vmbus_drv.c 68.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7
/*
 * Copyright (c) 2009, Microsoft Corporation.
 *
 * Authors:
 *   Haiyang Zhang <haiyangz@microsoft.com>
 *   Hank Janssen  <hjanssen@microsoft.com>
8
 *   K. Y. Srinivasan <kys@microsoft.com>
9
 */
10 11
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

12 13 14 15 16
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/sysctl.h>
17
#include <linux/slab.h>
18
#include <linux/acpi.h>
19
#include <linux/completion.h>
20
#include <linux/hyperv.h>
21
#include <linux/kernel_stat.h>
22
#include <linux/clockchips.h>
23
#include <linux/cpu.h>
24 25
#include <linux/sched/task_stack.h>

26
#include <asm/mshyperv.h>
27
#include <linux/delay.h>
28 29
#include <linux/notifier.h>
#include <linux/ptrace.h>
30
#include <linux/screen_info.h>
31
#include <linux/kdebug.h>
32
#include <linux/efi.h>
33
#include <linux/random.h>
34
#include <linux/kernel.h>
35
#include <linux/syscore_ops.h>
36
#include <clocksource/hyperv_timer.h>
37
#include "hyperv_vmbus.h"
38

39 40 41 42 43
struct vmbus_dynid {
	struct list_head node;
	struct hv_vmbus_device_id id;
};

44
static struct acpi_device  *hv_acpi_dev;
45

46
static struct completion probe_event;
47

48
static int hyperv_cpuhp_online;
49

50 51
static void *hv_panic_page;

52 53 54 55 56 57 58 59 60 61 62 63
/*
 * Boolean to control whether to report panic messages over Hyper-V.
 *
 * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
 */
static int sysctl_record_panic_msg = 1;

static int hyperv_report_reg(void)
{
	return !sysctl_record_panic_msg || !hv_panic_page;
}

64 65 66 67 68
static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
			      void *args)
{
	struct pt_regs *regs;

69
	vmbus_initiate_unload(true);
70

71 72 73 74 75 76
	/*
	 * Hyper-V should be notified only once about a panic.  If we will be
	 * doing hyperv_report_panic_msg() later with kmsg data, don't do
	 * the notification here.
	 */
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE
77
	    && hyperv_report_reg()) {
78
		regs = current_pt_regs();
79
		hyperv_report_panic(regs, val, false);
80
	}
81 82 83
	return NOTIFY_DONE;
}

84 85 86 87 88 89
static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
			    void *args)
{
	struct die_args *die = (struct die_args *)args;
	struct pt_regs *regs = die->regs;

90 91 92 93 94
	/*
	 * Hyper-V should be notified only once about a panic.  If we will be
	 * doing hyperv_report_panic_msg() later with kmsg data, don't do
	 * the notification here.
	 */
95
	if (hyperv_report_reg())
96
		hyperv_report_panic(regs, val, true);
97 98 99 100 101 102
	return NOTIFY_DONE;
}

static struct notifier_block hyperv_die_block = {
	.notifier_call = hyperv_die_event,
};
103 104 105 106
static struct notifier_block hyperv_panic_block = {
	.notifier_call = hyperv_panic_event,
};

107 108
static const char *fb_mmio_name = "fb_range";
static struct resource *fb_mmio;
109
static struct resource *hyperv_mmio;
110
static DEFINE_MUTEX(hyperv_mmio_lock);
111

112 113 114 115 116 117 118 119
static int vmbus_exists(void)
{
	if (hv_acpi_dev == NULL)
		return -ENODEV;

	return 0;
}

120 121 122 123 124 125 126 127
#define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
{
	int i;
	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
}

128
static u8 channel_monitor_group(const struct vmbus_channel *channel)
129 130 131 132
{
	return (u8)channel->offermsg.monitorid / 32;
}

133
static u8 channel_monitor_offset(const struct vmbus_channel *channel)
134 135 136 137
{
	return (u8)channel->offermsg.monitorid % 32;
}

138 139
static u32 channel_pending(const struct vmbus_channel *channel,
			   const struct hv_monitor_page *monitor_page)
140 141
{
	u8 monitor_group = channel_monitor_group(channel);
142

143 144 145
	return monitor_page->trigger_group[monitor_group].pending;
}

146 147
static u32 channel_latency(const struct vmbus_channel *channel,
			   const struct hv_monitor_page *monitor_page)
148 149 150
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
151

152 153 154
	return monitor_page->latency[monitor_group][monitor_offset];
}

155 156 157 158 159 160 161 162
static u32 channel_conn_id(struct vmbus_channel *channel,
			   struct hv_monitor_page *monitor_page)
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
}

163 164 165 166 167 168 169 170 171 172 173
static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
		       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
}
static DEVICE_ATTR_RO(id);

174 175 176 177 178 179 180 181 182 183 184
static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
			  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->state);
}
static DEVICE_ATTR_RO(state);

185 186 187 188 189 190 191 192 193 194 195
static ssize_t monitor_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
}
static DEVICE_ATTR_RO(monitor_id);

196 197 198 199 200 201 202 203
static ssize_t class_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
204
		       &hv_dev->channel->offermsg.offer.if_type);
205 206 207
}
static DEVICE_ATTR_RO(class_id);

208 209 210 211 212 213 214 215
static ssize_t device_id_show(struct device *dev,
			      struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
216
		       &hv_dev->channel->offermsg.offer.if_instance);
217 218 219
}
static DEVICE_ATTR_RO(device_id);

220 221 222 223 224 225 226 227 228 229 230
static ssize_t modalias_show(struct device *dev,
			     struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	char alias_name[VMBUS_ALIAS_LEN + 1];

	print_alias_name(hv_dev, alias_name);
	return sprintf(buf, "vmbus:%s\n", alias_name);
}
static DEVICE_ATTR_RO(modalias);

231 232 233 234 235 236 237 238 239 240 241 242 243 244
#ifdef CONFIG_NUMA
static ssize_t numa_node_show(struct device *dev,
			      struct device_attribute *attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;

	return sprintf(buf, "%d\n", hv_dev->channel->numa_node);
}
static DEVICE_ATTR_RO(numa_node);
#endif

245 246 247 248 249 250 251 252 253 254
static ssize_t server_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
255
				       vmbus_connection.monitor_pages[0]));
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
}
static DEVICE_ATTR_RO(server_monitor_pending);

static ssize_t client_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_pending);
272

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
static ssize_t server_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_latency);

static ssize_t client_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_latency);

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
static ssize_t server_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_conn_id);

static ssize_t client_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_conn_id);

329 330 331 332 333
static ssize_t out_intr_mask_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
334
	int ret;
335 336 337

	if (!hv_dev->channel)
		return -ENODEV;
338 339 340 341 342 343

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;

344 345 346 347 348 349 350 351 352
	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(out_intr_mask);

static ssize_t out_read_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
353
	int ret;
354 355 356

	if (!hv_dev->channel)
		return -ENODEV;
357 358 359 360 361

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
362 363 364 365 366 367 368 369 370 371
	return sprintf(buf, "%d\n", outbound.current_read_index);
}
static DEVICE_ATTR_RO(out_read_index);

static ssize_t out_write_index_show(struct device *dev,
				    struct device_attribute *dev_attr,
				    char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
372
	int ret;
373 374 375

	if (!hv_dev->channel)
		return -ENODEV;
376 377 378 379 380

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
381 382 383 384 385 386 387 388 389 390
	return sprintf(buf, "%d\n", outbound.current_write_index);
}
static DEVICE_ATTR_RO(out_write_index);

static ssize_t out_read_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
391
	int ret;
392 393 394

	if (!hv_dev->channel)
		return -ENODEV;
395 396 397 398 399

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
400 401 402 403 404 405 406 407 408 409
	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(out_read_bytes_avail);

static ssize_t out_write_bytes_avail_show(struct device *dev,
					  struct device_attribute *dev_attr,
					  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
410
	int ret;
411 412 413

	if (!hv_dev->channel)
		return -ENODEV;
414 415 416 417 418

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
419 420 421 422 423 424 425 426 427
	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(out_write_bytes_avail);

static ssize_t in_intr_mask_show(struct device *dev,
				 struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
428
	int ret;
429 430 431

	if (!hv_dev->channel)
		return -ENODEV;
432 433 434 435 436

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

437 438 439 440 441 442 443 444 445
	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(in_intr_mask);

static ssize_t in_read_index_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
446
	int ret;
447 448 449

	if (!hv_dev->channel)
		return -ENODEV;
450 451 452 453 454

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

455 456 457 458 459 460 461 462 463
	return sprintf(buf, "%d\n", inbound.current_read_index);
}
static DEVICE_ATTR_RO(in_read_index);

static ssize_t in_write_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
464
	int ret;
465 466 467

	if (!hv_dev->channel)
		return -ENODEV;
468 469 470 471 472

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

473 474 475 476 477 478 479 480 481 482
	return sprintf(buf, "%d\n", inbound.current_write_index);
}
static DEVICE_ATTR_RO(in_write_index);

static ssize_t in_read_bytes_avail_show(struct device *dev,
					struct device_attribute *dev_attr,
					char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
483
	int ret;
484 485 486

	if (!hv_dev->channel)
		return -ENODEV;
487 488 489 490 491

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

492 493 494 495 496 497 498 499 500 501
	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(in_read_bytes_avail);

static ssize_t in_write_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
502
	int ret;
503 504 505

	if (!hv_dev->channel)
		return -ENODEV;
506 507 508 509 510

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

511 512 513 514
	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(in_write_bytes_avail);

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
static ssize_t channel_vp_mapping_show(struct device *dev,
				       struct device_attribute *dev_attr,
				       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
	unsigned long flags;
	int buf_size = PAGE_SIZE, n_written, tot_written;
	struct list_head *cur;

	if (!channel)
		return -ENODEV;

	tot_written = snprintf(buf, buf_size, "%u:%u\n",
		channel->offermsg.child_relid, channel->target_cpu);

	spin_lock_irqsave(&channel->lock, flags);

	list_for_each(cur, &channel->sc_list) {
		if (tot_written >= buf_size - 1)
			break;

		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
		n_written = scnprintf(buf + tot_written,
				     buf_size - tot_written,
				     "%u:%u\n",
				     cur_sc->offermsg.child_relid,
				     cur_sc->target_cpu);
		tot_written += n_written;
	}

	spin_unlock_irqrestore(&channel->lock, flags);

	return tot_written;
}
static DEVICE_ATTR_RO(channel_vp_mapping);

552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
static ssize_t vendor_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
}
static DEVICE_ATTR_RO(vendor);

static ssize_t device_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->device_id);
}
static DEVICE_ATTR_RO(device);

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
static ssize_t driver_override_store(struct device *dev,
				     struct device_attribute *attr,
				     const char *buf, size_t count)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	char *driver_override, *old, *cp;

	/* We need to keep extra room for a newline */
	if (count >= (PAGE_SIZE - 1))
		return -EINVAL;

	driver_override = kstrndup(buf, count, GFP_KERNEL);
	if (!driver_override)
		return -ENOMEM;

	cp = strchr(driver_override, '\n');
	if (cp)
		*cp = '\0';

	device_lock(dev);
	old = hv_dev->driver_override;
	if (strlen(driver_override)) {
		hv_dev->driver_override = driver_override;
	} else {
		kfree(driver_override);
		hv_dev->driver_override = NULL;
	}
	device_unlock(dev);

	kfree(old);

	return count;
}

static ssize_t driver_override_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	ssize_t len;

	device_lock(dev);
	len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
	device_unlock(dev);

	return len;
}
static DEVICE_ATTR_RW(driver_override);

618
/* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
619
static struct attribute *vmbus_dev_attrs[] = {
620
	&dev_attr_id.attr,
621
	&dev_attr_state.attr,
622
	&dev_attr_monitor_id.attr,
623
	&dev_attr_class_id.attr,
624
	&dev_attr_device_id.attr,
625
	&dev_attr_modalias.attr,
626 627 628
#ifdef CONFIG_NUMA
	&dev_attr_numa_node.attr,
#endif
629 630
	&dev_attr_server_monitor_pending.attr,
	&dev_attr_client_monitor_pending.attr,
631 632
	&dev_attr_server_monitor_latency.attr,
	&dev_attr_client_monitor_latency.attr,
633 634
	&dev_attr_server_monitor_conn_id.attr,
	&dev_attr_client_monitor_conn_id.attr,
635 636 637 638 639 640 641 642 643 644
	&dev_attr_out_intr_mask.attr,
	&dev_attr_out_read_index.attr,
	&dev_attr_out_write_index.attr,
	&dev_attr_out_read_bytes_avail.attr,
	&dev_attr_out_write_bytes_avail.attr,
	&dev_attr_in_intr_mask.attr,
	&dev_attr_in_read_index.attr,
	&dev_attr_in_write_index.attr,
	&dev_attr_in_read_bytes_avail.attr,
	&dev_attr_in_write_bytes_avail.attr,
645
	&dev_attr_channel_vp_mapping.attr,
646 647
	&dev_attr_vendor.attr,
	&dev_attr_device.attr,
648
	&dev_attr_driver_override.attr,
649 650
	NULL,
};
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680

/*
 * Device-level attribute_group callback function. Returns the permission for
 * each attribute, and returns 0 if an attribute is not visible.
 */
static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
{
	struct device *dev = kobj_to_dev(kobj);
	const struct hv_device *hv_dev = device_to_hv_device(dev);

	/* Hide the monitor attributes if the monitor mechanism is not used. */
	if (!hv_dev->channel->offermsg.monitor_allocated &&
	    (attr == &dev_attr_monitor_id.attr ||
	     attr == &dev_attr_server_monitor_pending.attr ||
	     attr == &dev_attr_client_monitor_pending.attr ||
	     attr == &dev_attr_server_monitor_latency.attr ||
	     attr == &dev_attr_client_monitor_latency.attr ||
	     attr == &dev_attr_server_monitor_conn_id.attr ||
	     attr == &dev_attr_client_monitor_conn_id.attr))
		return 0;

	return attr->mode;
}

static const struct attribute_group vmbus_dev_group = {
	.attrs = vmbus_dev_attrs,
	.is_visible = vmbus_dev_attr_is_visible
};
__ATTRIBUTE_GROUPS(vmbus_dev);
681

682 683 684 685 686 687
/*
 * vmbus_uevent - add uevent for our device
 *
 * This routine is invoked when a device is added or removed on the vmbus to
 * generate a uevent to udev in the userspace. The udev will then look at its
 * rule and the uevent generated here to load the appropriate driver
688 689 690 691
 *
 * The alias string will be of the form vmbus:guid where guid is the string
 * representation of the device guid (each byte of the guid will be
 * represented with two hex characters.
692 693 694 695
 */
static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
{
	struct hv_device *dev = device_to_hv_device(device);
696 697
	int ret;
	char alias_name[VMBUS_ALIAS_LEN + 1];
698

699
	print_alias_name(dev, alias_name);
700 701
	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
	return ret;
702 703
}

704
static const struct hv_vmbus_device_id *
705
hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
706 707 708 709
{
	if (id == NULL)
		return NULL; /* empty device table */

710 711
	for (; !guid_is_null(&id->guid); id++)
		if (guid_equal(&id->guid, guid))
712 713 714 715 716 717
			return id;

	return NULL;
}

static const struct hv_vmbus_device_id *
718
hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
719
{
720 721 722 723 724
	const struct hv_vmbus_device_id *id = NULL;
	struct vmbus_dynid *dynid;

	spin_lock(&drv->dynids.lock);
	list_for_each_entry(dynid, &drv->dynids.list, node) {
725
		if (guid_equal(&dynid->id.guid, guid)) {
726 727 728 729 730 731
			id = &dynid->id;
			break;
		}
	}
	spin_unlock(&drv->dynids.lock);

732 733
	return id;
}
734

735
static const struct hv_vmbus_device_id vmbus_device_null;
736

737 738 739 740 741 742 743
/*
 * Return a matching hv_vmbus_device_id pointer.
 * If there is no match, return NULL.
 */
static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
							struct hv_device *dev)
{
744
	const guid_t *guid = &dev->dev_type;
745
	const struct hv_vmbus_device_id *id;
746

747 748 749 750 751 752 753 754 755 756 757 758 759 760
	/* When driver_override is set, only bind to the matching driver */
	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
		return NULL;

	/* Look at the dynamic ids first, before the static ones */
	id = hv_vmbus_dynid_match(drv, guid);
	if (!id)
		id = hv_vmbus_dev_match(drv->id_table, guid);

	/* driver_override will always match, send a dummy id */
	if (!id && dev->driver_override)
		id = &vmbus_device_null;

	return id;
761 762
}

763
/* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
764
static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
{
	struct vmbus_dynid *dynid;

	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
	if (!dynid)
		return -ENOMEM;

	dynid->id.guid = *guid;

	spin_lock(&drv->dynids.lock);
	list_add_tail(&dynid->node, &drv->dynids.list);
	spin_unlock(&drv->dynids.lock);

	return driver_attach(&drv->driver);
}

static void vmbus_free_dynids(struct hv_driver *drv)
{
	struct vmbus_dynid *dynid, *n;

	spin_lock(&drv->dynids.lock);
	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
		list_del(&dynid->node);
		kfree(dynid);
	}
	spin_unlock(&drv->dynids.lock);
}

/*
 * store_new_id - sysfs frontend to vmbus_add_dynid()
 *
 * Allow GUIDs to be added to an existing driver via sysfs.
 */
static ssize_t new_id_store(struct device_driver *driver, const char *buf,
			    size_t count)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
802
	guid_t guid;
803 804
	ssize_t retval;

805
	retval = guid_parse(buf, &guid);
806 807
	if (retval)
		return retval;
808

809
	if (hv_vmbus_dynid_match(drv, &guid))
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
		return -EEXIST;

	retval = vmbus_add_dynid(drv, &guid);
	if (retval)
		return retval;
	return count;
}
static DRIVER_ATTR_WO(new_id);

/*
 * store_remove_id - remove a PCI device ID from this driver
 *
 * Removes a dynamic pci device ID to this driver.
 */
static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
			       size_t count)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
	struct vmbus_dynid *dynid, *n;
829
	guid_t guid;
830
	ssize_t retval;
831

832
	retval = guid_parse(buf, &guid);
833 834
	if (retval)
		return retval;
835

836
	retval = -ENODEV;
837 838 839 840
	spin_lock(&drv->dynids.lock);
	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
		struct hv_vmbus_device_id *id = &dynid->id;

841
		if (guid_equal(&id->guid, &guid)) {
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
			list_del(&dynid->node);
			kfree(dynid);
			retval = count;
			break;
		}
	}
	spin_unlock(&drv->dynids.lock);

	return retval;
}
static DRIVER_ATTR_WO(remove_id);

static struct attribute *vmbus_drv_attrs[] = {
	&driver_attr_new_id.attr,
	&driver_attr_remove_id.attr,
	NULL,
};
ATTRIBUTE_GROUPS(vmbus_drv);
860

861 862 863 864 865 866 867

/*
 * vmbus_match - Attempt to match the specified device to the specified driver
 */
static int vmbus_match(struct device *device, struct device_driver *driver)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
868
	struct hv_device *hv_dev = device_to_hv_device(device);
869

870 871 872 873
	/* The hv_sock driver handles all hv_sock offers. */
	if (is_hvsock_channel(hv_dev->channel))
		return drv->hvsock;

874
	if (hv_vmbus_get_id(drv, hv_dev))
875
		return 1;
876

877
	return 0;
878 879
}

880 881 882 883 884 885 886 887
/*
 * vmbus_probe - Add the new vmbus's child device
 */
static int vmbus_probe(struct device *child_device)
{
	int ret = 0;
	struct hv_driver *drv =
			drv_to_hv_drv(child_device->driver);
888
	struct hv_device *dev = device_to_hv_device(child_device);
889
	const struct hv_vmbus_device_id *dev_id;
890

891
	dev_id = hv_vmbus_get_id(drv, dev);
892
	if (drv->probe) {
893
		ret = drv->probe(dev, dev_id);
894
		if (ret != 0)
895 896
			pr_err("probe failed for device %s (%d)\n",
			       dev_name(child_device), ret);
897 898

	} else {
899 900
		pr_err("probe not set for driver %s\n",
		       dev_name(child_device));
901
		ret = -ENODEV;
902 903 904 905
	}
	return ret;
}

906 907 908 909 910
/*
 * vmbus_remove - Remove a vmbus device
 */
static int vmbus_remove(struct device *child_device)
{
911
	struct hv_driver *drv;
912
	struct hv_device *dev = device_to_hv_device(child_device);
913

914 915 916 917 918
	if (child_device->driver) {
		drv = drv_to_hv_drv(child_device->driver);
		if (drv->remove)
			drv->remove(dev);
	}
919 920 921 922

	return 0;
}

923 924 925 926 927 928 929

/*
 * vmbus_shutdown - Shutdown a vmbus device
 */
static void vmbus_shutdown(struct device *child_device)
{
	struct hv_driver *drv;
930
	struct hv_device *dev = device_to_hv_device(child_device);
931 932 933 934 935 936 937 938


	/* The device may not be attached yet */
	if (!child_device->driver)
		return;

	drv = drv_to_hv_drv(child_device->driver);

939 940
	if (drv->shutdown)
		drv->shutdown(dev);
941 942
}

943
#ifdef CONFIG_PM_SLEEP
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
/*
 * vmbus_suspend - Suspend a vmbus device
 */
static int vmbus_suspend(struct device *child_device)
{
	struct hv_driver *drv;
	struct hv_device *dev = device_to_hv_device(child_device);

	/* The device may not be attached yet */
	if (!child_device->driver)
		return 0;

	drv = drv_to_hv_drv(child_device->driver);
	if (!drv->suspend)
		return -EOPNOTSUPP;

	return drv->suspend(dev);
}

/*
 * vmbus_resume - Resume a vmbus device
 */
static int vmbus_resume(struct device *child_device)
{
	struct hv_driver *drv;
	struct hv_device *dev = device_to_hv_device(child_device);

	/* The device may not be attached yet */
	if (!child_device->driver)
		return 0;

	drv = drv_to_hv_drv(child_device->driver);
	if (!drv->resume)
		return -EOPNOTSUPP;

	return drv->resume(dev);
}
981
#endif /* CONFIG_PM_SLEEP */
982 983 984 985 986 987

/*
 * vmbus_device_release - Final callback release of the vmbus child device
 */
static void vmbus_device_release(struct device *device)
{
988
	struct hv_device *hv_dev = device_to_hv_device(device);
989
	struct vmbus_channel *channel = hv_dev->channel;
990

991 992
	hv_debug_rm_dev_dir(hv_dev);

993
	mutex_lock(&vmbus_connection.channel_mutex);
994
	hv_process_channel_removal(channel);
995
	mutex_unlock(&vmbus_connection.channel_mutex);
996
	kfree(hv_dev);
997 998
}

999 1000 1001 1002 1003 1004 1005 1006
/*
 * Note: we must use SET_NOIRQ_SYSTEM_SLEEP_PM_OPS rather than
 * SET_SYSTEM_SLEEP_PM_OPS: see the comment before vmbus_bus_pm.
 */
static const struct dev_pm_ops vmbus_pm = {
	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(vmbus_suspend, vmbus_resume)
};

1007
/* The one and only one */
1008 1009 1010 1011 1012 1013 1014
static struct bus_type  hv_bus = {
	.name =		"vmbus",
	.match =		vmbus_match,
	.shutdown =		vmbus_shutdown,
	.remove =		vmbus_remove,
	.probe =		vmbus_probe,
	.uevent =		vmbus_uevent,
1015 1016
	.dev_groups =		vmbus_dev_groups,
	.drv_groups =		vmbus_drv_groups,
1017
	.pm =			&vmbus_pm,
1018 1019
};

1020 1021
struct onmessage_work_context {
	struct work_struct work;
1022 1023 1024 1025
	struct {
		struct hv_message_header header;
		u8 payload[];
	} msg;
1026 1027 1028 1029 1030 1031
};

static void vmbus_onmessage_work(struct work_struct *work)
{
	struct onmessage_work_context *ctx;

1032 1033 1034 1035
	/* Do not process messages if we're in DISCONNECTED state */
	if (vmbus_connection.conn_state == DISCONNECTED)
		return;

1036 1037
	ctx = container_of(work, struct onmessage_work_context,
			   work);
1038 1039
	vmbus_onmessage((struct vmbus_channel_message_header *)
			&ctx->msg.payload);
1040 1041 1042
	kfree(ctx);
}

1043
void vmbus_on_msg_dpc(unsigned long data)
G
Greg Kroah-Hartman 已提交
1044
{
1045 1046
	struct hv_per_cpu_context *hv_cpu = (void *)data;
	void *page_addr = hv_cpu->synic_message_page;
G
Greg Kroah-Hartman 已提交
1047 1048
	struct hv_message *msg = (struct hv_message *)page_addr +
				  VMBUS_MESSAGE_SINT;
1049
	struct vmbus_channel_message_header *hdr;
1050
	const struct vmbus_channel_message_table_entry *entry;
1051
	struct onmessage_work_context *ctx;
1052
	u32 message_type = msg->header.message_type;
G
Greg Kroah-Hartman 已提交
1053

1054 1055 1056 1057 1058 1059 1060
	/*
	 * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as
	 * it is being used in 'struct vmbus_channel_message_header' definition
	 * which is supposed to match hypervisor ABI.
	 */
	BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32));

1061
	if (message_type == HVMSG_NONE)
1062 1063
		/* no msg */
		return;
1064

1065
	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
1066

1067 1068
	trace_vmbus_on_msg_dpc(hdr);

1069 1070 1071 1072
	if (hdr->msgtype >= CHANNELMSG_COUNT) {
		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
		goto msg_handled;
	}
1073

1074 1075 1076 1077 1078 1079
	if (msg->header.payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) {
		WARN_ONCE(1, "payload size is too large (%d)\n",
			  msg->header.payload_size);
		goto msg_handled;
	}

1080
	entry = &channel_message_table[hdr->msgtype];
1081 1082 1083 1084

	if (!entry->message_handler)
		goto msg_handled;

1085 1086 1087 1088 1089 1090
	if (msg->header.payload_size < entry->min_payload_len) {
		WARN_ONCE(1, "message too short: msgtype=%d len=%d\n",
			  hdr->msgtype, msg->header.payload_size);
		goto msg_handled;
	}

1091
	if (entry->handler_type	== VMHT_BLOCKING) {
1092 1093
		ctx = kmalloc(sizeof(*ctx) + msg->header.payload_size,
			      GFP_ATOMIC);
1094 1095
		if (ctx == NULL)
			return;
1096

1097
		INIT_WORK(&ctx->work, vmbus_onmessage_work);
1098 1099
		memcpy(&ctx->msg, msg, sizeof(msg->header) +
		       msg->header.payload_size);
1100

1101 1102 1103
		/*
		 * The host can generate a rescind message while we
		 * may still be handling the original offer. We deal with
1104 1105 1106
		 * this condition by relying on the synchronization provided
		 * by offer_in_progress and by channel_mutex.  See also the
		 * inline comments in vmbus_onoffer_rescind().
1107 1108 1109 1110 1111 1112
		 */
		switch (hdr->msgtype) {
		case CHANNELMSG_RESCIND_CHANNELOFFER:
			/*
			 * If we are handling the rescind message;
			 * schedule the work on the global work queue.
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
			 *
			 * The OFFER message and the RESCIND message should
			 * not be handled by the same serialized work queue,
			 * because the OFFER handler may call vmbus_open(),
			 * which tries to open the channel by sending an
			 * OPEN_CHANNEL message to the host and waits for
			 * the host's response; however, if the host has
			 * rescinded the channel before it receives the
			 * OPEN_CHANNEL message, the host just silently
			 * ignores the OPEN_CHANNEL message; as a result,
			 * the guest's OFFER handler hangs for ever, if we
			 * handle the RESCIND message in the same serialized
			 * work queue: the RESCIND handler can not start to
			 * run before the OFFER handler finishes.
1127
			 */
1128
			schedule_work(&ctx->work);
1129 1130 1131
			break;

		case CHANNELMSG_OFFERCHANNEL:
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
			/*
			 * The host sends the offer message of a given channel
			 * before sending the rescind message of the same
			 * channel.  These messages are sent to the guest's
			 * connect CPU; the guest then starts processing them
			 * in the tasklet handler on this CPU:
			 *
			 * VMBUS_CONNECT_CPU
			 *
			 * [vmbus_on_msg_dpc()]
			 * atomic_inc()  // CHANNELMSG_OFFERCHANNEL
			 * queue_work()
			 * ...
			 * [vmbus_on_msg_dpc()]
			 * schedule_work()  // CHANNELMSG_RESCIND_CHANNELOFFER
			 *
			 * We rely on the memory-ordering properties of the
			 * queue_work() and schedule_work() primitives, which
			 * guarantee that the atomic increment will be visible
			 * to the CPUs which will execute the offer & rescind
			 * works by the time these works will start execution.
			 */
1154
			atomic_inc(&vmbus_connection.offer_in_progress);
1155
			fallthrough;
1156 1157 1158 1159

		default:
			queue_work(vmbus_connection.work_queue, &ctx->work);
		}
1160 1161
	} else
		entry->message_handler(hdr);
G
Greg Kroah-Hartman 已提交
1162

1163
msg_handled:
1164
	vmbus_signal_eom(msg, message_type);
G
Greg Kroah-Hartman 已提交
1165 1166
}

1167
#ifdef CONFIG_PM_SLEEP
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
/*
 * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
 * hibernation, because hv_sock connections can not persist across hibernation.
 */
static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
{
	struct onmessage_work_context *ctx;
	struct vmbus_channel_rescind_offer *rescind;

	WARN_ON(!is_hvsock_channel(channel));

	/*
1180
	 * Allocation size is small and the allocation should really not fail,
1181 1182
	 * otherwise the state of the hv_sock connections ends up in limbo.
	 */
1183 1184
	ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind),
		      GFP_KERNEL | __GFP_NOFAIL);
1185 1186 1187 1188 1189 1190 1191 1192 1193

	/*
	 * So far, these are not really used by Linux. Just set them to the
	 * reasonable values conforming to the definitions of the fields.
	 */
	ctx->msg.header.message_type = 1;
	ctx->msg.header.payload_size = sizeof(*rescind);

	/* These values are actually used by Linux. */
1194
	rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload;
1195 1196 1197 1198 1199
	rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
	rescind->child_relid = channel->offermsg.child_relid;

	INIT_WORK(&ctx->work, vmbus_onmessage_work);

1200
	queue_work(vmbus_connection.work_queue, &ctx->work);
1201
}
1202
#endif /* CONFIG_PM_SLEEP */
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233

/*
 * Schedule all channels with events pending
 */
static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
{
	unsigned long *recv_int_page;
	u32 maxbits, relid;

	if (vmbus_proto_version < VERSION_WIN8) {
		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
		recv_int_page = vmbus_connection.recv_int_page;
	} else {
		/*
		 * When the host is win8 and beyond, the event page
		 * can be directly checked to get the id of the channel
		 * that has the interrupt pending.
		 */
		void *page_addr = hv_cpu->synic_event_page;
		union hv_synic_event_flags *event
			= (union hv_synic_event_flags *)page_addr +
						 VMBUS_MESSAGE_SINT;

		maxbits = HV_EVENT_FLAGS_COUNT;
		recv_int_page = event->flags;
	}

	if (unlikely(!recv_int_page))
		return;

	for_each_set_bit(relid, recv_int_page, maxbits) {
1234
		void (*callback_fn)(void *context);
1235 1236 1237 1238 1239 1240 1241 1242 1243
		struct vmbus_channel *channel;

		if (!sync_test_and_clear_bit(relid, recv_int_page))
			continue;

		/* Special case - vmbus channel protocol msg */
		if (relid == 0)
			continue;

1244 1245 1246 1247 1248 1249
		/*
		 * Pairs with the kfree_rcu() in vmbus_chan_release().
		 * Guarantees that the channel data structure doesn't
		 * get freed while the channel pointer below is being
		 * dereferenced.
		 */
1250 1251
		rcu_read_lock();

1252
		/* Find channel based on relid */
1253 1254 1255
		channel = relid2channel(relid);
		if (channel == NULL)
			goto sched_unlock_rcu;
1256

1257 1258
		if (channel->rescind)
			goto sched_unlock_rcu;
1259

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
		/*
		 * Make sure that the ring buffer data structure doesn't get
		 * freed while we dereference the ring buffer pointer.  Test
		 * for the channel's onchannel_callback being NULL within a
		 * sched_lock critical section.  See also the inline comments
		 * in vmbus_reset_channel_cb().
		 */
		spin_lock(&channel->sched_lock);

		callback_fn = channel->onchannel_callback;
		if (unlikely(callback_fn == NULL))
			goto sched_unlock;

1273
		trace_vmbus_chan_sched(channel);
V
Vitaly Kuznetsov 已提交
1274

1275
		++channel->interrupts;
1276

1277 1278
		switch (channel->callback_mode) {
		case HV_CALL_ISR:
1279
			(*callback_fn)(channel->channel_callback_context);
1280
			break;
1281

1282 1283 1284 1285 1286
		case HV_CALL_BATCHED:
			hv_begin_read(&channel->inbound);
			fallthrough;
		case HV_CALL_DIRECT:
			tasklet_schedule(&channel->callback_event);
1287
		}
1288

1289 1290
sched_unlock:
		spin_unlock(&channel->sched_lock);
1291
sched_unlock_rcu:
1292
		rcu_read_unlock();
1293 1294 1295
	}
}

1296
static void vmbus_isr(void)
G
Greg Kroah-Hartman 已提交
1297
{
1298 1299 1300
	struct hv_per_cpu_context *hv_cpu
		= this_cpu_ptr(hv_context.cpu_context);
	void *page_addr = hv_cpu->synic_event_page;
G
Greg Kroah-Hartman 已提交
1301 1302
	struct hv_message *msg;
	union hv_synic_event_flags *event;
1303
	bool handled = false;
G
Greg Kroah-Hartman 已提交
1304

1305
	if (unlikely(page_addr == NULL))
1306
		return;
1307 1308 1309

	event = (union hv_synic_event_flags *)page_addr +
					 VMBUS_MESSAGE_SINT;
1310 1311 1312 1313 1314
	/*
	 * Check for events before checking for messages. This is the order
	 * in which events and messages are checked in Windows guests on
	 * Hyper-V, and the Windows team suggested we do the same.
	 */
G
Greg Kroah-Hartman 已提交
1315

1316 1317
	if ((vmbus_proto_version == VERSION_WS2008) ||
		(vmbus_proto_version == VERSION_WIN7)) {
G
Greg Kroah-Hartman 已提交
1318

1319
		/* Since we are a child, we only need to check bit 0 */
1320
		if (sync_test_and_clear_bit(0, event->flags))
1321 1322 1323 1324 1325 1326 1327 1328
			handled = true;
	} else {
		/*
		 * Our host is win8 or above. The signaling mechanism
		 * has changed and we can directly look at the event page.
		 * If bit n is set then we have an interrup on the channel
		 * whose id is n.
		 */
1329 1330
		handled = true;
	}
1331

1332
	if (handled)
1333
		vmbus_chan_sched(hv_cpu);
1334

1335
	page_addr = hv_cpu->synic_message_page;
1336 1337 1338
	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;

	/* Check if there are actual msgs to be processed */
1339
	if (msg->header.message_type != HVMSG_NONE) {
1340 1341 1342 1343
		if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
			hv_stimer0_isr();
			vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
		} else
1344
			tasklet_schedule(&hv_cpu->msg_dpc);
1345
	}
1346 1347

	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1348 1349
}

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
/*
 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
 * buffer and call into Hyper-V to transfer the data.
 */
static void hv_kmsg_dump(struct kmsg_dumper *dumper,
			 enum kmsg_dump_reason reason)
{
	size_t bytes_written;
	phys_addr_t panic_pa;

	/* We are only interested in panics. */
	if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
		return;

	panic_pa = virt_to_phys(hv_panic_page);

	/*
	 * Write dump contents to the page. No need to synchronize; panic should
	 * be single-threaded.
	 */
1370
	kmsg_dump_get_buffer(dumper, true, hv_panic_page, HV_HYP_PAGE_SIZE,
1371 1372 1373
			     &bytes_written);
	if (bytes_written)
		hyperv_report_panic_msg(panic_pa, bytes_written);
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
}

static struct kmsg_dumper hv_kmsg_dumper = {
	.dump = hv_kmsg_dump,
};

static struct ctl_table_header *hv_ctl_table_hdr;

/*
 * sysctl option to allow the user to control whether kmsg data should be
 * reported to Hyper-V on panic.
 */
static struct ctl_table hv_ctl_table[] = {
	{
		.procname       = "hyperv_record_panic_msg",
		.data           = &sysctl_record_panic_msg,
		.maxlen         = sizeof(int),
		.mode           = 0644,
		.proc_handler   = proc_dointvec_minmax,
1393 1394
		.extra1		= SYSCTL_ZERO,
		.extra2		= SYSCTL_ONE
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	},
	{}
};

static struct ctl_table hv_root_table[] = {
	{
		.procname	= "kernel",
		.mode		= 0555,
		.child		= hv_ctl_table
	},
	{}
};
1407

1408
/*
1409 1410 1411
 * vmbus_bus_init -Main vmbus driver initialization routine.
 *
 * Here, we
1412 1413 1414
 *	- initialize the vmbus driver context
 *	- invoke the vmbus hv main init routine
 *	- retrieve the channel offers
1415
 */
1416
static int vmbus_bus_init(void)
1417
{
1418
	int ret;
1419

1420 1421
	/* Hypervisor initialization...setup hypercall page..etc */
	ret = hv_init();
1422
	if (ret != 0) {
1423
		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1424
		return ret;
1425 1426
	}

1427
	ret = bus_register(&hv_bus);
1428
	if (ret)
1429
		return ret;
1430

1431
	hv_setup_vmbus_irq(vmbus_isr);
1432

1433 1434 1435
	ret = hv_synic_alloc();
	if (ret)
		goto err_alloc;
1436

1437
	/*
1438 1439
	 * Initialize the per-cpu interrupt state and stimer state.
	 * Then connect to the host.
1440
	 */
1441
	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1442 1443
				hv_synic_init, hv_synic_cleanup);
	if (ret < 0)
1444
		goto err_cpuhp;
1445 1446
	hyperv_cpuhp_online = ret;

1447
	ret = vmbus_connect();
1448
	if (ret)
1449
		goto err_connect;
1450

1451 1452 1453
	/*
	 * Only register if the crash MSRs are available
	 */
1454
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
		u64 hyperv_crash_ctl;
		/*
		 * Sysctl registration is not fatal, since by default
		 * reporting is enabled.
		 */
		hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
		if (!hv_ctl_table_hdr)
			pr_err("Hyper-V: sysctl table register error");

		/*
		 * Register for panic kmsg callback only if the right
		 * capability is supported by the hypervisor.
		 */
1468
		hv_get_crash_ctl(hyperv_crash_ctl);
1469
		if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) {
1470
			hv_panic_page = (void *)hv_alloc_hyperv_zeroed_page();
1471 1472
			if (hv_panic_page) {
				ret = kmsg_dump_register(&hv_kmsg_dumper);
1473
				if (ret) {
1474 1475
					pr_err("Hyper-V: kmsg dump register "
						"error 0x%x\n", ret);
1476 1477 1478 1479
					hv_free_hyperv_page(
					    (unsigned long)hv_panic_page);
					hv_panic_page = NULL;
				}
1480 1481 1482 1483 1484
			} else
				pr_err("Hyper-V: panic message page memory "
					"allocation failed");
		}

1485
		register_die_notifier(&hyperv_die_block);
1486 1487
	}

1488 1489 1490 1491 1492 1493 1494 1495
	/*
	 * Always register the panic notifier because we need to unload
	 * the VMbus channel connection to prevent any VMbus
	 * activity after the VM panics.
	 */
	atomic_notifier_chain_register(&panic_notifier_list,
			       &hyperv_panic_block);

1496
	vmbus_request_offers();
1497

1498
	return 0;
1499

1500
err_connect:
1501
	cpuhp_remove_state(hyperv_cpuhp_online);
1502
err_cpuhp:
1503
	hv_synic_free();
1504
err_alloc:
1505
	hv_remove_vmbus_irq();
1506 1507

	bus_unregister(&hv_bus);
1508 1509
	unregister_sysctl_table(hv_ctl_table_hdr);
	hv_ctl_table_hdr = NULL;
1510
	return ret;
1511 1512
}

1513
/**
1514 1515
 * __vmbus_child_driver_register() - Register a vmbus's driver
 * @hv_driver: Pointer to driver structure you want to register
1516 1517
 * @owner: owner module of the drv
 * @mod_name: module name string
1518 1519
 *
 * Registers the given driver with Linux through the 'driver_register()' call
1520
 * and sets up the hyper-v vmbus handling for this driver.
1521 1522
 * It will return the state of the 'driver_register()' call.
 *
1523
 */
1524
int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1525
{
1526
	int ret;
1527

1528
	pr_info("registering driver %s\n", hv_driver->name);
1529

1530 1531 1532 1533
	ret = vmbus_exists();
	if (ret < 0)
		return ret;

1534 1535 1536 1537
	hv_driver->driver.name = hv_driver->name;
	hv_driver->driver.owner = owner;
	hv_driver->driver.mod_name = mod_name;
	hv_driver->driver.bus = &hv_bus;
1538

1539 1540 1541
	spin_lock_init(&hv_driver->dynids.lock);
	INIT_LIST_HEAD(&hv_driver->dynids.list);

1542
	ret = driver_register(&hv_driver->driver);
1543

1544
	return ret;
1545
}
1546
EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1547

1548
/**
1549
 * vmbus_driver_unregister() - Unregister a vmbus's driver
1550 1551
 * @hv_driver: Pointer to driver structure you want to
 *             un-register
1552
 *
1553 1554
 * Un-register the given driver that was previous registered with a call to
 * vmbus_driver_register()
1555
 */
1556
void vmbus_driver_unregister(struct hv_driver *hv_driver)
1557
{
1558
	pr_info("unregistering driver %s\n", hv_driver->name);
1559

1560
	if (!vmbus_exists()) {
1561
		driver_unregister(&hv_driver->driver);
1562 1563
		vmbus_free_dynids(hv_driver);
	}
1564
}
1565
EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1566

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580

/*
 * Called when last reference to channel is gone.
 */
static void vmbus_chan_release(struct kobject *kobj)
{
	struct vmbus_channel *channel
		= container_of(kobj, struct vmbus_channel, kobj);

	kfree_rcu(channel, rcu);
}

struct vmbus_chan_attribute {
	struct attribute attr;
1581
	ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
	ssize_t (*store)(struct vmbus_channel *chan,
			 const char *buf, size_t count);
};
#define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
	struct vmbus_chan_attribute chan_attr_##_name \
		= __ATTR(_name, _mode, _show, _store)
#define VMBUS_CHAN_ATTR_RW(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
#define VMBUS_CHAN_ATTR_RO(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
#define VMBUS_CHAN_ATTR_WO(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)

static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
				    struct attribute *attr, char *buf)
{
	const struct vmbus_chan_attribute *attribute
		= container_of(attr, struct vmbus_chan_attribute, attr);
1600
	struct vmbus_channel *chan
1601 1602 1603 1604 1605 1606 1607 1608
		= container_of(kobj, struct vmbus_channel, kobj);

	if (!attribute->show)
		return -EIO;

	return attribute->show(chan, buf);
}

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
static ssize_t vmbus_chan_attr_store(struct kobject *kobj,
				     struct attribute *attr, const char *buf,
				     size_t count)
{
	const struct vmbus_chan_attribute *attribute
		= container_of(attr, struct vmbus_chan_attribute, attr);
	struct vmbus_channel *chan
		= container_of(kobj, struct vmbus_channel, kobj);

	if (!attribute->store)
		return -EIO;

	return attribute->store(chan, buf, count);
}

1624 1625
static const struct sysfs_ops vmbus_chan_sysfs_ops = {
	.show = vmbus_chan_attr_show,
1626
	.store = vmbus_chan_attr_store,
1627 1628
};

1629
static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1630
{
1631 1632
	struct hv_ring_buffer_info *rbi = &channel->outbound;
	ssize_t ret;
1633

1634 1635 1636
	mutex_lock(&rbi->ring_buffer_mutex);
	if (!rbi->ring_buffer) {
		mutex_unlock(&rbi->ring_buffer_mutex);
1637
		return -EINVAL;
1638
	}
1639

1640 1641 1642
	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
	mutex_unlock(&rbi->ring_buffer_mutex);
	return ret;
1643
}
1644
static VMBUS_CHAN_ATTR_RO(out_mask);
1645

1646
static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1647
{
1648 1649
	struct hv_ring_buffer_info *rbi = &channel->inbound;
	ssize_t ret;
1650

1651 1652 1653
	mutex_lock(&rbi->ring_buffer_mutex);
	if (!rbi->ring_buffer) {
		mutex_unlock(&rbi->ring_buffer_mutex);
1654
		return -EINVAL;
1655
	}
1656

1657 1658 1659
	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
	mutex_unlock(&rbi->ring_buffer_mutex);
	return ret;
1660
}
1661
static VMBUS_CHAN_ATTR_RO(in_mask);
1662

1663
static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1664
{
1665 1666
	struct hv_ring_buffer_info *rbi = &channel->inbound;
	ssize_t ret;
1667

1668 1669 1670
	mutex_lock(&rbi->ring_buffer_mutex);
	if (!rbi->ring_buffer) {
		mutex_unlock(&rbi->ring_buffer_mutex);
1671
		return -EINVAL;
1672
	}
1673

1674 1675 1676
	ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
	mutex_unlock(&rbi->ring_buffer_mutex);
	return ret;
1677
}
1678
static VMBUS_CHAN_ATTR_RO(read_avail);
1679

1680
static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1681
{
1682 1683
	struct hv_ring_buffer_info *rbi = &channel->outbound;
	ssize_t ret;
1684

1685 1686 1687
	mutex_lock(&rbi->ring_buffer_mutex);
	if (!rbi->ring_buffer) {
		mutex_unlock(&rbi->ring_buffer_mutex);
1688
		return -EINVAL;
1689
	}
1690

1691 1692 1693
	ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
	mutex_unlock(&rbi->ring_buffer_mutex);
	return ret;
1694
}
1695
static VMBUS_CHAN_ATTR_RO(write_avail);
1696

1697
static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf)
1698 1699 1700
{
	return sprintf(buf, "%u\n", channel->target_cpu);
}
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
static ssize_t target_cpu_store(struct vmbus_channel *channel,
				const char *buf, size_t count)
{
	ssize_t ret = count;
	u32 target_cpu;

	if (vmbus_proto_version < VERSION_WIN10_V4_1)
		return -EIO;

	if (sscanf(buf, "%uu", &target_cpu) != 1)
		return -EIO;

	/* Validate target_cpu for the cpumask_test_cpu() operation below. */
	if (target_cpu >= nr_cpumask_bits)
		return -EINVAL;

	/* No CPUs should come up or down during this. */
	cpus_read_lock();

	if (!cpumask_test_cpu(target_cpu, cpu_online_mask)) {
		cpus_read_unlock();
		return -EINVAL;
	}

	/*
	 * Synchronizes target_cpu_store() and channel closure:
	 *
	 * { Initially: state = CHANNEL_OPENED }
	 *
	 * CPU1				CPU2
	 *
	 * [target_cpu_store()]		[vmbus_disconnect_ring()]
	 *
	 * LOCK channel_mutex		LOCK channel_mutex
	 * LOAD r1 = state		LOAD r2 = state
	 * IF (r1 == CHANNEL_OPENED)	IF (r2 == CHANNEL_OPENED)
	 *   SEND MODIFYCHANNEL		  STORE state = CHANNEL_OPEN
	 *   [...]			  SEND CLOSECHANNEL
	 * UNLOCK channel_mutex		UNLOCK channel_mutex
	 *
	 * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes
	 * 		CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND
	 *
	 * Note.  The host processes the channel messages "sequentially", in
	 * the order in which they are received on a per-partition basis.
	 */
	mutex_lock(&vmbus_connection.channel_mutex);

	/*
	 * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels;
	 * avoid sending the message and fail here for such channels.
	 */
	if (channel->state != CHANNEL_OPENED_STATE) {
		ret = -EIO;
		goto cpu_store_unlock;
	}

	if (channel->target_cpu == target_cpu)
		goto cpu_store_unlock;

	if (vmbus_send_modifychannel(channel->offermsg.child_relid,
				     hv_cpu_number_to_vp_number(target_cpu))) {
		ret = -EIO;
		goto cpu_store_unlock;
	}

	/*
	 * Warning.  At this point, there is *no* guarantee that the host will
	 * have successfully processed the vmbus_send_modifychannel() request.
	 * See the header comment of vmbus_send_modifychannel() for more info.
	 *
	 * Lags in the processing of the above vmbus_send_modifychannel() can
	 * result in missed interrupts if the "old" target CPU is taken offline
	 * before Hyper-V starts sending interrupts to the "new" target CPU.
	 * But apart from this offlining scenario, the code tolerates such
	 * lags.  It will function correctly even if a channel interrupt comes
	 * in on a CPU that is different from the channel target_cpu value.
	 */

1780 1781 1782 1783
	if (channel->change_target_cpu_callback)
		(*channel->change_target_cpu_callback)(channel,
				channel->target_cpu, target_cpu);

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
	channel->target_cpu = target_cpu;
	channel->target_vp = hv_cpu_number_to_vp_number(target_cpu);
	channel->numa_node = cpu_to_node(target_cpu);

cpu_store_unlock:
	mutex_unlock(&vmbus_connection.channel_mutex);
	cpus_read_unlock();
	return ret;
}
static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store);
1794

1795
static ssize_t channel_pending_show(struct vmbus_channel *channel,
1796 1797 1798 1799 1800 1801
				    char *buf)
{
	return sprintf(buf, "%d\n",
		       channel_pending(channel,
				       vmbus_connection.monitor_pages[1]));
}
1802
static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1803

1804
static ssize_t channel_latency_show(struct vmbus_channel *channel,
1805 1806 1807 1808 1809 1810
				    char *buf)
{
	return sprintf(buf, "%d\n",
		       channel_latency(channel,
				       vmbus_connection.monitor_pages[1]));
}
1811
static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1812

1813
static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1814 1815 1816
{
	return sprintf(buf, "%llu\n", channel->interrupts);
}
1817
static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1818

1819
static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1820 1821 1822
{
	return sprintf(buf, "%llu\n", channel->sig_events);
}
1823
static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1824

1825
static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1826 1827 1828 1829 1830 1831 1832
					 char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->intr_in_full);
}
static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);

1833
static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1834 1835 1836 1837 1838 1839 1840
					   char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->intr_out_empty);
}
static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);

1841
static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1842 1843 1844 1845 1846 1847 1848
					   char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->out_full_first);
}
static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);

1849
static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1850 1851 1852 1853 1854 1855 1856
					   char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->out_full_total);
}
static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);

1857
static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1858 1859 1860 1861 1862 1863
					  char *buf)
{
	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
}
static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);

1864
static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1865 1866 1867 1868 1869 1870 1871
				  char *buf)
{
	return sprintf(buf, "%u\n",
		       channel->offermsg.offer.sub_channel_index);
}
static VMBUS_CHAN_ATTR_RO(subchannel_id);

1872 1873 1874 1875 1876 1877 1878 1879
static struct attribute *vmbus_chan_attrs[] = {
	&chan_attr_out_mask.attr,
	&chan_attr_in_mask.attr,
	&chan_attr_read_avail.attr,
	&chan_attr_write_avail.attr,
	&chan_attr_cpu.attr,
	&chan_attr_pending.attr,
	&chan_attr_latency.attr,
1880 1881
	&chan_attr_interrupts.attr,
	&chan_attr_events.attr,
1882 1883 1884 1885
	&chan_attr_intr_in_full.attr,
	&chan_attr_intr_out_empty.attr,
	&chan_attr_out_full_first.attr,
	&chan_attr_out_full_total.attr,
1886 1887
	&chan_attr_monitor_id.attr,
	&chan_attr_subchannel_id.attr,
1888 1889 1890
	NULL
};

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
/*
 * Channel-level attribute_group callback function. Returns the permission for
 * each attribute, and returns 0 if an attribute is not visible.
 */
static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
					  struct attribute *attr, int idx)
{
	const struct vmbus_channel *channel =
		container_of(kobj, struct vmbus_channel, kobj);

	/* Hide the monitor attributes if the monitor mechanism is not used. */
	if (!channel->offermsg.monitor_allocated &&
	    (attr == &chan_attr_pending.attr ||
	     attr == &chan_attr_latency.attr ||
	     attr == &chan_attr_monitor_id.attr))
		return 0;

	return attr->mode;
}

static struct attribute_group vmbus_chan_group = {
	.attrs = vmbus_chan_attrs,
	.is_visible = vmbus_chan_attr_is_visible
};

1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
static struct kobj_type vmbus_chan_ktype = {
	.sysfs_ops = &vmbus_chan_sysfs_ops,
	.release = vmbus_chan_release,
};

/*
 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
 */
int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
{
1926
	const struct device *device = &dev->device;
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
	struct kobject *kobj = &channel->kobj;
	u32 relid = channel->offermsg.child_relid;
	int ret;

	kobj->kset = dev->channels_kset;
	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
				   "%u", relid);
	if (ret)
		return ret;

1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
	ret = sysfs_create_group(kobj, &vmbus_chan_group);

	if (ret) {
		/*
		 * The calling functions' error handling paths will cleanup the
		 * empty channel directory.
		 */
		dev_err(device, "Unable to set up channel sysfs files\n");
		return ret;
	}

1948 1949 1950 1951 1952
	kobject_uevent(kobj, KOBJ_ADD);

	return 0;
}

1953 1954 1955 1956 1957 1958 1959 1960
/*
 * vmbus_remove_channel_attr_group - remove the channel's attribute group
 */
void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
{
	sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
}

1961
/*
1962
 * vmbus_device_create - Creates and registers a new child device
1963
 * on the vmbus.
1964
 */
1965 1966
struct hv_device *vmbus_device_create(const guid_t *type,
				      const guid_t *instance,
S
stephen hemminger 已提交
1967
				      struct vmbus_channel *channel)
1968
{
1969
	struct hv_device *child_device_obj;
1970

1971 1972
	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
	if (!child_device_obj) {
1973
		pr_err("Unable to allocate device object for child device\n");
1974 1975 1976
		return NULL;
	}

1977
	child_device_obj->channel = channel;
1978 1979
	guid_copy(&child_device_obj->dev_type, type);
	guid_copy(&child_device_obj->dev_instance, instance);
1980
	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1981 1982 1983 1984

	return child_device_obj;
}

1985
/*
1986
 * vmbus_device_register - Register the child device
1987
 */
1988
int vmbus_device_register(struct hv_device *child_device_obj)
1989
{
1990 1991
	struct kobject *kobj = &child_device_obj->device.kobj;
	int ret;
1992

1993
	dev_set_name(&child_device_obj->device, "%pUl",
1994
		     &child_device_obj->channel->offermsg.offer.if_instance);
1995

1996
	child_device_obj->device.bus = &hv_bus;
1997
	child_device_obj->device.parent = &hv_acpi_dev->dev;
1998
	child_device_obj->device.release = vmbus_device_release;
1999

2000 2001 2002 2003
	/*
	 * Register with the LDM. This will kick off the driver/device
	 * binding...which will eventually call vmbus_match() and vmbus_probe()
	 */
2004
	ret = device_register(&child_device_obj->device);
2005
	if (ret) {
2006
		pr_err("Unable to register child device\n");
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
		return ret;
	}

	child_device_obj->channels_kset = kset_create_and_add("channels",
							      NULL, kobj);
	if (!child_device_obj->channels_kset) {
		ret = -ENOMEM;
		goto err_dev_unregister;
	}

	ret = vmbus_add_channel_kobj(child_device_obj,
				     child_device_obj->channel);
	if (ret) {
		pr_err("Unable to register primary channeln");
		goto err_kset_unregister;
	}
2023
	hv_debug_add_dev_dir(child_device_obj);
2024 2025 2026 2027 2028

	return 0;

err_kset_unregister:
	kset_unregister(child_device_obj->channels_kset);
2029

2030 2031
err_dev_unregister:
	device_unregister(&child_device_obj->device);
2032 2033 2034
	return ret;
}

2035
/*
2036
 * vmbus_device_unregister - Remove the specified child device
2037
 * from the vmbus.
2038
 */
2039
void vmbus_device_unregister(struct hv_device *device_obj)
2040
{
2041 2042 2043
	pr_debug("child device %s unregistered\n",
		dev_name(&device_obj->device));

2044 2045
	kset_unregister(device_obj->channels_kset);

2046 2047 2048 2049
	/*
	 * Kick off the process of unregistering the device.
	 * This will call vmbus_remove() and eventually vmbus_device_release()
	 */
2050
	device_unregister(&device_obj->device);
2051 2052 2053
}


2054
/*
2055
 * VMBUS is an acpi enumerated device. Get the information we
2056
 * need from DSDT.
2057
 */
2058
#define VTPM_BASE_ADDRESS 0xfed40000
2059
static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
2060
{
2061 2062 2063 2064 2065 2066
	resource_size_t start = 0;
	resource_size_t end = 0;
	struct resource *new_res;
	struct resource **old_res = &hyperv_mmio;
	struct resource **prev_res = NULL;

2067
	switch (res->type) {
2068 2069 2070 2071 2072 2073 2074 2075 2076

	/*
	 * "Address" descriptors are for bus windows. Ignore
	 * "memory" descriptors, which are for registers on
	 * devices.
	 */
	case ACPI_RESOURCE_TYPE_ADDRESS32:
		start = res->data.address32.address.minimum;
		end = res->data.address32.address.maximum;
G
Gerd Hoffmann 已提交
2077
		break;
2078

2079
	case ACPI_RESOURCE_TYPE_ADDRESS64:
2080 2081
		start = res->data.address64.address.minimum;
		end = res->data.address64.address.maximum;
G
Gerd Hoffmann 已提交
2082
		break;
2083 2084 2085 2086 2087

	default:
		/* Unused resource type */
		return AE_OK;

2088
	}
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
	/*
	 * Ignore ranges that are below 1MB, as they're not
	 * necessary or useful here.
	 */
	if (end < 0x100000)
		return AE_OK;

	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
	if (!new_res)
		return AE_NO_MEMORY;

	/* If this range overlaps the virtual TPM, truncate it. */
	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
		end = VTPM_BASE_ADDRESS;

	new_res->name = "hyperv mmio";
	new_res->flags = IORESOURCE_MEM;
	new_res->start = start;
	new_res->end = end;

2109 2110 2111
	/*
	 * If two ranges are adjacent, merge them.
	 */
2112 2113 2114 2115 2116 2117
	do {
		if (!*old_res) {
			*old_res = new_res;
			break;
		}

2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
		if (((*old_res)->end + 1) == new_res->start) {
			(*old_res)->end = new_res->end;
			kfree(new_res);
			break;
		}

		if ((*old_res)->start == new_res->end + 1) {
			(*old_res)->start = new_res->start;
			kfree(new_res);
			break;
		}

2130
		if ((*old_res)->start > new_res->end) {
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
			new_res->sibling = *old_res;
			if (prev_res)
				(*prev_res)->sibling = new_res;
			*old_res = new_res;
			break;
		}

		prev_res = old_res;
		old_res = &(*old_res)->sibling;

	} while (1);
2142 2143 2144 2145

	return AE_OK;
}

2146 2147 2148 2149 2150 2151
static int vmbus_acpi_remove(struct acpi_device *device)
{
	struct resource *cur_res;
	struct resource *next_res;

	if (hyperv_mmio) {
2152 2153 2154 2155 2156 2157
		if (fb_mmio) {
			__release_region(hyperv_mmio, fb_mmio->start,
					 resource_size(fb_mmio));
			fb_mmio = NULL;
		}

2158 2159 2160 2161 2162 2163 2164 2165 2166
		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
			next_res = cur_res->sibling;
			kfree(cur_res);
		}
	}

	return 0;
}

2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
static void vmbus_reserve_fb(void)
{
	int size;
	/*
	 * Make a claim for the frame buffer in the resource tree under the
	 * first node, which will be the one below 4GB.  The length seems to
	 * be underreported, particularly in a Generation 1 VM.  So start out
	 * reserving a larger area and make it smaller until it succeeds.
	 */

	if (screen_info.lfb_base) {
		if (efi_enabled(EFI_BOOT))
			size = max_t(__u32, screen_info.lfb_size, 0x800000);
		else
			size = max_t(__u32, screen_info.lfb_size, 0x4000000);

		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
			fb_mmio = __request_region(hyperv_mmio,
						   screen_info.lfb_base, size,
						   fb_mmio_name, 0);
		}
	}
}

2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
/**
 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
 * @new:		If successful, supplied a pointer to the
 *			allocated MMIO space.
 * @device_obj:		Identifies the caller
 * @min:		Minimum guest physical address of the
 *			allocation
 * @max:		Maximum guest physical address
 * @size:		Size of the range to be allocated
 * @align:		Alignment of the range to be allocated
 * @fb_overlap_ok:	Whether this allocation can be allowed
 *			to overlap the video frame buffer.
 *
 * This function walks the resources granted to VMBus by the
 * _CRS object in the ACPI namespace underneath the parent
 * "bridge" whether that's a root PCI bus in the Generation 1
 * case or a Module Device in the Generation 2 case.  It then
 * attempts to allocate from the global MMIO pool in a way that
 * matches the constraints supplied in these parameters and by
 * that _CRS.
 *
 * Return: 0 on success, -errno on failure
 */
int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
			resource_size_t min, resource_size_t max,
			resource_size_t size, resource_size_t align,
			bool fb_overlap_ok)
{
2219
	struct resource *iter, *shadow;
2220
	resource_size_t range_min, range_max, start;
2221
	const char *dev_n = dev_name(&device_obj->device);
2222
	int retval;
2223 2224

	retval = -ENXIO;
2225
	mutex_lock(&hyperv_mmio_lock);
2226

2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
	/*
	 * If overlaps with frame buffers are allowed, then first attempt to
	 * make the allocation from within the reserved region.  Because it
	 * is already reserved, no shadow allocation is necessary.
	 */
	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
	    !(max < fb_mmio->start)) {

		range_min = fb_mmio->start;
		range_max = fb_mmio->end;
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				retval = 0;
				goto exit;
			}
		}
	}

2247 2248 2249 2250 2251 2252
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= max) || (iter->end <= min))
			continue;

		range_min = iter->start;
		range_max = iter->end;
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			shadow = __request_region(iter, start, size, NULL,
						  IORESOURCE_BUSY);
			if (!shadow)
				continue;

			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				shadow->name = (char *)*new;
				retval = 0;
				goto exit;
2265 2266
			}

2267
			__release_region(iter, start, size);
2268 2269 2270
		}
	}

2271
exit:
2272
	mutex_unlock(&hyperv_mmio_lock);
2273
	return retval;
2274 2275 2276
}
EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);

2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
/**
 * vmbus_free_mmio() - Free a memory-mapped I/O range.
 * @start:		Base address of region to release.
 * @size:		Size of the range to be allocated
 *
 * This function releases anything requested by
 * vmbus_mmio_allocate().
 */
void vmbus_free_mmio(resource_size_t start, resource_size_t size)
{
2287 2288
	struct resource *iter;

2289
	mutex_lock(&hyperv_mmio_lock);
2290 2291 2292 2293 2294 2295
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= start + size) || (iter->end <= start))
			continue;

		__release_region(iter, start, size);
	}
2296
	release_mem_region(start, size);
2297
	mutex_unlock(&hyperv_mmio_lock);
2298 2299 2300 2301

}
EXPORT_SYMBOL_GPL(vmbus_free_mmio);

2302 2303 2304
static int vmbus_acpi_add(struct acpi_device *device)
{
	acpi_status result;
2305
	int ret_val = -ENODEV;
2306
	struct acpi_device *ancestor;
2307

2308 2309
	hv_acpi_dev = device;

2310
	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2311
					vmbus_walk_resources, NULL);
2312

2313 2314 2315
	if (ACPI_FAILURE(result))
		goto acpi_walk_err;
	/*
2316 2317
	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
	 * firmware) is the VMOD that has the mmio ranges. Get that.
2318
	 */
2319 2320 2321
	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
					     vmbus_walk_resources, NULL);
2322 2323

		if (ACPI_FAILURE(result))
2324
			continue;
2325 2326
		if (hyperv_mmio) {
			vmbus_reserve_fb();
2327
			break;
2328
		}
2329
	}
2330 2331 2332
	ret_val = 0;

acpi_walk_err:
2333
	complete(&probe_event);
2334 2335
	if (ret_val)
		vmbus_acpi_remove(device);
2336
	return ret_val;
2337 2338
}

2339
#ifdef CONFIG_PM_SLEEP
2340 2341
static int vmbus_bus_suspend(struct device *dev)
{
2342 2343
	struct vmbus_channel *channel, *sc;
	unsigned long flags;
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361

	while (atomic_read(&vmbus_connection.offer_in_progress) != 0) {
		/*
		 * We wait here until the completion of any channel
		 * offers that are currently in progress.
		 */
		msleep(1);
	}

	mutex_lock(&vmbus_connection.channel_mutex);
	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
		if (!is_hvsock_channel(channel))
			continue;

		vmbus_force_channel_rescinded(channel);
	}
	mutex_unlock(&vmbus_connection.channel_mutex);

2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
	/*
	 * Wait until all the sub-channels and hv_sock channels have been
	 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
	 * they would conflict with the new sub-channels that will be created
	 * in the resume path. hv_sock channels should also be destroyed, but
	 * a hv_sock channel of an established hv_sock connection can not be
	 * really destroyed since it may still be referenced by the userspace
	 * application, so we just force the hv_sock channel to be rescinded
	 * by vmbus_force_channel_rescinded(), and the userspace application
	 * will thoroughly destroy the channel after hibernation.
	 *
	 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
	 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
	 */
	if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0)
		wait_for_completion(&vmbus_connection.ready_for_suspend_event);

2379 2380
	WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0);

2381 2382 2383
	mutex_lock(&vmbus_connection.channel_mutex);

	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2384
		/*
2385 2386 2387 2388
		 * Remove the channel from the array of channels and invalidate
		 * the channel's relid.  Upon resume, vmbus_onoffer() will fix
		 * up the relid (and other fields, if necessary) and add the
		 * channel back to the array.
2389
		 */
2390
		vmbus_channel_unmap_relid(channel);
2391 2392
		channel->offermsg.child_relid = INVALID_RELID;

2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
		if (is_hvsock_channel(channel)) {
			if (!channel->rescind) {
				pr_err("hv_sock channel not rescinded!\n");
				WARN_ON_ONCE(1);
			}
			continue;
		}

		spin_lock_irqsave(&channel->lock, flags);
		list_for_each_entry(sc, &channel->sc_list, sc_list) {
			pr_err("Sub-channel not deleted!\n");
			WARN_ON_ONCE(1);
		}
		spin_unlock_irqrestore(&channel->lock, flags);
2407 2408

		atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume);
2409 2410 2411 2412
	}

	mutex_unlock(&vmbus_connection.channel_mutex);

2413 2414
	vmbus_initiate_unload(false);

2415 2416 2417
	/* Reset the event for the next resume. */
	reinit_completion(&vmbus_connection.ready_for_resume_event);

2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
	return 0;
}

static int vmbus_bus_resume(struct device *dev)
{
	struct vmbus_channel_msginfo *msginfo;
	size_t msgsize;
	int ret;

	/*
	 * We only use the 'vmbus_proto_version', which was in use before
	 * hibernation, to re-negotiate with the host.
	 */
2431
	if (!vmbus_proto_version) {
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
		pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
		return -EINVAL;
	}

	msgsize = sizeof(*msginfo) +
		  sizeof(struct vmbus_channel_initiate_contact);

	msginfo = kzalloc(msgsize, GFP_KERNEL);

	if (msginfo == NULL)
		return -ENOMEM;

	ret = vmbus_negotiate_version(msginfo, vmbus_proto_version);

	kfree(msginfo);

	if (ret != 0)
		return ret;

2451 2452
	WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0);

2453 2454
	vmbus_request_offers();

2455 2456
	wait_for_completion(&vmbus_connection.ready_for_resume_event);

2457 2458 2459
	/* Reset the event for the next suspend. */
	reinit_completion(&vmbus_connection.ready_for_suspend_event);

2460 2461
	return 0;
}
2462
#endif /* CONFIG_PM_SLEEP */
2463

2464 2465
static const struct acpi_device_id vmbus_acpi_device_ids[] = {
	{"VMBUS", 0},
2466
	{"VMBus", 0},
2467 2468 2469 2470
	{"", 0},
};
MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);

2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
/*
 * Note: we must use SET_NOIRQ_SYSTEM_SLEEP_PM_OPS rather than
 * SET_SYSTEM_SLEEP_PM_OPS, otherwise NIC SR-IOV can not work, because the
 * "pci_dev_pm_ops" uses the "noirq" callbacks: in the resume path, the
 * pci "noirq" restore callback runs before "non-noirq" callbacks (see
 * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
 * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
 * resume callback must also run via the "noirq" callbacks.
 */
static const struct dev_pm_ops vmbus_bus_pm = {
	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(vmbus_bus_suspend, vmbus_bus_resume)
};

2484 2485 2486 2487 2488
static struct acpi_driver vmbus_acpi_driver = {
	.name = "vmbus",
	.ids = vmbus_acpi_device_ids,
	.ops = {
		.add = vmbus_acpi_add,
2489
		.remove = vmbus_acpi_remove,
2490
	},
2491
	.drv.pm = &vmbus_bus_pm,
2492 2493
};

2494 2495
static void hv_kexec_handler(void)
{
2496
	hv_stimer_global_cleanup();
2497
	vmbus_initiate_unload(false);
2498 2499
	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
	mb();
2500
	cpuhp_remove_state(hyperv_cpuhp_online);
2501
	hyperv_cleanup();
2502 2503
};

2504 2505
static void hv_crash_handler(struct pt_regs *regs)
{
2506 2507
	int cpu;

2508
	vmbus_initiate_unload(true);
2509 2510 2511 2512 2513
	/*
	 * In crash handler we can't schedule synic cleanup for all CPUs,
	 * doing the cleanup for current CPU only. This should be sufficient
	 * for kdump.
	 */
2514 2515
	cpu = smp_processor_id();
	hv_stimer_cleanup(cpu);
2516
	hv_synic_disable_regs(cpu);
2517
	hyperv_cleanup();
2518 2519
};

2520 2521 2522
static int hv_synic_suspend(void)
{
	/*
2523 2524 2525 2526
	 * When we reach here, all the non-boot CPUs have been offlined.
	 * If we're in a legacy configuration where stimer Direct Mode is
	 * not enabled, the stimers on the non-boot CPUs have been unbound
	 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() ->
2527 2528
	 * hv_stimer_cleanup() -> clockevents_unbind_device().
	 *
2529 2530 2531 2532 2533
	 * hv_synic_suspend() only runs on CPU0 with interrupts disabled.
	 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because:
	 * 1) it's unnecessary as interrupts remain disabled between
	 * syscore_suspend() and syscore_resume(): see create_image() and
	 * resume_target_kernel()
2534 2535
	 * 2) the stimer on CPU0 is automatically disabled later by
	 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
2536 2537 2538 2539
	 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown()
	 * 3) a warning would be triggered if we call
	 * clockevents_unbind_device(), which may sleep, in an
	 * interrupts-disabled context.
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
	 */

	hv_synic_disable_regs(0);

	return 0;
}

static void hv_synic_resume(void)
{
	hv_synic_enable_regs(0);

	/*
	 * Note: we don't need to call hv_stimer_init(0), because the timer
	 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
	 * automatically re-enabled in timekeeping_resume().
	 */
}

/* The callbacks run only on CPU0, with irqs_disabled. */
static struct syscore_ops hv_synic_syscore_ops = {
	.suspend = hv_synic_suspend,
	.resume = hv_synic_resume,
};

2564
static int __init hv_acpi_init(void)
2565
{
2566
	int ret, t;
2567

2568
	if (!hv_is_hyperv_initialized())
2569 2570
		return -ENODEV;

2571 2572 2573
	init_completion(&probe_event);

	/*
2574
	 * Get ACPI resources first.
2575
	 */
2576 2577
	ret = acpi_bus_register_driver(&vmbus_acpi_driver);

2578 2579 2580
	if (ret)
		return ret;

2581 2582 2583 2584 2585
	t = wait_for_completion_timeout(&probe_event, 5*HZ);
	if (t == 0) {
		ret = -ETIMEDOUT;
		goto cleanup;
	}
2586
	hv_debug_init();
2587

2588
	ret = vmbus_bus_init();
2589
	if (ret)
2590 2591
		goto cleanup;

2592
	hv_setup_kexec_handler(hv_kexec_handler);
2593
	hv_setup_crash_handler(hv_crash_handler);
2594

2595 2596
	register_syscore_ops(&hv_synic_syscore_ops);

2597 2598 2599 2600
	return 0;

cleanup:
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2601
	hv_acpi_dev = NULL;
2602
	return ret;
2603 2604
}

2605 2606
static void __exit vmbus_exit(void)
{
2607 2608
	int cpu;

2609 2610
	unregister_syscore_ops(&hv_synic_syscore_ops);

2611
	hv_remove_kexec_handler();
2612
	hv_remove_crash_handler();
2613
	vmbus_connection.conn_state = DISCONNECTED;
2614
	hv_stimer_global_cleanup();
2615
	vmbus_disconnect();
2616
	hv_remove_vmbus_irq();
2617 2618 2619 2620 2621 2622
	for_each_online_cpu(cpu) {
		struct hv_per_cpu_context *hv_cpu
			= per_cpu_ptr(hv_context.cpu_context, cpu);

		tasklet_kill(&hv_cpu->msg_dpc);
	}
2623 2624
	hv_debug_rm_all_dir();

2625
	vmbus_free_channels();
2626
	kfree(vmbus_connection.channels);
2627

2628
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
2629
		kmsg_dump_unregister(&hv_kmsg_dumper);
2630
		unregister_die_notifier(&hyperv_die_block);
2631 2632 2633
		atomic_notifier_chain_unregister(&panic_notifier_list,
						 &hyperv_panic_block);
	}
2634 2635

	free_page((unsigned long)hv_panic_page);
2636 2637
	unregister_sysctl_table(hv_ctl_table_hdr);
	hv_ctl_table_hdr = NULL;
2638
	bus_unregister(&hv_bus);
2639

2640
	cpuhp_remove_state(hyperv_cpuhp_online);
2641
	hv_synic_free();
2642 2643 2644
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
}

2645

2646
MODULE_LICENSE("GPL");
2647
MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2648

2649
subsys_initcall(hv_acpi_init);
2650
module_exit(vmbus_exit);