback release of the vmbus child device
 */
static void vmbus_device_release(struct device *device)
{
769
	struct hv_device *hv_dev = device_to_hv_device(device);
770
	struct vmbus_channel *channel = hv_dev->channel;
771

772
	mutex_lock(&vmbus_connection.channel_mutex);
773
	hv_process_channel_removal(channel->offermsg.child_relid);
774
	mutex_unlock(&vmbus_connection.channel_mutex);
775
	kfree(hv_dev);
776 777 778

}

779
/* The one and only one */
780 781 782 783 784 785 786
static struct bus_type  hv_bus = {
	.name =		"vmbus",
	.match =		vmbus_match,
	.shutdown =		vmbus_shutdown,
	.remove =		vmbus_remove,
	.probe =		vmbus_probe,
	.uevent =		vmbus_uevent,
787 788
	.dev_groups =		vmbus_dev_groups,
	.drv_groups =		vmbus_drv_groups,
789 790
};

791 792 793 794 795 796 797 798 799
struct onmessage_work_context {
	struct work_struct work;
	struct hv_message msg;
};

static void vmbus_onmessage_work(struct work_struct *work)
{
	struct onmessage_work_context *ctx;

800 801 802 803
	/* Do not process messages if we're in DISCONNECTED state */
	if (vmbus_connection.conn_state == DISCONNECTED)
		return;

804 805 806 807 808 809
	ctx = container_of(work, struct onmessage_work_context,
			   work);
	vmbus_onmessage(&ctx->msg);
	kfree(ctx);
}

810 811
static void hv_process_timer_expiration(struct hv_message *msg,
					struct hv_per_cpu_context *hv_cpu)
812
{
813
	struct clock_event_device *dev = hv_cpu->clk_evt;
814 815 816 817

	if (dev->event_handler)
		dev->event_handler(dev);

818
	vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
819 820
}

821
void vmbus_on_msg_dpc(unsigned long data)
G
Greg Kroah-Hartman 已提交
822
{
823 824
	struct hv_per_cpu_context *hv_cpu = (void *)data;
	void *page_addr = hv_cpu->synic_message_page;
G
Greg Kroah-Hartman 已提交
825 826
	struct hv_message *msg = (struct hv_message *)page_addr +
				  VMBUS_MESSAGE_SINT;
827
	struct vmbus_channel_message_header *hdr;
828
	const struct vmbus_channel_message_table_entry *entry;
829
	struct onmessage_work_context *ctx;
830
	u32 message_type = msg->header.message_type;
G
Greg Kroah-Hartman 已提交
831

832
	if (message_type == HVMSG_NONE)
833 834
		/* no msg */
		return;
835

836
	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
837

838 839
	trace_vmbus_on_msg_dpc(hdr);

840 841 842 843
	if (hdr->msgtype >= CHANNELMSG_COUNT) {
		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
		goto msg_handled;
	}
844

845 846 847 848 849
	entry = &channel_message_table[hdr->msgtype];
	if (entry->handler_type	== VMHT_BLOCKING) {
		ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
		if (ctx == NULL)
			return;
850

851 852
		INIT_WORK(&ctx->work, vmbus_onmessage_work);
		memcpy(&ctx->msg, msg, sizeof(*msg));
853

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
		/*
		 * The host can generate a rescind message while we
		 * may still be handling the original offer. We deal with
		 * this condition by ensuring the processing is done on the
		 * same CPU.
		 */
		switch (hdr->msgtype) {
		case CHANNELMSG_RESCIND_CHANNELOFFER:
			/*
			 * If we are handling the rescind message;
			 * schedule the work on the global work queue.
			 */
			schedule_work_on(vmbus_connection.connect_cpu,
					 &ctx->work);
			break;

		case CHANNELMSG_OFFERCHANNEL:
			atomic_inc(&vmbus_connection.offer_in_progress);
			queue_work_on(vmbus_connection.connect_cpu,
				      vmbus_connection.work_queue,
				      &ctx->work);
			break;

		default:
			queue_work(vmbus_connection.work_queue, &ctx->work);
		}
880 881
	} else
		entry->message_handler(hdr);
G
Greg Kroah-Hartman 已提交
882

883
msg_handled:
884
	vmbus_signal_eom(msg, message_type);
G
Greg Kroah-Hartman 已提交
885 886
}

887

888 889 890 891 892 893 894 895 896 897 898 899
/*
 * Direct callback for channels using other deferred processing
 */
static void vmbus_channel_isr(struct vmbus_channel *channel)
{
	void (*callback_fn)(void *);

	callback_fn = READ_ONCE(channel->onchannel_callback);
	if (likely(callback_fn != NULL))
		(*callback_fn)(channel->channel_callback_context);
}

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
/*
 * Schedule all channels with events pending
 */
static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
{
	unsigned long *recv_int_page;
	u32 maxbits, relid;

	if (vmbus_proto_version < VERSION_WIN8) {
		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
		recv_int_page = vmbus_connection.recv_int_page;
	} else {
		/*
		 * When the host is win8 and beyond, the event page
		 * can be directly checked to get the id of the channel
		 * that has the interrupt pending.
		 */
		void *page_addr = hv_cpu->synic_event_page;
		union hv_synic_event_flags *event
			= (union hv_synic_event_flags *)page_addr +
						 VMBUS_MESSAGE_SINT;

		maxbits = HV_EVENT_FLAGS_COUNT;
		recv_int_page = event->flags;
	}

	if (unlikely(!recv_int_page))
		return;

	for_each_set_bit(relid, recv_int_page, maxbits) {
		struct vmbus_channel *channel;

		if (!sync_test_and_clear_bit(relid, recv_int_page))
			continue;

		/* Special case - vmbus channel protocol msg */
		if (relid == 0)
			continue;

939 940
		rcu_read_lock();

941
		/* Find channel based on relid */
942
		list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
943 944 945
			if (channel->offermsg.child_relid != relid)
				continue;

946 947 948
			if (channel->rescind)
				continue;

V
Vitaly Kuznetsov 已提交
949 950
			trace_vmbus_chan_sched(channel);

951 952
			++channel->interrupts;

953 954 955
			switch (channel->callback_mode) {
			case HV_CALL_ISR:
				vmbus_channel_isr(channel);
956
				break;
957 958 959 960 961 962

			case HV_CALL_BATCHED:
				hv_begin_read(&channel->inbound);
				/* fallthrough */
			case HV_CALL_DIRECT:
				tasklet_schedule(&channel->callback_event);
963 964
			}
		}
965 966

		rcu_read_unlock();
967 968 969
	}
}

970
static void vmbus_isr(void)
G
Greg Kroah-Hartman 已提交
971
{
972 973 974
	struct hv_per_cpu_context *hv_cpu
		= this_cpu_ptr(hv_context.cpu_context);
	void *page_addr = hv_cpu->synic_event_page;
G
Greg Kroah-Hartman 已提交
975 976
	struct hv_message *msg;
	union hv_synic_event_flags *event;
977
	bool handled = false;
G
Greg Kroah-Hartman 已提交
978

979
	if (unlikely(page_addr == NULL))
980
		return;
981 982 983

	event = (union hv_synic_event_flags *)page_addr +
					 VMBUS_MESSAGE_SINT;
984 985 986 987 988
	/*
	 * Check for events before checking for messages. This is the order
	 * in which events and messages are checked in Windows guests on
	 * Hyper-V, and the Windows team suggested we do the same.
	 */
G
Greg Kroah-Hartman 已提交
989

990 991
	if ((vmbus_proto_version == VERSION_WS2008) ||
		(vmbus_proto_version == VERSION_WIN7)) {
G
Greg Kroah-Hartman 已提交
992

993
		/* Since we are a child, we only need to check bit 0 */
994
		if (sync_test_and_clear_bit(0, event->flags))
995 996 997 998 999 1000 1001 1002
			handled = true;
	} else {
		/*
		 * Our host is win8 or above. The signaling mechanism
		 * has changed and we can directly look at the event page.
		 * If bit n is set then we have an interrup on the channel
		 * whose id is n.
		 */
1003 1004
		handled = true;
	}
1005

1006
	if (handled)
1007
		vmbus_chan_sched(hv_cpu);
1008

1009
	page_addr = hv_cpu->synic_message_page;
1010 1011 1012
	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;

	/* Check if there are actual msgs to be processed */
1013 1014
	if (msg->header.message_type != HVMSG_NONE) {
		if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
1015
			hv_process_timer_expiration(msg, hv_cpu);
1016
		else
1017
			tasklet_schedule(&hv_cpu->msg_dpc);
1018
	}
1019 1020

	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1021 1022
}

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
/*
 * Boolean to control whether to report panic messages over Hyper-V.
 *
 * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
 */
static int sysctl_record_panic_msg = 1;

/*
 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
 * buffer and call into Hyper-V to transfer the data.
 */
static void hv_kmsg_dump(struct kmsg_dumper *dumper,
			 enum kmsg_dump_reason reason)
{
	size_t bytes_written;
	phys_addr_t panic_pa;

	/* We are only interested in panics. */
	if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
		return;

	panic_pa = virt_to_phys(hv_panic_page);

	/*
	 * Write dump contents to the page. No need to synchronize; panic should
	 * be single-threaded.
	 */
1050 1051 1052 1053
	kmsg_dump_get_buffer(dumper, true, hv_panic_page, PAGE_SIZE,
			     &bytes_written);
	if (bytes_written)
		hyperv_report_panic_msg(panic_pa, bytes_written);
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
}

static struct kmsg_dumper hv_kmsg_dumper = {
	.dump = hv_kmsg_dump,
};

static struct ctl_table_header *hv_ctl_table_hdr;
static int zero;
static int one = 1;

/*
 * sysctl option to allow the user to control whether kmsg data should be
 * reported to Hyper-V on panic.
 */
static struct ctl_table hv_ctl_table[] = {
	{
		.procname       = "hyperv_record_panic_msg",
		.data           = &sysctl_record_panic_msg,
		.maxlen         = sizeof(int),
		.mode           = 0644,
		.proc_handler   = proc_dointvec_minmax,
		.extra1		= &zero,
		.extra2		= &one
	},
	{}
};

static struct ctl_table hv_root_table[] = {
	{
		.procname	= "kernel",
		.mode		= 0555,
		.child		= hv_ctl_table
	},
	{}
};
1089

1090
/*
1091 1092 1093
 * vmbus_bus_init -Main vmbus driver initialization routine.
 *
 * Here, we
1094 1095 1096
 *	- initialize the vmbus driver context
 *	- invoke the vmbus hv main init routine
 *	- retrieve the channel offers
1097
 */
1098
static int vmbus_bus_init(void)
1099
{
1100
	int ret;
1101

1102 1103
	/* Hypervisor initialization...setup hypercall page..etc */
	ret = hv_init();
1104
	if (ret != 0) {
1105
		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1106
		return ret;
1107 1108
	}

1109
	ret = bus_register(&hv_bus);
1110
	if (ret)
1111
		return ret;
1112

1113
	hv_setup_vmbus_irq(vmbus_isr);
1114

1115 1116 1117
	ret = hv_synic_alloc();
	if (ret)
		goto err_alloc;
1118
	/*
1119
	 * Initialize the per-cpu interrupt state and
1120 1121
	 * connect to the host.
	 */
1122
	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1123 1124 1125 1126 1127
				hv_synic_init, hv_synic_cleanup);
	if (ret < 0)
		goto err_alloc;
	hyperv_cpuhp_online = ret;

1128
	ret = vmbus_connect();
1129
	if (ret)
1130
		goto err_connect;
1131

1132 1133 1134
	/*
	 * Only register if the crash MSRs are available
	 */
1135
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
		u64 hyperv_crash_ctl;
		/*
		 * Sysctl registration is not fatal, since by default
		 * reporting is enabled.
		 */
		hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
		if (!hv_ctl_table_hdr)
			pr_err("Hyper-V: sysctl table register error");

		/*
		 * Register for panic kmsg callback only if the right
		 * capability is supported by the hypervisor.
		 */
1149
		hv_get_crash_ctl(hyperv_crash_ctl);
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
		if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) {
			hv_panic_page = (void *)get_zeroed_page(GFP_KERNEL);
			if (hv_panic_page) {
				ret = kmsg_dump_register(&hv_kmsg_dumper);
				if (ret)
					pr_err("Hyper-V: kmsg dump register "
						"error 0x%x\n", ret);
			} else
				pr_err("Hyper-V: panic message page memory "
					"allocation failed");
		}

1162
		register_die_notifier(&hyperv_die_block);
1163 1164 1165 1166
		atomic_notifier_chain_register(&panic_notifier_list,
					       &hyperv_panic_block);
	}

1167
	vmbus_request_offers();
1168

1169
	return 0;
1170

1171
err_connect:
1172
	cpuhp_remove_state(hyperv_cpuhp_online);
1173 1174
err_alloc:
	hv_synic_free();
1175
	hv_remove_vmbus_irq();
1176 1177

	bus_unregister(&hv_bus);
1178
	free_page((unsigned long)hv_panic_page);
1179 1180
	unregister_sysctl_table(hv_ctl_table_hdr);
	hv_ctl_table_hdr = NULL;
1181
	return ret;
1182 1183
}

1184
/**
1185 1186
 * __vmbus_child_driver_register() - Register a vmbus's driver
 * @hv_driver: Pointer to driver structure you want to register
1187 1188
 * @owner: owner module of the drv
 * @mod_name: module name string
1189 1190
 *
 * Registers the given driver with Linux through the 'driver_register()' call
1191
 * and sets up the hyper-v vmbus handling for this driver.
1192 1193
 * It will return the state of the 'driver_register()' call.
 *
1194
 */
1195
int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1196
{
1197
	int ret;
1198

1199
	pr_info("registering driver %s\n", hv_driver->name);
1200

1201 1202 1203 1204
	ret = vmbus_exists();
	if (ret < 0)
		return ret;

1205 1206 1207 1208
	hv_driver->driver.name = hv_driver->name;
	hv_driver->driver.owner = owner;
	hv_driver->driver.mod_name = mod_name;
	hv_driver->driver.bus = &hv_bus;
1209

1210 1211 1212
	spin_lock_init(&hv_driver->dynids.lock);
	INIT_LIST_HEAD(&hv_driver->dynids.list);

1213
	ret = driver_register(&hv_driver->driver);
1214

1215
	return ret;
1216
}
1217
EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1218

1219
/**
1220
 * vmbus_driver_unregister() - Unregister a vmbus's driver
1221 1222
 * @hv_driver: Pointer to driver structure you want to
 *             un-register
1223
 *
1224 1225
 * Un-register the given driver that was previous registered with a call to
 * vmbus_driver_register()
1226
 */
1227
void vmbus_driver_unregister(struct hv_driver *hv_driver)
1228
{
1229
	pr_info("unregistering driver %s\n", hv_driver->name);
1230

1231
	if (!vmbus_exists()) {
1232
		driver_unregister(&hv_driver->driver);
1233 1234
		vmbus_free_dynids(hv_driver);
	}
1235
}
1236
EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1237

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289

/*
 * Called when last reference to channel is gone.
 */
static void vmbus_chan_release(struct kobject *kobj)
{
	struct vmbus_channel *channel
		= container_of(kobj, struct vmbus_channel, kobj);

	kfree_rcu(channel, rcu);
}

struct vmbus_chan_attribute {
	struct attribute attr;
	ssize_t (*show)(const struct vmbus_channel *chan, char *buf);
	ssize_t (*store)(struct vmbus_channel *chan,
			 const char *buf, size_t count);
};
#define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
	struct vmbus_chan_attribute chan_attr_##_name \
		= __ATTR(_name, _mode, _show, _store)
#define VMBUS_CHAN_ATTR_RW(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
#define VMBUS_CHAN_ATTR_RO(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
#define VMBUS_CHAN_ATTR_WO(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)

static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
				    struct attribute *attr, char *buf)
{
	const struct vmbus_chan_attribute *attribute
		= container_of(attr, struct vmbus_chan_attribute, attr);
	const struct vmbus_channel *chan
		= container_of(kobj, struct vmbus_channel, kobj);

	if (!attribute->show)
		return -EIO;

	return attribute->show(chan, buf);
}

static const struct sysfs_ops vmbus_chan_sysfs_ops = {
	.show = vmbus_chan_attr_show,
};

static ssize_t out_mask_show(const struct vmbus_channel *channel, char *buf)
{
	const struct hv_ring_buffer_info *rbi = &channel->outbound;

	return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
}
1290
static VMBUS_CHAN_ATTR_RO(out_mask);
1291 1292 1293 1294 1295 1296 1297

static ssize_t in_mask_show(const struct vmbus_channel *channel, char *buf)
{
	const struct hv_ring_buffer_info *rbi = &channel->inbound;

	return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
}
1298
static VMBUS_CHAN_ATTR_RO(in_mask);
1299 1300 1301 1302 1303 1304 1305

static ssize_t read_avail_show(const struct vmbus_channel *channel, char *buf)
{
	const struct hv_ring_buffer_info *rbi = &channel->inbound;

	return sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
}
1306
static VMBUS_CHAN_ATTR_RO(read_avail);
1307 1308 1309 1310 1311 1312 1313

static ssize_t write_avail_show(const struct vmbus_channel *channel, char *buf)
{
	const struct hv_ring_buffer_info *rbi = &channel->outbound;

	return sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
}
1314
static VMBUS_CHAN_ATTR_RO(write_avail);
1315 1316 1317 1318 1319

static ssize_t show_target_cpu(const struct vmbus_channel *channel, char *buf)
{
	return sprintf(buf, "%u\n", channel->target_cpu);
}
1320
static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1321 1322 1323 1324 1325 1326 1327 1328

static ssize_t channel_pending_show(const struct vmbus_channel *channel,
				    char *buf)
{
	return sprintf(buf, "%d\n",
		       channel_pending(channel,
				       vmbus_connection.monitor_pages[1]));
}
1329
static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1330 1331 1332 1333 1334 1335 1336 1337

static ssize_t channel_latency_show(const struct vmbus_channel *channel,
				    char *buf)
{
	return sprintf(buf, "%d\n",
		       channel_latency(channel,
				       vmbus_connection.monitor_pages[1]));
}
1338
static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1339

1340 1341 1342 1343
static ssize_t channel_interrupts_show(const struct vmbus_channel *channel, char *buf)
{
	return sprintf(buf, "%llu\n", channel->interrupts);
}
1344
static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1345 1346 1347 1348 1349

static ssize_t channel_events_show(const struct vmbus_channel *channel, char *buf)
{
	return sprintf(buf, "%llu\n", channel->sig_events);
}
1350
static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1351

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
static ssize_t subchannel_monitor_id_show(const struct vmbus_channel *channel,
					  char *buf)
{
	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
}
static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);

static ssize_t subchannel_id_show(const struct vmbus_channel *channel,
				  char *buf)
{
	return sprintf(buf, "%u\n",
		       channel->offermsg.offer.sub_channel_index);
}
static VMBUS_CHAN_ATTR_RO(subchannel_id);

1367 1368 1369 1370 1371 1372 1373 1374
static struct attribute *vmbus_chan_attrs[] = {
	&chan_attr_out_mask.attr,
	&chan_attr_in_mask.attr,
	&chan_attr_read_avail.attr,
	&chan_attr_write_avail.attr,
	&chan_attr_cpu.attr,
	&chan_attr_pending.attr,
	&chan_attr_latency.attr,
1375 1376
	&chan_attr_interrupts.attr,
	&chan_attr_events.attr,
1377 1378
	&chan_attr_monitor_id.attr,
	&chan_attr_subchannel_id.attr,
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
	NULL
};

static struct kobj_type vmbus_chan_ktype = {
	.sysfs_ops = &vmbus_chan_sysfs_ops,
	.release = vmbus_chan_release,
	.default_attrs = vmbus_chan_attrs,
};

/*
 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
 */
int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
{
	struct kobject *kobj = &channel->kobj;
	u32 relid = channel->offermsg.child_relid;
	int ret;

	kobj->kset = dev->channels_kset;
	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
				   "%u", relid);
	if (ret)
		return ret;

	kobject_uevent(kobj, KOBJ_ADD);

	return 0;
}

1408
/*
1409
 * vmbus_device_create - Creates and registers a new child device
1410
 * on the vmbus.
1411
 */
S
stephen hemminger 已提交
1412 1413 1414
struct hv_device *vmbus_device_create(const uuid_le *type,
				      const uuid_le *instance,
				      struct vmbus_channel *channel)
1415
{
1416
	struct hv_device *child_device_obj;
1417

1418 1419
	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
	if (!child_device_obj) {
1420
		pr_err("Unable to allocate device object for child device\n");
1421 1422 1423
		return NULL;
	}

1424
	child_device_obj->channel = channel;
1425
	memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
1426
	memcpy(&child_device_obj->dev_instance, instance,
1427
	       sizeof(uuid_le));
1428
	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1429 1430 1431 1432 1433


	return child_device_obj;
}

1434
/*
1435
 * vmbus_device_register - Register the child device
1436
 */
1437
int vmbus_device_register(struct hv_device *child_device_obj)
1438
{
1439 1440
	struct kobject *kobj = &child_device_obj->device.kobj;
	int ret;
1441

1442
	dev_set_name(&child_device_obj->device, "%pUl",
1443
		     child_device_obj->channel->offermsg.offer.if_instance.b);
1444

1445
	child_device_obj->device.bus = &hv_bus;
1446
	child_device_obj->device.parent = &hv_acpi_dev->dev;
1447
	child_device_obj->device.release = vmbus_device_release;
1448

1449 1450 1451 1452
	/*
	 * Register with the LDM. This will kick off the driver/device
	 * binding...which will eventually call vmbus_match() and vmbus_probe()
	 */
1453
	ret = device_register(&child_device_obj->device);
1454
	if (ret) {
1455
		pr_err("Unable to register child device\n");
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
		return ret;
	}

	child_device_obj->channels_kset = kset_create_and_add("channels",
							      NULL, kobj);
	if (!child_device_obj->channels_kset) {
		ret = -ENOMEM;
		goto err_dev_unregister;
	}

	ret = vmbus_add_channel_kobj(child_device_obj,
				     child_device_obj->channel);
	if (ret) {
		pr_err("Unable to register primary channeln");
		goto err_kset_unregister;
	}

	return 0;

err_kset_unregister:
	kset_unregister(child_device_obj->channels_kset);
1477

1478 1479
err_dev_unregister:
	device_unregister(&child_device_obj->device);
1480 1481 1482
	return ret;
}

1483
/*
1484
 * vmbus_device_unregister - Remove the specified child device
1485
 * from the vmbus.
1486
 */
1487
void vmbus_device_unregister(struct hv_device *device_obj)
1488
{
1489 1490 1491
	pr_debug("child device %s unregistered\n",
		dev_name(&device_obj->device));

1492 1493
	kset_unregister(device_obj->channels_kset);

1494 1495 1496 1497
	/*
	 * Kick off the process of unregistering the device.
	 * This will call vmbus_remove() and eventually vmbus_device_release()
	 */
1498
	device_unregister(&device_obj->device);
1499 1500 1501
}


1502
/*
1503
 * VMBUS is an acpi enumerated device. Get the information we
1504
 * need from DSDT.
1505
 */
1506
#define VTPM_BASE_ADDRESS 0xfed40000
1507
static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1508
{
1509 1510 1511 1512 1513 1514
	resource_size_t start = 0;
	resource_size_t end = 0;
	struct resource *new_res;
	struct resource **old_res = &hyperv_mmio;
	struct resource **prev_res = NULL;

1515
	switch (res->type) {
1516 1517 1518 1519 1520 1521 1522 1523 1524

	/*
	 * "Address" descriptors are for bus windows. Ignore
	 * "memory" descriptors, which are for registers on
	 * devices.
	 */
	case ACPI_RESOURCE_TYPE_ADDRESS32:
		start = res->data.address32.address.minimum;
		end = res->data.address32.address.maximum;
G
Gerd Hoffmann 已提交
1525
		break;
1526

1527
	case ACPI_RESOURCE_TYPE_ADDRESS64:
1528 1529
		start = res->data.address64.address.minimum;
		end = res->data.address64.address.maximum;
G
Gerd Hoffmann 已提交
1530
		break;
1531 1532 1533 1534 1535

	default:
		/* Unused resource type */
		return AE_OK;

1536
	}
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
	/*
	 * Ignore ranges that are below 1MB, as they're not
	 * necessary or useful here.
	 */
	if (end < 0x100000)
		return AE_OK;

	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
	if (!new_res)
		return AE_NO_MEMORY;

	/* If this range overlaps the virtual TPM, truncate it. */
	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
		end = VTPM_BASE_ADDRESS;

	new_res->name = "hyperv mmio";
	new_res->flags = IORESOURCE_MEM;
	new_res->start = start;
	new_res->end = end;

1557 1558 1559
	/*
	 * If two ranges are adjacent, merge them.
	 */
1560 1561 1562 1563 1564 1565
	do {
		if (!*old_res) {
			*old_res = new_res;
			break;
		}

1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
		if (((*old_res)->end + 1) == new_res->start) {
			(*old_res)->end = new_res->end;
			kfree(new_res);
			break;
		}

		if ((*old_res)->start == new_res->end + 1) {
			(*old_res)->start = new_res->start;
			kfree(new_res);
			break;
		}

1578
		if ((*old_res)->start > new_res->end) {
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
			new_res->sibling = *old_res;
			if (prev_res)
				(*prev_res)->sibling = new_res;
			*old_res = new_res;
			break;
		}

		prev_res = old_res;
		old_res = &(*old_res)->sibling;

	} while (1);
1590 1591 1592 1593

	return AE_OK;
}

1594 1595 1596 1597 1598 1599
static int vmbus_acpi_remove(struct acpi_device *device)
{
	struct resource *cur_res;
	struct resource *next_res;

	if (hyperv_mmio) {
1600 1601 1602 1603 1604 1605
		if (fb_mmio) {
			__release_region(hyperv_mmio, fb_mmio->start,
					 resource_size(fb_mmio));
			fb_mmio = NULL;
		}

1606 1607 1608 1609 1610 1611 1612 1613 1614
		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
			next_res = cur_res->sibling;
			kfree(cur_res);
		}
	}

	return 0;
}

1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
static void vmbus_reserve_fb(void)
{
	int size;
	/*
	 * Make a claim for the frame buffer in the resource tree under the
	 * first node, which will be the one below 4GB.  The length seems to
	 * be underreported, particularly in a Generation 1 VM.  So start out
	 * reserving a larger area and make it smaller until it succeeds.
	 */

	if (screen_info.lfb_base) {
		if (efi_enabled(EFI_BOOT))
			size = max_t(__u32, screen_info.lfb_size, 0x800000);
		else
			size = max_t(__u32, screen_info.lfb_size, 0x4000000);

		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
			fb_mmio = __request_region(hyperv_mmio,
						   screen_info.lfb_base, size,
						   fb_mmio_name, 0);
		}
	}
}

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
/**
 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
 * @new:		If successful, supplied a pointer to the
 *			allocated MMIO space.
 * @device_obj:		Identifies the caller
 * @min:		Minimum guest physical address of the
 *			allocation
 * @max:		Maximum guest physical address
 * @size:		Size of the range to be allocated
 * @align:		Alignment of the range to be allocated
 * @fb_overlap_ok:	Whether this allocation can be allowed
 *			to overlap the video frame buffer.
 *
 * This function walks the resources granted to VMBus by the
 * _CRS object in the ACPI namespace underneath the parent
 * "bridge" whether that's a root PCI bus in the Generation 1
 * case or a Module Device in the Generation 2 case.  It then
 * attempts to allocate from the global MMIO pool in a way that
 * matches the constraints supplied in these parameters and by
 * that _CRS.
 *
 * Return: 0 on success, -errno on failure
 */
int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
			resource_size_t min, resource_size_t max,
			resource_size_t size, resource_size_t align,
			bool fb_overlap_ok)
{
1667
	struct resource *iter, *shadow;
1668
	resource_size_t range_min, range_max, start;
1669
	const char *dev_n = dev_name(&device_obj->device);
1670
	int retval;
1671 1672 1673

	retval = -ENXIO;
	down(&hyperv_mmio_lock);
1674

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
	/*
	 * If overlaps with frame buffers are allowed, then first attempt to
	 * make the allocation from within the reserved region.  Because it
	 * is already reserved, no shadow allocation is necessary.
	 */
	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
	    !(max < fb_mmio->start)) {

		range_min = fb_mmio->start;
		range_max = fb_mmio->end;
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				retval = 0;
				goto exit;
			}
		}
	}

1695 1696 1697 1698 1699 1700
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= max) || (iter->end <= min))
			continue;

		range_min = iter->start;
		range_max = iter->end;
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			shadow = __request_region(iter, start, size, NULL,
						  IORESOURCE_BUSY);
			if (!shadow)
				continue;

			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				shadow->name = (char *)*new;
				retval = 0;
				goto exit;
1713 1714
			}

1715
			__release_region(iter, start, size);
1716 1717 1718
		}
	}

1719 1720 1721
exit:
	up(&hyperv_mmio_lock);
	return retval;
1722 1723 1724
}
EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
/**
 * vmbus_free_mmio() - Free a memory-mapped I/O range.
 * @start:		Base address of region to release.
 * @size:		Size of the range to be allocated
 *
 * This function releases anything requested by
 * vmbus_mmio_allocate().
 */
void vmbus_free_mmio(resource_size_t start, resource_size_t size)
{
1735 1736 1737 1738 1739 1740 1741 1742 1743
	struct resource *iter;

	down(&hyperv_mmio_lock);
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= start + size) || (iter->end <= start))
			continue;

		__release_region(iter, start, size);
	}
1744
	release_mem_region(start, size);
1745
	up(&hyperv_mmio_lock);
1746 1747 1748 1749

}
EXPORT_SYMBOL_GPL(vmbus_free_mmio);

1750 1751 1752
static int vmbus_acpi_add(struct acpi_device *device)
{
	acpi_status result;
1753
	int ret_val = -ENODEV;
1754
	struct acpi_device *ancestor;
1755

1756 1757
	hv_acpi_dev = device;

1758
	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1759
					vmbus_walk_resources, NULL);
1760

1761 1762 1763
	if (ACPI_FAILURE(result))
		goto acpi_walk_err;
	/*
1764 1765
	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
	 * firmware) is the VMOD that has the mmio ranges. Get that.
1766
	 */
1767 1768 1769
	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
					     vmbus_walk_resources, NULL);
1770 1771

		if (ACPI_FAILURE(result))
1772
			continue;
1773 1774
		if (hyperv_mmio) {
			vmbus_reserve_fb();
1775
			break;
1776
		}
1777
	}
1778 1779 1780
	ret_val = 0;

acpi_walk_err:
1781
	complete(&probe_event);
1782 1783
	if (ret_val)
		vmbus_acpi_remove(device);
1784
	return ret_val;
1785 1786 1787 1788
}

static const struct acpi_device_id vmbus_acpi_device_ids[] = {
	{"VMBUS", 0},
1789
	{"VMBus", 0},
1790 1791 1792 1793 1794 1795 1796 1797 1798
	{"", 0},
};
MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);

static struct acpi_driver vmbus_acpi_driver = {
	.name = "vmbus",
	.ids = vmbus_acpi_device_ids,
	.ops = {
		.add = vmbus_acpi_add,
1799
		.remove = vmbus_acpi_remove,
1800 1801 1802
	},
};

1803 1804 1805
static void hv_kexec_handler(void)
{
	hv_synic_clockevents_cleanup();
1806
	vmbus_initiate_unload(false);
1807 1808 1809
	vmbus_connection.conn_state = DISCONNECTED;
	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
	mb();
1810
	cpuhp_remove_state(hyperv_cpuhp_online);
1811
	hyperv_cleanup();
1812 1813
};

1814 1815
static void hv_crash_handler(struct pt_regs *regs)
{
1816
	vmbus_initiate_unload(true);
1817 1818 1819 1820 1821
	/*
	 * In crash handler we can't schedule synic cleanup for all CPUs,
	 * doing the cleanup for current CPU only. This should be sufficient
	 * for kdump.
	 */
1822
	vmbus_connection.conn_state = DISCONNECTED;
1823
	hv_synic_cleanup(smp_processor_id());
1824
	hyperv_cleanup();
1825 1826
};

1827
static int __init hv_acpi_init(void)
1828
{
1829
	int ret, t;
1830

1831
	if (!hv_is_hyperv_initialized())
1832 1833
		return -ENODEV;

1834 1835 1836
	init_completion(&probe_event);

	/*
1837
	 * Get ACPI resources first.
1838
	 */
1839 1840
	ret = acpi_bus_register_driver(&vmbus_acpi_driver);

1841 1842 1843
	if (ret)
		return ret;

1844 1845 1846 1847 1848
	t = wait_for_completion_timeout(&probe_event, 5*HZ);
	if (t == 0) {
		ret = -ETIMEDOUT;
		goto cleanup;
	}
1849

1850
	ret = vmbus_bus_init();
1851
	if (ret)
1852 1853
		goto cleanup;

1854
	hv_setup_kexec_handler(hv_kexec_handler);
1855
	hv_setup_crash_handler(hv_crash_handler);
1856

1857 1858 1859 1860
	return 0;

cleanup:
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1861
	hv_acpi_dev = NULL;
1862
	return ret;
1863 1864
}

1865 1866
static void __exit vmbus_exit(void)
{
1867 1868
	int cpu;

1869
	hv_remove_kexec_handler();
1870
	hv_remove_crash_handler();
1871
	vmbus_connection.conn_state = DISCONNECTED;
1872
	hv_synic_clockevents_cleanup();
1873
	vmbus_disconnect();
1874
	hv_remove_vmbus_irq();
1875 1876 1877 1878 1879 1880
	for_each_online_cpu(cpu) {
		struct hv_per_cpu_context *hv_cpu
			= per_cpu_ptr(hv_context.cpu_context, cpu);

		tasklet_kill(&hv_cpu->msg_dpc);
	}
1881
	vmbus_free_channels();
1882

1883
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1884
		kmsg_dump_unregister(&hv_kmsg_dumper);
1885
		unregister_die_notifier(&hyperv_die_block);
1886 1887 1888
		atomic_notifier_chain_unregister(&panic_notifier_list,
						 &hyperv_panic_block);
	}
1889 1890

	free_page((unsigned long)hv_panic_page);
1891 1892
	unregister_sysctl_table(hv_ctl_table_hdr);
	hv_ctl_table_hdr = NULL;
1893
	bus_unregister(&hv_bus);
1894

1895
	cpuhp_remove_state(hyperv_cpuhp_online);
1896
	hv_synic_free();
1897 1898 1899
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
}

1900

1901
MODULE_LICENSE("GPL");
1902

1903
subsys_initcall(hv_acpi_init);
1904
module_exit(vmbus_exit);