vmbus_drv.c 62.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7
/*
 * Copyright (c) 2009, Microsoft Corporation.
 *
 * Authors:
 *   Haiyang Zhang <haiyangz@microsoft.com>
 *   Hank Janssen  <hjanssen@microsoft.com>
8
 *   K. Y. Srinivasan <kys@microsoft.com>
9
 */
10 11
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

12 13 14 15 16
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/sysctl.h>
17
#include <linux/slab.h>
18
#include <linux/acpi.h>
19
#include <linux/completion.h>
20
#include <linux/hyperv.h>
21
#include <linux/kernel_stat.h>
22
#include <linux/clockchips.h>
23
#include <linux/cpu.h>
24 25
#include <linux/sched/task_stack.h>

26
#include <asm/mshyperv.h>
27
#include <linux/delay.h>
28 29
#include <linux/notifier.h>
#include <linux/ptrace.h>
30
#include <linux/screen_info.h>
31
#include <linux/kdebug.h>
32
#include <linux/efi.h>
33
#include <linux/random.h>
34
#include <linux/kernel.h>
35
#include <linux/syscore_ops.h>
36
#include <clocksource/hyperv_timer.h>
37
#include "hyperv_vmbus.h"
38

39 40 41 42 43
struct vmbus_dynid {
	struct list_head node;
	struct hv_vmbus_device_id id;
};

44
static struct acpi_device  *hv_acpi_dev;
45

46
static struct completion probe_event;
47

48
static int hyperv_cpuhp_online;
49

50 51
static void *hv_panic_page;

52 53 54 55 56 57 58 59 60 61 62 63
/*
 * Boolean to control whether to report panic messages over Hyper-V.
 *
 * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
 */
static int sysctl_record_panic_msg = 1;

static int hyperv_report_reg(void)
{
	return !sysctl_record_panic_msg || !hv_panic_page;
}

64 65 66 67 68
static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
			      void *args)
{
	struct pt_regs *regs;

69
	vmbus_initiate_unload(true);
70

71 72 73 74 75 76
	/*
	 * Hyper-V should be notified only once about a panic.  If we will be
	 * doing hyperv_report_panic_msg() later with kmsg data, don't do
	 * the notification here.
	 */
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE
77
	    && hyperv_report_reg()) {
78
		regs = current_pt_regs();
79
		hyperv_report_panic(regs, val, false);
80
	}
81 82 83
	return NOTIFY_DONE;
}

84 85 86 87 88 89
static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
			    void *args)
{
	struct die_args *die = (struct die_args *)args;
	struct pt_regs *regs = die->regs;

90 91 92 93 94
	/*
	 * Hyper-V should be notified only once about a panic.  If we will be
	 * doing hyperv_report_panic_msg() later with kmsg data, don't do
	 * the notification here.
	 */
95
	if (hyperv_report_reg())
96
		hyperv_report_panic(regs, val, true);
97 98 99 100 101 102
	return NOTIFY_DONE;
}

static struct notifier_block hyperv_die_block = {
	.notifier_call = hyperv_die_event,
};
103 104 105 106
static struct notifier_block hyperv_panic_block = {
	.notifier_call = hyperv_panic_event,
};

107 108
static const char *fb_mmio_name = "fb_range";
static struct resource *fb_mmio;
109
static struct resource *hyperv_mmio;
110
static DEFINE_MUTEX(hyperv_mmio_lock);
111

112 113 114 115 116 117 118 119
static int vmbus_exists(void)
{
	if (hv_acpi_dev == NULL)
		return -ENODEV;

	return 0;
}

120 121 122 123 124 125 126 127
#define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
{
	int i;
	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
}

128
static u8 channel_monitor_group(const struct vmbus_channel *channel)
129 130 131 132
{
	return (u8)channel->offermsg.monitorid / 32;
}

133
static u8 channel_monitor_offset(const struct vmbus_channel *channel)
134 135 136 137
{
	return (u8)channel->offermsg.monitorid % 32;
}

138 139
static u32 channel_pending(const struct vmbus_channel *channel,
			   const struct hv_monitor_page *monitor_page)
140 141
{
	u8 monitor_group = channel_monitor_group(channel);
142

143 144 145
	return monitor_page->trigger_group[monitor_group].pending;
}

146 147
static u32 channel_latency(const struct vmbus_channel *channel,
			   const struct hv_monitor_page *monitor_page)
148 149 150
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
151

152 153 154
	return monitor_page->latency[monitor_group][monitor_offset];
}

155 156 157 158 159 160 161 162
static u32 channel_conn_id(struct vmbus_channel *channel,
			   struct hv_monitor_page *monitor_page)
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
}

163 164 165 166 167 168 169 170 171 172 173
static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
		       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
}
static DEVICE_ATTR_RO(id);

174 175 176 177 178 179 180 181 182 183 184
static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
			  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->state);
}
static DEVICE_ATTR_RO(state);

185 186 187 188 189 190 191 192 193 194 195
static ssize_t monitor_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
}
static DEVICE_ATTR_RO(monitor_id);

196 197 198 199 200 201 202 203 204 205 206 207
static ssize_t class_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_type.b);
}
static DEVICE_ATTR_RO(class_id);

208 209 210 211 212 213 214 215 216 217 218 219
static ssize_t device_id_show(struct device *dev,
			      struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_instance.b);
}
static DEVICE_ATTR_RO(device_id);

220 221 222 223 224 225 226 227 228 229 230
static ssize_t modalias_show(struct device *dev,
			     struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	char alias_name[VMBUS_ALIAS_LEN + 1];

	print_alias_name(hv_dev, alias_name);
	return sprintf(buf, "vmbus:%s\n", alias_name);
}
static DEVICE_ATTR_RO(modalias);

231 232 233 234 235 236 237 238 239 240 241 242 243 244
#ifdef CONFIG_NUMA
static ssize_t numa_node_show(struct device *dev,
			      struct device_attribute *attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;

	return sprintf(buf, "%d\n", hv_dev->channel->numa_node);
}
static DEVICE_ATTR_RO(numa_node);
#endif

245 246 247 248 249 250 251 252 253 254
static ssize_t server_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
255
				       vmbus_connection.monitor_pages[0]));
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
}
static DEVICE_ATTR_RO(server_monitor_pending);

static ssize_t client_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_pending);
272

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
static ssize_t server_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_latency);

static ssize_t client_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_latency);

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
static ssize_t server_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_conn_id);

static ssize_t client_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_conn_id);

329 330 331 332 333
static ssize_t out_intr_mask_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
334
	int ret;
335 336 337

	if (!hv_dev->channel)
		return -ENODEV;
338 339 340 341 342 343

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;

344 345 346 347 348 349 350 351 352
	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(out_intr_mask);

static ssize_t out_read_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
353
	int ret;
354 355 356

	if (!hv_dev->channel)
		return -ENODEV;
357 358 359 360 361

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
362 363 364 365 366 367 368 369 370 371
	return sprintf(buf, "%d\n", outbound.current_read_index);
}
static DEVICE_ATTR_RO(out_read_index);

static ssize_t out_write_index_show(struct device *dev,
				    struct device_attribute *dev_attr,
				    char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
372
	int ret;
373 374 375

	if (!hv_dev->channel)
		return -ENODEV;
376 377 378 379 380

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
381 382 383 384 385 386 387 388 389 390
	return sprintf(buf, "%d\n", outbound.current_write_index);
}
static DEVICE_ATTR_RO(out_write_index);

static ssize_t out_read_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
391
	int ret;
392 393 394

	if (!hv_dev->channel)
		return -ENODEV;
395 396 397 398 399

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
400 401 402 403 404 405 406 407 408 409
	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(out_read_bytes_avail);

static ssize_t out_write_bytes_avail_show(struct device *dev,
					  struct device_attribute *dev_attr,
					  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
410
	int ret;
411 412 413

	if (!hv_dev->channel)
		return -ENODEV;
414 415 416 417 418

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
419 420 421 422 423 424 425 426 427
	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(out_write_bytes_avail);

static ssize_t in_intr_mask_show(struct device *dev,
				 struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
428
	int ret;
429 430 431

	if (!hv_dev->channel)
		return -ENODEV;
432 433 434 435 436

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

437 438 439 440 441 442 443 444 445
	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(in_intr_mask);

static ssize_t in_read_index_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
446
	int ret;
447 448 449

	if (!hv_dev->channel)
		return -ENODEV;
450 451 452 453 454

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

455 456 457 458 459 460 461 462 463
	return sprintf(buf, "%d\n", inbound.current_read_index);
}
static DEVICE_ATTR_RO(in_read_index);

static ssize_t in_write_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
464
	int ret;
465 466 467

	if (!hv_dev->channel)
		return -ENODEV;
468 469 470 471 472

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

473 474 475 476 477 478 479 480 481 482
	return sprintf(buf, "%d\n", inbound.current_write_index);
}
static DEVICE_ATTR_RO(in_write_index);

static ssize_t in_read_bytes_avail_show(struct device *dev,
					struct device_attribute *dev_attr,
					char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
483
	int ret;
484 485 486

	if (!hv_dev->channel)
		return -ENODEV;
487 488 489 490 491

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

492 493 494 495 496 497 498 499 500 501
	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(in_read_bytes_avail);

static ssize_t in_write_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
502
	int ret;
503 504 505

	if (!hv_dev->channel)
		return -ENODEV;
506 507 508 509 510

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

511 512 513 514
	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(in_write_bytes_avail);

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
static ssize_t channel_vp_mapping_show(struct device *dev,
				       struct device_attribute *dev_attr,
				       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
	unsigned long flags;
	int buf_size = PAGE_SIZE, n_written, tot_written;
	struct list_head *cur;

	if (!channel)
		return -ENODEV;

	tot_written = snprintf(buf, buf_size, "%u:%u\n",
		channel->offermsg.child_relid, channel->target_cpu);

	spin_lock_irqsave(&channel->lock, flags);

	list_for_each(cur, &channel->sc_list) {
		if (tot_written >= buf_size - 1)
			break;

		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
		n_written = scnprintf(buf + tot_written,
				     buf_size - tot_written,
				     "%u:%u\n",
				     cur_sc->offermsg.child_relid,
				     cur_sc->target_cpu);
		tot_written += n_written;
	}

	spin_unlock_irqrestore(&channel->lock, flags);

	return tot_written;
}
static DEVICE_ATTR_RO(channel_vp_mapping);

552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
static ssize_t vendor_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
}
static DEVICE_ATTR_RO(vendor);

static ssize_t device_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->device_id);
}
static DEVICE_ATTR_RO(device);

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
static ssize_t driver_override_store(struct device *dev,
				     struct device_attribute *attr,
				     const char *buf, size_t count)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	char *driver_override, *old, *cp;

	/* We need to keep extra room for a newline */
	if (count >= (PAGE_SIZE - 1))
		return -EINVAL;

	driver_override = kstrndup(buf, count, GFP_KERNEL);
	if (!driver_override)
		return -ENOMEM;

	cp = strchr(driver_override, '\n');
	if (cp)
		*cp = '\0';

	device_lock(dev);
	old = hv_dev->driver_override;
	if (strlen(driver_override)) {
		hv_dev->driver_override = driver_override;
	} else {
		kfree(driver_override);
		hv_dev->driver_override = NULL;
	}
	device_unlock(dev);

	kfree(old);

	return count;
}

static ssize_t driver_override_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	ssize_t len;

	device_lock(dev);
	len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
	device_unlock(dev);

	return len;
}
static DEVICE_ATTR_RW(driver_override);

618
/* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
619
static struct attribute *vmbus_dev_attrs[] = {
620
	&dev_attr_id.attr,
621
	&dev_attr_state.attr,
622
	&dev_attr_monitor_id.attr,
623
	&dev_attr_class_id.attr,
624
	&dev_attr_device_id.attr,
625
	&dev_attr_modalias.attr,
626 627 628
#ifdef CONFIG_NUMA
	&dev_attr_numa_node.attr,
#endif
629 630
	&dev_attr_server_monitor_pending.attr,
	&dev_attr_client_monitor_pending.attr,
631 632
	&dev_attr_server_monitor_latency.attr,
	&dev_attr_client_monitor_latency.attr,
633 634
	&dev_attr_server_monitor_conn_id.attr,
	&dev_attr_client_monitor_conn_id.attr,
635 636 637 638 639 640 641 642 643 644
	&dev_attr_out_intr_mask.attr,
	&dev_attr_out_read_index.attr,
	&dev_attr_out_write_index.attr,
	&dev_attr_out_read_bytes_avail.attr,
	&dev_attr_out_write_bytes_avail.attr,
	&dev_attr_in_intr_mask.attr,
	&dev_attr_in_read_index.attr,
	&dev_attr_in_write_index.attr,
	&dev_attr_in_read_bytes_avail.attr,
	&dev_attr_in_write_bytes_avail.attr,
645
	&dev_attr_channel_vp_mapping.attr,
646 647
	&dev_attr_vendor.attr,
	&dev_attr_device.attr,
648
	&dev_attr_driver_override.attr,
649 650
	NULL,
};
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680

/*
 * Device-level attribute_group callback function. Returns the permission for
 * each attribute, and returns 0 if an attribute is not visible.
 */
static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
{
	struct device *dev = kobj_to_dev(kobj);
	const struct hv_device *hv_dev = device_to_hv_device(dev);

	/* Hide the monitor attributes if the monitor mechanism is not used. */
	if (!hv_dev->channel->offermsg.monitor_allocated &&
	    (attr == &dev_attr_monitor_id.attr ||
	     attr == &dev_attr_server_monitor_pending.attr ||
	     attr == &dev_attr_client_monitor_pending.attr ||
	     attr == &dev_attr_server_monitor_latency.attr ||
	     attr == &dev_attr_client_monitor_latency.attr ||
	     attr == &dev_attr_server_monitor_conn_id.attr ||
	     attr == &dev_attr_client_monitor_conn_id.attr))
		return 0;

	return attr->mode;
}

static const struct attribute_group vmbus_dev_group = {
	.attrs = vmbus_dev_attrs,
	.is_visible = vmbus_dev_attr_is_visible
};
__ATTRIBUTE_GROUPS(vmbus_dev);
681

682 683 684 685 686 687
/*
 * vmbus_uevent - add uevent for our device
 *
 * This routine is invoked when a device is added or removed on the vmbus to
 * generate a uevent to udev in the userspace. The udev will then look at its
 * rule and the uevent generated here to load the appropriate driver
688 689 690 691
 *
 * The alias string will be of the form vmbus:guid where guid is the string
 * representation of the device guid (each byte of the guid will be
 * represented with two hex characters.
692 693 694 695
 */
static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
{
	struct hv_device *dev = device_to_hv_device(device);
696 697
	int ret;
	char alias_name[VMBUS_ALIAS_LEN + 1];
698

699
	print_alias_name(dev, alias_name);
700 701
	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
	return ret;
702 703
}

704
static const struct hv_vmbus_device_id *
705
hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
706 707 708 709
{
	if (id == NULL)
		return NULL; /* empty device table */

710 711
	for (; !guid_is_null(&id->guid); id++)
		if (guid_equal(&id->guid, guid))
712 713 714 715 716 717
			return id;

	return NULL;
}

static const struct hv_vmbus_device_id *
718
hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
719
{
720 721 722 723 724
	const struct hv_vmbus_device_id *id = NULL;
	struct vmbus_dynid *dynid;

	spin_lock(&drv->dynids.lock);
	list_for_each_entry(dynid, &drv->dynids.list, node) {
725
		if (guid_equal(&dynid->id.guid, guid)) {
726 727 728 729 730 731
			id = &dynid->id;
			break;
		}
	}
	spin_unlock(&drv->dynids.lock);

732 733
	return id;
}
734

735
static const struct hv_vmbus_device_id vmbus_device_null;
736

737 738 739 740 741 742 743
/*
 * Return a matching hv_vmbus_device_id pointer.
 * If there is no match, return NULL.
 */
static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
							struct hv_device *dev)
{
744
	const guid_t *guid = &dev->dev_type;
745
	const struct hv_vmbus_device_id *id;
746

747 748 749 750 751 752 753 754 755 756 757 758 759 760
	/* When driver_override is set, only bind to the matching driver */
	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
		return NULL;

	/* Look at the dynamic ids first, before the static ones */
	id = hv_vmbus_dynid_match(drv, guid);
	if (!id)
		id = hv_vmbus_dev_match(drv->id_table, guid);

	/* driver_override will always match, send a dummy id */
	if (!id && dev->driver_override)
		id = &vmbus_device_null;

	return id;
761 762
}

763
/* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
764
static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
{
	struct vmbus_dynid *dynid;

	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
	if (!dynid)
		return -ENOMEM;

	dynid->id.guid = *guid;

	spin_lock(&drv->dynids.lock);
	list_add_tail(&dynid->node, &drv->dynids.list);
	spin_unlock(&drv->dynids.lock);

	return driver_attach(&drv->driver);
}

static void vmbus_free_dynids(struct hv_driver *drv)
{
	struct vmbus_dynid *dynid, *n;

	spin_lock(&drv->dynids.lock);
	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
		list_del(&dynid->node);
		kfree(dynid);
	}
	spin_unlock(&drv->dynids.lock);
}

/*
 * store_new_id - sysfs frontend to vmbus_add_dynid()
 *
 * Allow GUIDs to be added to an existing driver via sysfs.
 */
static ssize_t new_id_store(struct device_driver *driver, const char *buf,
			    size_t count)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
802
	guid_t guid;
803 804
	ssize_t retval;

805
	retval = guid_parse(buf, &guid);
806 807
	if (retval)
		return retval;
808

809
	if (hv_vmbus_dynid_match(drv, &guid))
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
		return -EEXIST;

	retval = vmbus_add_dynid(drv, &guid);
	if (retval)
		return retval;
	return count;
}
static DRIVER_ATTR_WO(new_id);

/*
 * store_remove_id - remove a PCI device ID from this driver
 *
 * Removes a dynamic pci device ID to this driver.
 */
static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
			       size_t count)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
	struct vmbus_dynid *dynid, *n;
829
	guid_t guid;
830
	ssize_t retval;
831

832
	retval = guid_parse(buf, &guid);
833 834
	if (retval)
		return retval;
835

836
	retval = -ENODEV;
837 838 839 840
	spin_lock(&drv->dynids.lock);
	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
		struct hv_vmbus_device_id *id = &dynid->id;

841
		if (guid_equal(&id->guid, &guid)) {
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
			list_del(&dynid->node);
			kfree(dynid);
			retval = count;
			break;
		}
	}
	spin_unlock(&drv->dynids.lock);

	return retval;
}
static DRIVER_ATTR_WO(remove_id);

static struct attribute *vmbus_drv_attrs[] = {
	&driver_attr_new_id.attr,
	&driver_attr_remove_id.attr,
	NULL,
};
ATTRIBUTE_GROUPS(vmbus_drv);
860

861 862 863 864 865 866 867

/*
 * vmbus_match - Attempt to match the specified device to the specified driver
 */
static int vmbus_match(struct device *device, struct device_driver *driver)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
868
	struct hv_device *hv_dev = device_to_hv_device(device);
869

870 871 872 873
	/* The hv_sock driver handles all hv_sock offers. */
	if (is_hvsock_channel(hv_dev->channel))
		return drv->hvsock;

874
	if (hv_vmbus_get_id(drv, hv_dev))
875
		return 1;
876

877
	return 0;
878 879
}

880 881 882 883 884 885 886 887
/*
 * vmbus_probe - Add the new vmbus's child device
 */
static int vmbus_probe(struct device *child_device)
{
	int ret = 0;
	struct hv_driver *drv =
			drv_to_hv_drv(child_device->driver);
888
	struct hv_device *dev = device_to_hv_device(child_device);
889
	const struct hv_vmbus_device_id *dev_id;
890

891
	dev_id = hv_vmbus_get_id(drv, dev);
892
	if (drv->probe) {
893
		ret = drv->probe(dev, dev_id);
894
		if (ret != 0)
895 896
			pr_err("probe failed for device %s (%d)\n",
			       dev_name(child_device), ret);
897 898

	} else {
899 900
		pr_err("probe not set for driver %s\n",
		       dev_name(child_device));
901
		ret = -ENODEV;
902 903 904 905
	}
	return ret;
}

906 907 908 909 910
/*
 * vmbus_remove - Remove a vmbus device
 */
static int vmbus_remove(struct device *child_device)
{
911
	struct hv_driver *drv;
912
	struct hv_device *dev = device_to_hv_device(child_device);
913

914 915 916 917 918
	if (child_device->driver) {
		drv = drv_to_hv_drv(child_device->driver);
		if (drv->remove)
			drv->remove(dev);
	}
919 920 921 922

	return 0;
}

923 924 925 926 927 928 929

/*
 * vmbus_shutdown - Shutdown a vmbus device
 */
static void vmbus_shutdown(struct device *child_device)
{
	struct hv_driver *drv;
930
	struct hv_device *dev = device_to_hv_device(child_device);
931 932 933 934 935 936 937 938


	/* The device may not be attached yet */
	if (!child_device->driver)
		return;

	drv = drv_to_hv_drv(child_device->driver);

939 940
	if (drv->shutdown)
		drv->shutdown(dev);
941 942
}

943
#ifdef CONFIG_PM_SLEEP
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
/*
 * vmbus_suspend - Suspend a vmbus device
 */
static int vmbus_suspend(struct device *child_device)
{
	struct hv_driver *drv;
	struct hv_device *dev = device_to_hv_device(child_device);

	/* The device may not be attached yet */
	if (!child_device->driver)
		return 0;

	drv = drv_to_hv_drv(child_device->driver);
	if (!drv->suspend)
		return -EOPNOTSUPP;

	return drv->suspend(dev);
}

/*
 * vmbus_resume - Resume a vmbus device
 */
static int vmbus_resume(struct device *child_device)
{
	struct hv_driver *drv;
	struct hv_device *dev = device_to_hv_device(child_device);

	/* The device may not be attached yet */
	if (!child_device->driver)
		return 0;

	drv = drv_to_hv_drv(child_device->driver);
	if (!drv->resume)
		return -EOPNOTSUPP;

	return drv->resume(dev);
}
981
#endif /* CONFIG_PM_SLEEP */
982 983 984 985 986 987

/*
 * vmbus_device_release - Final callback release of the vmbus child device
 */
static void vmbus_device_release(struct device *device)
{
988
	struct hv_device *hv_dev = device_to_hv_device(device);
989
	struct vmbus_channel *channel = hv_dev->channel;
990

991 992
	hv_debug_rm_dev_dir(hv_dev);

993
	mutex_lock(&vmbus_connection.channel_mutex);
994
	hv_process_channel_removal(channel);
995
	mutex_unlock(&vmbus_connection.channel_mutex);
996
	kfree(hv_dev);
997 998
}

999 1000 1001 1002 1003 1004 1005 1006
/*
 * Note: we must use SET_NOIRQ_SYSTEM_SLEEP_PM_OPS rather than
 * SET_SYSTEM_SLEEP_PM_OPS: see the comment before vmbus_bus_pm.
 */
static const struct dev_pm_ops vmbus_pm = {
	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(vmbus_suspend, vmbus_resume)
};

1007
/* The one and only one */
1008 1009 1010 1011 1012 1013 1014
static struct bus_type  hv_bus = {
	.name =		"vmbus",
	.match =		vmbus_match,
	.shutdown =		vmbus_shutdown,
	.remove =		vmbus_remove,
	.probe =		vmbus_probe,
	.uevent =		vmbus_uevent,
1015 1016
	.dev_groups =		vmbus_dev_groups,
	.drv_groups =		vmbus_drv_groups,
1017
	.pm =			&vmbus_pm,
1018 1019
};

1020 1021
struct onmessage_work_context {
	struct work_struct work;
1022 1023 1024 1025
	struct {
		struct hv_message_header header;
		u8 payload[];
	} msg;
1026 1027 1028 1029 1030 1031
};

static void vmbus_onmessage_work(struct work_struct *work)
{
	struct onmessage_work_context *ctx;

1032 1033 1034 1035
	/* Do not process messages if we're in DISCONNECTED state */
	if (vmbus_connection.conn_state == DISCONNECTED)
		return;

1036 1037 1038 1039 1040 1041
	ctx = container_of(work, struct onmessage_work_context,
			   work);
	vmbus_onmessage(&ctx->msg);
	kfree(ctx);
}

1042
void vmbus_on_msg_dpc(unsigned long data)
G
Greg Kroah-Hartman 已提交
1043
{
1044 1045
	struct hv_per_cpu_context *hv_cpu = (void *)data;
	void *page_addr = hv_cpu->synic_message_page;
G
Greg Kroah-Hartman 已提交
1046 1047
	struct hv_message *msg = (struct hv_message *)page_addr +
				  VMBUS_MESSAGE_SINT;
1048
	struct vmbus_channel_message_header *hdr;
1049
	const struct vmbus_channel_message_table_entry *entry;
1050
	struct onmessage_work_context *ctx;
1051
	u32 message_type = msg->header.message_type;
G
Greg Kroah-Hartman 已提交
1052

1053
	if (message_type == HVMSG_NONE)
1054 1055
		/* no msg */
		return;
1056

1057
	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
1058

1059 1060
	trace_vmbus_on_msg_dpc(hdr);

1061 1062 1063 1064
	if (hdr->msgtype >= CHANNELMSG_COUNT) {
		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
		goto msg_handled;
	}
1065

1066 1067 1068 1069 1070 1071
	if (msg->header.payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) {
		WARN_ONCE(1, "payload size is too large (%d)\n",
			  msg->header.payload_size);
		goto msg_handled;
	}

1072
	entry = &channel_message_table[hdr->msgtype];
1073 1074 1075 1076

	if (!entry->message_handler)
		goto msg_handled;

1077
	if (entry->handler_type	== VMHT_BLOCKING) {
1078 1079
		ctx = kmalloc(sizeof(*ctx) + msg->header.payload_size,
			      GFP_ATOMIC);
1080 1081
		if (ctx == NULL)
			return;
1082

1083
		INIT_WORK(&ctx->work, vmbus_onmessage_work);
1084 1085
		memcpy(&ctx->msg, msg, sizeof(msg->header) +
		       msg->header.payload_size);
1086

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
		/*
		 * The host can generate a rescind message while we
		 * may still be handling the original offer. We deal with
		 * this condition by ensuring the processing is done on the
		 * same CPU.
		 */
		switch (hdr->msgtype) {
		case CHANNELMSG_RESCIND_CHANNELOFFER:
			/*
			 * If we are handling the rescind message;
			 * schedule the work on the global work queue.
			 */
			schedule_work_on(vmbus_connection.connect_cpu,
					 &ctx->work);
			break;

		case CHANNELMSG_OFFERCHANNEL:
			atomic_inc(&vmbus_connection.offer_in_progress);
			queue_work_on(vmbus_connection.connect_cpu,
				      vmbus_connection.work_queue,
				      &ctx->work);
			break;

		default:
			queue_work(vmbus_connection.work_queue, &ctx->work);
		}
1113 1114
	} else
		entry->message_handler(hdr);
G
Greg Kroah-Hartman 已提交
1115

1116
msg_handled:
1117
	vmbus_signal_eom(msg, message_type);
G
Greg Kroah-Hartman 已提交
1118 1119
}

1120
#ifdef CONFIG_PM_SLEEP
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
/*
 * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
 * hibernation, because hv_sock connections can not persist across hibernation.
 */
static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
{
	struct onmessage_work_context *ctx;
	struct vmbus_channel_rescind_offer *rescind;

	WARN_ON(!is_hvsock_channel(channel));

	/*
1133
	 * Allocation size is small and the allocation should really not fail,
1134 1135
	 * otherwise the state of the hv_sock connections ends up in limbo.
	 */
1136 1137
	ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind),
		      GFP_KERNEL | __GFP_NOFAIL);
1138 1139 1140 1141 1142 1143 1144 1145 1146

	/*
	 * So far, these are not really used by Linux. Just set them to the
	 * reasonable values conforming to the definitions of the fields.
	 */
	ctx->msg.header.message_type = 1;
	ctx->msg.header.payload_size = sizeof(*rescind);

	/* These values are actually used by Linux. */
1147
	rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload;
1148 1149 1150 1151 1152 1153 1154 1155 1156
	rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
	rescind->child_relid = channel->offermsg.child_relid;

	INIT_WORK(&ctx->work, vmbus_onmessage_work);

	queue_work_on(vmbus_connection.connect_cpu,
		      vmbus_connection.work_queue,
		      &ctx->work);
}
1157
#endif /* CONFIG_PM_SLEEP */
1158

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
/*
 * Direct callback for channels using other deferred processing
 */
static void vmbus_channel_isr(struct vmbus_channel *channel)
{
	void (*callback_fn)(void *);

	callback_fn = READ_ONCE(channel->onchannel_callback);
	if (likely(callback_fn != NULL))
		(*callback_fn)(channel->channel_callback_context);
}

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
/*
 * Schedule all channels with events pending
 */
static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
{
	unsigned long *recv_int_page;
	u32 maxbits, relid;

	if (vmbus_proto_version < VERSION_WIN8) {
		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
		recv_int_page = vmbus_connection.recv_int_page;
	} else {
		/*
		 * When the host is win8 and beyond, the event page
		 * can be directly checked to get the id of the channel
		 * that has the interrupt pending.
		 */
		void *page_addr = hv_cpu->synic_event_page;
		union hv_synic_event_flags *event
			= (union hv_synic_event_flags *)page_addr +
						 VMBUS_MESSAGE_SINT;

		maxbits = HV_EVENT_FLAGS_COUNT;
		recv_int_page = event->flags;
	}

	if (unlikely(!recv_int_page))
		return;

	for_each_set_bit(relid, recv_int_page, maxbits) {
		struct vmbus_channel *channel;

		if (!sync_test_and_clear_bit(relid, recv_int_page))
			continue;

		/* Special case - vmbus channel protocol msg */
		if (relid == 0)
			continue;

1210 1211
		rcu_read_lock();

1212
		/* Find channel based on relid */
1213
		list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
1214 1215 1216
			if (channel->offermsg.child_relid != relid)
				continue;

1217 1218 1219
			if (channel->rescind)
				continue;

V
Vitaly Kuznetsov 已提交
1220 1221
			trace_vmbus_chan_sched(channel);

1222 1223
			++channel->interrupts;

1224 1225 1226
			switch (channel->callback_mode) {
			case HV_CALL_ISR:
				vmbus_channel_isr(channel);
1227
				break;
1228 1229 1230 1231 1232 1233

			case HV_CALL_BATCHED:
				hv_begin_read(&channel->inbound);
				/* fallthrough */
			case HV_CALL_DIRECT:
				tasklet_schedule(&channel->callback_event);
1234 1235
			}
		}
1236 1237

		rcu_read_unlock();
1238 1239 1240
	}
}

1241
static void vmbus_isr(void)
G
Greg Kroah-Hartman 已提交
1242
{
1243 1244 1245
	struct hv_per_cpu_context *hv_cpu
		= this_cpu_ptr(hv_context.cpu_context);
	void *page_addr = hv_cpu->synic_event_page;
G
Greg Kroah-Hartman 已提交
1246 1247
	struct hv_message *msg;
	union hv_synic_event_flags *event;
1248
	bool handled = false;
G
Greg Kroah-Hartman 已提交
1249

1250
	if (unlikely(page_addr == NULL))
1251
		return;
1252 1253 1254

	event = (union hv_synic_event_flags *)page_addr +
					 VMBUS_MESSAGE_SINT;
1255 1256 1257 1258 1259
	/*
	 * Check for events before checking for messages. This is the order
	 * in which events and messages are checked in Windows guests on
	 * Hyper-V, and the Windows team suggested we do the same.
	 */
G
Greg Kroah-Hartman 已提交
1260

1261 1262
	if ((vmbus_proto_version == VERSION_WS2008) ||
		(vmbus_proto_version == VERSION_WIN7)) {
G
Greg Kroah-Hartman 已提交
1263

1264
		/* Since we are a child, we only need to check bit 0 */
1265
		if (sync_test_and_clear_bit(0, event->flags))
1266 1267 1268 1269 1270 1271 1272 1273
			handled = true;
	} else {
		/*
		 * Our host is win8 or above. The signaling mechanism
		 * has changed and we can directly look at the event page.
		 * If bit n is set then we have an interrup on the channel
		 * whose id is n.
		 */
1274 1275
		handled = true;
	}
1276

1277
	if (handled)
1278
		vmbus_chan_sched(hv_cpu);
1279

1280
	page_addr = hv_cpu->synic_message_page;
1281 1282 1283
	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;

	/* Check if there are actual msgs to be processed */
1284
	if (msg->header.message_type != HVMSG_NONE) {
1285 1286 1287 1288
		if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
			hv_stimer0_isr();
			vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
		} else
1289
			tasklet_schedule(&hv_cpu->msg_dpc);
1290
	}
1291 1292

	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1293 1294
}

1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
/*
 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
 * buffer and call into Hyper-V to transfer the data.
 */
static void hv_kmsg_dump(struct kmsg_dumper *dumper,
			 enum kmsg_dump_reason reason)
{
	size_t bytes_written;
	phys_addr_t panic_pa;

	/* We are only interested in panics. */
	if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
		return;

	panic_pa = virt_to_phys(hv_panic_page);

	/*
	 * Write dump contents to the page. No need to synchronize; panic should
	 * be single-threaded.
	 */
1315
	kmsg_dump_get_buffer(dumper, true, hv_panic_page, HV_HYP_PAGE_SIZE,
1316 1317 1318
			     &bytes_written);
	if (bytes_written)
		hyperv_report_panic_msg(panic_pa, bytes_written);
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
}

static struct kmsg_dumper hv_kmsg_dumper = {
	.dump = hv_kmsg_dump,
};

static struct ctl_table_header *hv_ctl_table_hdr;

/*
 * sysctl option to allow the user to control whether kmsg data should be
 * reported to Hyper-V on panic.
 */
static struct ctl_table hv_ctl_table[] = {
	{
		.procname       = "hyperv_record_panic_msg",
		.data           = &sysctl_record_panic_msg,
		.maxlen         = sizeof(int),
		.mode           = 0644,
		.proc_handler   = proc_dointvec_minmax,
1338 1339
		.extra1		= SYSCTL_ZERO,
		.extra2		= SYSCTL_ONE
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
	},
	{}
};

static struct ctl_table hv_root_table[] = {
	{
		.procname	= "kernel",
		.mode		= 0555,
		.child		= hv_ctl_table
	},
	{}
};
1352

1353
/*
1354 1355 1356
 * vmbus_bus_init -Main vmbus driver initialization routine.
 *
 * Here, we
1357 1358 1359
 *	- initialize the vmbus driver context
 *	- invoke the vmbus hv main init routine
 *	- retrieve the channel offers
1360
 */
1361
static int vmbus_bus_init(void)
1362
{
1363
	int ret;
1364

1365 1366
	/* Hypervisor initialization...setup hypercall page..etc */
	ret = hv_init();
1367
	if (ret != 0) {
1368
		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1369
		return ret;
1370 1371
	}

1372
	ret = bus_register(&hv_bus);
1373
	if (ret)
1374
		return ret;
1375

1376
	hv_setup_vmbus_irq(vmbus_isr);
1377

1378 1379 1380
	ret = hv_synic_alloc();
	if (ret)
		goto err_alloc;
1381

1382
	/*
1383 1384
	 * Initialize the per-cpu interrupt state and stimer state.
	 * Then connect to the host.
1385
	 */
1386
	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1387 1388
				hv_synic_init, hv_synic_cleanup);
	if (ret < 0)
1389
		goto err_cpuhp;
1390 1391
	hyperv_cpuhp_online = ret;

1392
	ret = vmbus_connect();
1393
	if (ret)
1394
		goto err_connect;
1395

1396 1397 1398
	/*
	 * Only register if the crash MSRs are available
	 */
1399
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
		u64 hyperv_crash_ctl;
		/*
		 * Sysctl registration is not fatal, since by default
		 * reporting is enabled.
		 */
		hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
		if (!hv_ctl_table_hdr)
			pr_err("Hyper-V: sysctl table register error");

		/*
		 * Register for panic kmsg callback only if the right
		 * capability is supported by the hypervisor.
		 */
1413
		hv_get_crash_ctl(hyperv_crash_ctl);
1414
		if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) {
1415
			hv_panic_page = (void *)hv_alloc_hyperv_zeroed_page();
1416 1417
			if (hv_panic_page) {
				ret = kmsg_dump_register(&hv_kmsg_dumper);
1418
				if (ret) {
1419 1420
					pr_err("Hyper-V: kmsg dump register "
						"error 0x%x\n", ret);
1421 1422 1423 1424
					hv_free_hyperv_page(
					    (unsigned long)hv_panic_page);
					hv_panic_page = NULL;
				}
1425 1426 1427 1428 1429
			} else
				pr_err("Hyper-V: panic message page memory "
					"allocation failed");
		}

1430
		register_die_notifier(&hyperv_die_block);
1431 1432
	}

1433 1434 1435 1436 1437 1438 1439 1440
	/*
	 * Always register the panic notifier because we need to unload
	 * the VMbus channel connection to prevent any VMbus
	 * activity after the VM panics.
	 */
	atomic_notifier_chain_register(&panic_notifier_list,
			       &hyperv_panic_block);

1441
	vmbus_request_offers();
1442

1443
	return 0;
1444

1445
err_connect:
1446
	cpuhp_remove_state(hyperv_cpuhp_online);
1447
err_cpuhp:
1448
	hv_synic_free();
1449
err_alloc:
1450
	hv_remove_vmbus_irq();
1451 1452

	bus_unregister(&hv_bus);
1453 1454
	unregister_sysctl_table(hv_ctl_table_hdr);
	hv_ctl_table_hdr = NULL;
1455
	return ret;
1456 1457
}

1458
/**
1459 1460
 * __vmbus_child_driver_register() - Register a vmbus's driver
 * @hv_driver: Pointer to driver structure you want to register
1461 1462
 * @owner: owner module of the drv
 * @mod_name: module name string
1463 1464
 *
 * Registers the given driver with Linux through the 'driver_register()' call
1465
 * and sets up the hyper-v vmbus handling for this driver.
1466 1467
 * It will return the state of the 'driver_register()' call.
 *
1468
 */
1469
int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1470
{
1471
	int ret;
1472

1473
	pr_info("registering driver %s\n", hv_driver->name);
1474

1475 1476 1477 1478
	ret = vmbus_exists();
	if (ret < 0)
		return ret;

1479 1480 1481 1482
	hv_driver->driver.name = hv_driver->name;
	hv_driver->driver.owner = owner;
	hv_driver->driver.mod_name = mod_name;
	hv_driver->driver.bus = &hv_bus;
1483

1484 1485 1486
	spin_lock_init(&hv_driver->dynids.lock);
	INIT_LIST_HEAD(&hv_driver->dynids.list);

1487
	ret = driver_register(&hv_driver->driver);
1488

1489
	return ret;
1490
}
1491
EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1492

1493
/**
1494
 * vmbus_driver_unregister() - Unregister a vmbus's driver
1495 1496
 * @hv_driver: Pointer to driver structure you want to
 *             un-register
1497
 *
1498 1499
 * Un-register the given driver that was previous registered with a call to
 * vmbus_driver_register()
1500
 */
1501
void vmbus_driver_unregister(struct hv_driver *hv_driver)
1502
{
1503
	pr_info("unregistering driver %s\n", hv_driver->name);
1504

1505
	if (!vmbus_exists()) {
1506
		driver_unregister(&hv_driver->driver);
1507 1508
		vmbus_free_dynids(hv_driver);
	}
1509
}
1510
EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1511

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525

/*
 * Called when last reference to channel is gone.
 */
static void vmbus_chan_release(struct kobject *kobj)
{
	struct vmbus_channel *channel
		= container_of(kobj, struct vmbus_channel, kobj);

	kfree_rcu(channel, rcu);
}

struct vmbus_chan_attribute {
	struct attribute attr;
1526
	ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
	ssize_t (*store)(struct vmbus_channel *chan,
			 const char *buf, size_t count);
};
#define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
	struct vmbus_chan_attribute chan_attr_##_name \
		= __ATTR(_name, _mode, _show, _store)
#define VMBUS_CHAN_ATTR_RW(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
#define VMBUS_CHAN_ATTR_RO(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
#define VMBUS_CHAN_ATTR_WO(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)

static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
				    struct attribute *attr, char *buf)
{
	const struct vmbus_chan_attribute *attribute
		= container_of(attr, struct vmbus_chan_attribute, attr);
1545
	struct vmbus_channel *chan
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
		= container_of(kobj, struct vmbus_channel, kobj);

	if (!attribute->show)
		return -EIO;

	return attribute->show(chan, buf);
}

static const struct sysfs_ops vmbus_chan_sysfs_ops = {
	.show = vmbus_chan_attr_show,
};

1558
static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1559
{
1560 1561
	struct hv_ring_buffer_info *rbi = &channel->outbound;
	ssize_t ret;
1562

1563 1564 1565
	mutex_lock(&rbi->ring_buffer_mutex);
	if (!rbi->ring_buffer) {
		mutex_unlock(&rbi->ring_buffer_mutex);
1566
		return -EINVAL;
1567
	}
1568

1569 1570 1571
	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
	mutex_unlock(&rbi->ring_buffer_mutex);
	return ret;
1572
}
1573
static VMBUS_CHAN_ATTR_RO(out_mask);
1574

1575
static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1576
{
1577 1578
	struct hv_ring_buffer_info *rbi = &channel->inbound;
	ssize_t ret;
1579

1580 1581 1582
	mutex_lock(&rbi->ring_buffer_mutex);
	if (!rbi->ring_buffer) {
		mutex_unlock(&rbi->ring_buffer_mutex);
1583
		return -EINVAL;
1584
	}
1585

1586 1587 1588
	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
	mutex_unlock(&rbi->ring_buffer_mutex);
	return ret;
1589
}
1590
static VMBUS_CHAN_ATTR_RO(in_mask);
1591

1592
static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1593
{
1594 1595
	struct hv_ring_buffer_info *rbi = &channel->inbound;
	ssize_t ret;
1596

1597 1598 1599
	mutex_lock(&rbi->ring_buffer_mutex);
	if (!rbi->ring_buffer) {
		mutex_unlock(&rbi->ring_buffer_mutex);
1600
		return -EINVAL;
1601
	}
1602

1603 1604 1605
	ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
	mutex_unlock(&rbi->ring_buffer_mutex);
	return ret;
1606
}
1607
static VMBUS_CHAN_ATTR_RO(read_avail);
1608

1609
static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1610
{
1611 1612
	struct hv_ring_buffer_info *rbi = &channel->outbound;
	ssize_t ret;
1613

1614 1615 1616
	mutex_lock(&rbi->ring_buffer_mutex);
	if (!rbi->ring_buffer) {
		mutex_unlock(&rbi->ring_buffer_mutex);
1617
		return -EINVAL;
1618
	}
1619

1620 1621 1622
	ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
	mutex_unlock(&rbi->ring_buffer_mutex);
	return ret;
1623
}
1624
static VMBUS_CHAN_ATTR_RO(write_avail);
1625

1626
static ssize_t show_target_cpu(struct vmbus_channel *channel, char *buf)
1627 1628 1629
{
	return sprintf(buf, "%u\n", channel->target_cpu);
}
1630
static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1631

1632
static ssize_t channel_pending_show(struct vmbus_channel *channel,
1633 1634 1635 1636 1637 1638
				    char *buf)
{
	return sprintf(buf, "%d\n",
		       channel_pending(channel,
				       vmbus_connection.monitor_pages[1]));
}
1639
static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1640

1641
static ssize_t channel_latency_show(struct vmbus_channel *channel,
1642 1643 1644 1645 1646 1647
				    char *buf)
{
	return sprintf(buf, "%d\n",
		       channel_latency(channel,
				       vmbus_connection.monitor_pages[1]));
}
1648
static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1649

1650
static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1651 1652 1653
{
	return sprintf(buf, "%llu\n", channel->interrupts);
}
1654
static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1655

1656
static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1657 1658 1659
{
	return sprintf(buf, "%llu\n", channel->sig_events);
}
1660
static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1661

1662
static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1663 1664 1665 1666 1667 1668 1669
					 char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->intr_in_full);
}
static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);

1670
static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1671 1672 1673 1674 1675 1676 1677
					   char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->intr_out_empty);
}
static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);

1678
static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1679 1680 1681 1682 1683 1684 1685
					   char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->out_full_first);
}
static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);

1686
static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1687 1688 1689 1690 1691 1692 1693
					   char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->out_full_total);
}
static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);

1694
static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1695 1696 1697 1698 1699 1700
					  char *buf)
{
	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
}
static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);

1701
static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1702 1703 1704 1705 1706 1707 1708
				  char *buf)
{
	return sprintf(buf, "%u\n",
		       channel->offermsg.offer.sub_channel_index);
}
static VMBUS_CHAN_ATTR_RO(subchannel_id);

1709 1710 1711 1712 1713 1714 1715 1716
static struct attribute *vmbus_chan_attrs[] = {
	&chan_attr_out_mask.attr,
	&chan_attr_in_mask.attr,
	&chan_attr_read_avail.attr,
	&chan_attr_write_avail.attr,
	&chan_attr_cpu.attr,
	&chan_attr_pending.attr,
	&chan_attr_latency.attr,
1717 1718
	&chan_attr_interrupts.attr,
	&chan_attr_events.attr,
1719 1720 1721 1722
	&chan_attr_intr_in_full.attr,
	&chan_attr_intr_out_empty.attr,
	&chan_attr_out_full_first.attr,
	&chan_attr_out_full_total.attr,
1723 1724
	&chan_attr_monitor_id.attr,
	&chan_attr_subchannel_id.attr,
1725 1726 1727
	NULL
};

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
/*
 * Channel-level attribute_group callback function. Returns the permission for
 * each attribute, and returns 0 if an attribute is not visible.
 */
static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
					  struct attribute *attr, int idx)
{
	const struct vmbus_channel *channel =
		container_of(kobj, struct vmbus_channel, kobj);

	/* Hide the monitor attributes if the monitor mechanism is not used. */
	if (!channel->offermsg.monitor_allocated &&
	    (attr == &chan_attr_pending.attr ||
	     attr == &chan_attr_latency.attr ||
	     attr == &chan_attr_monitor_id.attr))
		return 0;

	return attr->mode;
}

static struct attribute_group vmbus_chan_group = {
	.attrs = vmbus_chan_attrs,
	.is_visible = vmbus_chan_attr_is_visible
};

1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
static struct kobj_type vmbus_chan_ktype = {
	.sysfs_ops = &vmbus_chan_sysfs_ops,
	.release = vmbus_chan_release,
};

/*
 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
 */
int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
{
1763
	const struct device *device = &dev->device;
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
	struct kobject *kobj = &channel->kobj;
	u32 relid = channel->offermsg.child_relid;
	int ret;

	kobj->kset = dev->channels_kset;
	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
				   "%u", relid);
	if (ret)
		return ret;

1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
	ret = sysfs_create_group(kobj, &vmbus_chan_group);

	if (ret) {
		/*
		 * The calling functions' error handling paths will cleanup the
		 * empty channel directory.
		 */
		dev_err(device, "Unable to set up channel sysfs files\n");
		return ret;
	}

1785 1786 1787 1788 1789
	kobject_uevent(kobj, KOBJ_ADD);

	return 0;
}

1790 1791 1792 1793 1794 1795 1796 1797
/*
 * vmbus_remove_channel_attr_group - remove the channel's attribute group
 */
void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
{
	sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
}

1798
/*
1799
 * vmbus_device_create - Creates and registers a new child device
1800
 * on the vmbus.
1801
 */
1802 1803
struct hv_device *vmbus_device_create(const guid_t *type,
				      const guid_t *instance,
S
stephen hemminger 已提交
1804
				      struct vmbus_channel *channel)
1805
{
1806
	struct hv_device *child_device_obj;
1807

1808 1809
	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
	if (!child_device_obj) {
1810
		pr_err("Unable to allocate device object for child device\n");
1811 1812 1813
		return NULL;
	}

1814
	child_device_obj->channel = channel;
1815 1816
	guid_copy(&child_device_obj->dev_type, type);
	guid_copy(&child_device_obj->dev_instance, instance);
1817
	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1818 1819 1820 1821

	return child_device_obj;
}

1822
/*
1823
 * vmbus_device_register - Register the child device
1824
 */
1825
int vmbus_device_register(struct hv_device *child_device_obj)
1826
{
1827 1828
	struct kobject *kobj = &child_device_obj->device.kobj;
	int ret;
1829

1830
	dev_set_name(&child_device_obj->device, "%pUl",
1831
		     child_device_obj->channel->offermsg.offer.if_instance.b);
1832

1833
	child_device_obj->device.bus = &hv_bus;
1834
	child_device_obj->device.parent = &hv_acpi_dev->dev;
1835
	child_device_obj->device.release = vmbus_device_release;
1836

1837 1838 1839 1840
	/*
	 * Register with the LDM. This will kick off the driver/device
	 * binding...which will eventually call vmbus_match() and vmbus_probe()
	 */
1841
	ret = device_register(&child_device_obj->device);
1842
	if (ret) {
1843
		pr_err("Unable to register child device\n");
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
		return ret;
	}

	child_device_obj->channels_kset = kset_create_and_add("channels",
							      NULL, kobj);
	if (!child_device_obj->channels_kset) {
		ret = -ENOMEM;
		goto err_dev_unregister;
	}

	ret = vmbus_add_channel_kobj(child_device_obj,
				     child_device_obj->channel);
	if (ret) {
		pr_err("Unable to register primary channeln");
		goto err_kset_unregister;
	}
1860
	hv_debug_add_dev_dir(child_device_obj);
1861 1862 1863 1864 1865

	return 0;

err_kset_unregister:
	kset_unregister(child_device_obj->channels_kset);
1866

1867 1868
err_dev_unregister:
	device_unregister(&child_device_obj->device);
1869 1870 1871
	return ret;
}

1872
/*
1873
 * vmbus_device_unregister - Remove the specified child device
1874
 * from the vmbus.
1875
 */
1876
void vmbus_device_unregister(struct hv_device *device_obj)
1877
{
1878 1879 1880
	pr_debug("child device %s unregistered\n",
		dev_name(&device_obj->device));

1881 1882
	kset_unregister(device_obj->channels_kset);

1883 1884 1885 1886
	/*
	 * Kick off the process of unregistering the device.
	 * This will call vmbus_remove() and eventually vmbus_device_release()
	 */
1887
	device_unregister(&device_obj->device);
1888 1889 1890
}


1891
/*
1892
 * VMBUS is an acpi enumerated device. Get the information we
1893
 * need from DSDT.
1894
 */
1895
#define VTPM_BASE_ADDRESS 0xfed40000
1896
static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1897
{
1898 1899 1900 1901 1902 1903
	resource_size_t start = 0;
	resource_size_t end = 0;
	struct resource *new_res;
	struct resource **old_res = &hyperv_mmio;
	struct resource **prev_res = NULL;

1904
	switch (res->type) {
1905 1906 1907 1908 1909 1910 1911 1912 1913

	/*
	 * "Address" descriptors are for bus windows. Ignore
	 * "memory" descriptors, which are for registers on
	 * devices.
	 */
	case ACPI_RESOURCE_TYPE_ADDRESS32:
		start = res->data.address32.address.minimum;
		end = res->data.address32.address.maximum;
G
Gerd Hoffmann 已提交
1914
		break;
1915

1916
	case ACPI_RESOURCE_TYPE_ADDRESS64:
1917 1918
		start = res->data.address64.address.minimum;
		end = res->data.address64.address.maximum;
G
Gerd Hoffmann 已提交
1919
		break;
1920 1921 1922 1923 1924

	default:
		/* Unused resource type */
		return AE_OK;

1925
	}
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
	/*
	 * Ignore ranges that are below 1MB, as they're not
	 * necessary or useful here.
	 */
	if (end < 0x100000)
		return AE_OK;

	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
	if (!new_res)
		return AE_NO_MEMORY;

	/* If this range overlaps the virtual TPM, truncate it. */
	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
		end = VTPM_BASE_ADDRESS;

	new_res->name = "hyperv mmio";
	new_res->flags = IORESOURCE_MEM;
	new_res->start = start;
	new_res->end = end;

1946 1947 1948
	/*
	 * If two ranges are adjacent, merge them.
	 */
1949 1950 1951 1952 1953 1954
	do {
		if (!*old_res) {
			*old_res = new_res;
			break;
		}

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
		if (((*old_res)->end + 1) == new_res->start) {
			(*old_res)->end = new_res->end;
			kfree(new_res);
			break;
		}

		if ((*old_res)->start == new_res->end + 1) {
			(*old_res)->start = new_res->start;
			kfree(new_res);
			break;
		}

1967
		if ((*old_res)->start > new_res->end) {
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
			new_res->sibling = *old_res;
			if (prev_res)
				(*prev_res)->sibling = new_res;
			*old_res = new_res;
			break;
		}

		prev_res = old_res;
		old_res = &(*old_res)->sibling;

	} while (1);
1979 1980 1981 1982

	return AE_OK;
}

1983 1984 1985 1986 1987 1988
static int vmbus_acpi_remove(struct acpi_device *device)
{
	struct resource *cur_res;
	struct resource *next_res;

	if (hyperv_mmio) {
1989 1990 1991 1992 1993 1994
		if (fb_mmio) {
			__release_region(hyperv_mmio, fb_mmio->start,
					 resource_size(fb_mmio));
			fb_mmio = NULL;
		}

1995 1996 1997 1998 1999 2000 2001 2002 2003
		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
			next_res = cur_res->sibling;
			kfree(cur_res);
		}
	}

	return 0;
}

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
static void vmbus_reserve_fb(void)
{
	int size;
	/*
	 * Make a claim for the frame buffer in the resource tree under the
	 * first node, which will be the one below 4GB.  The length seems to
	 * be underreported, particularly in a Generation 1 VM.  So start out
	 * reserving a larger area and make it smaller until it succeeds.
	 */

	if (screen_info.lfb_base) {
		if (efi_enabled(EFI_BOOT))
			size = max_t(__u32, screen_info.lfb_size, 0x800000);
		else
			size = max_t(__u32, screen_info.lfb_size, 0x4000000);

		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
			fb_mmio = __request_region(hyperv_mmio,
						   screen_info.lfb_base, size,
						   fb_mmio_name, 0);
		}
	}
}

2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
/**
 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
 * @new:		If successful, supplied a pointer to the
 *			allocated MMIO space.
 * @device_obj:		Identifies the caller
 * @min:		Minimum guest physical address of the
 *			allocation
 * @max:		Maximum guest physical address
 * @size:		Size of the range to be allocated
 * @align:		Alignment of the range to be allocated
 * @fb_overlap_ok:	Whether this allocation can be allowed
 *			to overlap the video frame buffer.
 *
 * This function walks the resources granted to VMBus by the
 * _CRS object in the ACPI namespace underneath the parent
 * "bridge" whether that's a root PCI bus in the Generation 1
 * case or a Module Device in the Generation 2 case.  It then
 * attempts to allocate from the global MMIO pool in a way that
 * matches the constraints supplied in these parameters and by
 * that _CRS.
 *
 * Return: 0 on success, -errno on failure
 */
int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
			resource_size_t min, resource_size_t max,
			resource_size_t size, resource_size_t align,
			bool fb_overlap_ok)
{
2056
	struct resource *iter, *shadow;
2057
	resource_size_t range_min, range_max, start;
2058
	const char *dev_n = dev_name(&device_obj->device);
2059
	int retval;
2060 2061

	retval = -ENXIO;
2062
	mutex_lock(&hyperv_mmio_lock);
2063

2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
	/*
	 * If overlaps with frame buffers are allowed, then first attempt to
	 * make the allocation from within the reserved region.  Because it
	 * is already reserved, no shadow allocation is necessary.
	 */
	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
	    !(max < fb_mmio->start)) {

		range_min = fb_mmio->start;
		range_max = fb_mmio->end;
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				retval = 0;
				goto exit;
			}
		}
	}

2084 2085 2086 2087 2088 2089
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= max) || (iter->end <= min))
			continue;

		range_min = iter->start;
		range_max = iter->end;
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			shadow = __request_region(iter, start, size, NULL,
						  IORESOURCE_BUSY);
			if (!shadow)
				continue;

			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				shadow->name = (char *)*new;
				retval = 0;
				goto exit;
2102 2103
			}

2104
			__release_region(iter, start, size);
2105 2106 2107
		}
	}

2108
exit:
2109
	mutex_unlock(&hyperv_mmio_lock);
2110
	return retval;
2111 2112 2113
}
EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);

2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
/**
 * vmbus_free_mmio() - Free a memory-mapped I/O range.
 * @start:		Base address of region to release.
 * @size:		Size of the range to be allocated
 *
 * This function releases anything requested by
 * vmbus_mmio_allocate().
 */
void vmbus_free_mmio(resource_size_t start, resource_size_t size)
{
2124 2125
	struct resource *iter;

2126
	mutex_lock(&hyperv_mmio_lock);
2127 2128 2129 2130 2131 2132
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= start + size) || (iter->end <= start))
			continue;

		__release_region(iter, start, size);
	}
2133
	release_mem_region(start, size);
2134
	mutex_unlock(&hyperv_mmio_lock);
2135 2136 2137 2138

}
EXPORT_SYMBOL_GPL(vmbus_free_mmio);

2139 2140 2141
static int vmbus_acpi_add(struct acpi_device *device)
{
	acpi_status result;
2142
	int ret_val = -ENODEV;
2143
	struct acpi_device *ancestor;
2144

2145 2146
	hv_acpi_dev = device;

2147
	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2148
					vmbus_walk_resources, NULL);
2149

2150 2151 2152
	if (ACPI_FAILURE(result))
		goto acpi_walk_err;
	/*
2153 2154
	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
	 * firmware) is the VMOD that has the mmio ranges. Get that.
2155
	 */
2156 2157 2158
	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
					     vmbus_walk_resources, NULL);
2159 2160

		if (ACPI_FAILURE(result))
2161
			continue;
2162 2163
		if (hyperv_mmio) {
			vmbus_reserve_fb();
2164
			break;
2165
		}
2166
	}
2167 2168 2169
	ret_val = 0;

acpi_walk_err:
2170
	complete(&probe_event);
2171 2172
	if (ret_val)
		vmbus_acpi_remove(device);
2173
	return ret_val;
2174 2175
}

2176
#ifdef CONFIG_PM_SLEEP
2177 2178
static int vmbus_bus_suspend(struct device *dev)
{
2179 2180
	struct vmbus_channel *channel, *sc;
	unsigned long flags;
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198

	while (atomic_read(&vmbus_connection.offer_in_progress) != 0) {
		/*
		 * We wait here until the completion of any channel
		 * offers that are currently in progress.
		 */
		msleep(1);
	}

	mutex_lock(&vmbus_connection.channel_mutex);
	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
		if (!is_hvsock_channel(channel))
			continue;

		vmbus_force_channel_rescinded(channel);
	}
	mutex_unlock(&vmbus_connection.channel_mutex);

2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
	/*
	 * Wait until all the sub-channels and hv_sock channels have been
	 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
	 * they would conflict with the new sub-channels that will be created
	 * in the resume path. hv_sock channels should also be destroyed, but
	 * a hv_sock channel of an established hv_sock connection can not be
	 * really destroyed since it may still be referenced by the userspace
	 * application, so we just force the hv_sock channel to be rescinded
	 * by vmbus_force_channel_rescinded(), and the userspace application
	 * will thoroughly destroy the channel after hibernation.
	 *
	 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
	 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
	 */
	if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0)
		wait_for_completion(&vmbus_connection.ready_for_suspend_event);

2216 2217
	WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0);

2218 2219 2220
	mutex_lock(&vmbus_connection.channel_mutex);

	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2221 2222 2223 2224 2225 2226
		/*
		 * Invalidate the field. Upon resume, vmbus_onoffer() will fix
		 * up the field, and the other fields (if necessary).
		 */
		channel->offermsg.child_relid = INVALID_RELID;

2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
		if (is_hvsock_channel(channel)) {
			if (!channel->rescind) {
				pr_err("hv_sock channel not rescinded!\n");
				WARN_ON_ONCE(1);
			}
			continue;
		}

		spin_lock_irqsave(&channel->lock, flags);
		list_for_each_entry(sc, &channel->sc_list, sc_list) {
			pr_err("Sub-channel not deleted!\n");
			WARN_ON_ONCE(1);
		}
		spin_unlock_irqrestore(&channel->lock, flags);
2241 2242

		atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume);
2243 2244 2245 2246
	}

	mutex_unlock(&vmbus_connection.channel_mutex);

2247 2248
	vmbus_initiate_unload(false);

2249 2250 2251
	/* Reset the event for the next resume. */
	reinit_completion(&vmbus_connection.ready_for_resume_event);

2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
	return 0;
}

static int vmbus_bus_resume(struct device *dev)
{
	struct vmbus_channel_msginfo *msginfo;
	size_t msgsize;
	int ret;

	/*
	 * We only use the 'vmbus_proto_version', which was in use before
	 * hibernation, to re-negotiate with the host.
	 */
2265
	if (!vmbus_proto_version) {
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
		pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
		return -EINVAL;
	}

	msgsize = sizeof(*msginfo) +
		  sizeof(struct vmbus_channel_initiate_contact);

	msginfo = kzalloc(msgsize, GFP_KERNEL);

	if (msginfo == NULL)
		return -ENOMEM;

	ret = vmbus_negotiate_version(msginfo, vmbus_proto_version);

	kfree(msginfo);

	if (ret != 0)
		return ret;

2285 2286
	WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0);

2287 2288
	vmbus_request_offers();

2289 2290
	wait_for_completion(&vmbus_connection.ready_for_resume_event);

2291 2292 2293
	/* Reset the event for the next suspend. */
	reinit_completion(&vmbus_connection.ready_for_suspend_event);

2294 2295
	return 0;
}
2296
#endif /* CONFIG_PM_SLEEP */
2297

2298 2299
static const struct acpi_device_id vmbus_acpi_device_ids[] = {
	{"VMBUS", 0},
2300
	{"VMBus", 0},
2301 2302 2303 2304
	{"", 0},
};
MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);

2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
/*
 * Note: we must use SET_NOIRQ_SYSTEM_SLEEP_PM_OPS rather than
 * SET_SYSTEM_SLEEP_PM_OPS, otherwise NIC SR-IOV can not work, because the
 * "pci_dev_pm_ops" uses the "noirq" callbacks: in the resume path, the
 * pci "noirq" restore callback runs before "non-noirq" callbacks (see
 * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
 * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
 * resume callback must also run via the "noirq" callbacks.
 */
static const struct dev_pm_ops vmbus_bus_pm = {
	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(vmbus_bus_suspend, vmbus_bus_resume)
};

2318 2319 2320 2321 2322
static struct acpi_driver vmbus_acpi_driver = {
	.name = "vmbus",
	.ids = vmbus_acpi_device_ids,
	.ops = {
		.add = vmbus_acpi_add,
2323
		.remove = vmbus_acpi_remove,
2324
	},
2325
	.drv.pm = &vmbus_bus_pm,
2326 2327
};

2328 2329
static void hv_kexec_handler(void)
{
2330
	hv_stimer_global_cleanup();
2331
	vmbus_initiate_unload(false);
2332 2333
	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
	mb();
2334
	cpuhp_remove_state(hyperv_cpuhp_online);
2335
	hyperv_cleanup();
2336 2337
};

2338 2339
static void hv_crash_handler(struct pt_regs *regs)
{
2340 2341
	int cpu;

2342
	vmbus_initiate_unload(true);
2343 2344 2345 2346 2347
	/*
	 * In crash handler we can't schedule synic cleanup for all CPUs,
	 * doing the cleanup for current CPU only. This should be sufficient
	 * for kdump.
	 */
2348 2349
	cpu = smp_processor_id();
	hv_stimer_cleanup(cpu);
2350
	hv_synic_disable_regs(cpu);
2351
	hyperv_cleanup();
2352 2353
};

2354 2355 2356
static int hv_synic_suspend(void)
{
	/*
2357 2358 2359 2360
	 * When we reach here, all the non-boot CPUs have been offlined.
	 * If we're in a legacy configuration where stimer Direct Mode is
	 * not enabled, the stimers on the non-boot CPUs have been unbound
	 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() ->
2361 2362
	 * hv_stimer_cleanup() -> clockevents_unbind_device().
	 *
2363 2364 2365 2366 2367
	 * hv_synic_suspend() only runs on CPU0 with interrupts disabled.
	 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because:
	 * 1) it's unnecessary as interrupts remain disabled between
	 * syscore_suspend() and syscore_resume(): see create_image() and
	 * resume_target_kernel()
2368 2369
	 * 2) the stimer on CPU0 is automatically disabled later by
	 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
2370 2371 2372 2373
	 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown()
	 * 3) a warning would be triggered if we call
	 * clockevents_unbind_device(), which may sleep, in an
	 * interrupts-disabled context.
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
	 */

	hv_synic_disable_regs(0);

	return 0;
}

static void hv_synic_resume(void)
{
	hv_synic_enable_regs(0);

	/*
	 * Note: we don't need to call hv_stimer_init(0), because the timer
	 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
	 * automatically re-enabled in timekeeping_resume().
	 */
}

/* The callbacks run only on CPU0, with irqs_disabled. */
static struct syscore_ops hv_synic_syscore_ops = {
	.suspend = hv_synic_suspend,
	.resume = hv_synic_resume,
};

2398
static int __init hv_acpi_init(void)
2399
{
2400
	int ret, t;
2401

2402
	if (!hv_is_hyperv_initialized())
2403 2404
		return -ENODEV;

2405 2406 2407
	init_completion(&probe_event);

	/*
2408
	 * Get ACPI resources first.
2409
	 */
2410 2411
	ret = acpi_bus_register_driver(&vmbus_acpi_driver);

2412 2413 2414
	if (ret)
		return ret;

2415 2416 2417 2418 2419
	t = wait_for_completion_timeout(&probe_event, 5*HZ);
	if (t == 0) {
		ret = -ETIMEDOUT;
		goto cleanup;
	}
2420
	hv_debug_init();
2421

2422
	ret = vmbus_bus_init();
2423
	if (ret)
2424 2425
		goto cleanup;

2426
	hv_setup_kexec_handler(hv_kexec_handler);
2427
	hv_setup_crash_handler(hv_crash_handler);
2428

2429 2430
	register_syscore_ops(&hv_synic_syscore_ops);

2431 2432 2433 2434
	return 0;

cleanup:
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2435
	hv_acpi_dev = NULL;
2436
	return ret;
2437 2438
}

2439 2440
static void __exit vmbus_exit(void)
{
2441 2442
	int cpu;

2443 2444
	unregister_syscore_ops(&hv_synic_syscore_ops);

2445
	hv_remove_kexec_handler();
2446
	hv_remove_crash_handler();
2447
	vmbus_connection.conn_state = DISCONNECTED;
2448
	hv_stimer_global_cleanup();
2449
	vmbus_disconnect();
2450
	hv_remove_vmbus_irq();
2451 2452 2453 2454 2455 2456
	for_each_online_cpu(cpu) {
		struct hv_per_cpu_context *hv_cpu
			= per_cpu_ptr(hv_context.cpu_context, cpu);

		tasklet_kill(&hv_cpu->msg_dpc);
	}
2457 2458
	hv_debug_rm_all_dir();

2459
	vmbus_free_channels();
2460

2461
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
2462
		kmsg_dump_unregister(&hv_kmsg_dumper);
2463
		unregister_die_notifier(&hyperv_die_block);
2464 2465 2466
		atomic_notifier_chain_unregister(&panic_notifier_list,
						 &hyperv_panic_block);
	}
2467 2468

	free_page((unsigned long)hv_panic_page);
2469 2470
	unregister_sysctl_table(hv_ctl_table_hdr);
	hv_ctl_table_hdr = NULL;
2471
	bus_unregister(&hv_bus);
2472

2473
	cpuhp_remove_state(hyperv_cpuhp_online);
2474
	hv_synic_free();
2475 2476 2477
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
}

2478

2479
MODULE_LICENSE("GPL");
2480
MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2481

2482
subsys_initcall(hv_acpi_init);
2483
module_exit(vmbus_exit);