vmbus_drv.c 35.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (c) 2009, Microsoft Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 *
 * Authors:
 *   Haiyang Zhang <haiyangz@microsoft.com>
 *   Hank Janssen  <hjanssen@microsoft.com>
20
 *   K. Y. Srinivasan <kys@microsoft.com>
21
 *
22
 */
23 24
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

25 26 27 28 29
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/sysctl.h>
30
#include <linux/slab.h>
31
#include <linux/acpi.h>
32
#include <linux/completion.h>
33
#include <linux/hyperv.h>
34
#include <linux/kernel_stat.h>
35
#include <linux/clockchips.h>
36
#include <linux/cpu.h>
37
#include <asm/hyperv.h>
38
#include <asm/hypervisor.h>
39
#include <asm/mshyperv.h>
40 41
#include <linux/notifier.h>
#include <linux/ptrace.h>
42
#include <linux/screen_info.h>
43
#include <linux/kdebug.h>
44
#include <linux/efi.h>
45
#include "hyperv_vmbus.h"
46

47
static struct acpi_device  *hv_acpi_dev;
48

49
static struct completion probe_event;
50

51

52
static void hyperv_report_panic(struct pt_regs *regs)
53
{
54
	static bool panic_reported;
55

56 57 58 59 60 61 62 63
	/*
	 * We prefer to report panic on 'die' chain as we have proper
	 * registers to report, but if we miss it (e.g. on BUG()) we need
	 * to report it on 'panic'.
	 */
	if (panic_reported)
		return;
	panic_reported = true;
64 65 66 67 68 69 70 71 72 73 74

	wrmsrl(HV_X64_MSR_CRASH_P0, regs->ip);
	wrmsrl(HV_X64_MSR_CRASH_P1, regs->ax);
	wrmsrl(HV_X64_MSR_CRASH_P2, regs->bx);
	wrmsrl(HV_X64_MSR_CRASH_P3, regs->cx);
	wrmsrl(HV_X64_MSR_CRASH_P4, regs->dx);

	/*
	 * Let Hyper-V know there is crash data available
	 */
	wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
75 76 77 78 79 80 81 82 83 84
}

static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
			      void *args)
{
	struct pt_regs *regs;

	regs = current_pt_regs();

	hyperv_report_panic(regs);
85 86 87
	return NOTIFY_DONE;
}

88 89 90 91 92 93 94 95 96 97 98 99 100
static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
			    void *args)
{
	struct die_args *die = (struct die_args *)args;
	struct pt_regs *regs = die->regs;

	hyperv_report_panic(regs);
	return NOTIFY_DONE;
}

static struct notifier_block hyperv_die_block = {
	.notifier_call = hyperv_die_event,
};
101 102 103 104
static struct notifier_block hyperv_panic_block = {
	.notifier_call = hyperv_panic_event,
};

105 106
static const char *fb_mmio_name = "fb_range";
static struct resource *fb_mmio;
107
struct resource *hyperv_mmio;
108
DEFINE_SEMAPHORE(hyperv_mmio_lock);
109

110 111 112 113 114 115 116 117
static int vmbus_exists(void)
{
	if (hv_acpi_dev == NULL)
		return -ENODEV;

	return 0;
}

118 119 120 121 122 123 124 125
#define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
{
	int i;
	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
}

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
static u8 channel_monitor_group(struct vmbus_channel *channel)
{
	return (u8)channel->offermsg.monitorid / 32;
}

static u8 channel_monitor_offset(struct vmbus_channel *channel)
{
	return (u8)channel->offermsg.monitorid % 32;
}

static u32 channel_pending(struct vmbus_channel *channel,
			   struct hv_monitor_page *monitor_page)
{
	u8 monitor_group = channel_monitor_group(channel);
	return monitor_page->trigger_group[monitor_group].pending;
}

143 144 145 146 147 148 149 150
static u32 channel_latency(struct vmbus_channel *channel,
			   struct hv_monitor_page *monitor_page)
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
	return monitor_page->latency[monitor_group][monitor_offset];
}

151 152 153 154 155 156 157 158
static u32 channel_conn_id(struct vmbus_channel *channel,
			   struct hv_monitor_page *monitor_page)
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
}

159 160 161 162 163 164 165 166 167 168 169
static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
		       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
}
static DEVICE_ATTR_RO(id);

170 171 172 173 174 175 176 177 178 179 180
static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
			  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->state);
}
static DEVICE_ATTR_RO(state);

181 182 183 184 185 186 187 188 189 190 191
static ssize_t monitor_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
}
static DEVICE_ATTR_RO(monitor_id);

192 193 194 195 196 197 198 199 200 201 202 203
static ssize_t class_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_type.b);
}
static DEVICE_ATTR_RO(class_id);

204 205 206 207 208 209 210 211 212 213 214 215
static ssize_t device_id_show(struct device *dev,
			      struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_instance.b);
}
static DEVICE_ATTR_RO(device_id);

216 217 218 219 220 221 222 223 224 225 226
static ssize_t modalias_show(struct device *dev,
			     struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	char alias_name[VMBUS_ALIAS_LEN + 1];

	print_alias_name(hv_dev, alias_name);
	return sprintf(buf, "vmbus:%s\n", alias_name);
}
static DEVICE_ATTR_RO(modalias);

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
static ssize_t server_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(server_monitor_pending);

static ssize_t client_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_pending);
254

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
static ssize_t server_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_latency);

static ssize_t client_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_latency);

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
static ssize_t server_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_conn_id);

static ssize_t client_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_conn_id);

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
static ssize_t out_intr_mask_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(out_intr_mask);

static ssize_t out_read_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.current_read_index);
}
static DEVICE_ATTR_RO(out_read_index);

static ssize_t out_write_index_show(struct device *dev,
				    struct device_attribute *dev_attr,
				    char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.current_write_index);
}
static DEVICE_ATTR_RO(out_write_index);

static ssize_t out_read_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(out_read_bytes_avail);

static ssize_t out_write_bytes_avail_show(struct device *dev,
					  struct device_attribute *dev_attr,
					  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(out_write_bytes_avail);

static ssize_t in_intr_mask_show(struct device *dev,
				 struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(in_intr_mask);

static ssize_t in_read_index_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.current_read_index);
}
static DEVICE_ATTR_RO(in_read_index);

static ssize_t in_write_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.current_write_index);
}
static DEVICE_ATTR_RO(in_write_index);

static ssize_t in_read_bytes_avail_show(struct device *dev,
					struct device_attribute *dev_attr,
					char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(in_read_bytes_avail);

static ssize_t in_write_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(in_write_bytes_avail);

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
static ssize_t channel_vp_mapping_show(struct device *dev,
				       struct device_attribute *dev_attr,
				       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
	unsigned long flags;
	int buf_size = PAGE_SIZE, n_written, tot_written;
	struct list_head *cur;

	if (!channel)
		return -ENODEV;

	tot_written = snprintf(buf, buf_size, "%u:%u\n",
		channel->offermsg.child_relid, channel->target_cpu);

	spin_lock_irqsave(&channel->lock, flags);

	list_for_each(cur, &channel->sc_list) {
		if (tot_written >= buf_size - 1)
			break;

		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
		n_written = scnprintf(buf + tot_written,
				     buf_size - tot_written,
				     "%u:%u\n",
				     cur_sc->offermsg.child_relid,
				     cur_sc->target_cpu);
		tot_written += n_written;
	}

	spin_unlock_irqrestore(&channel->lock, flags);

	return tot_written;
}
static DEVICE_ATTR_RO(channel_vp_mapping);

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
static ssize_t vendor_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
}
static DEVICE_ATTR_RO(vendor);

static ssize_t device_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->device_id);
}
static DEVICE_ATTR_RO(device);

501
/* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
502 503
static struct attribute *vmbus_attrs[] = {
	&dev_attr_id.attr,
504
	&dev_attr_state.attr,
505
	&dev_attr_monitor_id.attr,
506
	&dev_attr_class_id.attr,
507
	&dev_attr_device_id.attr,
508
	&dev_attr_modalias.attr,
509 510
	&dev_attr_server_monitor_pending.attr,
	&dev_attr_client_monitor_pending.attr,
511 512
	&dev_attr_server_monitor_latency.attr,
	&dev_attr_client_monitor_latency.attr,
513 514
	&dev_attr_server_monitor_conn_id.attr,
	&dev_attr_client_monitor_conn_id.attr,
515 516 517 518 519 520 521 522 523 524
	&dev_attr_out_intr_mask.attr,
	&dev_attr_out_read_index.attr,
	&dev_attr_out_write_index.attr,
	&dev_attr_out_read_bytes_avail.attr,
	&dev_attr_out_write_bytes_avail.attr,
	&dev_attr_in_intr_mask.attr,
	&dev_attr_in_read_index.attr,
	&dev_attr_in_write_index.attr,
	&dev_attr_in_read_bytes_avail.attr,
	&dev_attr_in_write_bytes_avail.attr,
525
	&dev_attr_channel_vp_mapping.attr,
526 527
	&dev_attr_vendor.attr,
	&dev_attr_device.attr,
528 529 530 531
	NULL,
};
ATTRIBUTE_GROUPS(vmbus);

532 533 534 535 536 537
/*
 * vmbus_uevent - add uevent for our device
 *
 * This routine is invoked when a device is added or removed on the vmbus to
 * generate a uevent to udev in the userspace. The udev will then look at its
 * rule and the uevent generated here to load the appropriate driver
538 539 540 541
 *
 * The alias string will be of the form vmbus:guid where guid is the string
 * representation of the device guid (each byte of the guid will be
 * represented with two hex characters.
542 543 544 545
 */
static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
{
	struct hv_device *dev = device_to_hv_device(device);
546 547
	int ret;
	char alias_name[VMBUS_ALIAS_LEN + 1];
548

549
	print_alias_name(dev, alias_name);
550 551
	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
	return ret;
552 553
}

S
stephen hemminger 已提交
554
static const uuid_le null_guid;
555

556
static inline bool is_null_guid(const uuid_le *guid)
557
{
558
	if (uuid_le_cmp(*guid, null_guid))
559 560 561 562
		return false;
	return true;
}

563 564 565 566 567 568
/*
 * Return a matching hv_vmbus_device_id pointer.
 * If there is no match, return NULL.
 */
static const struct hv_vmbus_device_id *hv_vmbus_get_id(
					const struct hv_vmbus_device_id *id,
569
					const uuid_le *guid)
570
{
571
	for (; !is_null_guid(&id->guid); id++)
572
		if (!uuid_le_cmp(id->guid, *guid))
573 574 575 576 577 578
			return id;

	return NULL;
}


579 580 581 582 583 584 585

/*
 * vmbus_match - Attempt to match the specified device to the specified driver
 */
static int vmbus_match(struct device *device, struct device_driver *driver)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
586
	struct hv_device *hv_dev = device_to_hv_device(device);
587

588 589 590 591
	/* The hv_sock driver handles all hv_sock offers. */
	if (is_hvsock_channel(hv_dev->channel))
		return drv->hvsock;

592
	if (hv_vmbus_get_id(drv->id_table, &hv_dev->dev_type))
593
		return 1;
594

595
	return 0;
596 597
}

598 599 600 601 602 603 604 605
/*
 * vmbus_probe - Add the new vmbus's child device
 */
static int vmbus_probe(struct device *child_device)
{
	int ret = 0;
	struct hv_driver *drv =
			drv_to_hv_drv(child_device->driver);
606
	struct hv_device *dev = device_to_hv_device(child_device);
607
	const struct hv_vmbus_device_id *dev_id;
608

609
	dev_id = hv_vmbus_get_id(drv->id_table, &dev->dev_type);
610
	if (drv->probe) {
611
		ret = drv->probe(dev, dev_id);
612
		if (ret != 0)
613 614
			pr_err("probe failed for device %s (%d)\n",
			       dev_name(child_device), ret);
615 616

	} else {
617 618
		pr_err("probe not set for driver %s\n",
		       dev_name(child_device));
619
		ret = -ENODEV;
620 621 622 623
	}
	return ret;
}

624 625 626 627 628
/*
 * vmbus_remove - Remove a vmbus device
 */
static int vmbus_remove(struct device *child_device)
{
629
	struct hv_driver *drv;
630
	struct hv_device *dev = device_to_hv_device(child_device);
631

632 633 634 635 636
	if (child_device->driver) {
		drv = drv_to_hv_drv(child_device->driver);
		if (drv->remove)
			drv->remove(dev);
	}
637 638 639 640

	return 0;
}

641 642 643 644 645 646 647

/*
 * vmbus_shutdown - Shutdown a vmbus device
 */
static void vmbus_shutdown(struct device *child_device)
{
	struct hv_driver *drv;
648
	struct hv_device *dev = device_to_hv_device(child_device);
649 650 651 652 653 654 655 656


	/* The device may not be attached yet */
	if (!child_device->driver)
		return;

	drv = drv_to_hv_drv(child_device->driver);

657 658
	if (drv->shutdown)
		drv->shutdown(dev);
659 660 661 662

	return;
}

663 664 665 666 667 668

/*
 * vmbus_device_release - Final callback release of the vmbus child device
 */
static void vmbus_device_release(struct device *device)
{
669
	struct hv_device *hv_dev = device_to_hv_device(device);
670
	struct vmbus_channel *channel = hv_dev->channel;
671

672 673
	hv_process_channel_removal(channel,
				   channel->offermsg.child_relid);
674
	kfree(hv_dev);
675 676 677

}

678
/* The one and only one */
679 680 681 682 683 684 685
static struct bus_type  hv_bus = {
	.name =		"vmbus",
	.match =		vmbus_match,
	.shutdown =		vmbus_shutdown,
	.remove =		vmbus_remove,
	.probe =		vmbus_probe,
	.uevent =		vmbus_uevent,
686
	.dev_groups =		vmbus_groups,
687 688
};

689 690 691 692 693 694 695 696 697
struct onmessage_work_context {
	struct work_struct work;
	struct hv_message msg;
};

static void vmbus_onmessage_work(struct work_struct *work)
{
	struct onmessage_work_context *ctx;

698 699 700 701
	/* Do not process messages if we're in DISCONNECTED state */
	if (vmbus_connection.conn_state == DISCONNECTED)
		return;

702 703 704 705 706 707
	ctx = container_of(work, struct onmessage_work_context,
			   work);
	vmbus_onmessage(&ctx->msg);
	kfree(ctx);
}

708
static void hv_process_timer_expiration(struct hv_message *msg, int cpu)
709 710 711 712 713 714
{
	struct clock_event_device *dev = hv_context.clk_evt[cpu];

	if (dev->event_handler)
		dev->event_handler(dev);

715
	vmbus_signal_eom(msg);
716 717
}

718
void vmbus_on_msg_dpc(unsigned long data)
G
Greg Kroah-Hartman 已提交
719 720 721 722 723
{
	int cpu = smp_processor_id();
	void *page_addr = hv_context.synic_message_page[cpu];
	struct hv_message *msg = (struct hv_message *)page_addr +
				  VMBUS_MESSAGE_SINT;
724 725
	struct vmbus_channel_message_header *hdr;
	struct vmbus_channel_message_table_entry *entry;
726
	struct onmessage_work_context *ctx;
G
Greg Kroah-Hartman 已提交
727

728 729 730
	if (msg->header.message_type == HVMSG_NONE)
		/* no msg */
		return;
731

732
	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
733

734 735 736 737
	if (hdr->msgtype >= CHANNELMSG_COUNT) {
		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
		goto msg_handled;
	}
738

739 740 741 742 743
	entry = &channel_message_table[hdr->msgtype];
	if (entry->handler_type	== VMHT_BLOCKING) {
		ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
		if (ctx == NULL)
			return;
744

745 746
		INIT_WORK(&ctx->work, vmbus_onmessage_work);
		memcpy(&ctx->msg, msg, sizeof(*msg));
747

748 749 750
		queue_work(vmbus_connection.work_queue, &ctx->work);
	} else
		entry->message_handler(hdr);
G
Greg Kroah-Hartman 已提交
751

752
msg_handled:
753
	vmbus_signal_eom(msg);
G
Greg Kroah-Hartman 已提交
754 755
}

756
static void vmbus_isr(void)
G
Greg Kroah-Hartman 已提交
757 758 759 760 761
{
	int cpu = smp_processor_id();
	void *page_addr;
	struct hv_message *msg;
	union hv_synic_event_flags *event;
762
	bool handled = false;
G
Greg Kroah-Hartman 已提交
763

764 765
	page_addr = hv_context.synic_event_page[cpu];
	if (page_addr == NULL)
766
		return;
767 768 769

	event = (union hv_synic_event_flags *)page_addr +
					 VMBUS_MESSAGE_SINT;
770 771 772 773 774
	/*
	 * Check for events before checking for messages. This is the order
	 * in which events and messages are checked in Windows guests on
	 * Hyper-V, and the Windows team suggested we do the same.
	 */
G
Greg Kroah-Hartman 已提交
775

776 777
	if ((vmbus_proto_version == VERSION_WS2008) ||
		(vmbus_proto_version == VERSION_WIN7)) {
G
Greg Kroah-Hartman 已提交
778

779 780 781 782 783 784 785 786 787 788 789 790
		/* Since we are a child, we only need to check bit 0 */
		if (sync_test_and_clear_bit(0,
			(unsigned long *) &event->flags32[0])) {
			handled = true;
		}
	} else {
		/*
		 * Our host is win8 or above. The signaling mechanism
		 * has changed and we can directly look at the event page.
		 * If bit n is set then we have an interrup on the channel
		 * whose id is n.
		 */
791 792
		handled = true;
	}
793

794
	if (handled)
795
		tasklet_schedule(hv_context.event_dpc[cpu]);
796 797


798 799 800 801
	page_addr = hv_context.synic_message_page[cpu];
	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;

	/* Check if there are actual msgs to be processed */
802 803 804 805
	if (msg->header.message_type != HVMSG_NONE) {
		if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
			hv_process_timer_expiration(msg, cpu);
		else
806
			tasklet_schedule(hv_context.msg_dpc[cpu]);
807
	}
808 809
}

810

811
/*
812 813 814
 * vmbus_bus_init -Main vmbus driver initialization routine.
 *
 * Here, we
815 816 817
 *	- initialize the vmbus driver context
 *	- invoke the vmbus hv main init routine
 *	- retrieve the channel offers
818
 */
819
static int vmbus_bus_init(void)
820
{
821
	int ret;
822

823 824
	/* Hypervisor initialization...setup hypercall page..etc */
	ret = hv_init();
825
	if (ret != 0) {
826
		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
827
		return ret;
828 829
	}

830
	ret = bus_register(&hv_bus);
831
	if (ret)
832
		goto err_cleanup;
833

834
	hv_setup_vmbus_irq(vmbus_isr);
835

836 837 838
	ret = hv_synic_alloc();
	if (ret)
		goto err_alloc;
839
	/*
840
	 * Initialize the per-cpu interrupt state and
841 842
	 * connect to the host.
	 */
843
	on_each_cpu(hv_synic_init, NULL, 1);
844
	ret = vmbus_connect();
845
	if (ret)
846
		goto err_connect;
847

848 849
	if (vmbus_proto_version > VERSION_WIN7)
		cpu_hotplug_disable();
850 851 852 853

	/*
	 * Only register if the crash MSRs are available
	 */
854
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
855
		register_die_notifier(&hyperv_die_block);
856 857 858 859
		atomic_notifier_chain_register(&panic_notifier_list,
					       &hyperv_panic_block);
	}

860
	vmbus_request_offers();
861

862
	return 0;
863

864 865
err_connect:
	on_each_cpu(hv_synic_cleanup, NULL, 1);
866 867
err_alloc:
	hv_synic_free();
868
	hv_remove_vmbus_irq();
869 870 871 872 873 874 875

	bus_unregister(&hv_bus);

err_cleanup:
	hv_cleanup();

	return ret;
876 877
}

878
/**
879 880
 * __vmbus_child_driver_register() - Register a vmbus's driver
 * @hv_driver: Pointer to driver structure you want to register
881 882
 * @owner: owner module of the drv
 * @mod_name: module name string
883 884
 *
 * Registers the given driver with Linux through the 'driver_register()' call
885
 * and sets up the hyper-v vmbus handling for this driver.
886 887
 * It will return the state of the 'driver_register()' call.
 *
888
 */
889
int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
890
{
891
	int ret;
892

893
	pr_info("registering driver %s\n", hv_driver->name);
894

895 896 897 898
	ret = vmbus_exists();
	if (ret < 0)
		return ret;

899 900 901 902
	hv_driver->driver.name = hv_driver->name;
	hv_driver->driver.owner = owner;
	hv_driver->driver.mod_name = mod_name;
	hv_driver->driver.bus = &hv_bus;
903

904
	ret = driver_register(&hv_driver->driver);
905

906
	return ret;
907
}
908
EXPORT_SYMBOL_GPL(__vmbus_driver_register);
909

910
/**
911
 * vmbus_driver_unregister() - Unregister a vmbus's driver
912 913
 * @hv_driver: Pointer to driver structure you want to
 *             un-register
914
 *
915 916
 * Un-register the given driver that was previous registered with a call to
 * vmbus_driver_register()
917
 */
918
void vmbus_driver_unregister(struct hv_driver *hv_driver)
919
{
920
	pr_info("unregistering driver %s\n", hv_driver->name);
921

922
	if (!vmbus_exists())
923
		driver_unregister(&hv_driver->driver);
924
}
925
EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
926

927
/*
928
 * vmbus_device_create - Creates and registers a new child device
929
 * on the vmbus.
930
 */
S
stephen hemminger 已提交
931 932 933
struct hv_device *vmbus_device_create(const uuid_le *type,
				      const uuid_le *instance,
				      struct vmbus_channel *channel)
934
{
935
	struct hv_device *child_device_obj;
936

937 938
	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
	if (!child_device_obj) {
939
		pr_err("Unable to allocate device object for child device\n");
940 941 942
		return NULL;
	}

943
	child_device_obj->channel = channel;
944
	memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
945
	memcpy(&child_device_obj->dev_instance, instance,
946
	       sizeof(uuid_le));
947
	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
948 949 950 951 952


	return child_device_obj;
}

953
/*
954
 * vmbus_device_register - Register the child device
955
 */
956
int vmbus_device_register(struct hv_device *child_device_obj)
957
{
958
	int ret = 0;
959

960 961
	dev_set_name(&child_device_obj->device, "vmbus_%d",
		     child_device_obj->channel->id);
962

963
	child_device_obj->device.bus = &hv_bus;
964
	child_device_obj->device.parent = &hv_acpi_dev->dev;
965
	child_device_obj->device.release = vmbus_device_release;
966

967 968 969 970
	/*
	 * Register with the LDM. This will kick off the driver/device
	 * binding...which will eventually call vmbus_match() and vmbus_probe()
	 */
971
	ret = device_register(&child_device_obj->device);
972 973

	if (ret)
974
		pr_err("Unable to register child device\n");
975
	else
976
		pr_debug("child device %s registered\n",
977
			dev_name(&child_device_obj->device));
978 979 980 981

	return ret;
}

982
/*
983
 * vmbus_device_unregister - Remove the specified child device
984
 * from the vmbus.
985
 */
986
void vmbus_device_unregister(struct hv_device *device_obj)
987
{
988 989 990
	pr_debug("child device %s unregistered\n",
		dev_name(&device_obj->device));

991 992 993 994
	/*
	 * Kick off the process of unregistering the device.
	 * This will call vmbus_remove() and eventually vmbus_device_release()
	 */
995
	device_unregister(&device_obj->device);
996 997 998
}


999
/*
1000
 * VMBUS is an acpi enumerated device. Get the information we
1001
 * need from DSDT.
1002
 */
1003
#define VTPM_BASE_ADDRESS 0xfed40000
1004
static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1005
{
1006 1007 1008 1009 1010 1011
	resource_size_t start = 0;
	resource_size_t end = 0;
	struct resource *new_res;
	struct resource **old_res = &hyperv_mmio;
	struct resource **prev_res = NULL;

1012
	switch (res->type) {
1013 1014 1015 1016 1017 1018 1019 1020 1021

	/*
	 * "Address" descriptors are for bus windows. Ignore
	 * "memory" descriptors, which are for registers on
	 * devices.
	 */
	case ACPI_RESOURCE_TYPE_ADDRESS32:
		start = res->data.address32.address.minimum;
		end = res->data.address32.address.maximum;
G
Gerd Hoffmann 已提交
1022
		break;
1023

1024
	case ACPI_RESOURCE_TYPE_ADDRESS64:
1025 1026
		start = res->data.address64.address.minimum;
		end = res->data.address64.address.maximum;
G
Gerd Hoffmann 已提交
1027
		break;
1028 1029 1030 1031 1032

	default:
		/* Unused resource type */
		return AE_OK;

1033
	}
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
	/*
	 * Ignore ranges that are below 1MB, as they're not
	 * necessary or useful here.
	 */
	if (end < 0x100000)
		return AE_OK;

	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
	if (!new_res)
		return AE_NO_MEMORY;

	/* If this range overlaps the virtual TPM, truncate it. */
	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
		end = VTPM_BASE_ADDRESS;

	new_res->name = "hyperv mmio";
	new_res->flags = IORESOURCE_MEM;
	new_res->start = start;
	new_res->end = end;

1054 1055 1056
	/*
	 * If two ranges are adjacent, merge them.
	 */
1057 1058 1059 1060 1061 1062
	do {
		if (!*old_res) {
			*old_res = new_res;
			break;
		}

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
		if (((*old_res)->end + 1) == new_res->start) {
			(*old_res)->end = new_res->end;
			kfree(new_res);
			break;
		}

		if ((*old_res)->start == new_res->end + 1) {
			(*old_res)->start = new_res->start;
			kfree(new_res);
			break;
		}

1075
		if ((*old_res)->start > new_res->end) {
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
			new_res->sibling = *old_res;
			if (prev_res)
				(*prev_res)->sibling = new_res;
			*old_res = new_res;
			break;
		}

		prev_res = old_res;
		old_res = &(*old_res)->sibling;

	} while (1);
1087 1088 1089 1090

	return AE_OK;
}

1091 1092 1093 1094 1095 1096
static int vmbus_acpi_remove(struct acpi_device *device)
{
	struct resource *cur_res;
	struct resource *next_res;

	if (hyperv_mmio) {
1097 1098 1099 1100 1101 1102
		if (fb_mmio) {
			__release_region(hyperv_mmio, fb_mmio->start,
					 resource_size(fb_mmio));
			fb_mmio = NULL;
		}

1103 1104 1105 1106 1107 1108 1109 1110 1111
		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
			next_res = cur_res->sibling;
			kfree(cur_res);
		}
	}

	return 0;
}

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
static void vmbus_reserve_fb(void)
{
	int size;
	/*
	 * Make a claim for the frame buffer in the resource tree under the
	 * first node, which will be the one below 4GB.  The length seems to
	 * be underreported, particularly in a Generation 1 VM.  So start out
	 * reserving a larger area and make it smaller until it succeeds.
	 */

	if (screen_info.lfb_base) {
		if (efi_enabled(EFI_BOOT))
			size = max_t(__u32, screen_info.lfb_size, 0x800000);
		else
			size = max_t(__u32, screen_info.lfb_size, 0x4000000);

		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
			fb_mmio = __request_region(hyperv_mmio,
						   screen_info.lfb_base, size,
						   fb_mmio_name, 0);
		}
	}
}

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
/**
 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
 * @new:		If successful, supplied a pointer to the
 *			allocated MMIO space.
 * @device_obj:		Identifies the caller
 * @min:		Minimum guest physical address of the
 *			allocation
 * @max:		Maximum guest physical address
 * @size:		Size of the range to be allocated
 * @align:		Alignment of the range to be allocated
 * @fb_overlap_ok:	Whether this allocation can be allowed
 *			to overlap the video frame buffer.
 *
 * This function walks the resources granted to VMBus by the
 * _CRS object in the ACPI namespace underneath the parent
 * "bridge" whether that's a root PCI bus in the Generation 1
 * case or a Module Device in the Generation 2 case.  It then
 * attempts to allocate from the global MMIO pool in a way that
 * matches the constraints supplied in these parameters and by
 * that _CRS.
 *
 * Return: 0 on success, -errno on failure
 */
int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
			resource_size_t min, resource_size_t max,
			resource_size_t size, resource_size_t align,
			bool fb_overlap_ok)
{
1164
	struct resource *iter, *shadow;
1165
	resource_size_t range_min, range_max, start;
1166
	const char *dev_n = dev_name(&device_obj->device);
1167
	int retval;
1168 1169 1170

	retval = -ENXIO;
	down(&hyperv_mmio_lock);
1171

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
	/*
	 * If overlaps with frame buffers are allowed, then first attempt to
	 * make the allocation from within the reserved region.  Because it
	 * is already reserved, no shadow allocation is necessary.
	 */
	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
	    !(max < fb_mmio->start)) {

		range_min = fb_mmio->start;
		range_max = fb_mmio->end;
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				retval = 0;
				goto exit;
			}
		}
	}

1192 1193 1194 1195 1196 1197
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= max) || (iter->end <= min))
			continue;

		range_min = iter->start;
		range_max = iter->end;
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			shadow = __request_region(iter, start, size, NULL,
						  IORESOURCE_BUSY);
			if (!shadow)
				continue;

			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				shadow->name = (char *)*new;
				retval = 0;
				goto exit;
1210 1211
			}

1212
			__release_region(iter, start, size);
1213 1214 1215
		}
	}

1216 1217 1218
exit:
	up(&hyperv_mmio_lock);
	return retval;
1219 1220 1221
}
EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
/**
 * vmbus_free_mmio() - Free a memory-mapped I/O range.
 * @start:		Base address of region to release.
 * @size:		Size of the range to be allocated
 *
 * This function releases anything requested by
 * vmbus_mmio_allocate().
 */
void vmbus_free_mmio(resource_size_t start, resource_size_t size)
{
1232 1233 1234 1235 1236 1237 1238 1239 1240
	struct resource *iter;

	down(&hyperv_mmio_lock);
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= start + size) || (iter->end <= start))
			continue;

		__release_region(iter, start, size);
	}
1241
	release_mem_region(start, size);
1242
	up(&hyperv_mmio_lock);
1243 1244 1245 1246

}
EXPORT_SYMBOL_GPL(vmbus_free_mmio);

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
/**
 * vmbus_cpu_number_to_vp_number() - Map CPU to VP.
 * @cpu_number: CPU number in Linux terms
 *
 * This function returns the mapping between the Linux processor
 * number and the hypervisor's virtual processor number, useful
 * in making hypercalls and such that talk about specific
 * processors.
 *
 * Return: Virtual processor number in Hyper-V terms
 */
int vmbus_cpu_number_to_vp_number(int cpu_number)
{
	return hv_context.vp_index[cpu_number];
}
EXPORT_SYMBOL_GPL(vmbus_cpu_number_to_vp_number);

1264 1265 1266
static int vmbus_acpi_add(struct acpi_device *device)
{
	acpi_status result;
1267
	int ret_val = -ENODEV;
1268
	struct acpi_device *ancestor;
1269

1270 1271
	hv_acpi_dev = device;

1272
	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1273
					vmbus_walk_resources, NULL);
1274

1275 1276 1277
	if (ACPI_FAILURE(result))
		goto acpi_walk_err;
	/*
1278 1279
	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
	 * firmware) is the VMOD that has the mmio ranges. Get that.
1280
	 */
1281 1282 1283
	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
					     vmbus_walk_resources, NULL);
1284 1285

		if (ACPI_FAILURE(result))
1286
			continue;
1287 1288
		if (hyperv_mmio) {
			vmbus_reserve_fb();
1289
			break;
1290
		}
1291
	}
1292 1293 1294
	ret_val = 0;

acpi_walk_err:
1295
	complete(&probe_event);
1296 1297
	if (ret_val)
		vmbus_acpi_remove(device);
1298
	return ret_val;
1299 1300 1301 1302
}

static const struct acpi_device_id vmbus_acpi_device_ids[] = {
	{"VMBUS", 0},
1303
	{"VMBus", 0},
1304 1305 1306 1307 1308 1309 1310 1311 1312
	{"", 0},
};
MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);

static struct acpi_driver vmbus_acpi_driver = {
	.name = "vmbus",
	.ids = vmbus_acpi_device_ids,
	.ops = {
		.add = vmbus_acpi_add,
1313
		.remove = vmbus_acpi_remove,
1314 1315 1316
	},
};

1317 1318 1319 1320 1321
static void hv_kexec_handler(void)
{
	int cpu;

	hv_synic_clockevents_cleanup();
1322
	vmbus_initiate_unload(false);
1323 1324 1325 1326 1327
	for_each_online_cpu(cpu)
		smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
	hv_cleanup();
};

1328 1329
static void hv_crash_handler(struct pt_regs *regs)
{
1330
	vmbus_initiate_unload(true);
1331 1332 1333 1334 1335 1336 1337 1338 1339
	/*
	 * In crash handler we can't schedule synic cleanup for all CPUs,
	 * doing the cleanup for current CPU only. This should be sufficient
	 * for kdump.
	 */
	hv_synic_cleanup(NULL);
	hv_cleanup();
};

1340
static int __init hv_acpi_init(void)
1341
{
1342
	int ret, t;
1343

1344
	if (x86_hyper != &x86_hyper_ms_hyperv)
1345 1346
		return -ENODEV;

1347 1348 1349
	init_completion(&probe_event);

	/*
1350
	 * Get ACPI resources first.
1351
	 */
1352 1353
	ret = acpi_bus_register_driver(&vmbus_acpi_driver);

1354 1355 1356
	if (ret)
		return ret;

1357 1358 1359 1360 1361
	t = wait_for_completion_timeout(&probe_event, 5*HZ);
	if (t == 0) {
		ret = -ETIMEDOUT;
		goto cleanup;
	}
1362

1363
	ret = vmbus_bus_init();
1364
	if (ret)
1365 1366
		goto cleanup;

1367
	hv_setup_kexec_handler(hv_kexec_handler);
1368
	hv_setup_crash_handler(hv_crash_handler);
1369

1370 1371 1372 1373
	return 0;

cleanup:
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1374
	hv_acpi_dev = NULL;
1375
	return ret;
1376 1377
}

1378 1379
static void __exit vmbus_exit(void)
{
1380 1381
	int cpu;

1382
	hv_remove_kexec_handler();
1383
	hv_remove_crash_handler();
1384
	vmbus_connection.conn_state = DISCONNECTED;
1385
	hv_synic_clockevents_cleanup();
1386
	vmbus_disconnect();
1387
	hv_remove_vmbus_irq();
1388 1389
	for_each_online_cpu(cpu)
		tasklet_kill(hv_context.msg_dpc[cpu]);
1390
	vmbus_free_channels();
1391
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1392
		unregister_die_notifier(&hyperv_die_block);
1393 1394 1395
		atomic_notifier_chain_unregister(&panic_notifier_list,
						 &hyperv_panic_block);
	}
1396 1397
	bus_unregister(&hv_bus);
	hv_cleanup();
1398 1399
	for_each_online_cpu(cpu) {
		tasklet_kill(hv_context.event_dpc[cpu]);
1400
		smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1401
	}
1402
	hv_synic_free();
1403
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1404 1405
	if (vmbus_proto_version > VERSION_WIN7)
		cpu_hotplug_enable();
1406 1407
}

1408

1409
MODULE_LICENSE("GPL");
1410

1411
subsys_initcall(hv_acpi_init);
1412
module_exit(vmbus_exit);